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ABSTRACT
Machine Learning is beginning to provide state-of-the-art perfor-
mance in a range of environmental applications such as streamflow
prediction in a hydrologic basin. However, building accurate broad-
scale models for streamflow remains challenging in practice due
to the variability in the dominant hydrologic processes, which
are best captured by sets of process-related basin characteristics.
Existing basin characteristics suffer from noise and uncertainty,
among many other things, which adversely impact model perfor-
mance. To tackle the above challenges, in this paper, we propose a
novel Knowledge-guided Self-Supervised Learning (KGSSL) inverse
framework to extract system characteristics from driver(input) and
response(output) data. This first-of-its-kind framework achieves
robust performance even when characteristics are corrupted or
missing.We evaluate the KGSSL framework in the context of stream
flow modeling using CAMELS (Catchment Attributes and MEteo-
rology for Large-sample Studies) which is a widely used hydrology
benchmark dataset. Specifically, KGSSL outperforms baseline by 16
% in predicting missing characteristics. Furthermore, in the context
of forward modelling, KGSSL inferred characteristics provide a 35%
improvement in performance over a standard baseline when the
static characteristic are unknown.

CCS CONCEPTS
• Applied computing → Earth and atmospheric sciences; •
Computing methodologies → Machine learning.
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1 INTRODUCTION
Machine learning (ML) is increasingly being used to solve chal-
lenging tasks in scientific applications such as hydrology, fresh-
water ecology, and crop yield monitoring. Consider the case of
hydrology, where streamflow prediction is used for understanding
hydrology cycles, water supply management, flood mapping, and
making operational decisions such as reservoir release. For a given
entity (basin/catchment, we use either term interchangeably), the
response (streamflow) is governed by drivers (meteorological data
e.g., air temperature, precipitation, wind speed) and complex physi-
cal processes specific to each entity [24]. These complex physical
processes are best captured by the inherent characteristics of each
entity (e.g., slope, land-cover). For example, for the same amount
of precipitation, two basins will have very different streamflow re-
sponse values depending on their land-cover type. The streamflow
modeling is just one example of a wide variety of scientific models
that can be considered as a mapping function between drivers 𝒙𝒕
(e.g. weather drivers, climate forcings), and response𝑦𝑡 (e.g., stream-
flow in river basin, global average temperature), governed by entity
characteristics. Such problems are often solved using a mechanistic
forward model 𝑓 that predicts the response 𝑦𝑡 , given drivers 𝒙𝒕 and
entity characteristic 𝒛. Figure 1a shows the diagrammatic repre-
sentation of this forward model. More recently, Machine Learning
(ML) models (e.g. LSTMs) have been shown to provide state of the
art performance for forward modelling in many scientific applica-
tions [19, 35]. The reason is that ML models are able to benefit from
training data from a diverse range of entities and thus can trans-
fer knowledge across entities. There is also much interest in the
development of ML algorithms guided by scientific knowledge [15].
Such knowledge-guided machine learning (KGML) models have
been shown to provide improved performance over black-box ML
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(a) (b)
Figure 1: (a) Forward model which uses meteorological drivers
(𝒙𝒕

𝒊 ) and entity characteristics (𝒛𝒊) to predict response (𝒚𝒕
𝒊 ) (b) The

inverse model which approximates entity characteristics (𝒛𝒊) by
inverting the forward process.

models even with fewer sample, and are able to generalize in unseen
scenarios [13, 16, 17, 31].

In streamflow modeling (as well as many other scientific ap-
plications), entity characteristics are often surrogate variables of
the true basin characteristics [4] and thus can lead to several chal-
lenges. First, there often exists high uncertainty in hydrological
measurement, which in turn causes corruption in basin charac-
teristics. Uncertainty can also arise due to temporal change, spa-
tial heterogeneity, sufficiency of the characteristic itself to explain
the rainfall/runoff process, measurement error, missing data, and
correlation among characteristics that collectively contribute to
streamflow. Second, the full set of basin characteristics may not be
measured across all the river basins, resulting in the incompleteness
of basin characteristics. Missing characteristics hinder the building
of a global model that can leverage data across multiple basins and
constrains the transferability of models built from one region to
another. Finally, some basin characteristics may be essential in mod-
eling the rainfall-runoff response relation but may be completely
unknown, not well understood, or not present in the available set of
basin characteristics. Thus, the ability to infer these time-invariant
basin characteristics from the time-varying meteorological and
streamflow data is essential for model prediction and hydrological
process understanding. However, traditional methods used by the
physical science community for inferring these characteristics are
compute intensive, as they require a large number of forward model
runs (especially if 𝑧 has a large dimension).

This paper presents an inverse modeling methodology that can
be used to identify or reconstruct static characteristics of an envi-
ronmental system given its input and output over time. Figure 1b
shows the diagrammatic representation of this inverse problem.
Inverse problems [26] appears in many fields of engineering when
the goal is to recover “hidden” characteristics of a system from “ob-
served” data. In recent years, deep learning techniques have shown
remarkable success for solving inverse problems in various fields
such as compressed sensing, medical imaging [33], and many more
(see [26] for a recent overview). In general, the inverse problem is
ill-posed, i.e., one may not be able to uniquely recover the input
field given noisy and incomplete observations [26].

In this paper, we propose to compute 𝒛 given 𝒙𝒕 and𝒚𝒕 efficiently.
Deep learning methods traditionally solve inverse problems by min-
imizing a cost function [22] that consists of a data-fit term, which
measures how well the reconstruction matches the observations
and a regularizer. These methods, largely based on convolution op-
erator tend to work for inverse problems such as image denoising,
super-resolution, and compressed sensing, but for capturing time
varying physical processes such as ours, the traditional method fails.
We present a novel inverse framework leveraging knowledge from
the hydrological domain in a self-supervised learning framework

to implicitly extract complex correlations embedded in the input
data. We call our methodology knowledge-guided self supervised
learning (KGSSL). KGSSL enables the extraction of time-invariant
characteristics autonomously in the form of embeddings, by forc-
ing them to be similar for the same basin but different years and
dissimilar with other basins. In cases where certain basin charac-
teristics are known, we further add a pseudo-inverse loss on top
of the learned embeddings to guide the learning using the known
basin characteristics.

We demonstrate the usefulness of KGSSL in the context of stream
flowmodeling using CAMELS (Catchment Attributes andMEteorol-
ogy for Large-sample Studies) [23] which is a widely used hydrology
benchmark data set. Specifically, we show that our methodology
can effectively impute basin characteristics (if they are missing) or
reduce their uncertainty (if they are uncertain). We additionally
demonstrate its usefulness in situations where static characteristics
𝒛 are not known for any basins. Here, we show that the similarity
between basins using learned embeddings closely follow the sim-
ilarity based on the actual characteristics. Further, we show that
the learned embeddings can act as an effective replacement for
static characteristics in a forward model. Our main contributions
are listed below:

• We demonstrate the power of leveraging domain knowl-
edge in a self-supervised framework for solving an inverse
problem.

• Extensive evaluation in the context of a widely used hy-
drology benchmark show that KGSSL outperforms baseline
by 16 % in predicting missing characteristics. In addition,
the framework achieves robust performance even when the
characteristics are corrupted or missing.

• In the context of forward modelling, KGSSL inferred char-
acteristics provide a 35% improvement in performance over
a standard baseline when the static characteristic are un-
known.

2 RELATEDWORKS
Inverse problems [26] always exist together with their forward
problem. The goal of the inverse problem is to recover "hidden" in-
formation (which we cannot observe directly or is very expensive to
observe) from readily available "observed" data. Unfortunately, the
inverse is often both intractable and ill-posed, since crucial infor-
mation is lost in the forward process. However, the inverse process
is required to inform us about physical parameters of the system
(e.g., mass, temperature, physical dimensions, or structure), sources
of influence, reconstruction of the coefficients in the equations
that we cannot observe otherwise. Inverse problems are studied for
many environmental science branches, i.e., hydrogeology [37], geo-
physics [18], oceanography [36], meteorology [29], remote sensing
[8], etc. For example, an inverse problem arises when we recon-
struct Earth’s interior by modeling the physical propagation of
seismic waves [32]. Similarly, in reservoir engineering [10], given
various measurements of geophysical fields, an inverse problem
arises to determine the subsurface properties, such as the perme-
ability field. Most of the recent deep learning approaches [3] model
forward/inverse mapping within a single network. However, in hy-
drology, the initial physical parameters are not known reliably [20]
for the basins/catchment due to temporal and spatial heterogeneity.
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Figure 2: Bidirectional LSTM based Sequence Encoder

This leads to a noisy forward operator, which makes existing in-
verse approaches ineffective. This motivates us to design a robust
inverse framework impervious to corrupted basin characteristics.

Due to abundant unlabeled data in computer vision, recently,
researchers have started investigating self-supervised methods [14]
for model training. In self-supervised learning, the models are
trained using pretext tasks instead of an actual task. For example, im-
age colorization [21], image inpainting [28], solving image-jigsaw
[25], predicting rotations [11], etc. For a comprehensive understand-
ing of self-supervised representation learning, we would like to
redirect the reader to a survey by Jing et al. [14]. Our work uti-
lizes a self-supervised loss called InfoNCE loss [6] to counter the
uncertainty in the basin characteristics by implicitly extracting
complex correlations embedded in the meteorological drivers. The
use of InfoNCE loss in our work is closely related to that of [30],
which trained the teacher-student network using contrastive loss
to recover the true feature of a corrupted image. However, our prob-
lem domain (learning relationship between time-varying complex
physical processes) is fundamentally different from vision-related
inverse problems. In addition, our method differs in the following
aspects. First, we employ the self-supervised learning method in
the time-series domain, whereas most of the applications are in the
vision domain. Second, we design novel pretext tasks in hydrology
using domain knowledge. Finally, we focus extensively on robust-
ness in our work and showcase our methodology’s use on both
supervised and unsupervised learning.

3 METHOD
In this work, we study the driver-response relation in dynamical
systems. Specifically, we assume a dataset consisting of 𝑁 entities
(an entity can be a lake, basin or streams in a river-network). For
each entity 𝑖 , the daily drivers are represented by 𝑿 𝒊 as a multivari-
ate time series for 𝑇 timestamp i.e. 𝑿 𝒊 = [𝒙1𝒊 , 𝒙

2
𝒊 , . . . , 𝒙

𝑻
𝒊 ] where

𝒙𝒕𝒊 ∈ R
𝐷𝑥 indicates input vector at time 𝑡 ∈ 𝑇 with 𝐷𝑥 dimension.

𝒛𝒊 ∈ R𝐷𝑧 denotes the static characteristic vector of an entity with
𝐷𝑧 dimensions. The transient response corresponding to (𝑿 𝒊, 𝒛𝒊)
for an entity is denoted by 𝒀𝒊 = [𝑦1

𝑖
, 𝑦2

𝑖
, . . . , 𝑦𝑇

𝑖
].

Our proposed method KGSSL, infers time-invariant entity char-
acteristics (𝒛𝒊) given the time-varying driver (𝑿 𝒊) and response
(𝒀𝒊) data. KGSSL has several components. First, a Sequence Encoder
is used to extract a fixed length representation from the driver-
response time-series. Second, a reconstruction loss (L𝑅𝑒𝑐 ) that forces
the fixed length representation to capture the information stored
in driver-response time-series by penalizing bad driver-response
time-series reconstructions. Third, a Knowledge-guided Contrastive
Loss (L𝐶𝑜𝑛𝑡 ) that implicitly extract complex correlations embedded
in the driver-response time-series and enforces the physical knowl-
edge that the entity characteristics are time-invariant. Finally, a
PseudoInverse loss (L𝐼𝑛𝑣 ) that encourages robust reconstruction of
entity characteristics from the fixed length representation using
a feed-forward network. Thus, the final loss function for training

KGSSL is
L = 𝜆1L𝑅𝑒𝑐 + 𝜆2L𝐶𝑜𝑛𝑡 + 𝜆3L𝐼𝑛𝑣 (1)

where 𝜆1, 𝜆2, 𝜆3 are hyper-parameters to control the weights of
three loss terms. L𝐼𝑛𝑣 is added only when the entity characteristics
are known and available for training. We can also train KGSSL
using only the self-supervised loss functions, L𝑅𝑒𝑐 and L𝐶𝑜𝑛𝑡 . In
the following subsections, we discuss each of these components in
detail and provide intuition behind such design choices.

KGSSL generates time invariant and entity specific embeddings
from driver-response time-series data. Specifically, for each entity
𝑖 in a given set of N entities, we randomly select two sequences
of length𝑊 . Let 𝑆𝑎𝑖 and 𝑆𝑝𝑖 be the two sequences taken from the
time-windows 𝑡𝑎𝑖 : 𝑡𝑎𝑖 +𝑊 and 𝑡𝑝𝑖 : 𝑡𝑝𝑖 +𝑊 , respectively. This
results in 2𝑁 sequences and each element in these sequences are
formed by concatenating the drivers-response time-series of the
entity ([𝒙𝒕𝒊 ;𝑦

𝑡
𝑖
]).

3.1 Sequence Encoder
We use a sequence encoder to encode the temporal information
and the interaction between the driver and response in these se-
quences. LSTM is particularly suited for our task where long range
temporal dependencies between driver and response exist as they
are designed to avoid exploding and vanishing gradient problems.
However, LSTMs are designed to run forward in time and cannot
provide explainability on the current time-steps given the future
data. To capture this information we use a Bidirectional LSTM
based sequence encoder ℰ (Figure 2). Specifically, we build two
LSTM structures:the forward LSTM and the backward LSTM. The
two LSTM structures are the same except that the time-series is
reversed for the backward LSTM. Each LSTM uses the following
set of equations to generate the embeddings for a sequence,

𝒊𝒕 = 𝜎 (𝑾𝒊
[
[𝒙𝒕 ;𝑦𝑡 ];𝒉𝒕−1

]
+ 𝒃𝒊)

𝒇𝒕 = 𝜎 (𝑾𝒇
[
[𝒙𝒕 ;𝑦𝑡 ];𝒉𝒕−1

]
+ 𝒃𝒇 )

𝒈𝒕 = 𝜎 (𝑾𝒈
[
[𝒙𝒕 ;𝑦𝑡 ];𝒉𝒕−1

]
+ 𝒃𝒈)

𝒐𝒕 = 𝜎 (𝑾𝒐
[
[𝒙𝒕 ;𝑦𝑡 ];𝒉𝒕−1

]
+ 𝒃𝒐)

𝒄𝒕 = 𝒇𝒕 ⊙ 𝒄𝒕−1 + 𝒊 ⊙ 𝒈𝒕

𝒉𝒕 = 𝒐𝒕 ⊙ tanh (𝒄𝒕 )

(2)

Each of the forward and backward LSTM takes in a sequence
𝑆 as input and generates corresponding embeddings 𝒉𝒇 and 𝒉𝒃
(𝒉 = ℰ(𝑆)). These embeddings are essentially the final hidden
states of each LSTM. The embeddings for the forward LSTM (𝒉𝒇 )
and backward LSTM (𝒉𝒃 ) are added to get the final embeddings
𝒉 as shown in Figure 2. These embeddings capture the temporal
information as well as the driver-response interaction by modeling
the change in streamflow due to the weather drivers in both forward
and backward directions.

3.2 Reconstruction Loss
To preserve the key information from driver-response data, we use
a standard LSTM based decoder 𝒟 that reconstructs the sequence
back from the embedding (𝑆 = 𝒟(𝒉)). The LSTM decoder uses its
own output at the previous time-step as the input for the current
time-step and thus can be regarded as a sequence generator using
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the embedding 𝒉 as a prior. The reconstruction error is computed as
the mean-squared error between the reconstructed and the original
sequence, as shown below,

L𝑅𝑒𝑐 =
1
2𝑁

∑︁
𝑒∈{𝑎,𝑝 }

𝑁∑︁
𝑖=1

𝑀𝑆𝐸 (𝑆𝑒𝑖 , 𝑆𝑒𝑖 ) (3)

Here L𝑅𝑒𝑐 acts as a regularizer in representation learning, by ex-
tracting meaningful information from the time-varying input data.
However, since we are interested in extracting the time-invariant
information from the time-series data, solely relying on L𝑅𝑒𝑐 leads
to sub-optimal performance. L𝑅𝑒𝑐 promotes preservation of infor-
mation about the time-series in the embeddings which will later be
used by the decoder to reconstruct back the input time-series.

3.3 Knowledge-guided Contrastive Loss
Each entity’s response to a given driver is governed by complex
physical processes captured by its inherent physical characteristics
that remain constant through time. Moreover, different entities have
different responses to the same driver due to the differences in their
inherent characteristics. We use this physical knowledge of entities
to define a self-supervised contrastive loss [6, 27]. Specifically, the
sequences 𝑆𝑎𝑖 and 𝑆𝑝𝑖 of an entity form a positive pair, and for
each positive pair, we treat the other 2(N-1) sequences within a
batch as negative examples. Thus, the contrastive loss forces the
embeddings 𝒉𝒂𝒊 and 𝒉𝒑𝒊 resulting from the sequences 𝑆𝑎𝑖 and 𝑆𝑝𝑖
of the same entity to be similar and different from the embeddings
of other basins. For a given positive pair, the loss is calculated as,

𝑙 (𝑎𝑖 , 𝑝𝑖 ) =
exp (𝑠𝑖𝑚(𝒉𝒂𝒊 ,𝒉𝒑𝒊 )/𝜏)∑

𝑒∈{𝑎,𝑝 }
∑𝑁

𝑗=1 exp (𝑠𝑖𝑚(𝒉𝒂𝒊 ,𝒉𝒆𝒋 )/𝜏)

+
exp (𝑠𝑖𝑚(𝒉𝒑𝒊 ,𝒉𝒂𝒊 )/𝜏)∑

𝑒∈{𝑎,𝑝 }
∑𝑁

𝑗=1 exp (𝑠𝑖𝑚(𝒉𝒑𝒊 ,𝒉𝒆𝒋 )/𝜏)

(4)

where, 𝑠𝑖𝑚(𝒉𝒂𝒊 ,𝒉𝒑𝒊 ) =
𝒉𝒂𝒊

𝑇 𝒉𝒑𝒊
∥𝒉𝒂𝒊 ∥ ∥𝒉𝒑𝒊 ∥

. Thus, the total contrastive loss
for 2N such positive pairs is given as,

L𝐶𝑜𝑛𝑡 =
1
2𝑁

𝑁∑︁
𝑖=1

𝑙 (𝑎𝑖 , 𝑝𝑖 ) (5)

BothL𝐶𝑜𝑛𝑡 andL𝑅𝑒𝑐 do not require any supervised information
and thus can work with a large number of entities for which we
only know the driver-response time-series. Moreover, later in the
results, we show that using only one of these losses leads to sub-
optimal performance and, thus we use a combination of these two
losses.

3.4 PseudoInverse Loss
Reconstruction Loss and Knowledge-guided Contrastive Loss is
used to extrapolate entity characteristics from the time-varying
driver (𝑿 𝒊) and response (𝒀𝒊). However, if some entity character-
istics are known (albeit noisy/uncertain), the above loss functions
fail to account for them during the model training. To improve
our inverse framework, we propose using PseudoInverse loss that
utilizes incomplete/uncertain missing entity characteristics as a
source of supervision. Specifically, we add a feed-forward layer ℐ
on sequence encoder output ℎ to estimate 𝒛̂ = ℐ(𝒉) and then we

Figure 3: Proposed inverse model generates embeddings for a basin
from the LSTM Encoder (Figure 2) and is trained in a self-supervised
manner. Strong supervision (L𝐼𝑛𝑣) is addedwhen ground-truth char-
acteristics are available for a limited number of entities

define regression loss with the available set of entity characteristics
(𝑧) as shown in Figure 3 . Pseudoinverse loss is defined as follows:

L𝐼𝑛𝑣 =
1
𝑁

𝑁∑︁
𝑖=1

1
𝑧

𝑧∑︁
𝑗=1

(𝑧 𝑗
𝑖
− 𝑧

𝑗
𝑖
)2 (6)

3.5 Reconstructing static characteristics given
temporal data

Our KGSSL framework can be used to generate entity-specific em-
beddings as well as static characteristics. Specifically, given input-
drivers𝑋𝑖 = [𝒙1𝒊 , 𝒙

2
𝒊 , . . . , 𝒙

𝑻
𝒊 ] where 𝒙

𝒕
𝒊 ∈ R

𝐷𝑥 and output-response
𝑌𝑖 = [𝑦1

𝑖
, 𝑦2

𝑖
, . . . , 𝑦𝑇

𝑖
] time-series of length 𝑇 for an entity, we break

the combined time-series into 𝑇 /𝑊 sequences of length𝑊 . Each
of these sequences 𝑆 𝑗

𝑖
are fed to the encoderℰ to generate an em-

bedding 𝒉 𝑗
𝑖
, which are further fed into the inverse regressorℐ to

predict the static characteristics 𝒛̂ 𝑗
𝑖
. By taking the element-wise

mean of the embeddings, we get the final embeddings of the en-
tity. Similarly, we get the final estimate of the static characteristics
along with their uncertainties by taking the element-wise mean and
standard deviation of the sequence specific predictions, as shown,

𝒉𝑖 =
𝑊

𝑇

𝑇 /𝑊∑︁
𝑗=1

𝒉 𝑗
𝑖

𝒛̂𝑖 =
𝑊

𝑇

𝑇 /𝑊∑︁
𝑗=1

𝒛̂ 𝑗
𝑖

𝒖𝒏𝒄𝑖 =

√√√√
𝑊

𝑇

𝑇 /𝑊∑︁
𝑗=1

(𝒛̂ 𝑗
𝑖
− 𝒛̂𝑖 )2

(7)
As more and more years of data are made available for an entity,

the embeddings and the predictions of the static characteristics
become more certain and informative.

4 EXPERIMENTAL RESULTS
4.1 Datasets and Implementation details
We evaluate KGSSL using the CAMELS (Catchment Attributes and
MEteorology for Large-sample Studies) dataset, which is exten-
sively used for investigating hydrology processes, in particular,
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Figure 4: Experimental setting followed in the paper for training
and testing of the ML models

streamflow prediction [1]. CAMELS compiles meteorological forc-
ing data (e.g. precipitation, air temperature), streamflow observa-
tion, calibrated physical model simulation, and catchment charac-
teristics(see Appendix A.1 for a complete list), all of which makes
it possible to leverage recent developments in machine learning, in
particular deep learning, in the hydrology community to advance
continental hydrology modeling [9, 19]. In particular, using the
CAMELS dataset, Kratzert et al. [19] showed that a global scale
LSTM model (that uses known static characteristics as input in ad-
dition to weather drivers) can outperform state-of-the-art physics
based hydrological model that are individually caliberated for each
basins.

Following the set up used by Kratzert et al. [19], our study uses
data for 531 basins from CAMELS for the periods (1989-2009). Of
these, (2001-2008) is used for model building, and the rest is used for
testing. Fig. 4 show the experimental setting followed in this paper.
Like Kratzert et al. our study uses 27 basin characteristics orga-
nized by physically meaningful groups: climatology, soils/geologic
conditions and geomorphology/land-cover. These three groups of
characteristics can generally be assumed to represent physical char-
acteristics that contribute more or less to the rainfall/runoff process
in any given catchment. We create input sequences of length 365
using a stride of half the sequence length, i.e., 183. This results in
13 windows for the data used for model training and 19 for the
testing period. All LSTMs used in our architecture have one hidden
layer with 64 units. The feed-forward network to reconstruct char-
acteristics has one hidden layer followed by activation to introduce
non-linear combinations of the embeddings. The hyperparameter
𝜆1, 𝜆2, and 𝜆3 are set at 1, 1, and 1 respectively. The value of 𝜆1,
𝜆2 and 𝜆3 are selected to balance the supervised and unsupervised
components of the loss function. Higher values for 𝜆3 lead to lower
training loss but at the expense of loss of robustness to noise in
the static characteristics(see Appendix A.2 for more details about
the hyperparameter search). To reduce the randomness typically
expected with network initialization, we train five models with
different initialization of deep learning model weights. The predic-
tions were then further combined into an ensemble by averaging
prediction from these five models.

In sections 4.2,4.3,4.4 we evaluate the ability of KGSSL to estimate
the entity characteristics in test basins under various conditions,
including when characteristics in the training set are corrupted
or missing. Section 4.4 considers the case where the catchment
characteristics are not available during training. In addition, section
4.6 shows the ability of KGSSL to improve the forward modeling
task.

Method RMSE CORR
LSTM 0.540 0.795

KGSSL(𝐿𝑅𝑒𝑐+𝐼𝑛𝑣 ) 0.493 0.831
KGSSL(𝐿𝐶𝑜𝑛𝑡+𝐼𝑛𝑣 ) 0.514 0.815

KGSSL(𝐿𝑅𝑒𝑐+𝐶𝑜𝑛𝑡+𝐼𝑛𝑣 ) 0.465 0.824
Table 1: Average root mean square error (RMSE) and correlation
(CORR) for 131 test basins during testing period.

4.2 Estimating the entity characteristics
We train our model using 400 train basins and reconstruct the static
characteristics of the remaining 131 test basins. Table 1 reports
average root mean square error (RMSE) and correlation (CORR)
for 131 test basins during testing period.The entities have different
scale values. Since the RMSE value is not scale-invariant, we also
report a correlation metric, which is scale-independent. Moreover,
the RMSE value measures prediction error, whereas correlation
captures the trend.

We make the following high-level observations from our results:
a) KGSSL, which uses both supervised and unsupervised loss func-
tions to infer entity characteristics, has superior performance (16%
better RMSE) as compared to LSTM, which was trained using mean
square error loss. b)Each of the self-supervised losses, i.e., 𝐿1 and
𝐿2 individually, leads to sub-optimal performance; thus, combining
these two losses with 𝐿3 helps capture the complex physical process
accurately. Fig. 5 illustrates the ability of KGSSL to reconstruct the
27 basin characteristics in the CAMELS dataset. Note that the re-
constructed values are annual averages for each year in the testing
period 1989-1999, while vertical lines show the uncertainty (UNC)
in the prediction as described in Eq. 7). Each individual scatter plot
showcases RMSE, Correlation (CORR) and uncertainty (UNC). Note
that in general KGSSL performs well (correlation>0.8) in 20 out of
27 cases with correlation > 0.9 for 14 of them, and of the remaining
7 cases only one has a correlation <0.5.

The results (Table 1 and Figure 5) exhibit that KGSSL is able
to predict the characteristics with acceptable accuracy (corr>0.8)
for most of the characteristics. In general, the average RMSE and
average correlation of the predicted values are 0.465 and 0.824,
respectively. However, the characteristics reconstruction perfor-
mance varies among the individual characteristics. The ones with
higher reconstruction RMSEs are usually accompanied with higher
standard deviation. The features with satisfactory reconstruction
performance (lower RMSEs and high correlation) are also more
temporally consistent (lower standard deviation). As discussed in
the next paragraph, inconsistencies in reconstruction performance
among the individual characteristics can be reasoned based on do-
main knowledge and reflect uncertainties present in the original
CAMELS data set. This interpretation of the modeling results is
arguably an important scientific discovery of our proposed KGSSL
framework.

KGSSL inferred all nine climate characteristics quite accurately.
This result is consistent with the fact that the climate characteristics
published in the CAMELS data set are derived directly from the
meteorological forcing data 𝑿 𝒊 . We reason that the elev_mean was
also quite accurately inferred (0.132 RMSE and 0.138 standard devi-
ation) because the mean elevation is related to climate patterns, and
this reasoning also holds true for the catchment slope characteris-
tic, slope_mean, and vegetation characteristics (gvf_diff, gvf_max,
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Figure 5: Scatter plot of the CAMELS Estimates for static characteristics (x-axis) for the testing basins vs. reconstructed annual characteristics
(y-axis). The error bar across the points show the variation of the reconstructed characteristics annually across test years.

Group Indexes Sec 4.2 Sec 4.3 Sec 4.4
Original 90% N(0, 𝜎𝑖 ) 50% N(0, 2𝜎𝑖 ) 90% N(0, 2𝜎𝑖 ) 50% Missing 90% Missing

Climate 𝐶1 −𝐶9 0.935 0.906 0.890 0.854 0.933 0.870
Soil-Geology 𝑆1 − 𝑆10 0.711 0.658 0.585 0.546 0.665 0.550

Geomorphology-land cover 𝐺1 −𝐺8 0.841 0.812 0.783 0.751 0.825 0.783
Mean 0.824 0.786 0.745 0.709 0.802 0.725

Table 2: The correlation of reconstructed characteristics for test basins in reference to true characteristics for different levels of noise and
missing values in train basins.

lai_max, and lai_diff, frac_forest), as these should all be correlated to
meteorological characteristics. The remaining seven characteristics
are uncertain by nature because of involved spatial and temporal
heterogeneities. Some of them also possess uncertainties in the
original data source from which they are derived. Most of these
remaining characteristics are soil-related (e.g., carbonate_rocks_frac,
geol_permeability, soil_depth_pelletier) and are derived as spatial
averages from the catchments. Such derivation overly simplifies
catchment spatial heterogeneity, in particular for large catchments.
Therefore, this simplification might explain the large variance rec-
ognized in those characteristics. Furthermore, as mentioned in [1],
the spatial gridded data where those soil characteristics are derived
are uncertain and erroneous in certain geographic regions. It also
only characterizes top layer soils and ignores deep soil information.
Consequently, soil related characteristics are poorly constructed
ones. In addition, area_gages2 is the contributing area where sur-
face runoff is generated, and this is spatially and temporally highly
non-uniform due to the spatial variability of soil properties, spatial
variability of antecedent conditions, and non-uniformity of incident
rainfall. Thus, our reconstruction performance on area_gages2 is
also unsatisfactory.

4.3 Robustness to Corruption in available
characteristics

As highlighted in Sec.1, we expect uncertainty in the characteris-
tics, , and furthermore the nature of this uncertainty may be due
to temporal and/or spatial variability, lack of representativeness,
measurement error and/or missing data. The inverse model learns
generalizable patterns and hence can potentially denoise the cor-
rupted characteristics. To emulate this uncertainty in measurement

Figure 6: Comparison of the RMSE of the corrupted values (in blue)
generated by adding Gaussian noise (N(0, 2𝜎𝑖 )) to 50% of basins and
the reconstructed values (in green).

we randomly corrupt 50% and 90% of the characteristics. Three
experimental setting are thus created. First, to 50% of the charac-
teristics, a Gaussian noise with 0 mean and 2 standard-deviation
is added while the remaining characteristics are left unchanged.
Second, to 90% of the characteristics a Gaussian noise with 0 mean
and 1 standard-deviation is added. Finally, to the same 90% of the
characteristics a Gaussian noise with 2 standard-deviation is added.
Those scenarios are created to capture two perspectives: a small
number of characteristics can have a high level of noise, and a large
number of characteristics are corrupted with a relatively low level
noise. We train separate models on the training data using the cor-
rupted values of these three settings, and the basin characteristics
were predicted using the data from the test years for all the basins
and compared to the original values.

We compare the performance of KGSSL trained using the cor-
rupted data with the KGSSL trained using original catchment char-
acteristics. Table 2 shows the performance of various methods in
terms of correlation of the predicted characteristics with the original
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(a) (b) (c)
Figure 7: Represent pairwise distance matrices for 531 catchments. Fig (a) Entry (i,j) is the pairwise distance between characteristic vector of
catchments i and catchment j; Fig (b) Entry (i,j) is the pairwise distance between embedding vectors generated using KGSSL for catchment i and
catchment j (c) Correlation of each dimension of the learned embeddings with each physical characteristic.

characteristics. The impact of noise on characteristics varies among
groups, which can be explained by their dependence on weather
data that characteristics are learned. Climate characteristics are
the least sensitive ones because their original characteristics are
derived from weather data. Noisy original characteristics will not
downgrade the reconstruction performance because characteristics
can be learned from weather data anyway. Though not directly
related to weather data, geomorphology-land cover characteristics
exhibit geomorphology, land cover patterns that are implicitly char-
acterized from weather data because of involved plant growing
mechanisms and terrestrial processes. Thus, their reconstruction
performance is much less impacted by noise in the training set. The
worst responses in soil-geology characteristics are likely because
they characterize subsurface processes whose interactions with
weather data are relatively negligible. Such limited usable informa-
tion in weather data for soil-geology characteristics constrains the
capability of our model to learn. Figure 6 shows the RMSE com-
puted for corrupted (in blue) and reconstructed characteristics (in
green) with respect to true characteristics averaged across all the
400 train basins for these two models. We can observe that KGSSL
significantly reduces measurement error in characteristics by an
average RMSE of 1.369.
4.4 Robustness to Missing characteristics
Representing physical processes, catchment characteristics often
serve as a unique catchment signature. However, owing to the avail-
ability of various data sources, characteristics that represent one
region are likely not available in another region. It therefore creates
a common and important application scenario where a complete
set of catchment characteristics across catchments are not assured.
This limitation is more pronounced for cross-continental catch-
ments whose characteristics are overlapping rather than exactly
matching with each other. For instance, over half of catchment char-
acteristics (e.g., main stream length, bulk density) in CAMELS-CN
(a version of CAMELS for China) [12] are not included in the char-
acteristics set of the catchments in the CAMELS dataset being used
in this paper (which only contains basins from USA) [1]. The same
scenario is also present in CAMELS version for Great Britain [7],
Chili [2], and Brazil [5]. In addition, insufficient understanding of
catchment processes will also lead to a select set of characteristics

that miss the opportunity to capture certain hydrological processes
beyond current hydrological understanding. To address this issue,
the KGSSL can potentially estimate catchment characteristics when
they are missing for some catchments. To emulate such a scenario
of missing catchment characteristics, we use a similar set up as in
Sec. 4.3. Instead of adding Gaussian noise, we treated 50% and 90%
of the characteristics to be missing. We trained separate models
for each of these settings on train years and train basins, where
L𝐼𝑛𝑣 was calculated and used for training the model only when
characteristics were available. The catchment characteristics were
predicted using the data from the test years for all the basins and
compared to the original catchment characteristics.

The predicted catchment characteristics using data from the test
years are compared to the original catchment characteristics. For
the setting with 50% missing data, the average RMSE and average
correlation of the predicted values are 0.540 and 0.802 respectively,
whereas for 90% missing data, the average RMSE and average corre-
lation of the predicted values are 0.646 and 0.725 respectively. This
result suggests that KGSSL can potentially be used to impute the
missing characteristics. Further, Table 2 shows the robustness of
our method, where we predict the characteristics for the 131 test
catchments using the data from the test years using both the models
and compare the prediction performance to the model trained using
the clean data (Section 4.2).

4.5 Discovering characteristics in the absence of
ground truth(known characteristics)

Here we investigate the ability of KGSSL to identity time invariant
characteristics that may be missing from available characteristics.
We train the inverse model without using any knowledge of avail-
able characteristics that we can use as a constraint.L𝑅𝑒𝑐 andL𝐶𝑜𝑛𝑡

are used for training the model using the data from train years for
all 531 basins. Further, using the data from the test years the embed-
dings for each basin are computed. To empirically demonstrate the
characteristics captured by the learned embeddings, we calculate
the pairwise-euclidean distance between two basins using their
27d physical characteristics (Figure 7a) and compare them with
the distances computed using learned embeddings (Figure 7b). We
generate (Figure 7a) by reordering the rows in the distance matrix
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Method Mean NSE
Baseline(uses known characteristics) 0.704

Baseline (100% missing) 0.491
KGSSL (10% missing) 0.697
KGSSL (50% missing) 0.700
KGSSL (90% missing) 0.664
KGSSL (100% missing) 0.669

Table 3: Model performance for different percentages of missing
values.
computed using 27d physical characteristics such that basins with
the least distances between themselves are placed close to each
other to form a band-like structure. The exact order of basins used
to generate (Figure 7a) is then further applied to the distance matrix
computed using learned embeddings to generate (Figure 7b). From
the figure we observe similar patterns in both the distance matri-
ces which shows that KGSSL generates embeddings that contains
meaningful similarity structure between basins. Further, we cal-
culate the correlation between the learned embeddings with each
of the physical characteristics for 531 basins. Figure 7c provides a
measure of the relative contribution of the 3 groups (C1-9 Climate,
S1-10 Soils/ Geology, G1-8 Geomorphology/Landcover) for explain-
ing the rainfall-runoff process. The vertical axis represents the 27
Static Characteristics, and the horizontal axis is the embeddings
ranked from highest average correlation across characteristics (left)
to lowest average correlation (right). Note that S1 and G3 have a
weak correlation across all embeddings, Collectively the Climate
characteristics show the strongest correlation, followed by geo-
morphology/landcover. The soil and geology group represent the
weakest correlation. This might be expected since soil , and geologic
properties have high spatial variability as discussed earlier.
4.6 Forward Modeling based evaluation
In previous sections, we observed that KGSSL is able to recover
characteristics under missing/uncertain scenarios. In this section,
we take one step further and plug our retrieved values in state-
of-the-art hydrological models to evaluate the gains achieved in
streamflow prediction performance by these retrieved values com-
pared to the missing/uncertain values. LSTMs are extensively used
for environmental modeling where both static and time-series vari-
ables are supplied as input (here, static characteristics are repeated
at each time-step). However, the original RNN models were not de-
signed to exploit static data. Recently, EA-LSTM [19] has emerged
as one of the state-of-the-art ML-based forward models used in
hydrology that processes the time-series meteorological drivers
conditioned on static characteristics. Henceforth, we compare the
streamflow prediction performance of the EA-LSTM model in two
settings: KGSSL inferred features and original basin characteristics.
We report Nash–Sutcliffe model efficiency coefficient (NSE) score
for each forward model run.

4.6.1 Forward modeling with missing entity characteristics.
By design, KGSSL is trained using both supervised and unsuper-
vised loss and has generalizations capability to infer the missing
basin characteristics that can eventually enhance the streamflow
prediction when basin characteristics are missing/not available. We
train all models on all 531 basins during the train years and test the
performance during the test years. Table 3 (first two rows) report
performance of state-of-the-art EA-LSTM (baseline) trained with

Method Mean NSE
Baseline(actual characteristics) 0.560

Baseline (0.5𝜎𝑖 noise) 0.474
Baseline (1𝜎𝑖 noise) 0.245
KGSSL (1 year) 0.460
KGSSL (2 year) 0.535
KGSSL (3 year) 0.554
KGSSL (9 year) 0.582

Table 4: Forward model performance with corrupted characteristics
and using KGSSL embeddings. In KGSSL (n-year), the n refers to the
number of years of data utilized to learn the embedding.

Figure 8: Basin at year 1992 (Best seen in color)
all and no static characteristics [19]. The baseline model where
all characteristics are present performs 43% better (mean NSE)
than the baseline model when some or all basin characteristics are
missing. This shows the importance of the basin characteristics in
modulating the driver-response network.

To evaluate how much inferred basin features help in the for-
ward model, we randomly treat 10%, 50%, 90%, and 100% of the
characters to be missing. We impute missing characters using our
KGSSL pipeline and run it through the forward model. Table 3 (last
4 rows) report NSE performance when our model was used to fill in
the static characteristics for different percentages of missing values.
We observe that the forward model trained with reconstructed char-
acteristics from KGSSL with 10% and 50% missing values perform
similar to the baseline trained with all characteristics. Further with
90% missing characteristics, the forward model observes only 5%
drop when compared with baseline. In addition, for 100% missing
characteristics, we use a total unsupervised setting in our KGSSL
framework, i.e., generate embeddings instead of characteristics. The
KGSSL model with no supervision perform 35% better to the base-
line with 100% missing characteristics. Even more impressive is the
fact that KGSSL with no supervision (last line) is only slightly worse
than the baseline that uses known characteristics. We attribute this
success to our framework’s knowledge-guided component, which
implicitly extracts complex correlations embedded in the input data.

4.6.2 Forward modeling with corrupted entity characteristics.
As shown by Kratzert et al. [19], uncertainty or corruption in basin-
characteristics can have detrimental effect on the forward modeling.
To demonstrate this, we trained the baseline model on the 400
train basins in the train years and test the performance on the 131
test basins in the test years. Table 4 (first row) shows the baseline
performance of the forward model. To model uncertainty in the
static characteristics, we add Gaussian noise (N(0, 0.5𝜎𝑖 ),N(0, 1𝜎𝑖 ))
to test characteristics and measure the performance (Table 4 - 2𝑛𝑑 ,
3𝑟𝑑 row) of the baseline model. As expected, the forward model is
susceptible to noise in the basin characteristic, and the performance
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drops significantly with slight noise. Specifically, the mean NSE
drops by 50% with a 1 standard deviation noise.

If the basin characteristics are corrupted, we can utilize rep-
resentation obtained from the KGSSL trained in self-supervised
manner using n-years of observations (note that this approach
does not need any information about characteristics but it does
need a small amount of data to create the embeddings). Table 4
(second set of rows), showcases the power of this methodology.
As expected, the performance improves as we use more data to
generate embeddings. Note that with only 2 years of data, the EAL-
STM model using KGSSL(2 year) outperforms the EALSTM using
CorruptedN(0, 0.5𝜎𝑖 ) characteristics. Moreover, KGSSL(9 year) gen-
erated with 9 years of train data outperform the model with actual
characteristics. In Figure 8 we plot the actual observed streamflow
(black dot) as well as the predicted streamflow using the various
settings of the forward model. We observe that baseline imputation
with corruption performs poorly and is nowhere close to the actual
values. We also note that baseline prediction (blue line) closely
matches our KGSSL predicted values using only 3 years of data (red
line). We attribute this good result to our novel pretext task that is
able to handle time invariant physical processes.

5 DISCUSSION AND FUTUREWORK
In this work, we build a novel inverse framework KGSSL, and
demonstrate the power of leveraging domain knowledge between
entities in the context of streamflow. We performed extensive ex-
periments on the hydrological benchmark dataset and show that
KGSSL outperforms baseline significantly by a margin of 16-35 %
under various situations. KGSSL is a first-of-its-kind knowledge-
guided framework that implicitly extracts system characteristics
given its driver and response data. This paper addresses an impor-
tant problem in the hydrologic domain, which is societally relevant.
We note that the proposed method is general and can add value
in other applications such as computer vision (self-driving car),
where additional features are used to capture variations in light,
weather, and object poses. Note that KGSSL learns representations
without focusing on optimizing the response variable (i.e., stream-
flow prediction in our hydrology application). KGSSL can be further
extended by combining both the forward and inverse model in a
unified framework that first uses the inverse model to generate a
representation and then uses the learned representation to modu-
late the forward model. Such an extension can leverage the recent
work from task-aware modulation in machine-learning [34, 38],
and will be considered in future work.

6 ACKNOWLEDGEMENT
This work was funded by the NSF HDR Grant 1934721 and NSF FAI
Grant 2147195. Access to computing facilities was provided by the
Minnesota Supercomputing Institute. John Nieber’s effort on this
project was partially supported by the USDA National Institute of
Food and Agriculture, Hatch/Multistate Project MN 12-109.

REFERENCES
[1] Nans Addor et al. 2017. The CAMELS data set: Catchment attributes and meteo-

rology for large-sample studies. Hydrology and Earth System Sciences (2017).
[2] Camila Alvarez-Garreton et al. 2018. The CAMELS-CL dataset: Catchment

attributes and meteorology for large sample studies-Chile dataset. Hydrology
and Earth System Sciences (2018).

[3] Lynton Ardizzone et al. 2018. Analyzing inverse problems with invertible neural
networks. arXiv preprint arXiv:1808.04730 (2018).

[4] Keith Beven. 2020. Deep learning, hydrological processes and the uniqueness of
place. Hydrological Processes (2020).

[5] Vinicius B.P. Chagas et al. 2020. CAMELS-BR: Hydrometeorological time series
and landscape attributes for 897 catchments in Brazil. Earth System Science Data
(2020).

[6] Ting Chen et al. 2020. A simple framework for contrastive learning of visual
representations. ICML (2020).

[7] Gemma Coxon et al. 2020. CAMELS-GB: hydrometeorological time series and
landscape attributes for 671 catchments in Great Britain. Earth System Science
Data (2020).

[8] Phuong D Dao et al. 2021. Improving hyperspectral image segmentation by
applying inverse noise weighting and outlier removal for optimal scale selection.
ISPRS Journal of Photogrammetry and Remote Sensing (2021).

[9] Dapeng Feng et al. 2020. Enhancing streamflow forecast and extracting insights
using long-short term memory networks with data integration at continental
scales. Water Resources Research (2020).

[10] Alexandre Ganachaud et al. 2000. Improved estimates of global ocean circulation,
heat transport and mixing from hydrographic data. Nature (2000).

[11] Spyros Gidaris et al. 2018. Unsupervised representation learning by predicting
image rotations. arXiv preprint arXiv:1803.07728 (2018).

[12] Zhen Hao et al. 2021. CCAM: China Catchment Attributes and Meteorology
dataset. Earth System Science Data (2021).

[13] Xiaowei Jia et al. 2019. Physics guided RNNs for modeling dynamical systems: A
case study in simulating lake temperature profiles. SDM (2019).

[14] Longlong Jing et al. 2020. Self-supervised visual feature learning with deep neural
networks: A survey. IEEE TPAMI (2020).

[15] Anuj Karpatne et al. 2017. Theory-guided data science: A new paradigm for sci-
entific discovery from data. IEEE Transactions on knowledge and data engineering
(2017).

[16] Anuj Karpatne et al. 2022. Knowledge Guided Machine Learning: Accelerating
Discovery using Scientific Knowledge and Data. CRC Press.

[17] Ankush Khandelwal et al. 2020. Physics guided machine learning methods for
hydrology. arXiv preprint arXiv:2012.02854 (2020).

[18] Yuji Kim et al. 2018. Geophysical inversion versus machine learning in inverse
problems. The Leading Edge (2018).

[19] Frederik Kratzert et al. 2019. Towards learning universal, regional, and local
hydrological behaviors via machine learning applied to large-sample datasets.
Hydrology and Earth System Sciences (2019).

[20] Karthik Kumarasamy et al. 2018. Calibration parameter selection and watershed
hydrology model evaluation in time and frequency domains. Water (2018).

[21] Gustav Larsson et al. 2017. Colorization as a proxy task for visual understanding.
CVPR (2017).

[22] Wei-Chiu Ma et al. 2020. Deep feedback inverse problem solver. European
Conference on Computer Vision (2020).

[23] Andrew J Newman et al. 2015. Gridded ensemble precipitation and temperature
estimates for the contiguous United States. Journal of Hydrometeorology (2015).

[24] Brent D Newman et al. 2006. Ecohydrology of water-limited environments: A
scientific vision. Water resources research (2006).

[25] Mehdi Noroozi et al. 2016. Unsupervised learning of visual representations by
solving jigsaw puzzles. ECCV (2016).

[26] Gregory Ongie et al. 2020. Deep learning techniques for inverse problems in
imaging. IEEE Journal on Selected Areas in Information Theory (2020).

[27] Aaron van den Oord et al. 2018. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748 (2018).

[28] Deepak Pathak et al. 2016. Context encoders: Feature learning by inpainting.
CVPR (2016).

[29] Petr Pecha et al. 2021. Determination of radiological background fields designated
for inverse modelling during atypical low wind speed meteorological episode.
Atmospheric Environment (2021).

[30] Sriram Ravula et al. 2021. Inverse Problems Leveraging Pre-trained Contrastive
Representations. NeurIPS (2021).

[31] Jordan S Read et al. 2019. Process-guided deep learning predictions of lake water
temperature. Water Resources Research (2019).

[32] Jeroen Ritsema et al. 2000. Seismic imaging of structural heterogeneity in Earth’s
mantle: evidence for large-scale mantle flow. Science Progress (1933-) (2000).

[33] Ortal Senouf et al. 2019. Self-supervised learning of inverse problem solvers in
medical imaging.

[34] Risto Vuorio et al. 2019. Multimodal model-agnostic meta-learning via task-aware
modulation. arXiv preprint arXiv:1910.13616 (2019).

[35] Jared DWillard et al. 2022. Daily surface temperatures for 185,549 lakes in the con-
terminous United States estimated using deep learning (1980–2020). Limnology
and Oceanography Letters (2022).

[36] R Iestyn Woolway et al. 2021. Winter inverse lake stratification under historic
and future climate change. Limnology and Oceanography Letters (2021).

[37] Haiyan Zhou et al. 2014. Inverse methods in hydrogeology: Evolution and recent
trends. Advances in Water Resources (2014).

[38] Luisa Zintgraf et al. 2019. Fast context adaptation via meta-learning. ICML
(2019).

473



KDD ’22, August 14–18, 2022, Washington, DC, USA. Rahul Ghosh et al.

A APPENDIX
A.1 Index of Catchment attributes used in our

paper

Group index Name
Climate C1 p mean

C2 pet mean
C3 p seasonality
C4 frac snow
C5 aridity
C6 high prec freq
C7 high prec dur
C8 low prec freq
C9 low prec dur

Soil geology S1 carbonate rocks frac
S2 geol permeability
S3 soil depth pelletier
S4 soil depth statsgo
S5 soil porosity
S6 soil conductivity
S7 max water content
S8 sand frac
S9 silt frac
S10 clay frac

Geomorphology G1 elev mean
G2 slope mean
G3 area gages2
G4 frac forest
G5 lai max
G6 lai diff
G7 gvf max
G8 gvf diff

Table 5: Table of catchment characteristics used in this experiment,
description of the characteristics is available and defined in [1]

A.2 Hyperparameter Tuning
We used grid search over a range of parameter values to find the
hyperparameters, i.e., 𝜆1, 𝜆2, 𝜆3, batch_size, the temperature of
contrastive loss, learning rate, dimension of embedding. Specifically,
we considered the following possible parameter values.

• Dimension of embedding: 32, 64, 128,256
• Learning_rate : 0.0005, 0.001, 0.003, 0.005, 0.05
• 𝜆1 :0.01, 0.1, 1, 10
• 𝜆2 :1
• 𝜆3 : 0.1, 1, 10
• Batch_size: 100, 200
• Temp : 0.1, 0.5, 0.7, 1

We trained our model on train basins in the training period and
tested the model in the testing period on testing basins for each
combination in the parameter set. We chose the parameter set with
the least avg RMSE in the train basins during the validation years
as the final parameter configuration

A.3 Reproducibility
CAMELS input data is freely available on the homepage of the
NCAR at https://ral.ucar.edu/solutions/products/camels. The code
is available at https://tinyurl.com/bdny7fk6 (KGSSL Code Link).
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