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Abstract. We propose and study a generalized continued fraction algorithm

that can be executed in an arbitrary imaginary quadratic field, the novelty
being a non-restriction to the five Euclidean cases. Many hallmark properties

of classical continued fractions are shown to be retained, including exponential

convergence, best-of-the-second-kind approximation quality (up to a constant),
periodicity of quadratic irrational expansions, and polynomial time complexity.

1. Introduction

Complex continued fractions were introduced by A. Hurwitz in 1887 [7], when he
applied the nearest integer algorithm to Z[i]. His algorithm takes as input some z =
z0 ∈ C to be approximated. The nth coefficient, an, is then the nearest (Gaussian)
integer to zn−1. We stop if an = zn−1, and continue with zn = 1/(zn−1 − an)
otherwise. The resulting approximations, called convergents, take the form

pn
qn

= a1 +
1

a2 +
1

. . .
an−1 +

1

an

.

Hurwitz showed that many properties possessed by this algorithm over Z still
hold over Z[i]. For example, |qnz − pn| decreases monotonically and exponentially,
the continuants, denoted qn above, increase in magnitude monotonically and expo-
nentially, and quadratic irrationals have periodic expansions.

A key ingredient in his proofs is that |zn−1 − an| is bounded by a constant less

than 1, namely 1/
√
2. Such a constant exists precisely because open unit discs

centered on lattice points of Z[i] cover the complex plane. The same is true of the
imaginary quadratic rings of discriminant ∆ = −3, −7, −8, and −11, but no others.
This explains why the application and study of continued fractions over imaginary
quadratic fields has been restricted to these five cases—the Euclidean ones.

A large collection of references for Hurwitz’ algorithm can be found in [13] or
[14]. Also see [9], where Lakein investigates approximation quality of Hurwitz
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convergents in each Euclidean ring. See [4] for a similar algorithm removed from
the ring setting, though still with a Euclidean-like requirement. See [15, 18, 17, 16]
for Schmidt’s algorithm, which also only functions over the five Euclidean rings.
Another approximation algorithm is given by Whitley in [23]. It has continued
fraction-like properties, while being executable in the four non-Euclidean, imaginary
quadratic principal ideal domains, ∆ = −19, −43, −67, and −163. Whitley’s idea
was generalized to rings of class number 2 by Bygott [3], and as he observes, it may
be further adaptable to rings with trivial principal genus (the square of every ideal
is principal).

Our purpose is to apply an algorithm with similar structure to that of Hurwitz
in an arbitrary imaginary quadratic field.

Notation 1.1. Let K be an imaginary quadratic field with ring of integers O and
discriminant ∆.

Our algorithm, Algorithm 1, is presented in Subsection 2.2 followed by an exam-
ple execution when ∆ = −23. It does not build on the algorithm of Whitley and
Bygott—the only setting in which the two coincide is a Euclidean ring, in which
case both simply reduce to Hurwitz’ algorithm.

Let us roughly summarize our way around the non-Euclidean obstacle. When
there is no choice of coefficient an ∈ O satisfying |zn−1−an| < 1, Algorithm 1 seeks
an near bnzn−1 instead, where bn comes from a fixed finite set B ⊂ O\{0}. But
the exact criteria for selecting an and bn change according to the previous stage’s
choice of coefficient. We impose an analogue of the classical analytic restraint:

|bnzn−1 − an| < |bn−1|, (1.1)

and a new algebraic one:

bn−1

⃓⃓⃓
anpn−1 + bnpn−2, anqn−1 + bnqn−2. (1.2)

The integer quotients from (1.2) are pn and qn, and the algorithm continues with
zn = bn−1/(bnzn−1 − an−1). Remark that because bn need not equal 1, our con-
vergents are called generalized continued fractions. (Some recent applications of
generalized continued fractions over Z can be found in [1] and [2].)

Among pairs an ∈ O and bn ∈ B satisfying (1.2), at least one is guaranteed to
satisfy (1.1) if open discs of center an/bn and radius |bn−1/bn| cover C. If such
a covering occurs for every n, we say B is admissible (defined more precisely in
Definition 2.4). The Hurwitz algorithm has a similar requirement: Euclideanity,
which is equivalent to unit discs on integers covering C. These are the five rings for
which B = {1} is admissible.

For a given field there are many admissible sets, and each may give different
continued fraction expansions of some input z. Even after fixing an admissible set,
an input can have many possible continued fraction expansions because zn−1 might
lie in the overlap of multiple discs of center an/bn and radius |bn−1/bn|. Hurwitz
deals with this situation by insisting that an be nearest to zn−1 (and bn = 1 always).
Initially we make no such requirement to emphasize that the results of Section 3,
like the four following theorems, are valid independently of this choice. A method
for selecting among many acceptable coefficients (Algorithm 2) is not proposed until
Section 4.

The first three results below are versions of the more general Theorems 3.7a,
3.9, and 3.11, where constants (meaning with respect to n and z) depend on B.
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For simplicity we have used B =
{︁
1, 2, ...,

⌊︁√︁
|∆|

⌋︁}︁
, which Theorem 4.3 proves

admissible, to get the following constants that depend only on ∆.

Theorem 1.2. If n ≥ 1 then |qnz − pn| is less than

i)
2
√︁
|∆|

|znqn|
, ii)

2
√︁
|∆|

|qn+1|
, and iii)

3|∆|
|an+1qn|

.

Theorem 1.3. If p/q is not a convergent of z for some p, q ∈ O with q ̸= 0, then

|qn(qnz − pn)| < 16|∆q(qz − p)|

for any n ≥ 1. That is, each pn/qn is a best approximation of the second kind up

to constants: if rs ≤
√
2/16|∆|, then 0 < |q| < r|qn| implies |qz − p| > s|qnz − pn|

for any p ∈ O except perhaps when p/q is already a convergent.

Theorem 1.4. If 0 ≤ n′ < n, then 16|∆qn| >
√
2
n−n′

|qn′zn′ |. In particular, if

n ≥ 1 then 16|∆qn| >
√
2
n
.

Theorem 1.5. There is a continued fraction expansion of z in which the sequence
of pairs (an, bn)n is eventually periodic and infinite if and only if [K(z) : K] = 2.

Note that the last statement refers to an expansion rather than the expansion
due to the potential choice among coefficients that arises in the overlapping disc
scenario. Figure 4 gives an example of how some expansions of a quadratic, irra-
tional input can be periodic while others are not. A path in the right-side image
can be periodic or aperiodic, depending on the choices made at those nodes which
are the source of two arrows. Such a node corresponds to “zn−1” in the left-side
image, which lies in the overlap of two discs, one for each arrow. More detail is
given in Subsection 3.3.

Other results include the monotonic decrease of |qnz − pn| (Proposition 3.2), an
upper bound on |qz − p| that implies p/q appears as a convergent (Lemma 3.8),
and equating bad approximability of z to boundedness of an/bn (Corollary 3.14).

Variations of the properties above may hold for the algorithm of Whitley and
Bygott in fields of class number 1 or 2, but approximation quality is not addressed
in their work. Their goal was to compute spaces of cusp forms.

Section 4 shows that Algorithm 1 can be executed in any imaginary quadratic
field by explicitly producing admissible sets in Theorem 4.3. The sets we give
have two advantages over a generic one. The first is efficiency—the admissibilty
requirement on B guarantees coefficients exists, but not an easy way to find them.
With B as in Theorem 4.3, there is a subroutine for finding coefficients, Algorithm
2, which gives Algorithm 1 polynomial complexity (Theorem 4.6).

The second advantage to using B from Theorem 4.3 is control over (pn, qn). In
Euclidean rings with Hurwitz’ algorithm or principal ideal domains with Whitley’s,
(pn, qn) = O. With Bygott’s generalization to rings of class number 2, all divi-
sors of (pn, qn) are ramified after appropriate scaling. A generic admissible set for
Algorithm 1 loses such control, and thus potential applications like Whitley and
Bygott’s to the group PSL2(O). This can be partially remedied:

Theorem 1.6. If an−1, bn−1, an, and bn are found using Algorithm 2, then only
ramified, non-rational primes divide (pn−1, qn−1, pn, qn).
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Admissible sets can also be precomputed for a particular ring. A brief explana-
tion of how to do this is given in Subsection 4.2. Sample output from the precom-
putation algorithm described is in Table 2 for |∆| < 50.

Some resources are available at math.ucdavis.edu/~dmartin, including the tool
that created the images herein and C++ source code for Algorithm 1 and for finding
admissible sets. There is also software to create Schmidt arrangements (coined and
first studied by Stange [21]), fractal displays of circles in the complex plane obtained
as the orbit of the real line under PSL2(O). It turns out that approximating z ∈ C
with Algorithm 1 corresponds to a “walk” along circles in a Schmidt arrangement
toward z. The convergents are exactly the points of intersection between successive
circles in this walk. Details can be found in the author’s dissertation [10]. Continued
fractions are addressed on their own here for simplicity.

2. A Continued Fraction Algorithm

2.1. Intuition for non-Euclidean rings. Hurwitz’ algorithm can be applied in
any imaginary quadratic ring, but with varying degrees of success. In this subsection
we explore what happens if O is not Euclidean through an example in Q(

√
−23).

Recall notation from the first page, and let M0 denote the identity matrix.
We will need the usual recursion relation Mn = Mn−1S(an), where

Mn =

[︃
pn pn−1

qn qn−1

]︃
and S(a) =

[︃
a 1
1 0

]︃
. (2.1)

With zn = 1/(zn−1 − an), it follows by induction that zn can be computed by
applying the Möbius transformation associated with M−1

n to z. That is,

zn =
qn−1z − pn−1

pn − qnz
. (2.2)

0

1

2

3

Figure 1. Unit discs around
z0, z1, and z2 with |∆| = 23.

Thus an improvement in approximation qual-
ity, |qnz−pn| < |qn−1z−pn−1|, is equivalent to
1/|zn| = |zn−1−an| < 1. So in a non-Euclidean
ring, it is still desirable (and necessary, as we
show shortly) that zn−1 lie in the open unit
disc centered on an.

Let us input z = −1.26 + 0.48i, labeled “0”
in Figure 1, and take coefficients from the in-
tegers in Q(

√
−23). There are two choices for

a1 ∈ O whose unit discs contain z0: −1 and
−2. If a1 = −2, for example, then

z1 =
1

z0 − a1
≈ 0.95− 0.62i.

Similarly, a2 = 1 and a3 = (−1 +
√
−23)/2

center the bold outlined unit discs that contain
z1 and z2 ≈ −0.13+1.61i. But there is no such
disc containing z3 ≈ 0.49 + 1.04i. As a result,
any choice of a4 worsens approximation quality: |q4z − p4| > |q3z − p3|.

We can persevere, perhaps searching for a clever combination a4, a5, ..., an to
finally achieve |qnz−pn| < |q3z−p3|. Or at the very least, there may be a sequence
of coefficients that makes limn pn/qn = z. It happens that neither is possible. The
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obstruction is that Mn, up to a swapping of columns which we henceforth ignore,
belongs to the elementary group in SL2(O)—the group generated by S(a) from (2.1)
for a ∈ O. It is proved in [11] that if p and q are the column entries of a matrix
in the elementary group, then p/q lies in the interior of a unit disc centered on an
integer. Thus for any choices of a4, ..., an, the distance from z3 to the column ratios
of M−1

3 Mn, which belongs to the elementary group, is bounded from below by a
positive constant. So the same is true of the distance between z = M3(z3) and
the column ratios and Mn. This is to say that no sequence of coefficients achieves
limn pn/qn = z.

A fix proposed by Whitley in [23] is to permit right multiplication by certain
additional matrices from SL2(O). So Mn = Mn−1S, where S need not take the form
S(a). Generally, |qnz−pn| < |qn−1z−pn−1| is equivalent to |z−S1,1/S2,1| < 1/|S2,1|,
thereby associating an open disc to S which is no longer centered on an integer
if S2,1 is not a unit. Success occurs when we can choose matrices so that such
discs cover C. This is possible exactly when O is one of the eight principal ideal
domains. In a non-principal ideal domain, there is a discrete set of problematic
points. The so-called singular points are not covered by open discs with center
S1,1/S2,1 and radius 1/|S2,1| for S ∈ SL2(O) [22]. The approximation quality of
Whitley’s algorithm suffers when (zn)n approaches a singular point.

Bygott goes a step further [3] and allows S from the extended Bianchi group (see
Section 7.4 of [5] for a definition and basic properties). Only singular points p/q
for which (p, q)2 is nonprincipal are left uncovered by the newly introduced open
discs. Bygott works in fields of class number 2 because no such points exist.

To lengthen the list of imaginary quadratic fields that possess an approximation
algorithm, we have gone from the elementary group to SL2(O) to the extended
Bianchi group. There are no more extensions to attempt. The latter is maximal
among discrete groups of Möbius transformations containing SL2(O) [5]. The group
structure must be abandoned to obtain a covering of C by open discs in fields with
non-2-torsion ideal classes like Q(

√
−23). So let us return to the elementary group

and consider the following modification to S(a).

Notation 2.1. For a, b ∈ C let

S(a, b) =

[︃
a 1
b 0

]︃
.

It is well-known that open discs of radius 1/|b| and center a/b cover C for a ∈ O

and b from some finite set B ⊂ O\{0}. For example, B = {1, 2} works for Q(
√
−23),

introducing discs of radius 1/2 centered on half-integers. The resulting covering is
the first image in Figure 2. As shown in the second image, the closures of these
discs still cover the plane after scaling radii by

√︁
8/9. Returning to our example,

the first image shows |z3 − (1 +
√
−23)/4| < 1/2. So M4 = M3S((1 +

√
−23)/2, 2)

gives |q4z − p4| < |q3z − p3| as desired.
Unfortunately, continuing in this fashion does not really work. Convergents

converge to z, but they may not come close in quality to the approximations that
must exist by Dirichlet’s box principal. The missing piece is a bound on |detMn|,
which can grow exponentially when |b| ̸= 1 in S(a, b). So we make an adjustment:
since detM4 = b4 = 2, in the next stage we pick among matrices of the form
S(a/2, b/2), where a ∈ O and b ∈ {1, 2}. This cancels the previous determinant,
and |detM5| = b5 ∈ {1, 2} again. Since the goal is to approximate z with ratios
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3

Figure 2. Left: discs of radius 1 and 1/2 on half-integers with

|∆| = 23; now z3 is covered. Right: scaling of radii by
√︁

8/9.

of integers, a5 and b5 are now subject to the restriction that M4S(a5/2, b5/2) be
integral. Matrix multiplication shows this condition is equivalent to (1.2). Our new
divisibility requirement eliminates half of the discs in Figure 2. But the ones that
survive now get a disc of radius 2/b instead of 1/b, as in (1.1). We need this to
remain a covering to guarantee containment of z4. It does, as can be seen in the
first image of Figure 3. That we continue to obtain a covering using B = {1, 2} in
subsequent stages of the algorithm makes this set admissible for Q(

√
−23).

It is not uncommon that a set B produces a covering at one stage (like Figure
2 for the fourth stage in the example) but not another. A few examples of such
inadmissible sets are {1, (1 +

√
−15)/2} for ∆ = −15, {1, 2} for ∆ = −31, −39, or

−47, and {1, 2, (1±
√
−35)/2} for ∆ = −35.

There is one subtlety regarding coefficient choice that occurs if B ̸= {1}. In our
example from Q(

√
−23), note that if an and bn = 1 make Mn−1S(an/bn−1, 1/bn−1)

integral and |zn−1 − an| < 1/2, then we might instead choose 2an and bn = 2.
Indeed, Mn−1S(2an/bn−1, 2/bn−1) is integral and |2zn−1 − 2an| < 1. This doubles
the resulting values of pn and qn, presenting a potential problem: the undoubled
values may appear at a later index, meaning the same convergent could occur twice.
This would necessitate unpleasant caveats in several of Section 3’s results. As such,
we insist that (pn, qn) be reduced to the extent that avoids this issue.

Definition 2.2. For ε ∈ (0, 1), an ideal b ⊆ O is ε-reduced if for every k ∈ K\{0},
kb ⊆ O implies |k| > ε2.

The relation between ε in Definition 2.2 and B is clarified shortly.

2.2. The algorithm. Definition 2.4 formalizes the covering requirement discussed
in the previous subsection. For computations, this definition can be skipped in
favor of Table 2 or Theorem 4.3.

Notation 2.3. Let D(z, r) denote the closed disc of radius r > 0 and center z ∈ C.

6



Definition 2.4. A nonempty, finite set B ⊂ O\{0} is admissible with ε ∈ (0, 1) if
for every ε-reduced ideal b with b ∩B ̸= ∅,

C =
⋃︂
a,b

D

(︃
a

b
,
ε

|b|

)︃
,

where the union ranges over the pairs a, b for a ∈ K and b ∈ B that make (ab, bb−1)
integral and ε-reduced. (Here b−1 is the fractional ideal satisfying b−1b = O.)

The value of ε in Definition 2.4 is a guaranteed measure of approximation quality
improvement, |qnz−pn| ≤ ε|qn−1z−pn−1|. Geometrically, it is an allowable amount
by which radii of discs can be scaled while preserving the covering, as shown in
Figure 2.

Note that Definition 2.4 does not mention bn−1, pn−1, qn−1, pn−2, or qn−2, all
of which appear in (1.2) and therefore determine the coverings used by Algorithm
1. Since there are infinitely many values these variables might attain, a practi-
cal definition of admissibility should adjust for the redundancy of checking every
potential covering. Definition 2.4 requires that b be ε-reduced, so the number of
coverings checked is bounded by a small multiple of the class number (or exactly the
class number if ε is sufficiently close to 1). This facilitates proofs of admissibility
and searches for admissible sets. Unfortunately, it also obscures the relationship
between admissibility and Algorithm 1. For example, it is likely not clear at this
point why coverings indexed by b suffice. And while “a” from Definition 2.4 is
directly related to its counterpart in lines 4–6 of Algorithm 1, they are not equal.
The precise connection is postponed until Section 4.

It may be useful to first consider Algorithm 1 in a Euclidean ring with B = {1}.
The if condition in line 5 becomes trivial and can be ignored. It is then the Hurwitz
algorithm with the exception that we are not requiring an to be the nearest integer
to zn−1, only that |zn−1 − an| < ε.

Definition 2.5. The left-column ideal of a matrix M , denoted (M)ℓ, is the ideal
generated by its left-column entries. Define the right-column ideal, (M)r, similarly.

Algorithm 1. Compute continued fraction convergents of z ∈ C over O. Any
method (like Algorithm 2) for choosing among multiple coefficient pairs a, b satis-
fying line 5 may be used.

input: z ∈ C, N ∈ N, B admissible with ε ∈ (0, 1) as per Definition 2.4
output: pN , qN ∈ O with pN/qN approximating z

1: M ← Id ∈ SL2(O) ▷ convergents are column ratios
2: b′ ← 1 of M as in (2.1)
3: for n← 1 to N do
4: for b∈B, a∈O ∩D(bM−1(z), ε|b′|) do ▷ M−1 is Möbius transformation
5: if (MS(a/b′, b/b′))ℓ is integral and ▷ Algorithm 2 gives a subroutine

ε-reduced then that finds a, b for certain B
6: M ←MS(a/b′, b/b′)
7: b′ ← b
8: break
9: if z = M1,1/M2,1 then break ▷ we found z exactly

10: return M1,1,M2,1
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Notation 2.6. Let an, bn, and Mn denote “a,” “b′,” and “M” after completing the
nth outer for loop iteration, with b0 and M0 being initial values, let zn = M−1

n (z),
and let pn and qn denote the left column entries of Mn. Its right column entries
are then pn−1 and qn−1, which we use to define p−1 = 0 and q−1 = 1.

It follows from line 6 that our variables satisfy the same relations that hold in
Euclidean cases when B = {1}. (Results do not mention the input N or whatever
the terminating index happens to be.)

Proposition 2.7. If n ≥ 1 then

pn =
anpn−1 + bnpn−2

bn−1
, qn =

anqn−1 + bnqn−2

bn−1
, zn =

bn−1

bnzn−1 − an
,

pn
qn

=
a1
b1

+
b0/b1

a2

b2
+

b1/b2

. . . an−1

bn−1
+

bn−2/bn−1

an/bn

,

and detMn = (−1)nbn.

Proof. The expressions for pn, qn, zn, and detMn follow directly from line 6 (and
induction for detMn). Viewing our matrices as Möbius transformations, from the
new expressions for pn and qn we see that

pn
qn

= Mn−1

(︃
an
bn

)︃
=

(︃
S

(︃
a1
b0

,
b1
b0

)︃
◦ · · · ◦ S

(︃
an−1

bn−2
,
bn−1

bn−2

)︃)︃(︃
an
bn

)︃
.

The continued fraction given in the proposition is an expansion of the right-hand
side since S(a, b)(z) = a/b+ 1/bz. □

2.3. An example. Recall the example in Subsection 2.1 for Q(
√
−23). It starts

with z = −1.26 + 0.48i and B = {1, 2}. Let ε =
√︁

8/9 and τ = (1 +
√
−23)/2.

Prior choices of coefficients are a1 = −2, a2 = 1, and a3 = −1 + τ , which center
the outlined discs in Figure 1 that contain z0, z1, and z2. We claim these still meet
the requirements of Algorithm 1 alongside b1 = 1, b2 = 1, and b3 = 1. Indeed, when
bn−1 = bn = 1, the disc containment in line 4 is the same as zn−1 ∈ D(an, ε). In
our example, the radii in Figure 1 can be scaled by ε and still cover z0, z1, and z2.
Moreover, line 5’s requirement that (Mn−1S(an/1, 1/1))ℓ = (Mn)ℓ be ε-reduced is
satisfied since detMn = ±1 implies (Mn)ℓ = O.

So we keep our original three coefficients. Starting with the identity matrix, M0,
line 6 gives

M1 =

[︃
−2 1
1 0

]︃
, M2 =

[︃
−1 −2
1 1

]︃
, and M3 =

[︃
−1− τ −1

τ 1

]︃
.

The previously discussed choice of a4 = τ and b4 = 2 also passes the if condition
in line 5. Indeed, it gives

M4 =

[︃
4− 2τ −1− τ
−4 + τ τ

]︃
,

and thus (M4)ℓ = (τ, 2). This is a (split) prime over 2, which is ε-reduced regardless
of the value of ε. We get z4 = M−1

4 (z) ≈ 1.43 + 0.96i.
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4

6

5

7

Figure 3. Left: z4 and z6 in a disc on a5/b5 = a7/b7 = (1+ τ)/2.

Right: z5 and z7 in discs on a6/b6 = 1 and a8/b8 = 2− τ .

Consider the top row of M4. We cannot use b5 = 1 because a(4−2τ)+1(−1−τ)
is not divisible by b4 = 2 for any a ∈ Z[τ ]. As b5 must come from {1, 2}, b5 = 2 is
forced. So line 4 looks for a5 ∈ O∩D(2z4, 2ε), which rearranges to z4 ∈ D(a5/2, ε).
Turning to the second row of M4, a5(−4 + τ) + 2τ is divisible by 2 if and only if
a5 ∈ (τ , 2). The first image of Figure 3 shows that unit discs on a/2 for a ∈ (τ , 2)
do indeed cover the plane with radius-scaling room to spare. In particular, we may
take a5 = 1 + τ . The highlighted disc is D((1 + τ)/2, 1).

The congruence requirement on a and b can be computed similarly from

M5 =

[︃
7− τ 4− 2τ
−5 −4 + τ

]︃
.

It is a ≡ τ mod2 if b = 1, and a can be any integer if b = 2. (But a ≡ 2τ mod4
and b = 2 needs to be reduced to a/2 and b/2 according to Definition 2.2 because
1/2 ≤ ε2 = 8/9.) The corresponding discs of radius b5/b = 2/b and center a/b
are displayed in the second image of Figure 3. We see that a6 = b6 = 2 satisfies
z5 ∈ D(a6/b6, |b5/b6|) = D(1, 1), again with room to scale radii by ε.

The arrangement of discs that occurs for z6, ∪D(a/b, 2/b) for a ∈ O and b ∈ {1, 2}
that make (M6S(a/b5, b/b5))ℓ ε-reduced, is the vertical reflection of z4’s. So the

first image of Figure 3 shows z6 in the disc centered on a possible choice of a7/b7,
which happens to be the same disc we chose for z4. We are also able to squeeze z7
into z5’s image.

The resulting convergents for n ≤ 10 are given in Table 1 along with approxima-
tion quality. It can be checked that |(qnz− pn)| < ε|qn−1z− pn−1| with ε =

√︁
8/9,

a direct result of |bnzn−1 − an| < ε|bn−1|.
Observe that the last two continuants satisfy |q9|2 = 11916 and |q10|2 = 11716.

For classical continued fractions and Hurwitz’ algorithm over the Euclidean rings,
continuant magnitudes increase monotonically. This fails in general. But Theorem
3.11 asserts that the degree to which continuant monotonicity fails is bounded by
a constant depending only on B and ε.

We end this section with a remark on the colors in Figures 2 and 3. The second
image of Figure 3 is a scaled and shifted copy of Figure 2. It turns out that up
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n ≈ zn−1 an/bn pn/qn ≈ |qnz − pn|
1 −1.26 + 0.48i −2/1 −2/1 0.882

2 0.95− 0.62i 1/1 −1/1 0.5459

3 −0.13 + 1.61i (−1 + τ)/1 (−1− τ)/τ 0.4754

4 0.49 + 1.04i τ/2 (4− 2τ)/(−4 + τ) 0.2757

5 1.43 + 0.96i (1 + τ)/2 (7− τ)/(−5) 0.2

6 1.3 + 0.46i 2/2 (11− 3τ)/(−9 + τ) 0.1096

7 1− 1.53i (2− τ)/2 (9− 8τ)/(−11 + 5τ) 0.0451

8 1.46 + 1.94i (1 + τ)/1 (34− 5τ)/(−25) 0.0104

9 −0.34 + 4.32i (−2 + 2τ)/1 (1 + 60τ)/(39− 45τ) 0.0085

10 0.99 + 0.72i 1/1 (35 + 55τ)/(14− 45τ) 0.0061

Table 1. Coefficients, convergents, and approximation quality from Algo-
rithm 1 with ∆ = −23 using B = {1, 2} and ε =

√︁
8/9.

to scaling, shifting, and reflecting, the two disc arrangements in Figure 3 are the
only ones that can occur. (Such similarity of arrangements is how we get away
with the apparently scant number of coverings provided by Definition 2.4.) Colors
foreshadow which of the two types of arrangement occurs next: yellow for the first
image in Figure 3 and blue for the second. Our choice of discs containing z0, z1,
z2, z4, z6, and z7 are blue, so it is a scaled or shifted copy of the second image in
Figure 3 that must cover z1, z2, z3, z5, z7, and z8. Since yellow discs are chosen to
cover z3 and z5, a scaled, shifted, or reflected copy of the first image in Figure 3
must cover z4 and z6.

Which of the two disc arrangements (either the first or second image in Figure
3) appears in stage n is determined by the ideal class of (Mn−1)ℓ—trivial is the
second image and nontrivial the first. So when drawing discs, the appropriate color
for D(a/b, b/b′) can determined by computing what the ideal class of (Mn)ℓ would
be if a and b were selected as coefficients. That is, we compute the ideal class
of (Mn−1S(a/b

′, b/b′))ℓ—trivial gets blue and nontrivial gets yellow. Note that
there are two nontrivial ideal classes for Q(

√
−23). But they are inverses, implying

complex conjugation maps an ideal in one class to an ideal in another. The two
disc arrangements that occur when (Mn−1)ℓ is conjugate are vertical reflections of
one another (perhaps scaled or shifted as well). This is why the the first image in
Figure 3 may appear reflected at future stages, as it is for covering z6 in stage 7.
The second image in Figure 3 is preserved by conjugation, as is true of the class of
principal ideals.

It would be interesting to study whether the sequence of ideal classes of (Mn)ℓ =
(pn, qn), rather than the actual convergents pn/qn, still carries information about
the input z.

3. Classical Properties

This section rifles through Hensley’s litmus test for continued fractions (Section
5.2 of [6]). Essentially, properties of the nearest integer algorithm over Z are re-
tained at the expense of constants (meaning with respect to n and z) that grow
with the discriminant magnitude |∆|.
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3.1. Convergents. The following observation is often used without mention.

Lemma 3.1. If n ≥ 1 then |zn| ≥ 1/ε.

Proof. By Proposition 2.7, zn = bn−1/(bnzn−1− an). So |zn| ≥ 1/ε is equivalent to
an ∈ D(bnzn−1, ε|bn−1|), which is from line 4 of Algorithm 1. □

Proposition 3.2. If n ≥ 1 then |qnz − pn| ≤ ε|qn−1z − pn−1|. In particular,
|qnz − pn| ≤ εn.

Proof. Notation 2.6 defines zn to be M−1
n (z) = (qn−1z − pn−1)/(pn − qnz). So the

first inequality in the proposition is equivalent to |zn| ≥ 1/ε, which is the previous
lemma. The second assertion follows by induction. □

Corollary 3.3. If n ≥ 1 then an+1 and qn are nonzero, and n marks the first
occurrence of pn/qn as a convergent.

Proof. That qn ̸= 0 follows from pn ∈ O and the second assertion of Proposition
3.2: |qnz − pn| ≤ εn < 1.

If pn′/qn′ = pn/qn with n ≥ n′ then (qn/qn′)(pn′ , qn′) = (pn, qn) ⊆ O. Proposi-

tion 3.2 gives εn−n′ ≥ |qnz − pn|/|qn′z − pn′ | = |qn/qn′ |, which implies n − n′ < 2
by Definition 2.2 because (pn′ , qn′) is ε-reduced. For the case n = n′ + 1 we have
pnqn−1 − pn−1qn = bn ̸= 0 by Proposition 2.7.

Now that we know pn+1/qn+1 ̸= pn−1/qn−1, Proposition 2.7’s formulas for pn+1

and qn+1 show that an+1 ̸= 0 for n ≥ 1. □

Corollary 3.4. If z = p/q for p, q ∈ O, then pn/qn = z for some n ≤ ⌊1− logε|q|⌋.
Proof. By Proposition 3.2, the integer q(qnz − pn) = qnp − pnq is bounded in
magnitude by εn|q|. Setting this equal to 1 and solving shows that qnp − pnq = 0
no later than n = ⌊1− logε|q|⌋. □

Notation 3.5. For a fixed admissible set B, let µ = maxB |b|.
The following lemma and theorem both have a counterparts (which we are not

yet ready to prove), Lemma 3.6b and Theorem 3.7b, where the directions of the
inequalities are reversed.

Lemma 3.6a. If n ≥ 1 then⃓⃓⃓⃓
1 +

qn−1

qnzn

⃓⃓⃓⃓
>

(1− ε2)|bn|
µ

.

Proof. The proof proceeds by induction. The base case is n = 1, which holds using
q0 = 0, |b1| ≤ µ, and ε > 0.

Let n > 1 and assume the lemma’s inequality holds when each index is decreased
by one. Since |zn| ≥ 1/ε and |bn| ≤ µ, the claim holds if |qn−1/qn| < ε by the
triangle inequality—no need for induction. Otherwise, by Proposition 2.7 we have

1 + qn−1/qnzn
bn

=
qn + qn−1/zn

bnqn
=

(anqn−1 + bnqn−2) + qn−1(bnzn−1 − an)

bn−1bnqn
=

qn−2 + qn−1zn−1

bn−1qn
=

qn−1zn−1

qn

(︃
1 + qn−2/qn−1zn−1

bn−1

)︃
. (3.1)

But we assumed 1 ≤ |qn−1/εqn|, which is at most |qn−1zn−1/qn| by Lemma 3.1. So
the final expression in (3.1) is at least |1 + qn−2/qn−1zn−1|/|bn−1| in magnitude,
which exceeds (1− ε2)/µ by the induction hypothesis. □
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Theorem 3.7a. If n ≥ 1 then |qnz − pn| is less than

i)
µ

(1− ε2)|qnzn|
, ii)

µ

(1− ε2)|qn+1|
, and iii)

(1 + ε2)µ2

(1− ε2)|an+1qn|
.

Proof. Consider the identity

qnz − pn = qnMn(zn)− pn =
−detMn

qnzn(1 + qn−1/qnzn)
. (3.2)

Since detMn = (−1)nbn, we see that i) is a rearrangement of Lemma 3.6a.
To prove ii), increment the index in (3.1) and scale both ends by qn+1 to get

qn+1(1 + qn/qn+1zn+1)

bn+1
=

qnzn(1 + qn−1/qnzn)

bn
.

Up to a sign, the reciprocal of the right-hand side above equals the final expression
in (3.2). So we extend (3.2) as follow:

−detMn

qnzn(1 + qn−1/qnzn)
=

(−1)n+1bn+1

qn+1(1 + qn/qn+1zn+1)
. (3.3)

Lemma 3.6a bounds the magnitude of the last expression by µ/(1− ε2)|qn+1|.
Finally, |bn+1zn − an+1| ≤ ε|bn| gives |an+1| ≤ |bn+1zn| + ε|bn| ≤ (|zn| + ε)µ ≤

(1 + ε2)µ|zn|. This provides a lower bound for |zn| in terms of |an+1| that can be
substituted into i) to prove iii). □

As with classical continued fractions, if |q(qz−p)| is sufficiently small for p, q ∈ O,
then p/q appears as a convergent in the expansion of z. This property is interesting
in our case because we are not specifying any particular method for choosing among
multiple pairs a, b passing the if condition in line 5. As such, the following lemma
asserts that finding sufficiently good approximations is unavoidable.

Lemma 3.8. Let p, q ∈ O with q ̸= 0 and z ̸= p/q. Take n ≥ −1 to be the smallest
index for which

|qn+1| ≥

√︄
|q|µ

|qz − p|(1− ε2)
, (3.4)

or, if no such index exists, take n so that pn/qn = z. Then there exist a, b ∈ O with

|b| < 2

√︄
|q(qz − p)|µ
(1− ε2)

satisfying p = (apn + bpn−1)/bn and q = (aqn + bqn−1)/bn. In particular, p/q =
pn/qn whenever |q(qz − p)| ≤ (1− ε2)/4µ.

Proof. For a given n, the value of b ∈ O that makes p = (apn + bpn−1)/bn and
q = (aqn + bqn−1)/bn for the right choice of a ∈ O is b = pnq − pqn.

First suppose there exists an index for which (3.4) holds, and let n be the small-
est. The first inequality below is the triangle inequality, the second is Theorem
3.7a ii), and the third comes from |qn+1| satisfying (3.4) but |qn| violating (3.4) by
minimality of n:

|b| = |pnq − pqn| ≤ |qn(qz − p)|+ |q(qnz − pn)| <
12



|qn(qz − p)|+
⃓⃓⃓⃓

q

qn+1

⃓⃓⃓⃓
µ

(1− ε2)
< 2

√︄
|q(qz − p)|µ
(1− ε2)

.

If (3.4) is never satisfied then z must be rational because otherwise Proposition
3.2 implies continuants grow without bound. By Corollary 3.4 we we can choose
n with pn/qn = z. The assumption that |qn| does not satisfy (3.4) bounds it from
above. We use this upper bound for the inequality below:

|b| = |pnq − pqn| =
⃓⃓⃓⃓
qn
q

⃓⃓⃓⃓
|q(qz − p)| <

√︄
|q(qz − p)|µ
(1− ε2)

.

For the last claim, combining |q(qz − p)| ≤ (1 − ε2)/4µ with the upper bound
on b in the statement of the lemma forces |b| < 1. Thus b = 0, implying p/q =
(apn/bn)/(aqn/bn) = pn/qn as claimed. □

Theorem 3.9. If p/q is not a convergent of z for some p, q ∈ O with q ̸= 0, then

|qn(qnz − pn)| <
4εµ2|q(qz − p)|

(1− ε2)2

for any n ≥ 1. That is, each pn/qn is a best approximation of the second kind up to
constants: if rs ≤ (1−ε2)2/4εµ2, then 0 < |q| < r|qn| implies |qz−p| > s|qnz−pn|
for any p ∈ O except perhaps when p/q is already a convergent.

Proof. Violating the stated inequality combines with Theorem 3.7a i), giving

|q(qz − p)| ≤ (1− ε2)2|qn(qnz − pn)|
4εµ2

<
1− ε2

4µ
.

Thus p/q is a convergent by Lemma 3.8. □

3.2. Continuants. Here we study the growth of |qn|, which may not be monotonic
as the example in Subsection 2.3 demonstrates.

Lemma 3.10. Suppose B and ε are admissible and that µ ̸= 1 or |∆| ̸= 3. Then
εµ ≥ 2/3.

Proof. Let z ∈ R approach ε from the right. Every nonzero element of O has
magnitude at least 1, so no nonzero multiple of z is within ε of 0. In particular,
the minimal nonzero multiple of z that is within ε of any integer is ⌈1/ε− 1⌉z. So
µ ≥ ⌈1/ε− 1⌉, which is at least 2/3ε unless ε ∈ [1/2, 2/3). In this range, εµ < 2/3
would imply µ < 4/3. This forces B to consist of units since non-units in imaginary

quadratic rings have magnitude at least
√
2. Thus the discs in Definition 2.4’s union

are centered on integers. But discs of radius ε ∈ [1/2, 2/3) on integers only cover
the plane when ∆ = −3. □

Theorem 3.11. If 0 ≤ n′ < n, then

|qn| >
(1− ε2)2|qn′zn′ |

4εn−n′µ2
.

In particular, if n ≥ 1 then |qn| > (1− ε2)2/4εnµ2.
13



Proof. Since q0 = 0, we may assume that n′ ≥ 1. Suppose the first lower bound on
|qn| is false. Then by Proposition 3.2 and Theorem 3.7a i),

|qn(qnz − pn)| < εn−n′
|qn(qn′z − pn′)| ≤ (1− ε2)2|qn′zn′(qn′z − pn′)|

4µ2
<

1− ε2

4µ
.

Therefore Lemma 3.8 applies, and either pn/qn = z or n = n′′, where n′′ is the first
index (recall convergents cannot repeat by Corollary 3.3) for which

|qn′′+1| ≥

√︄
|qn|µ

|qnz − pn|(1− ε2)
.

Regarding the second possibility, |qn−1| must fail to satisfy the bound above in
place of |qn′′+1|. Thus

1 ≤ |pnqn−1 − pn−1qn| ≤ |qn(pn−1 − qn−1z)|+ |qn−1(qnz − pn)|

<
εn−n′ |qn(qn′z − pn′)|

ε
+

√︃
|qn(qnz − pn)|µ

1− ε2
<

1− ε2

4εµ
+

1

2
< 1.

The last inequality uses Lemma 3.10. The same contradiction occurs in the case
pn/qn = z; we just get to replace the summand |qn−1(qnz − pn)| above with 0.

Finally, |qn| > (1− ε2)2/4εnµ2 uses n′ = 1 and |qn′zn′ | ≥ 1 · 1/ε. □

Corollary 3.12. If n ≥ 1, then⃓⃓⃓⃓
z − pn

qn

⃓⃓⃓⃓
<

4ε2nµ2

(1− ε2)2
.

Proof. This follows from |qn| > (1− ε2)2/4εnµ2 and |qnz − pn| ≤ εn. □

3.3. Coefficients. Here we show that the existence of an infinite, periodic sequence
of coefficients for an input z is equivalent to [K(z) : K] = 2, and that boundedness
of coefficients is equivalent to z being badly approximability. Both are true whether
“coefficient” is interpreted to mean an, an/bn, or the pair an, bn, and there is little
difference made to the proofs.

Definition 3.13. We call z ∈ C badly approximable if |q(qz − p)| has a positive
infimum over p, q ∈ O with q ̸= 0. Otherwise, z is well approximable.

To prove that bad approximability is equivalent to bounded coefficients, we need
a lower-bound analogue of Theorem 3.7a iii).

Lemma 3.6b. If n ≥ 1 then ⃓⃓⃓⃓
1 +

qn−1

qnzn

⃓⃓⃓⃓
<

4ε2µ2

(1− ε2)2
.

Proof. First we use Theorem 3.11 with n′ = n− 1 to get

|qn| >
(1− ε2)2|qn−1zn−1|

4εµ2
≥ (1− ε2)2|qn−1|

4ε2µ
,

which bounds |qn−1/qn| from above. Along with 1/|zn| < ε and the triangular
inequality, this shows ⃓⃓⃓⃓

1 +
qn−1

qnzn

⃓⃓⃓⃓
< 1 +

4ε3µ2

(1− ε2)2
.
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The right-hand side above is less than the stated bound precisely when εµ exceeds
(1− ε2)/2

√
1− ε, which attains a maximum of 2

√
6/9 at ε = 1/3. By Lemma 3.10,

εµ ≥ 2/3 > 2
√
6/9. □

Theorem 3.7b. If n ≥ 1 then |qnz − pn| is greater than

i)
(1− ε2)2|bn|
4ε2µ2|qnzn|

, ii)
(1− ε2)2|bn+1|
4ε2µ2|qn+1|

, and iii)
(1− ε2)2|bn+1|
8ε2µ2|an+1qn|

.

Proof. Lemma 3.6b combines with identities (3.2) and (3.3) to prove i) and ii)
directly, just as in the proof of Theorem 3.7a.

For iii), |bn+1zn−an+1| ≤ ε|bn| implies |bn+1zn| ≤ |an+1|+ ε|bn|. Dividing both
sides of this last inequality by |an+1bn| gives⃓⃓⃓⃓

bn+1zn
an+1bn

⃓⃓⃓⃓
≤ 1

|bn|
+

ε

|an+1|
≤ 2.

Now scale both ends of the inequality above by |bn/2zn| to get the lower bound for
|bn/zn| that turns i) into iii). □

Corollary 3.14. An input z is badly approximable if and only (an/bn)n is bounded.

Proof. If z is badly approximable then (an)n (and thus (an/bn)n) is bounded by
Theorem 3.7a iii). If z is well approximable then sufficiently good approxima-
tions appear as convergents by Theorem 3.9, implying (an/bn)n is unbounded by
Theorem 3.7b iii). □

Finally, we prove the existence of periodic expansions of quadratic, irrational
inputs.

Theorem 3.15. The set {zn}n is finite if and only if [K(z) : K] ≤ 2. In particular,
z has a continued fraction expansion in which the sequence of pairs (an, bn)n is
eventually periodic and infinite if and only if [K(z) : K] = 2.

Proof. If {zn}n is finite and (zn)n is not then there are distinct n, n′ ∈ N with
M−1

n (z) = zn = zn′ = M−1
n′ (z). By Corollary 3.3, Mn cannot be a scaled copy

of Mn′ . Thus Mn′M−1
n (z) = z shows that z satisfies a quadratic (irreducible by

Corollary 3.4) polynomial with coefficients in K.
For the converse, suppose [K(z) : K] = 2. Let x denote the discriminant of an

integral, quadratic polynomial of which z is a root, and use the quadratic formula
to write z = (w+x)/y such that w, y, (x2−w2)/y ∈ O. Let us also get an expression
for zn in terms of w, x and y. The last equality below comes from rationalizing
the denominator with respect to the quadratic irrational x. That is, we multiply
numerator and denominator by the conjugate of the denominator.

zn = M−1
n (z) =

qn−1z − pn−1

pn − qnz
=

(qn−1w − pn−1y) + qn−1x

(pny − qnw)− qnx
=

(︁
qn−1qn(x

2 − w2)/y − pn−1pny + w(pnqn−1 + qnpn−1)
)︁
+ (−1)nbnx(︁

(pny − qnw)2 − q2nx
2
)︁
/y

. (3.5)

Let xn = (−1)nbnx, giving x2
n ∈ O. Define wn and yn using the expression above

so that (wn + xn)/yn = zn. As y divides x2−w2, wn and yn are seen from (3.5) to
be integers.
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Now we find recursive expressions for wn, xn, and yn using the recursive formula
for zn in Proposition 2.7. The final equality is again rationalizing the denominator.

wn + xn

yn
= zn =

bn−1

bnzn−1 − an
=

bn−1yn−1

bn(wn−1 + xn−1)− anyn−1
=(︁

(bnwn−1 − anyn−1)/bn−1

)︁
− bnxn−1/bn−1(︁

(bnwn−1 − anyn−1)2 − b2nx
2
n−1

)︁
/b2n−1yn−1

. (3.6)

Note that −bnxn−1/bn−1 = −bn
(︁
(−1)n−1bn−1x

)︁
/bn−1 = (−1)nbnx, thus matching

a pair of terms from (3.5) and (3.6). But {1, x} is a basis for the field extension
K(z)/K. So because the remaining terms in (3.5) and (3.6) belong to K, there is
only one way they could match up:

wn =
bnwn−1 − anyn−1

bn−1
and yn =

(bnwn−1 − anyn−1)
2 − b2nx

2
n−1

b2n−1yn−1
.

These recursive formulas for wn and xn give the second equality below:

1

ε

⃓⃓⃓⃓
yn

yn−1

⃓⃓⃓⃓
≤

⃓⃓⃓⃓
ynzn
yn−1

⃓⃓⃓⃓
=

⃓⃓⃓⃓
wn + xn

yn−1

⃓⃓⃓⃓
=

⃓⃓⃓⃓
bnzn−1 − an

bn−1
+

(−1)n2bnx
yn−1

⃓⃓⃓⃓
≤ ε+

2µ|x|
|yn−1|

.

Thus |yn| ≤ ε2|yn−1|+ 2εµ|x|, implying (yn)n is a bounded sequence. Therefore

|wn| =
⃓⃓⃓⃓
bnwn−1 − anyn−1

bn−1

⃓⃓⃓⃓
=

⃓⃓⃓⃓
yn−1(bnzn−1 − an)

bn−1
+ (−1)nbnx

⃓⃓⃓⃓
≤ ε|yn−1|+ µ|x|

shows that (wn)n is also bounded. Since wn, x
2
n, and yn are all bounded integers,

{zn}n = {(wn + xn)/yn}n is finite.
To see why the final periodicity claim follows, fix an expansion of a quadratic

irrational z. By finiteness of B and {zn}n, there are indices n′ > n with zn′ = zn,
bn′ = bn, and Mn′ ≡ Mn mod bn. For any matrix S, if either of MnS or Mn′S
has integer entries then bnS = detMnS = detMn′S does too, implying both MnS
and Mn′S have integer entries. This shows that (MnS)ℓ is ε-reduced if and only
if (Mn′S)ℓ is ε-reduced. Thus we may take ak′ = ak and bk′ = bk for all k′ > n′,
where k′ ≡ kmod (n′ − n) for n < k ≤ n′. □

We remark that aside from being overly complicated, the proof of Theorem 3.15
applies to the continued fractions produced when Algorithm 1 is executed over Z.
The author is not aware of such a perspective (absent of a fixed convention for
selecting among multiple coefficients) in the literature. Even with B = {1}, there
are overlapping discs (intervals in this case) that allow for an infinite number of
periodic continued fraction expansions, all of which converge to the given quadratic,
irrational input. By taking B ̸= {1}, our algorithm finds the additional use over
Z of producing even more such expansions. It is possible, however, that these
expansions are already obtainable by altering nearest integer coefficients with the
processes of singularization and expansion [8].

Figure 4 shows {zn}n for z = (3 + 5i)/4 using B = {1} in Q(
√
−11). The

covering is centered at 0 ∈ C, and z is labeled “0.” As it lies in both the yellow disc
centered at (1 +

√
−11)/2 and the blue disc centered at (3 +

√
−11)/2, there are

two possibilities for a1. The resulting values of z1 are indicated by the yellow and
blue arrows to 1 and 7 in the diagram, and are labeled “1” and “7” in the image.
In particular, numbers in the figure need not correspond to the stage number at
which a point might appear.
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Figure 4. Left: {zn}n for input z0 =
(3 + 5i)/4 and |∆| = 11. Right: result
from using the disc of indicated color.

It is not generally the case that if zn appears in a continued fraction expansion
then −zn will also appear, but it does happen in this example for every point
except z0 = z. This fact has been used to cut the number of nodes needed for
our diagram in half. Dashed arrows indicate a sign switch. For example, consider
the point labeled “−4,” which is only contained in the disc centered on −1. Its
image under z ↦→ 1/(z − (−1)) is “5,” not “−5.” Similarly, “2” is mapped by
z ↦→ 1/(z − (1−

√
−11)/2) to “−3.”

4. Admissible parameters

The coverings provided by Definition 2.4 are indexed by ideals rather than the
matrices used in line 5. Let us check that our notion of admissibility is sufficient
for Algorithm 1 to function, meaning a and b satisfying lines 4 and 5 always exist.

Lemma 4.1. For M,M ′ ∈ GL2(K), if M is integral then (MM ′)ℓ ⊇ detM(M ′)ℓ.

Proof. The adjugate of M , adjM = M−1 detM , is also integral. So detM(M ′)ℓ =
((adjM)MM ′)ℓ ⊆ (MM ′)ℓ. □

Proposition 4.2. The if condition in line 5 of Algorithm 1 is satisfied at least
once every outer for loop iteration.

Proof. Let M with detM = b′ ∈ B be a matrix that occurs in the execution of
Algorithm 1. Since M is either the identity or the matrix product from line 5 in
the previous outer for loop iteration, (M)ℓ is ε-reduced. Denote this ideal b, as
that is the role it will play in Definition 2.4.

Fix any a′ in the fractional ideal b−1 that makes (MS(a′, 1))ℓ = b′b−1. According
to Definition 2.4, for any z ∈ C there exist a ∈ K and b ∈ B for which (ab, bb−1) is
integral and ε-reduced and (M−1(z)−a′)/b′ ∈ D(a/b, ε/|b|). This disc containment
rearranges to ab′ + a′b ∈ D(bM−1(z), ε|b′|) as in line 4. Note that b′, b ∈ b implies
ab′+a′b ∈ O. So our proposed choice of coefficient pair is ab′+a′b and b. It remains
only to check that (MS((ab′+a′b)/b′, b/b′))ℓ is ε-reduced. We claim that this ideal
is exactly (ab, bb−1), which would complete the proof.
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Let p be an unramified prime in the ideal class of b that does not divide abb,
and let k ∈ K be a generator for pb−1. Consider the product

M

[︃
1 a′

0 1

]︃ [︃
k 0
0 ∥p∥/kb′

]︃ [︃
∥p∥/kb′ 0

0 k

]︃
S(ab′, b) =

∥p∥
b′

MS(ab′ + a′b, b). (4.1)

We chose a′ so that the product of the first two matrices has right-column ideal
b′b−1 and left-column ideal b. In particular, the product of the first three matrices,
call this M ′, has determinant ∥p∥, with (M ′)ℓ = p and (M ′)r = p. The product of
the last two matrices on the left-hand side has top-left entry a∥p∥/k, which gener-
ates abp, and bottom-left entry bk, which generates bpb−1. Thus the left-column
ideal of the product of all five matrices is contained in ((M ′)ℓabp, (M

′)rbpb
−1) =

∥p∥(ab, bb−1). On the other hand, sinceM ′ is integral, Lemma 4.1 says that the left-
column ideal of the overall product contains detM ′(a∥p∥/k, bk) = ∥p∥(abp, bpb−1).
Since p is coprime to abp and p is coprime to bpb−1, we have ∥p∥(abp, bpb−1) =
∥p∥(ab, bb−1), which must then equal the left-column ideal of the overall product.
Comparing to the right-hand side of (4.1) proves our claim. □

4.1. Generic admissible sets. The following result confirms the main assertion of
this paper: Algorithm 1 works in any imaginary quadratic field. The admissible set{︁
1, 2, ...,

⌊︁√︁
|∆|

⌋︁}︁
is highlighted because it makes decent constants in the previous

section’s results. A few such constants can be seen in Theorems 1.2, 1.3, and 1.4.

Theorem 4.3. If µ ∈ Z with µ ≥
⌊︁√︁
|∆|/3

⌋︁
, then {1, 2, ..., µ} is admissible with

ε =
1

2

√︄
1 +

|∆|
(µ+ 1)2

(4.2)

provided 2ε2µ <
√︁
|∆|. In particular,

{︁
1, 2, ...,

⌊︁√︁
|∆|

⌋︁}︁
is admissible with 1/

√
2.

Proof. Fix z ∈ C and b ⊆ O with b ∩ B ̸= ∅. We will show that z is contained in
Definition 2.4’s union.

Let b1 ∈ b ∩ B be minimal, implying the integral ideal b1b
−1 has no non-

trivial rational divisors. By Dirichlet’s approximation lemma, the real number
2b21ℑ(z)/

√︁
|∆| admits a rational approximation a2/b2 for coprime a2, b2 ∈ Z with

1 ≤ b2 ≤ ⌊µ/b1⌋ and ⃓⃓⃓⃓
⃓2b21ℑ(z)√︁
|∆|

− a2
b2

⃓⃓⃓⃓
⃓ ≤ 1

b2(⌊µ/b1⌋+ 1)
. (4.3)

Scaling both sides above by b2
√︁
|∆|/2b1 is the first inequality below; the second

inequality uses the fact that µ− b1⌊µ/b1⌋, which is a rational integer less than b1,
is at most b1 − 1:⃓⃓⃓⃓

⃓b1b2ℑ(z)− a2
√︁
|∆|

2b1

⃓⃓⃓⃓
⃓ ≤

√︁
|∆|

2b1(⌊µ/b1⌋+ 1)
≤

√︁
|∆|

2(µ+ 1)
.

Since b1b
−1 has no nontrivial rational divisors, there is a congruence class modulo

2∥b1b−1∥ (in Z) whose elements, call one a1, satisfy (a1 + a2
√︁
|∆|)/2 ∈ b1b

−1.
Choose such an a1 nearest to 2b21b2ℜ(z). Then⃓⃓⃓⃓

⃓b1b2z − a1 + a2
√
∆

2b1

⃓⃓⃓⃓
⃓ ≤

√︄
∥b1b−1∥2

4b21
+

|∆|
4(µ+ 1)2

≤ ε. (4.4)
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Thus z ∈ D(a/b, ε/|b|), where a = (a1 + a2
√
∆)/2b1 and b = b1b2 ∈ B.

Assume by way of contradiction that (ab, bb−1) is not ε-reduced. From Definition
2.2, this means k(ab, bb−1) ⊆ O for some k ∈ K with 0 < |k| ≤ ε2. Then the

assumption 2ε2µ <
√︁
|∆| gives |k|b ≤ ε2µ <

√︁
|∆|/2. Thus kb ∈ Z because a

non-rational integer must have magnitude at least
√︁
|∆|/2. By writing k ∈ Q

in lowest terms, we see that k(ab, bb−1) ⊆ O implies (ab, bb−1) has a nontrivial

rational divisor. Finally, ab = (b/b1)(a1 + a2
√︁
|∆|)/2 ∋ (a1 + a2

√︁
|∆|)/2 shows

that a rational divisor of ab must divide a2, and bb−1 = (b1b
−1)b2 shows that

a rational divisor of bb−1 must divide b2 (recalling that b1b
−1 has no nontrivial

rational divisors). But a2 and b2 are coprime. □

The second paragraphs in the proofs of Proposition 4.2 and Theorem 4.3 are
algorithmic in nature. Combining them gives a fast method for finding coefficients.

Algorithm 2. Subroutine for Algorithm 1 to find coefficients (an and bn) under
the parameters B and ε defined in Theorem 4.3.

input: b′, B, M , z used in line 4 of Algorithm 1; also let b denote (M)ℓ
output: coefficient pair satisfying lines 4 and 5 of Algorithm 1.

1: a′ ← number with (MS(a′, 1))ℓ = b′b−1

2: b1 ← minimum element of b ∩B ▷ b′ = detM makes b ∩B ̸= ∅
3: z ← b21(M

−1(z)− a′)/b′

4: a2/b2 ← last convergent of 2ℑ(z)/
√︁
|∆| ▷ from classic floor function con-

that makes b = b1b2 ∈ B tinued fractions over Z
5: a1 ← nearest rational integer to 2b2ℜ(z)

such that (a1 + a2
√︁
|∆|)/2b1 ∈ b−1

6: a← (a1 + a2
√︁
|∆|)/2b1

7: return ab′ + a′b, b

Let us collect notation that has been used thus far. Both Algorithm 2 and the
proof of Proposition 4.2 begin with b′ = detM and b = (M)ℓ (which is (Mn−1)ℓ =
(pn−1, qn−1) if Algorithm 2 is returning an and bn). Both also use ab′ + a′b and b
to denote the coefficient pair returned to Algorithm 1. Then Algorithm 2 and the
proof of Theorem 4.3 further break these variable down into a = (a1+a2

√︁
|∆|)/2b1

and b = b1b2. This notation is used throughout the remainder of the subsection.

Corollary 4.4. Under parameters B and ε as defined in Theorem 4.3, the coeffi-
cients produced by Algorithm 2 satisfy lines 4 and 5 of Algorithm 1.

Proof. Algorithm 2 is pseudocode for the second paragraph in the proof of Theorem
4.3. The only difference is that “z” in Theorem 4.3 is (M−1(z)−a′)/b′ in Algorithm
2. This substitution for z makes (4.4) equivalent to ab′ + a′b ∈ D(bM−1(z), ε|b′|)
as required by line 4 of Algorithm 1.

Regarding line 4 of Algorithm 2, floor function continued fractions return all
a2/b2 for which |b2(2ℑ(z)/

√︁
|∆|)−a2| is minimal without increasing b2. So because

there exists an approximation satisfying (4.3), line 4 of Algorithm 2 finds it.
In the proof of Proposition 4.2 we saw that (MS((ab′+a′b)/b′, b/b′))ℓ = (ab, bb−1).

The third paragraph of the proof of Theorem 4.3 shows that (ab, bb−1) is ε-reduced.
Thus the coefficients returned by Algorithm 2 satisfy line 5 of Algorithm 1. □
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As discussed in Section 1, two advantages to using Algorithm 2 are speed and
control over the divisors of (pn−1, qn−1, pn, qn).

Theorem 4.5. If an−1, bn−1, an, and bn are found using Algorithm 2, then only
ramified, non-rational primes divide (pn−1, qn−1, pn, qn).

Proof. The last paragraph of the proof of Theorem 4.3 shows that (Mn−1)ℓ = b
has no nontrivial rational divisors if an−1 and bn−1 are chosen using Algorithm 2.
Therefore b1 defined in line 2 is just ∥b∥. We have seen that (pn, qn) = (ab, bb−1),
so the goal is to verify that (b, ab, bb−1) has no split prime divisors.

Suppose p divides b but p does not. Then p divides bb−1 = b2b if and only if
it divides b2. Similarly, p divides ab = (a1 + a2

√
∆)/2b if and only if it divides

(a1 + a2
√
∆)/2. But this is true if and only if ∥p∥ divides a2, because the choice of

a1 in line 5 gives (a1 + a2
√
∆)/2 ∈ b ⊆ p. Thus gcd(a2, b2) = 1 implies p does not

divide (ab, bb−1) as desired. □

We gauge the efficiency of Algorithms 1 and 2 by time required to find p, q ∈ O

with q ̸= 0 satisfying |qz − p| < 1/δ for some approximation quality goal δ. To
make input length well-defined, the usual z ∈ C is replaced with z ∈ K. Then
log |wxy∆| can be taken as the input length of z = (w+x

√
∆)/y, where w, x, y ∈ Z

and gcd(w, x, y) = 1.

Theorem 4.6. Let z have input length ℓ and let δ ≥ 2. By using Algorithm 2 to
compute coefficients, Algorithm 1 can be executed in O(log |∆| logεδ) operations on
integers of length O(ℓ+ log δ|∆|) to find p, q ∈ O with q ̸= 0 and |qz − p| ≤ 1/δ.

Proof. To achieve |qz − p| ≤ 1/δ, at most ⌈log1/ε δ⌉ outer for loop iterations are
needed by Proposition 3.2. Let us determine the cost of Algorithm 2.

Fix inputs for Algorithm 2. Consider the four-element generating set (over Z) for
b = (M)ℓ consisting of the products of left-column entries ofM with a Z-basis for O.
Reduce them mod b′. By computing greatest common divisors among the rational
integers defining the real parts and imaginary parts of these four generators, it is
straightforward to reduce our set to a Z-basis for b in O(log b′) operations. Once
we have this basis, line 1 is a matter of solving a system of two inhomogeneous
congruences, which also requires O(log b′) operations for the Euclidean algorithm.

As we are assuming Algorithm 2 was used on the previous for loop iteration, b
has no nontrivial rational divisors. Thus b1 = ∥b∥, the determinant of the two-by-
two matrix with columns coming from our two-element Z-basis for b. So lines 2
and 3 both take O(1) operations.

Using classical continued fractions for line 4 requires O(log(µ/b1)) operations.
Line 5 requires computing the appropriate congruence class for a1 mod2∥b∥,

since (a1 + a2
√︁
|∆|)/2 ∈ b1b

−1 = b. (The factor of 2 in the modulus comes from
the general constraint a1 ≡ a2∆mod2.) This requires O(log ∥b∥) operations.

So at worst, a line in Algorithm 2 requires O(logµ) operations. The inequality

2ε2µ <
√︁
|∆| from Theorem 4.3 along with the definition of ε in (4.2) imply µ =

O(
√︁
|∆|), giving the desired overall bound on operations of O(log |∆| logεδ).

We turn to the bound on integer lengths. Let n be the first index for which
|qnz − pn| ≤ 1/δ. For n′ ≤ n, Theorem 3.7a shows |an′ | = O(δµ2), |qn′ | = O(δµ),
and |zn′ | = O(δµ) (except possibly z0). Using |qn′z − pn′ | < 1 shows that |pn′ | =
O(δµ|z|). And finally, bn′ ≤ µ. Computations involve a few of these variables within
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each stage. Since the input length of an integer is determined by the logarithm of
its magnitude, µ = O(

√︁
|∆|) completes the proof. □

4.2. Precomputing admissible sets. Table 2 shows admissible sets for |∆| < 50
with their minimal ε-values. For each field we include the smallest admissible set B
(measured by µ), as well as the next smallest set which decreases the corresponding

value of ε. We use τ to denote
√
∆/2 or (1 +

√
∆)/2 according to the parity of ∆.

|∆| B ε2

3
1

1, 1 + τ
1/3
1/4

4
1

1, 1 + τ
1/2

2−
√
3

7
1
1, τ

4/7
1/2

8
1
1, τ

3/4

3−
√
6

11
1
1, τ

9/11
3/4

15
1, 2

1, 2, 1+τ
2/3

(6− 2
√
5)/3

19
1, 2
1, τ, τ

7/9

(13−
√
57)/8

20
1, 2

1, 2, 1+τ
(28−2

√
115)/9

(25−
√
355)/9

23
1, 2

1, 2, τ, τ
8/9

(31−
√
161)/25

24
1, 2

1, 2, 1+ τ
(11− 6

√
2)/3

(10−
√
58)/3

31
1, 2, 3

1, 2, 3, 1+τ
(191−3

√
1209)/128

20/31

35
1, 2, 3

1, τ, τ , 1+τ
(211−3

√
1505)/128

(805− 5
√
25585)/8

39
1, 2, 3

1, 2, 3, 1+τ
(231−3

√
1833)/128

10/13

40
1, 2, 3

1, 2, 3, 2+τ
7/8

(25−
√
185)/16

43
1, 2, 3

1, 2, 3, 1+τ
(251−3

√
2193)/128

391/477

47
1, 2, 3

1, 2, 3, 1+τ
(271−3

√
2585)/128

42/47

Table 2. Some small (measured by µ) admissible sets with their minimal ε2.

The C++ source code that produced Table 2 is posted on the author’s website.
The algorithm takes as input a discriminant and a finite set of integers. It returns
all admissible subsets of the input alongside their minimal ε-values. In short, the
algorithm works by enumerating ideals b from Definition 2.4 and computing the
smallest ε for which ∪D(a/b, ε/|b|) = C. The covering property is checked by
exploiting periodicity of the union modulo the fractional ideal b−2, and verifying
that intersections of the boundaries of two discs are contained in a third disc.

The admissible sets above which are contained in Z have already been found by
Theorem 4.3. For ∆ = −4, −8, −15, −19, −23, and −40, the values of ε given
in (4.2) are optimal, matching those of Table 2. This does not always happen,
and Figure 5 gives one such example. Both images show the same arrangement of
discs, coming from the first stage of Algorithm 1 using B = {1, 2, 3} in Q(

√
−47).

There are discs of radius 1/b along every multiple of the line ℑ(z) =
√
47/2b for

b ∈ {1, 2, 3}. Up to scaling, shifting, and reflecting, there are two other disc ar-
rangements also produced by B = {1, 2, 3}. The three colors in Figure 5 distinguish
among which arrangement would appear in stage 2 (similar to colors in Figures 2
and 3).

The first image in Figure 5 shows the partition used by Algorithm 2 to determine
a1 and b1 based on the location of z. Here radii can be scaled by ε =

√
63/8 before
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Figure 5. In Q(
√
−47) using B = {1, 2, 3}, partitions resulting

from Algorithm 2 (left) and minimizing |bz − a| (right).

disc boundaries and corresponding partition boundaries touch. This agrees with
Theorem 4.3’s value of ε in (4.2). The second image shows the partition that
minimizes |b1z − a1|. Now discs can be scaled by the smaller

ε =

√︄
271− 3

√
2585

128
,

as Table 2 asserts.
As an aside, such a partition associates to every z ∈ C a disc center a/b. We can

then ask whether a probability measure exists on D(0, ε) for which z ↦→ (b/z−a)/b′

is invariant and ergodic. For Hurwitz’ algorithm, an invariant measure is shown to
exist for Q(

√
−3) in [20], and Nakada does the same for Q(

√
−1) in [12]. Shiokawa

also proves ergodicity results in [19] for Q(
√
−3). The goal of such an investigation

is to attack statistical questions, like the distribution of coefficients or the expected
value of |qn(qnz − pn)| for z uniformly distributed in D(0, ε).
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Acta Mathematica, 11(1–4):187–200, 1887.

[8] Cor Kraaikamp. A new class of continued fraction expansions. Acta Arith-
metica, 57(1):1–39, 1991.

[9] Richard B. Lakein. Approximation properties of some complex continued frac-
tions. Monatshefte für Mathematik, 77(5):396–403, 1973.

[10] Daniel E. Martin. The geometry of imaginary quadratic fields. PhD thesis,
University of Colorado at Boulder, 2020.

[11] Daniel E. Martin. Fundamental polyhedra of projective elementary groups.
arXiv:2204.04790, 2022.

[12] Hitoshi Nakada. On the Kuzmin’s theorem for complex continued fractions.
KEIO Engineering Reports, 29, 1976.

[13] Nicola Oswald. Hurwitz’s Complex Continued Fractions—A Historical Ap-
proach and Modern Perspectives. PhD thesis, Universität Würzburg, 2014.
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