CONTINUED FRACTIONS OVER NON-EUCLIDEAN
IMAGINARY QUADRATIC RINGS

DANIEL E. MARTIN

ABSTRACT. We propose and study a generalized continued fraction algorithm
that can be executed in an arbitrary imaginary quadratic field, the novelty
being a non-restriction to the five Euclidean cases. Many hallmark properties
of classical continued fractions are shown to be retained, including exponential
convergence, best-of-the-second-kind approximation quality (up to a constant),
periodicity of quadratic irrational expansions, and polynomial time complexity.

1. INTRODUCTION

Complex continued fractions were introduced by A. Hurwitz in 1887 [7], when he
applied the nearest integer algorithm to Z[i]. His algorithm takes as input some z =
29 € C to be approximated. The n'! coefficient, a,,, is then the nearest (Gaussian)
integer to z,_1. We stop if a,, = z,-1, and continue with z, = 1/(z,—1 — ay)
otherwise. The resulting approximations, called convergents, take the form

pl = aj + !

an 1
a2 —+

- 1
Ap—1 + —
2%

Hurwitz showed that many properties possessed by this algorithm over Z still
hold over Z[i]. For example, |¢,z — py| decreases monotonically and exponentially,
the continuants, denoted ¢,, above, increase in magnitude monotonically and expo-
nentially, and quadratic irrationals have periodic expansions.

A key ingredient in his proofs is that |z,-1 — a,| is bounded by a constant less
than 1, namely 1/4/2. Such a constant exists precisely because open unit discs
centered on lattice points of Z[i] cover the complex plane. The same is true of the
imaginary quadratic rings of discriminant A = —3, —7, —8, and —11, but no others.
This explains why the application and study of continued fractions over imaginary
quadratic fields has been restricted to these five cases—the Euclidean ones.

A large collection of references for Hurwitz’ algorithm can be found in [13] or
[14]. Also see [9], where Lakein investigates approximation quality of Hurwitz
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convergents in each Euclidean ring. See [4] for a similar algorithm removed from
the ring setting, though still with a Euclidean-like requirement. See [15, 18, 17, 16]
for Schmidt’s algorithm, which also only functions over the five Euclidean rings.
Another approximation algorithm is given by Whitley in [23]. It has continued
fraction-like properties, while being executable in the four non-Euclidean, imaginary
quadratic principal ideal domains, A = —19, —43, —67, and —163. Whitley’s idea
was generalized to rings of class number 2 by Bygott [3], and as he observes, it may
be further adaptable to rings with trivial principal genus (the square of every ideal
is principal).

Our purpose is to apply an algorithm with similar structure to that of Hurwitz
in an arbitrary imaginary quadratic field.

Notation 1.1. Let K be an imaginary quadratic field with ring of integers @ and
discriminant A.

Our algorithm, Algorithm 1, is presented in Subsection 2.2 followed by an exam-
ple execution when A = —23. It does not build on the algorithm of Whitley and
Bygott—the only setting in which the two coincide is a Euclidean ring, in which
case both simply reduce to Hurwitz’ algorithm.

Let us roughly summarize our way around the non-Euclidean obstacle. When
there is no choice of coefficient a,, € 0 satisfying |z,,—1 —an| < 1, Algorithm 1 seeks
ay, near b,z,_1 instead, where b, comes from a fixed finite set B C 0\{0}. But
the exact criteria for selecting a,, and b,, change according to the previous stage’s
choice of coefficient. We impose an analogue of the classical analytic restraint:

|bnzn_1 — an| < |bn_1|7 (1.1)

and a new algebraic one:
bnfl GnPn—1 + bnpn72> UnQn—1 + ann72- (12)

The integer quotients from (1.2) are p, and g,, and the algorithm continues with
Zn = bp—1/(bpzn—1 — an—1). Remark that because b, need not equal 1, our con-
vergents are called generalized continued fractions. (Some recent applications of
generalized continued fractions over Z can be found in [1] and [2].)

Among pairs a,, € 0 and b,, € B satisfying (1.2), at least one is guaranteed to
satisfy (1.1) if open discs of center a, /b, and radius |b,_1/by| cover C. If such
a covering occurs for every n, we say B is admissible (defined more precisely in
Definition 2.4). The Hurwitz algorithm has a similar requirement: Euclideanity,
which is equivalent to unit discs on integers covering C. These are the five rings for
which B = {1} is admissible.

For a given field there are many admissible sets, and each may give different
continued fraction expansions of some input z. Even after fixing an admissible set,
an input can have many possible continued fraction expansions because z,_1 might
lie in the overlap of multiple discs of center a, /b, and radius |b,—1/b,|. Hurwitz
deals with this situation by insisting that a,, be nearest to z,_1 (and b,, = 1 always).
Initially we make no such requirement to emphasize that the results of Section 3,
like the four following theorems, are valid independently of this choice. A method
for selecting among many acceptable coefficients (Algorithm 2) is not proposed until
Section 4.

The first three results below are versions of the more general Theorems 3.7a,
3.9, and 3.11, where constants (meaning with respect to n and z) depend on B.
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For simplicity we have used B = {1,2,...7 L\/|A|J}, which Theorem 4.3 proves
admissible, to get the following constants that depend only on A.

Theorem 1.2. Ifn > 1 then |q,z — px| is less than

2 /A i 2/

N lgn+1]’

34|

|an+IQn| ’

i

and i)
Theorem 1.3. If p/q is not a convergent of z for some p,q € O with q # 0, then

|G (gnz — pn)| < 16|Aq(gz — p)|

for any n > 1. That is, each pp/q, s a best approximation of the second kind up
to constants: if rs < \/2/16|A|, then 0 < |q| < r|qn| implies |qz — p| > 5|qnz — Dn|
for any p € O except perhaps when p/q is already a convergent.

Theorem 1.4. If 0 < n’ < n, then 16|Aq,| > A |n 20| In particular, if
n>1 then 16|Aq,| > v2".

Theorem 1.5. There is a continued fraction expansion of z in which the sequence
of pairs (an,bn)n s eventually periodic and infinite if and only if [K(z) : K] = 2.

Note that the last statement refers to an expansion rather than the expansion
due to the potential choice among coefficients that arises in the overlapping disc
scenario. Figure 4 gives an example of how some expansions of a quadratic, irra-
tional input can be periodic while others are not. A path in the right-side image
can be periodic or aperiodic, depending on the choices made at those nodes which
are the source of two arrows. Such a node corresponds to “z,_1” in the left-side
image, which lies in the overlap of two discs, one for each arrow. More detail is
given in Subsection 3.3.

Other results include the monotonic decrease of |gnz — py| (Proposition 3.2), an
upper bound on |gz — p| that implies p/q appears as a convergent (Lemma 3.8),
and equating bad approximability of z to boundedness of a,, /b, (Corollary 3.14).

Variations of the properties above may hold for the algorithm of Whitley and
Bygott in fields of class number 1 or 2, but approximation quality is not addressed
in their work. Their goal was to compute spaces of cusp forms.

Section 4 shows that Algorithm 1 can be executed in any imaginary quadratic
field by explicitly producing admissible sets in Theorem 4.3. The sets we give
have two advantages over a generic one. The first is efficiency—the admissibilty
requirement on B guarantees coefficients exists, but not an easy way to find them.
With B as in Theorem 4.3, there is a subroutine for finding coefficients, Algorithm
2, which gives Algorithm 1 polynomial complexity (Theorem 4.6).

The second advantage to using B from Theorem 4.3 is control over (py,g,). In
Euclidean rings with Hurwitz’ algorithm or principal ideal domains with Whitley’s,
(Pn,qn) = 0. With Bygott’s generalization to rings of class number 2, all divi-
sors of (py, ¢n) are ramified after appropriate scaling. A generic admissible set for
Algorithm 1 loses such control, and thus potential applications like Whitley and
Bygott’s to the group PSLy(0). This can be partially remedied:

Theorem 1.6. If ap_1, by—1, an, and b, are found using Algorithm 2, then only
ramified, non-rational primes divide (Pn—1, qn—1,Pn,n)-
3



Admissible sets can also be precomputed for a particular ring. A brief explana-
tion of how to do this is given in Subsection 4.2. Sample output from the precom-
putation algorithm described is in Table 2 for |A| < 50.

Some resources are available at math.ucdavis.edu/~dmartin, including the tool
that created the images herein and C++ source code for Algorithm 1 and for finding
admissible sets. There is also software to create Schmidt arrangements (coined and
first studied by Stange [21]), fractal displays of circles in the complex plane obtained
as the orbit of the real line under PSLo(0). It turns out that approximating z € C
with Algorithm 1 corresponds to a “walk” along circles in a Schmidt arrangement
toward z. The convergents are exactly the points of intersection between successive
circles in this walk. Details can be found in the author’s dissertation [10]. Continued
fractions are addressed on their own here for simplicity.

2. A CONTINUED FRACTION ALGORITHM

2.1. Intuition for non-Euclidean rings. Hurwitz’ algorithm can be applied in
any imaginary quadratic ring, but with varying degrees of success. In this subsection
we explore what happens if 0 is not Euclidean through an example in Q(y/—23).
Recall notation from the first page, and let My denote the identity matrix.

We will need the usual recursion relation M,, = M,,_15(a,), where

_ Pn Pn-—1 _ a 1
M, = [qn an and S(a) = [1 O} . (2.1)
With z, = 1/(2n—1 — an), it follows by induction that z, can be computed by
applying the M&bius transformation associated with M, ! to z. That is,

_ dn—1% — Pn—1

Pn — 4nz )
Thus an improvement in approximation qual-
ity, |gnz —pn| < |gn—12—Dn—1], is equivalent to
1/|zn| = |2n—1—an| < 1. Soin a non-Euclidean
ring, it is still desirable (and necessary, as we
show shortly) that z,_; lie in the open unit
disc centered on a,,.

Let us input z = —1.26 + 0.484, labeled “0”
in Figure 1, and take coefficients from the in-
tegers in Q(v/—23). There are two choices for
ay; € O whose unit discs contain zp: —1 and
—2. If a1 = —2, for example, then

1
20 —ai
Similarly, as = 1 and a3 = (-1 + /—23)/2
center the bold outlined unit discs that contain ~ Figure 1. Unit discs around
z1 and z9 &~ —0.13+1.617. But there is no such 20, 21, and 29 with |A| = 23.
disc containing z3 ~ 0.49 4+ 1.04i. As a result,
any choice of a4 worsens approximation quality: |qguz — ps| > |g32 — p3].

We can persevere, perhaps searching for a clever combination ay4,as, ..., a, to
finally achieve |g,z —pn| < |g3z —p3|. Or at the very least, there may be a sequence
of coefficients that makes lim,, p,, /¢, = z. It happens that neither is possible. The
4
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obstruction is that M,,, up to a swapping of columns which we henceforth ignore,
belongs to the elementary group in SLo(0)—the group generated by S(a) from (2.1)
for a € 0. Tt is proved in [11] that if p and ¢ are the column entries of a matrix
in the elementary group, then p/q lies in the interior of a unit disc centered on an
integer. Thus for any choices of ay, ..., a,, the distance from 23 to the column ratios
of M3 1 M,,, which belongs to the elementary group, is bounded from below by a
positive constant. So the same is true of the distance between z = M3(z3) and
the column ratios and M,,. This is to say that no sequence of coefficients achieves
lim,, pn/qn =z.

A fix proposed by Whitley in [23] is to permit right multiplication by certain
additional matrices from SLs(0). So M,, = M,,_1S, where S need not take the form
S(a). Generally, |gnz—pn| < |gn—12—pn—1|is equivalent to |z—S1 1/S2.1| < 1/[S2.1],
thereby associating an open disc to S which is no longer centered on an integer
if So1 is not a unit. Success occurs when we can choose matrices so that such
discs cover C. This is possible exactly when O is one of the eight principal ideal
domains. In a non-principal ideal domain, there is a discrete set of problematic
points. The so-called singular points are not covered by open discs with center
S1.1/S2,1 and radius 1/]S2,1| for S € SLo(0) [22]. The approximation quality of
Whitley’s algorithm suffers when (z, ), approaches a singular point.

Bygott goes a step further [3] and allows S from the extended Bianchi group (see
Section 7.4 of [5] for a definition and basic properties). Only singular points p/q
for which (p,q)? is nonprincipal are left uncovered by the newly introduced open
discs. Bygott works in fields of class number 2 because no such points exist.

To lengthen the list of imaginary quadratic fields that possess an approximation
algorithm, we have gone from the elementary group to SLo(0) to the extended
Bianchi group. There are no more extensions to attempt. The latter is maximal
among discrete groups of Mobius transformations containing SLa(0) [5]. The group
structure must be abandoned to obtain a covering of C by open discs in fields with
non-2-torsion ideal classes like Q(1/—23). So let us return to the elementary group
and consider the following modification to S(a).

Notation 2.1. For a,b € C let
a 1
S(a,b) = {b O} .

It is well-known that open discs of radius 1/|b| and center a/b cover C for a € O
and b from some finite set B C 0\{0}. For example, B = {1, 2} works for Q(v/—23),
introducing discs of radius 1/2 centered on half-integers. The resulting covering is
the first image in Figure 2. As shown in the second image, the closures of these
discs still cover the plane after scaling radii by \/% Returning to our example,
the first image shows |z3 — (1 ++1/—23)/4| < 1/2. So My = M3S((1 +v/—23)/2,2)
gives |qaz — pa| < |g3z — p3| as desired.

Unfortunately, continuing in this fashion does not really work. Convergents
converge to z, but they may not come close in quality to the approximations that
must exist by Dirichlet’s box principal. The missing piece is a bound on | det M,,|,
which can grow exponentially when |b| # 1 in S(a,b). So we make an adjustment:
since det My = by = 2, in the next stage we pick among matrices of the form
S(a/2,b/2), where a € 6 and b € {1,2}. This cancels the previous determinant,
and | det Ms| = bs € {1,2} again. Since the goal is to approximate z with ratios
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FIGURE 2. Left: discs of radius 1 and 1/2 on half-integers with
|A] = 23; now z3 is covered. Right: scaling of radii by 1/8/9.

of integers, a5 and bs are now subject to the restriction that MyS(as/2,b5/2) be
integral. Matrix multiplication shows this condition is equivalent to (1.2). Our new
divisibility requirement eliminates half of the discs in Figure 2. But the ones that
survive now get a disc of radius 2/b instead of 1/b, as in (1.1). We need this to
remain a covering to guarantee containment of z4. It does, as can be seen in the
first image of Figure 3. That we continue to obtain a covering using B = {1,2} in
subsequent stages of the algorithm makes this set admissible for Q(1/—23).

It is not uncommon that a set B produces a covering at one stage (like Figure
2 for the fourth stage in the example) but not another. A few examples of such
inadmissible sets are {1, (1 + +/—15)/2} for A = —15, {1,2} for A = —31, —39, or
—47, and {1,2, (1 £ v/—35)/2} for A = —35.

There is one subtlety regarding coefficient choice that occurs if B # {1}. In our
example from Q(1/—23), note that if a,, and b, = 1 make M,,_1S(an/bp—-1,1/bp_1)
integral and |z,-1 — a,| < 1/2, then we might instead choose 2a, and b, = 2.
Indeed, M,,_15(2ay,/bp—1,2/by—_1) is integral and |2z,_1 — 2a,| < 1. This doubles
the resulting values of p,, and q,, presenting a potential problem: the undoubled
values may appear at a later index, meaning the same convergent could occur twice.
This would necessitate unpleasant caveats in several of Section 3’s results. As such,
we insist that (p,,¢,) be reduced to the extent that avoids this issue.

Definition 2.2. For ¢ € (0,1), an ideal b C O is e-reduced if for every k € K\{0},
kb C O implies |k| > £2.

The relation between ¢ in Definition 2.2 and B is clarified shortly.

2.2. The algorithm. Definition 2.4 formalizes the covering requirement discussed
in the previous subsection. For computations, this definition can be skipped in
favor of Table 2 or Theorem 4.3.

Notation 2.3. Let D(z,r) denote the closed disc of radius r > 0 and center z € C.
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Definition 2.4. A nonempty, finite set B C 0\{0} is admissible with ¢ € (0, 1) if
for every e-reduced ideal b with b N B # 0,

a €&
= D _, —
c=U <b’|b>’

where the union ranges over the pairs a,b for a € K and b € B that make (ab, bb~!)
integral and e-reduced. (Here b~ is the fractional ideal satisfying b=b = 0.)

The value of ¢ in Definition 2.4 is a guaranteed measure of approximation quality
improvement, |¢,z—pn| < €|¢n_12—pn—1|. Geometrically, it is an allowable amount
by which radii of discs can be scaled while preserving the covering, as shown in
Figure 2.

Note that Definition 2.4 does not mention b, _1, Pn_1, ¢n_1, Pn_2, O ¢n_o2, all
of which appear in (1.2) and therefore determine the coverings used by Algorithm
1. Since there are infinitely many values these variables might attain, a practi-
cal definition of admissibility should adjust for the redundancy of checking every
potential covering. Definition 2.4 requires that b be e-reduced, so the number of
coverings checked is bounded by a small multiple of the class number (or exactly the
class number if € is sufficiently close to 1). This facilitates proofs of admissibility
and searches for admissible sets. Unfortunately, it also obscures the relationship
between admissibility and Algorithm 1. For example, it is likely not clear at this
point why coverings indexed by b suffice. And while “a” from Definition 2.4 is
directly related to its counterpart in lines 4-6 of Algorithm 1, they are not equal.
The precise connection is postponed until Section 4.

It may be useful to first consider Algorithm 1 in a Euclidean ring with B = {1}.
The if condition in line 5 becomes trivial and can be ignored. It is then the Hurwitz
algorithm with the exception that we are not requiring a,, to be the nearest integer
to z,_1, only that |z,_1 — a,| < &.

Definition 2.5. The left-column ideal of a matrix M, denoted (M), is the ideal
generated by its left-column entries. Define the right-column ideal, (M), similarly.

Algorithm 1. Compute continued fraction convergents of z € C over 0. Any
method (like Algorithm 2) for choosing among multiple coefficient pairs a, b satis-
fying line 5 may be used.
input: z € C, N € N, B admissible with ¢ € (0,1) as per Definition 2.4
output: py,qy € O with py /gy approximating z

1: M « Id € SLy(0) > convergents are column ratios

2: b+ 1 of M as in (2.1)

3: for n < 1to N do

4| forbeB,acONDOM(2),elt'|) do > M~! is Mébius transformation

5: if (MS(a/V/,b/b)), is integral and > Algorithm 2 gives a subroutine
e-reduced then that finds a, b for certain B

6: M + MS(a/V,b/V)

7 )

8: break

9: if z = M; 1/Ms, then break > we found z exactly

10: return M 1, M>




Notation 2.6. Let a,,, b, and M,, denote “a,” “b’,” and “M” after completing the
n'™ outer for loop iteration, with by and My being initial values, let z, = M !(z),
and let p, and ¢, denote the left column entries of M,,. Its right column entries

are then p,_1 and ¢, _1, which we use to define p_; =0 and ¢q_; = 1.

It follows from line 6 that our variables satisfy the same relations that hold in
Euclidean cases when B = {1}. (Results do not mention the input N or whatever
the terminating index happens to be.)

Proposition 2.7. Ifn > 1 then

_ QpPn—1+ bypn—2 _ apgn—1+ bnGn—2 _ bn—1
Pn = ) qn = ) An = 37—
bn—1 bp—1 bpzp—1 — an
Po_ bo/b1
qn by a2 b1/by ’
—+
ba

. Ap—1 bn72/bn71
+
bn—1 an/bn

and det M,, = (—1)"b,,.

Proof. The expressions for p,, ¢n, zn, and det M,, follow directly from line 6 (and
induction for det M,,). Viewing our matrices as Mébius transformations, from the
new expressions for p,, and ¢, we see that

Pn _ I ey B R S i T B
Qn_ nl(bn>_(S<bO7b0>o OS<bn—2’bn—2>><bn>.

The continued fraction given in the proposition is an expansion of the right-hand
side since S(a,b)(z) = a/b+ 1/bz. O

2.3. An example. Recall the example in Subsection 2.1 for Q(v/—23). It starts
with 2 = —1.26 + 0.48i and B = {1,2}. Let ¢ = \/8/9 and 7 = (1 + v/~23)/2.

Prior choices of coefficients are a; = —2, as = 1, and a3 = —1 + 7, which center
the outlined discs in Figure 1 that contain zg, 21, and zo. We claim these still meet
the requirements of Algorithm 1 alongside by = 1, bs = 1, and b3 = 1. Indeed, when
bp—1 = b, = 1, the disc containment in line 4 is the same as z,_1 € D(an,e). In
our example, the radii in Figure 1 can be scaled by e and still cover zg, 21, and z5.
Moreover, line 5’s requirement that (M,,_15(an/1,1/1))e = (M,)e be e-reduced is
satisfied since det M,, = £1 implies (M), = 0.

So we keep our original three coefficients. Starting with the identity matrix, My,
line 6 gives

-2 1 -1 -2 —1-7 -1
M1—|:1 O:|, Mg—[l 1:|, and M3—|: - 1:|.

The previously discussed choice of a4 = 7 and by = 2 also passes the if condition
in line 5. Indeed, it gives

M, = [427’ 17]’

—4+7 T
and thus (My4), = (7,2). This is a (split) prime over 2, which is e-reduced regardless

of the value of e. We get 24 = M, *(2) ~ 1.43 + 0.96i.
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FIGURE 3. Left: z4 and Zg in a disc on a5 /bs = a7 /by = (1+7)/2.

Right: z5 and Z7 in discs on ag/bg = 1 and ag/bg =2 — 7.

Consider the top row of My. We cannot use bs = 1 because a(4—27)+1(—1—7)
is not divisible by by = 2 for any a € Z[7]. As bs must come from {1,2}, b5 = 2 is
forced. So line 4 looks for a5 € 0N D(2z4,2¢), which rearranges to z4 € D(as/2,¢€).
Turning to the second row of My, as(—4 + 7) + 27 is divisible by 2 if and only if
as € (7,2). The first image of Figure 3 shows that unit discs on a/2 for a € (7,2)
do indeed cover the plane with radius-scaling room to spare. In particular, we may
take a5 = 1+ 7. The highlighted disc is D((1 4+ 7)/2,1).

The congruence requirement on a and b can be computed similarly from

7T—T 4—27]

Ms = [ -5 —A47|"

It is a = Tmod2 if b = 1, and a can be any integer if b = 2. (But a = 27 mod 4
and b = 2 needs to be reduced to a/2 and b/2 according to Definition 2.2 because
1/2 < &% = 8/9.) The corresponding discs of radius bs/b = 2/b and center a/b
are displayed in the second image of Figure 3. We see that ag = bg = 2 satisfies
z5 € D(ag/bg, |bs/bs|) = D(1,1), again with room to scale radii by e.

The arrangement of discs that occurs for zg, UD(a/b,2/b) for a € O and b € {1, 2}
that make (MpS(a/bs,b/bs))¢ e-reduced, is the vertical reflection of z4’s. So the
first image of Figure 3 shows Zg in the disc centered on a possible choice of T/b%
which happens to be the same disc we chose for z4. We are also able to squeeze Z7
into z5’s image.

The resulting convergents for n < 10 are given in Table 1 along with approxima-
tion quality. It can be checked that |(¢nz — pn)| < €|gn-12 — Pn—1| with e = \/8/9,
a direct result of |byzp—1 — an| < €|bp_1].

Observe that the last two continuants satisfy |ge|? = 11916 and |g10|? = 11716.
For classical continued fractions and Hurwitz’ algorithm over the Euclidean rings,
continuant magnitudes increase monotonically. This fails in general. But Theorem
3.11 asserts that the degree to which continuant monotonicity fails is bounded by
a constant depending only on B and e.

We end this section with a remark on the colors in Figures 2 and 3. The second
image of Figure 3 is a scaled and shifted copy of Figure 2. It turns out that up
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n R Zn—1 S Pn/n ~ |gnz — pul
1 | —1.26 + 0.48i —2/1 —2/1 0.882
2 | 0.95—0.62i 1/1 -1/1 0.5459
3 | —0.13+1.61i | (=1+7)/1 (-1—1)/7 0.4754
4 | 0.49+1.04 7/2 (4—27)/(—4+71) 0.2757
5 | 1.43+0.96i (1+7)/2 (7—7)/(=5) 0.2
6 1.3+ 0.46i 2/2 (11 —=37)/(=9+ 1) 0.1096
7 1—1.53i (2—171)/2 (9 —87)/(—11+57) 0.0451
8 | 1.46+1.94; (1+7)/1 (34 — 57)/(—25) 0.0104
9 | —0.34+4.32 | (—2+27)/1 | (1+607)/(39 — 457) 0.0085
10 | 0.99 4 0.72i 1/1 (35 + 557) /(14 — 457) 0.0061

TABLE 1. Coefficients, convergents, and approximation quality from Algo-
rithm 1 with A = —23 using B = {1,2} and € = 1/8/9.

to scaling, shifting, and reflecting, the two disc arrangements in Figure 3 are the
only ones that can occur. (Such similarity of arrangements is how we get away
with the apparently scant number of coverings provided by Definition 2.4.) Colors
foreshadow which of the two types of arrangement occurs next: yellow for the first
image in Figure 3 and blue for the second. Our choice of discs containing zp, 21,
Z2, Z4, 26, and z7 are blue, so it is a scaled or shifted copy of the second image in
Figure 3 that must cover 21, 2o, 23, 25, 27, and zg. Since yellow discs are chosen to
cover zz and zs, a scaled, shifted, or reflected copy of the first image in Figure 3
must cover z4 and zg.

Which of the two disc arrangements (either the first or second image in Figure
3) appears in stage n is determined by the ideal class of (M,,—1)¢—trivial is the
second image and nontrivial the first. So when drawing discs, the appropriate color
for D(a/b,b/b") can determined by computing what the ideal class of (M,,), would
be if a and b were selected as coefficients. That is, we compute the ideal class
of (M,—1S(a/b',b/V'));—trivial gets blue and nontrivial gets yellow. Note that
there are two nontrivial ideal classes for Q(v/—23). But they are inverses, implying
complex conjugation maps an ideal in one class to an ideal in another. The two
disc arrangements that occur when (M,,_1), is conjugate are vertical reflections of
one another (perhaps scaled or shifted as well). This is why the the first image in
Figure 3 may appear reflected at future stages, as it is for covering zs in stage 7.
The second image in Figure 3 is preserved by conjugation, as is true of the class of
principal ideals.

It would be interesting to study whether the sequence of ideal classes of (M,,), =
(Pn, qn), rather than the actual convergents p,, /g, still carries information about
the input z.

3. CLASSICAL PROPERTIES

This section rifles through Hensley’s litmus test for continued fractions (Section
5.2 of [6]). Essentially, properties of the nearest integer algorithm over Z are re-
tained at the expense of constants (meaning with respect to n and z) that grow
with the discriminant magnitude |A|.
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3.1. Convergents. The following observation is often used without mention.
Lemma 3.1. Ifn >1 then |z,| > 1/e.

Proof. By Proposition 2.7, z,, = by,—1/(bnzn—1 —ay). So |z,| > 1/ is equivalent to
apn, € D(bn2n—1,€|bp—1|), which is from line 4 of Algorithm 1. O

Proposition 3.2. If n > 1 then |gnz — pn| < €lgn-12 — pn—1|. In particular,
‘an _pn‘ <em.

Proof. Notation 2.6 defines z,, to be M, (2) = (¢u—12 — Pn—1)/(Pn — gnz). So the
first inequality in the proposition is equivalent to |z,| > 1/e, which is the previous
lemma. The second assertion follows by induction. [

Corollary 3.3. If n > 1 then any1 and g, are nonzero, and n marks the first
occurrence of pn/qn as a convergent.

Proof. That q, # 0 follows from p, € O and the second assertion of Proposition
3.2: |gnz —pn| <e™ < 1.

If pn’/Qn’ = pn/‘]n with n > n’ then (QH/qn’)(pn’a Qn/) = (pna Qn) C 0. Proposi-
tion 3.2 gives €™ > |¢,z — pul/|@n 2 — Pur| = |qn/qn|, which implies n — n/ < 2
by Definition 2.2 because (pp/,qn/) is e-reduced. For the case n = n’ + 1 we have
PrnGn-1 — Pn—1qn = b, # 0 by Proposition 2.7.

Now that we know pp,+1/Gn+1 # Pn—1/Gn-1, Proposition 2.7’s formulas for p,, 41
and ¢,+1 show that a, 41 # 0 for n > 1. [l

Corollary 3.4. If z = p/q for p,q € O, then p, /q, = z for somen < |1—1log_|q|].

Proof. By Proposition 3.2, the integer q(¢nz — pn) = gup — pnq is bounded in
magnitude by £™|q|. Setting this equal to 1 and solving shows that g,p — p,q = 0
no later than n = [1 — log,|ql]. O

Notation 3.5. For a fixed admissible set B, let ;1 = maxpg|b|.

The following lemma and theorem both have a counterparts (which we are not
yet ready to prove), Lemma 3.6b and Theorem 3.7b, where the directions of the
inequalities are reversed.

Lemma 3.6a. Ifn > 1 then
Gn—1 > (1- 52)|bn|.
qnZn 2
Proof. The proof proceeds by induction. The base case is n = 1, which holds using
qgo =0, |b1] < p, and € > 0.

Let n > 1 and assume the lemma’s inequality holds when each index is decreased
by one. Since |z,| > 1/e and |b,| < p, the claim holds if |¢,—1/¢n| < € by the
triangle inequality—mno need for induction. Otherwise, by Proposition 2.7 we have

1 + qnfl/QnZn _ dn + Qn71/2n o (an(Jnfl + bn‘]n72) + qnfl(bnznfl - an) _

1+

bn ann bn—lbnqn
qn—2 +Qn—lzn—1 _ dn—12n—1 (1 +qn—2/qn—lzn—l) (3 1)
bn—l‘]n dn bn—l

But we assumed 1 < |g,—1/€qn|, which is at most |¢,—12n—1/¢»| by Lemma 3.1. So

the final expression in (3.1) is at least |1 + gn—2/Gn—12n-1|/|bn—1| in magnitude,

which exceeds (1 — &2)/p by the induction hypothesis. O
11



Theorem 3.7a. Ifn > 1 then |g,z — pa| is less than

(1+e*)p?
(1 —e2)|ant1qnl

I

i) . T2 e
(1 —¢?)|gn+1]

(1 —)lgnzn|’
Proof. Consider the identity

i1) and i)

—det M,

gnz — Pn = QnMn(Zn) —Pn = (32)

Since det M,, = (—1)"™b,,, we see that i) is a rearrangement of Lemma 3.6a.

To prove ii), increment the index in (3.1) and scale both ends by ¢,11 to get

qn+1(1 + qn/anrlszrl) _ ann(l + qnfl/QnZn)
bn-‘rl bn

Up to a sign, the reciprocal of the right-hand side above equals the final expression
n (3.2). So we extend (3.2) as follow:

— det M, B (—1)" by sy
qnzn<1 +qn71/ann) anrl(l +Qn/Qn+lzn+1).

(3.3)

Lemma 3.6a bounds the magnitude of the last expression by /(1 — €2)|gn1]-
Finally, [bny12n — an1| < €lbn| gives |ans1] < [bni12n] +€lbn] < (|2a] +e)p <

(1 + €%)p|2|. This provides a lower bound for |z,| in terms of |a, 1| that can be

substituted into 7) to prove iii). O

As with classical continued fractions, if |¢(qz—p)| is sufficiently small for p, g € O,
then p/q appears as a convergent in the expansion of z. This property is interesting
in our case because we are not specifying any particular method for choosing among
multiple pairs a, b passing the if condition in line 5. As such, the following lemma
asserts that finding sufficiently good approximations is unavoidable.

Lemma 3.8. Let p,q € O with ¢ #0 and z # p/q. Take n > —1 to be the smallest
index for which

lqlp

Pl —) (384

|qn+1| >
or, if no such index exists, take n so that p,/q, = z. Then there exist a,b € O with

la(az —p)lp
bl < 24| ———5F—
1o (1—-¢2)
satisfying p = (apn + bpn-1)/bn, and q¢ = (agn + bgn—1)/bn. In particular, p/q =
Pn/dn whenever |q(gz —p)| < (1 —€2)/4p.

Proof. For a given n, the value of b € 0 that makes p = (ap, + bpp—1)/b, and
q = (agn + bgn—1)/by, for the right choice of a € 0 is b = p,q — pgy.

First suppose there exists an index for which (3.4) holds, and let n be the small-
est. The first inequality below is the triangle inequality, the second is Theorem
3.7a 4i), and the third comes from |g,1| satisfying (3.4) but |g,| violating (3.4) by
minimality of n:

1b] = |png — pan| < |gn(qz — )| + |4(gnz — Pn)| <
12



q
qn+1

u la(gz — p)|p
- A a2

lan(qz — p)| +

If (3.4) is never satisfied then z must be rational because otherwise Proposition
3.2 implies continuants grow without bound. By Corollary 3.4 we we can choose
n with p, /¢, = z. The assumption that |g,| does not satisfy (3.4) bounds it from
above. We use this upper bound for the inequality below:

Gn la(qz — p)|p
bl = |png — pgn| = | —p) <\
0] = [Png — Pan| ‘q ’|¢I(q2’ p)| (1—2)

For the last claim, combining |¢(qz — p)| < (1 — €2)/4u with the upper bound
on b in the statement of the lemma forces |b] < 1. Thus b = 0, implying p/q =
(apn/bn)/(aqn/bn) = Pn/qn as claimed. O

Theorem 3.9. If p/q is not a convergent of z for some p,q € O with q # 0, then

dep®la(gz — p)|
|gn(gnz — pn)| < T1-e2)2F

for anyn > 1. That is, each p,/qn, is a best approzimation of the second kind up to
constants: if rs < (1—e2)?/4eu?, then 0 < |q| < 7|qn| implies |qz —p| > s|qnz — pu
for any p € O except perhaps when p/q is already a convergent.

Proof. Violating the stated inequality combines with Theorem 3.7a i), giving

(1 52)2|Qn(an pn)‘ 1—¢2
< .
|Q(q2’ p)| = de2 < m

Thus p/q is a convergent by Lemma 3.8. ]

3.2. Continuants. Here we study the growth of |g, |, which may not be monotonic
as the example in Subsection 2.3 demonstrates.

Lemma 3.10. Suppose B and ¢ are admissible and that u # 1 or |A| # 3. Then
e >2/3.

Proof. Let z € R approach € from the right. Every nonzero element of @ has
magnitude at least 1, so no nonzero multiple of z is within ¢ of 0. In particular,
the minimal nonzero multiple of z that is within € of any integer is [1/e — 1]z. So
w > [1/e — 1], which is at least 2/3¢ unless £ € [1/2,2/3). In this range, ey < 2/3
would imply g < 4/3. This forces B to consist of units since non-units in imaginary
quadratic rings have magnitude at least v/2. Thus the discs in Definition 2.4’s union
are centered on integers. But discs of radius € € [1/2,2/3) on integers only cover
the plane when A = —3. O

Theorem 3.11. If 0 < n/ < n, then

(1— 52)2|qn’zn’ | .

|qn‘ > 45”7’”,/142

In particular, if n > 1 then |q,| > (1 —2)?/4e™ 2.
13



Proof. Since qg = 0, we may assume that n’ > 1. Suppose the first lower bound on
|gn| is false. Then by Proposition 3.2 and Theorem 3.7a i),

_52)2|Qn'2n'(Qn’Z—Pn')‘ 1—¢?
< .
442 4

Therefore Lemma 3.8 applies, and either p,, /¢, = z or n = n”, where n’ is the first
index (recall convergents cannot repeat by Corollary 3.3) for which

|Qn|,u
q 12 Z .
g4 ¢mﬁ—mm—¥>

Regarding the second possibility, |g,—1| must fail to satisfy the bound above in
place of |7 4+1|. Thus

o 1
0 (@07 — pa)] < € [gu(awrz — pu)] < &

1 < |pngn-1—Pn-1Gn] < 1@n(Pn-1 — gn-12)| + |gn-1(gnz — Dn)|

< """ |4 (g2 — po)| oy flantanz — el 1-2F 1
- 1 — g2 dep 2

The last inequality uses Lemma 3.10. The same contradiction occurs in the case
Dn/Gn = z; we just get to replace the summand |g,—1(¢nz — pr)| above with 0.
Finally, |g,| > (1 —&2)?/4e"u? uses ' =1 and |qz,/| > 1-1/e. O

Corollary 3.12. Ifn > 1, then

Dn 452”,“2
- < —.
an|  (1—e?)?
Proof. This follows from |g,| > (1 —&2)?/4e"u? and |g,z — pn| < ™. O

3.3. Coefficients. Here we show that the existence of an infinite, periodic sequence
of coefficients for an input z is equivalent to [K(z) : K] = 2, and that boundedness
of coefficients is equivalent to z being badly approximability. Both are true whether
“coefficient” is interpreted to mean a,, a, /by, or the pair a,, b,, and there is little
difference made to the proofs.

Definition 3.13. We call z € C badly approximable if |q(qz — p)| has a positive
infimum over p,q € 0 with ¢ # 0. Otherwise, z is well approximable.

To prove that bad approximability is equivalent to bounded coefficients, we need
a lower-bound analogue of Theorem 3.7a ii3).

Lemma 3.6b. Ifn > 1 then
482 2
< a .
(1—¢2)?
Proof. First we use Theorem 3.11 with n’ =n — 1 to get

(1 - 52)2|Qn—12n—1| > (1 - 52)2|Qn—1|
dep? - 4e2p

qn—1
dnZn

‘14—

|Qn| >

which bounds |g,—1/¢,| from above. Along with 1/|z,| < € and the triangular
inequality, this shows
453,LL2

dn—1
dnZn

<1+

i

14



The right-hand side above is less than the stated bound precisely when eu exceeds
(1 —¢€2)/24/1 — ¢, which attains a maximum of 2¢/6/9 at ¢ = 1/3. By Lemma 3.10,
e >2/3>2v6/9. O

Theorem 3.7b. Ifn > 1 then |q,z — py| is greater than
N (B (1= 2P lbun
4e2i2|qnzn|’ 42 pi®|qnya| 822 an+14y|

Proof. Lemma 3.6b combines with identities (3.2) and (3.3) to prove i) and i)
directly, just as in the proof of Theorem 3.7a.

For i), |bpt12n — ant1] < €lby| implies |byt12n| < |an+1|+€lby|. Dividing both
sides of this last inequality by |a,+1bs| gives

1 €
<+ — <20
|bn | |an+1|

Now scale both ends of the inequality above by |b,,/22,| to get the lower bound for
|by,/ 2| that turns ¢) into 7). O

and i)

bn+12n

An 41 bn

Corollary 3.14. An input z is badly approzimable if and only (a, /by)y is bounded.

Proof. If z is badly approximable then (a,), (and thus (a,/by),) is bounded by
Theorem 3.7a #ii). If z is well approximable then sufficiently good approxima-
tions appear as convergents by Theorem 3.9, implying (a, /b,)n is unbounded by
Theorem 3.7b ii3). O

Finally, we prove the existence of periodic expansions of quadratic, irrational
inputs.

Theorem 3.15. The set {2z}, is finite if and only if [K(z) : K] < 2. In particular,
z has a continued fraction expansion in which the sequence of pairs (an,bn)n is
eventually periodic and infinite if and only if [K(z) : K] = 2.

Proof. If {z,}, is finite and (z,), is not then there are distinct n,n’ € N with
M;Y(z) = 2, = 2z = M, (2). By Corollary 3.3, M,, cannot be a scaled copy
of M. Thus M, M;'(z) = z shows that z satisfies a quadratic (irreducible by
Corollary 3.4) polynomial with coefficients in K.

For the converse, suppose [K(z) : K] = 2. Let « denote the discriminant of an
integral, quadratic polynomial of which z is a root, and use the quadratic formula
to write z = (w+x)/y such that w, y, (22 —w?)/y € 0. Let us also get an expression
for z, in terms of w, x and y. The last equality below comes from rationalizing
the denominator with respect to the quadratic irrational x. That is, we multiply
numerator and denominator by the conjugate of the denominator.

(2) = 12 = Pnot (Gn1w = ppn1y) + @1
Pn — qn? (PnY — qnw) — gnx

2 =M1

n

(gn—1n (2% — w?) [y — pn_1Dny + W(DPnGn—1 + GuPn—1)) + (—=1)"bpa
((Pny — gnw)? — g22) [y
Let x, = (=1)"b,z, giving 22 € 0. Define w,, and y,, using the expression above
so that (wy, + ) /Yn = 2. Asy divides 22 — w?, w, and y, are seen from (3.5) to
be integers.

(3.5)

15



Now we find recursive expressions for w,,, z,, and y, using the recursive formula
for z, in Proposition 2.7. The final equality is again rationalizing the denominator.

Wy + Tn - = bn—l bn—lyn—l
Yn " bnznfl — anp bn(wnfl + xnfl) — AnlYn—1

((bnwn—l - anyn—l)/bn—l) - bnzn—l/bn—l

((bnwnfl - anyn71)2 - b%m%—l)/b%—lynfl .
Note that —b,z,—1/bn—1 = —bn((—l)"’lbn,lx) /bn—1 = (—=1)"b,x, thus matching
a pair of terms from (3.5) and (3.6). But {1,z} is a basis for the field extension
K(z)/K. So because the remaining terms in (3.5) and (3.6) belong to K, there is
only one way they could match up:

(3.6)

2 2 ,.2
o bpwy—1 — nYn—1 (bnwn—l - anyn—l) - bn'rn—l

Wy = and vy, =
" bnfl " biflynfl
These recursive formulas for w,, and x,, give the second equality below:
1] yn < YnZn | _ |wn+on| bp2n—1 — n N (—=1)"2b,x <eqt 2p|z| .
€ | Yn—1 Yn—1 Yn—1 bn—l Yn—1 ‘yn—l‘

Thus |yn| < €%|yn—1| + 2ep|z|, implying (y, ), is a bounded sequence. Therefore

Yn—1 (bnznfl - an)
bn—l

bnwnf 1= 0nYn—1
bn—l

shows that (w,), is also bounded. Since w,,, 2, and y,, are all bounded integers,
{zn}n = {(wn + ) /Yn}n is finite.

To see why the final periodicity claim follows, fix an expansion of a quadratic
irrational z. By finiteness of B and {z,},, there are indices n’ > n with z,, = z,,
b, = b, and M,, = M, modb,. For any matrix S, if either of M,S or M,/ S
has integer entries then b,S = det M,,S = det M,,/S does too, implying both M, S
and M,S have integer entries. This shows that (M,S), is e-reduced if and only
if (M,,»S)¢ is e-reduced. Thus we may take ap = ay and by = by for all &' > n’,
where k' = kmod (n’ —n) for n < k <n’. O

|wn| = = + (_1)nbnx < E‘ynfl‘ + /L|{E|

We remark that aside from being overly complicated, the proof of Theorem 3.15
applies to the continued fractions produced when Algorithm 1 is executed over Z.
The author is not aware of such a perspective (absent of a fixed convention for
selecting among multiple coefficients) in the literature. Even with B = {1}, there
are overlapping discs (intervals in this case) that allow for an infinite number of
periodic continued fraction expansions, all of which converge to the given quadratic,
irrational input. By taking B # {1}, our algorithm finds the additional use over
Z of producing even more such expansions. It is possible, however, that these
expansions are already obtainable by altering nearest integer coefficients with the
processes of singularization and expansion [8].

Figure 4 shows {z,}, for z = (3 + 5i)/4 using B = {1} in Q(v/—11). The
covering is centered at 0 € C, and z is labeled “0.” As it lies in both the yellow disc
centered at (14 +/—11)/2 and the blue disc centered at (3 + +/—11)/2, there are
two possibilities for a;. The resulting values of z; are indicated by the yellow and
blue arrows to 1 and 7 in the diagram, and are labeled “1” and “7” in the image.
In particular, numbers in the figure need not correspond to the stage number at
which a point might appear.
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FIGURE 4. Left: {z,}, for input 2y =
(34 5i)/4 and |A| = 11. Right: result
from using the disc of indicated color.

It is not generally the case that if z, appears in a continued fraction expansion
then —z, will also appear, but it does happen in this example for every point
except zg = z. This fact has been used to cut the number of nodes needed for
our diagram in half. Dashed arrows indicate a sign switch. For example, consider
the point labeled “—4,” which is only contained in the disc centered on —1. Its
image under z — 1/(z — (=1)) is “5,” not “—5.” Similarly, “2” is mapped by

z—1/(z— (1 —+/—11)/2) to “=3.7
4. ADMISSIBLE PARAMETERS

The coverings provided by Definition 2.4 are indexed by ideals rather than the
matrices used in line 5. Let us check that our notion of admissibility is sufficient
for Algorithm 1 to function, meaning a and b satisfying lines 4 and 5 always exist.

Lemma 4.1. For M, M' € GLy(K), if M is integral then (MM'); D det M (M'),.

Proof. The adjugate of M, adj M = M~!det M, is also integral. So det M (M'), =
((adj M)MM')y C (MM'),. O

Proposition 4.2. The if condition in line 5 of Algorithm 1 is satisfied at least
once every outer for loop iteration.

Proof. Let M with det M = b € B be a matrix that occurs in the execution of
Algorithm 1. Since M is either the identity or the matrix product from line 5 in
the previous outer for loop iteration, (M), is e-reduced. Denote this ideal b, as
that is the role it will play in Definition 2.4.

Fix any o’ in the fractional ideal b~! that makes (MS(a’, 1)), = b'b~!. According
to Definition 2.4, for any z € C there exist a € K and b € B for which (ab,bb™!) is
integral and e-reduced and (M ~1(2)—a’)/b' € D(a/b,e/|b|). This disc containment
rearranges to ab’ + a’b € D(bM~1(z),e[b'|) as in line 4. Note that b’,b € b implies
ab' +a’b € 0. So our proposed choice of coefficient pair is ab’ +a’b and b. It remains
only to check that (MS((ab +a'b)/b',b/b"))e is e-reduced. We claim that this ideal
is exactly (ab,bb~1), which would complete the proof.
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Let p be an unramified prime in the ideal class of b that does not divide abb,
and let k € K be a generator for pb~!. Consider the product

! /
M [(1) ‘ﬂ {’S |p“3kb,} P'p”gkb 2] S(ab,b) = ”;” MS(ab +a'b,b).  (4.1)
We chose a’ so that the product of the first two matrices has right-column ideal
b6~ and left-column ideal b. In particular, the product of the first three matrices,
call this M’, has determinant ||p||, with (M’), = p and (M’), =p. The product of
the last two matrices on the left-hand side has top-left entry al|p||/k, which gener-
ates abp, and bottom-left entry bk, which generates bpb~'. Thus the left-column
ideal of the product of all five matrices is contained in ((M’)¢abp, (M’),bpb~1) =
lpl|(ab,bb~1). On the other hand, since M’ is integral, Lemma 4.1 says that the left-
column ideal of the overall product contains det M’ (al|p||/k, bk) = ||p||(abp, bpb~1).
Since p is coprime to abp and p is coprime to bpb~t, we have ||p||(abp,bpb~!) =
lpl|(ab,bb~1), which must then equal the left-column ideal of the overall product.
Comparing to the right-hand side of (4.1) proves our claim. ([l

4.1. Generic admissible sets. The following result confirms the main assertion of
this paper: Algorithm 1 works in any imaginary quadratic field. The admissible set
{1, 2,0y L\/WJ } is highlighted because it makes decent constants in the previous
section’s results. A few such constants can be seen in Theorems 1.2, 1.3, and 1.4.

Theorem 4.3. If p € Z with p > |\/|A[/3], then {1,2, ..., u} is admissible with

Al
(n+1)2

provided 2% < \/|Al. In particular, {1,2, ey L\/|A|J} is admissible with 1//2.

Proof. Fix 2 € C and b C 0 with b N B # ). We will show that z is contained in
Definition 2.4’s union.

Let b, € b N B be minimal, implying the integral ideal b;6~! has no non-
trivial rational divisors. By Dirichlet’s approximation lemma, the real number
2033(2)/ \/W admits a rational approximation ag /by for coprime as, by € Z with
1 S b2 S Lu,/le and

1

2023(2) _a 1
NN R OED)

Scaling both sides above by bav/|A|/2b; is the first inequality below; the second
inequality uses the fact that p — by| /b1 |, which is a rational integer less than by,
is at most by — 1:

(4.3)

as ‘Al
2by

VAL VAL
T 200 (/b +1) T 2(p+ 1)
Since b1 b1 has no nontrivial rational divisors, there is a congruence class modulo
2||b161|| (in Z) whose elements, call one ay, satisfy (a1 + az+/|A])/2 € bb™L.
Choose such an a; nearest to 2b3bo%R(2). Then

a + GQ\/Z
2bq

blbgg(z) —

[[b1b—H[? Ay
< <e. 4.4
= 452 Apr1z=° (44)
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Thus z € D(a/b,e/|b|), where a = (a3 + azv/A)/2b; and b = biby € B.

Assume by way of contradiction that (ab, bb~1!) is not e-reduced. From Definition
2.2, this means k(ab,bb=1') C O for some k € K with 0 < |k| < 2. Then the
assumption 2e2u < +/|A] gives |k|b < £2u < /|A]/2. Thus kb € Z because a
non-rational integer must have magnitude at least \/W /2. By writing k£ € Q
in lowest terms, we see that k(ab,bb=1) C @ implies (ab,bb™!) has a nontrivial
rational divisor. Finally, ab = (b/by)(a; + az+/|A])/2 > (a1 + a2/|A[)/2 shows

that a rational divisor of ab must divide as, and bb~—1 = (blb_l)bQ shows that
a rational divisor of bb~! must divide by (recalling that b;b~! has no nontrivial
rational divisors). But as and be are coprime. O

The second paragraphs in the proofs of Proposition 4.2 and Theorem 4.3 are
algorithmic in nature. Combining them gives a fast method for finding coefficients.

Algorithm 2. Subroutine for Algorithm 1 to find coefficients (a,, and b,) under
the parameters B and ¢ defined in Theorem 4.3.

input: ¥, B, M, z used in line 4 of Algorithm 1; also let b denote (M),
output: coefficient pair satisfying lines 4 and 5 of Algorithm 1.

1: @ < number with (MS(a’,1)), = b'b~1

2: by < minimum element of b N B > b = det M makes bN B # ()

3 2 b2(M1(2)—a)/V

4: as/by + last convergent of 23(2)/+/|A| > from classic floor function con-
that makes b = b1by € B tinued fractions over Z

5: a1 < nearest rational integer to 2by%(z)
such that (a1 + az+/|A])/2b; € b1
6: a < (a1 + agy/ |A|)/2b1

7. return ab’ +a’b, b

Let us collect notation that has been used thus far. Both Algorithm 2 and the
proof of Proposition 4.2 begin with b’ = det M and b = (M), (which is (M,—1), =
(Prn-1,qn—1) if Algorithm 2 is returning a,, and b,). Both also use ab’ + a’b and b
to denote the coefficient pair returned to Algorithm 1. Then Algorithm 2 and the
proof of Theorem 4.3 further break these variable down into a = (a1 +az+/|A[)/2b;
and b = by1by. This notation is used throughout the remainder of the subsection.

Corollary 4.4. Under parameters B and € as defined in Theorem 4.3, the coeffi-
cients produced by Algorithm 2 satisfy lines 4 and 5 of Algorithm 1.

Proof. Algorithm 2 is pseudocode for the second paragraph in the proof of Theorem
4.3. The only difference is that “2” in Theorem 4.3 is (M ~*(z) —a’) /b’ in Algorithm
2. This substitution for z makes (4.4) equivalent to ab’ + a’b € D(bM ~1(z),e[b'|)
as required by line 4 of Algorithm 1.

Regarding line 4 of Algorithm 2, floor function continued fractions return all
az /by for which |by(23(2)/1/]A[) — az| is minimal without increasing by. So because
there exists an approximation satisfying (4.3), line 4 of Algorithm 2 finds it.

In the proof of Proposition 4.2 we saw that (M S ((ab’+a’b)/b',b/V')), = (ab,bb™1).
The third paragraph of the proof of Theorem 4.3 shows that (ab, bb~!) is e-reduced.
Thus the coefficients returned by Algorithm 2 satisfy line 5 of Algorithm 1. (]
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As discussed in Section 1, two advantages to using Algorithm 2 are speed and
control over the divisors of (p—1,qn—1,Pn,qn)-

Theorem 4.5. If a,_1, b,_1, an, and b, are found using Algorithm 2, then only
ramified, non-rational primes divide (Pn—1, qn-1, Pn,qn)-

Proof. The last paragraph of the proof of Theorem 4.3 shows that (M,,_1); = b
has no nontrivial rational divisors if a,,_1 and b,_1 are chosen using Algorithm 2.
Therefore b; defined in line 2 is just ||b]|. We have seen that (p,,q,) = (ab,bb™1),
so the goal is to verify that (b, ab,bb~!) has no split prime divisors.

Suppose p divides b but p does not. Then p divides bb~! = byb if and only if
it divides by. Similarly, p divides ab = (a; + agv/A)/2b if and only if it divides
(a1 + azv/A)/2. But this is true if and only if ||p|| divides as, because the choice of
ay in line 5 gives (a1 + azv/A)/2 € b C p. Thus ged(as, by) = 1 implies p does not
divide (ab,bb™!) as desired. O

We gauge the efficiency of Algorithms 1 and 2 by time required to find p,q € O
with ¢ # 0 satisfying |¢z — p| < 1/§ for some approximation quality goal §. To
make input length well-defined, the usual z € C is replaced with z € K. Then
log |lwayA| can be taken as the input length of z = (w+2v/A)/y, where w, z,y € Z
and ged(w, x,y) = 1.

Theorem 4.6. Let z have input length ¢ and let § > 2. By using Algorithm 2 to
compute coefficients, Algorithm 1 can be executed in O(log|A|log.d) operations on
integers of length O(£ +logd|A|) to find p,q € O with ¢ # 0 and |qgz — p| < 1/6.

Proof. To achieve |gz — p| < 1/4, at most [log,,. ] outer for loop iterations are
needed by Proposition 3.2. Let us determine the cost of Algorithm 2.

Fix inputs for Algorithm 2. Consider the four-element generating set (over Z) for
b = (M), consisting of the products of left-column entries of M with a Z-basis for O.
Reduce them mod d’. By computing greatest common divisors among the rational
integers defining the real parts and imaginary parts of these four generators, it is
straightforward to reduce our set to a Z-basis for b in O(logb’) operations. Once
we have this basis, line 1 is a matter of solving a system of two inhomogeneous
congruences, which also requires O(logb’) operations for the Euclidean algorithm.

As we are assuming Algorithm 2 was used on the previous for loop iteration, b
has no nontrivial rational divisors. Thus b; = ||b||, the determinant of the two-by-
two matrix with columns coming from our two-element Z-basis for b. So lines 2
and 3 both take O(1) operations.

Using classical continued fractions for line 4 requires O(log(u/b1)) operations.

Line 5 requires computing the appropriate congruence class for a; mod 2||b||,
since (a1 + az\/|A])/2 € b1b~! = b. (The factor of 2 in the modulus comes from
the general constraint a; = asA mod 2.) This requires O(log||b||) operations.

So at worst, a line in Algorithm 2 requires O(log 1) operations. The inequality
221 < /|A] from Theorem 4.3 along with the definition of ¢ in (4.2) imply u =
O(+/]A]), giving the desired overall bound on operations of O(log |A|log,d).

We turn to the bound on integer lengths. Let n be the first index for which
|gnz — pn| < 1/8. For n’ < n, Theorem 3.7a shows |a,/| = O(6u?), |gn/| = O(dp),
and |z,/| = O(0p) (except possibly zg). Using |gn 2z — pn/| < 1 shows that |p,/| =
O(dp]z]). And finally, b,y < p. Computations involve a few of these variables within
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each stage. Since the input length of an integer is determined by the logarithm of
its magnitude, u = O(4/|Al) completes the proof. O

4.2. Precomputing admissible sets. Table 2 shows admissible sets for |A| < 50
with their minimal e-values. For each field we include the smallest admissible set B
(measured by ), as well as the next smallest set which decreases the corresponding
value of . We use 7 to denote vVA/2 or (1 4+ v/A)/2 according to the parity of A.

AY B e 03 1,2 8/9
3 1 1/3 1,2,7,7 (31 — /161)/25
4 1 1/2 1,2,14+7 (10 — /58)/3
1,1 _
T 2- 3 a1 | 123 | (191-3v1209)/128
7 ! 47 1,2,3, 147 20/31
LT 1/2
1 3/4 35 12,3 (211-3v/1505) /128
8 1, 5 /G 1, 7,7, 147 | (805 — 51/25585)/8
1 9/11 39 1,2,3 | (231-3/1833)/128
1 1,2,3,147 10/1
1,7 3/4 5y &y 9y / 3
12,147 | (6-2v5)/3 1,2,3,24+7 | (25— /185)/16
19 1,2 7/9 43| L23 | (251-3v2193)/128
L7,7 | (13-+/57)/8 1,2,3, 147 391/477
90 | L2 | (28-2v115)/9 47| 123 | (271-3v2585)/128
L,2,147 | (25 —/355)/9 1,2,3, 147 42/47

TABLE 2. Some small (measured by 1) admissible sets with their minimal £2.

The C++ source code that produced Table 2 is posted on the author’s website.
The algorithm takes as input a discriminant and a finite set of integers. It returns
all admissible subsets of the input alongside their minimal e-values. In short, the
algorithm works by enumerating ideals b from Definition 2.4 and computing the
smallest € for which UD(a/b,e/]b]) = C. The covering property is checked by
exploiting periodicity of the union modulo the fractional ideal b~2, and verifying
that intersections of the boundaries of two discs are contained in a third disc.

The admissible sets above which are contained in Z have already been found by
Theorem 4.3. For A = —4, —8, —15, —19, —23, and —40, the values of £ given
in (4.2) are optimal, matching those of Table 2. This does not always happen,
and Figure 5 gives one such example. Both images show the same arrangement of
discs, coming from the first stage of Algorithm 1 using B = {1,2,3} in Q(1/—47).
There are discs of radius 1/b along every multiple of the line ¥(z) = v/47/2b for
b € {1,2,3}. Up to scaling, shifting, and reflecting, there are two other disc ar-
rangements also produced by B = {1,2,3}. The three colors in Figure 5 distinguish
among which arrangement would appear in stage 2 (similar to colors in Figures 2
and 3).

The first image in Figure 5 shows the partition used by Algorithm 2 to determine
ay and b1 based on the location of z. Here radii can be scaled by € = \/@/8 before
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FIGURE 5. In Q(+/—47) using B = {1, 2,3}, partitions resulting
from Algorithm 2 (left) and minimizing |bz — a| (right).

disc boundaries and corresponding partition boundaries touch. This agrees with
Theorem 4.3’s value of ¢ in (4.2). The second image shows the partition that
minimizes |b;z — a1|. Now discs can be scaled by the smaller

- 271 — 3v/2585
N 128 ’
as Table 2 asserts.

As an aside, such a partition associates to every z € C a disc center a/b. We can
then ask whether a probability measure exists on D(0, ¢) for which z — (b/z—a)/¥’
is invariant and ergodic. For Hurwitz’ algorithm, an invariant measure is shown to
exist for Q(/—3) in [20], and Nakada does the same for Q(v/—1) in [12]. Shiokawa
also proves ergodicity results in [19] for Q(v/—3). The goal of such an investigation
is to attack statistical questions, like the distribution of coefficients or the expected
value of |g,(gnz — pp)| for z uniformly distributed in D(0, ).
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