
Vol.:(0123456789)

Real-Time Systems
https://doi.org/10.1007/s11241-022-09380-z

1 3

Feasibility analysis for HPC‑DAG tasks

Sanjoy Baruah1 

Accepted: 7 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
The HPC-DAG task model is a very general and feature-rich model that was devel-
oped for the purposes of representing real-time applications that are intended for
implementation upon heterogeneous multiprocessor platforms. The computational
complexity of determining feasibility for a task specified according to this model
is considered, both for the general model and for some practically meaningful
restricted variants.

Keywords  Feasibility analysis · Heterogeneous Multiprocessors · Conditional
directed acyclic graphs · Alternative nodes

1  Introduction

The Heterogeneous Parallel Condition Directed Acyclic Graph (HPC-DAG) task
model was recently proposed by Houssam-Eddine et al. (2020) for the purposes
of modeling the execution of complex real-time application systems that are to be
implemented upon advanced commercial computing platforms featuring hetero-
geneous processing units and compute accelerators (e.g., different kinds of CPUs,
GPUs, Deep Learning Accelerators, Programmable Vision Accelerators, etc.). The
model, which we will describe in Sect. 3, is a DAG (directed acyclic graph) based
one enhanced to include a number of interesting features that “allows the system
designer to specify alternative implementations of a software component for differ-
ent processing engines, as well as conditional branches to model if-then-else state-
ments” Houssam-Eddine et al. (2020). That is, it allows for (i) the specification of
alternative implementations of some desired functionality such that only one of
the specified alternatives needs to be selected (prior to run-time) and implemented
in order to achieve the desired functionality; and (ii) the modeling of conditional

 *	 Sanjoy Baruah
	 baruah@wustl.edu

1	 Washington University in Saint Louis, Campus Box 1045, Saint Louis, MO 63130, USA

http://orcid.org/0000-0002-4541-3445
http://crossmark.crossref.org/dialog/?doi=10.1007/s11241-022-09380-z&domain=pdf

	 Real-Time Systems

1 3

(if-then-else) statements for which the conditional expressions determining which
branch to take are evaluated during run-time.

Houssam-Eddine et al. argue pursuasively (2020) that the expressive power of
the HPC-DAG model makes it an attractive choice for specifying application sys-
tems in a manner that facilitates the exploration of design alternatives: by specifying
multiple alternative possible implementations of parts of a system, there is greater
freedom to choose the most appropriate implementation of each part in order to
meet desired system-wide properties. One particularly important desirable property
for safety-critical real-time systems is feasibility: the ability to always meet all tim-
ing constraints during run-time. It has recently been shown (Baruah and Marchetti-
Spaccamela 2021) that determining feasibility for tasks specified in the conditional
DAG (C-DAG) model, of which the HPC-DAG model is a strict generalization, is
already a pspace-complete problem; it therefore follows that feasibility analysis is
pspace-hard for HPC-DAG tasks as well. In this paper we propose some practically
meaningful restrictions on the semantics (in particular, the execution model) of
HPC-DAG tasks that render the problem somewhat more tractable, and characterize
the precise computational complexity of feasibility analysis for these restricted vari-
ants of the HPC-DAG model.

1.1 � Organization

The remainder of this paper is organized as follows. In Sect. 2 we provide some
background on computational complexity theory that is needed in order to follow
along for the remainder of this paper. In Sect. 3 we describe the HPC-DAG model,
provide some intuition of and insight into the various reasons why feasibility analy-
sis is a particularly challenging problem for tasks specified in this model, and sum-
marize the current state of our knowledge concerning the computational complexity
of such feasibility analysis. In Sect. 4 we establish the computational complexity of
feasibility analysis upon a restricted version of the HPC-DAG task model. In Sect. 5
we extend our techniques to the feasibility analysis problem for the general HPC-
DAG task model but under a restricted execution model. We conclude in Sect. 6 by
placing this work in context.

2 � Some background from complexity theory

In this section we provide an informal review of some concepts from computational
complexity theory Papadimitriou (1994); Arora and Barak (2009) that we will use in
the remainder of this paper. The class P of problems that are known to be solved by
algorithms with running time polynomial in the size of their inputs, and the class NP
of problems for which claimed solutions can be verified by algorithms with running
time polynomial in the size of their inputs, are (along with co NP, the class of prob-
lems whose complements are in NP) the foundational cornerstones of computational
complexity theory. It is very widely believed—see Fig. 1—that P ⊊ NP (i.e., there
are polynomial-time verifiable problems that cannot be solved in polynomial time);

1 3

Real-Time Systems	

and that co NP ≠ NP (i.e., there are problems in NP that are not in coNP, and vice
versa). The polynomial-time hierarchy Stockmeyer (1976) extends computational
complexity theory beyond the classes P and NP by considering abstract computers
equipped with an oracle: a “black box” that is able to solve a specific decision prob-
lem efficiently (for our purposes here, “efficiently” can be taken to mean “in polyno-
mial time”). The complexity class �P

2
 denotes the class of all problems that can be

verified in polynomial time by an algorithm that is equipped with an oracle for solv-
ing some NP-complete problem. Similar to how coNP relates to NP, complexity
class �P

2
 denotes the class of problems whose complement problems are in �P

2
 . This

idea is generalized for any k ∈ ℕ : �P
k
 and �P

k
 are defined assuming access to an ora-

cle that is complete for �P
k−1

 . The relationship amongst these complexity classes is
shown in Fig. 1 as a Hasse diagram depicting the subset relationship (i.e., an arrow
A → B denotes that complexity class A is a subset of complexity class B: each prob-
lem that falls in complexity class A is also contained in complexity class B). It is
widely believed that each such depicted containment is proper—i.e., each depicts
the ⊊ relationship. The entire polynomial hierarchy is believed to be contained in the
complexity class pspace, which is the set of problems that can be solved by algo-
rithms using an amount of space (memory) that is polynomial in the size of their
inputs.

3 � The HPC‑DAG task model

In this section we first provide a brief description of the HPC-DAG task model,
emphasizing those aspects that are most relevant to deciding the computational com-
plexity of feasibility analysis. Following this, in Sect. 3.1 we provide some intuition
into the root causes of the challenges that arise in attempting to determine the feasi-
bility of HPC-DAG tasks, and suggest some modifications to the model that render
feaibility analysis somewhat more tractable in Sect. 3.2.

Workload models used in scheduling theory for representing recurrent real-
time workloads that are to be implemented upon multiprocessor platforms should
be capable of exposing the parallelism that may exist within these workloads. The

Fig. 1   Complexity classes: the
polynomial hierarchy Stock-
meyer (1976)

	 Real-Time Systems

1 3

sporadic DAG model (Baruah et al. 2012) (see Baruah et al. (2015, Chapter 21) for a
text-book description) was proposed for this purpose. A task in this model is speci-
fied as a 3-tuple (G, D, T), where G is a directed acyclic graph (DAG), and D and
T are positive integers representing the relative deadline and period parameters of
the task respectively. (In this paper we restrict attention to tasks satisfying the addi-
tional constraint that D ≤ T  , i.e., to constrained-deadline tasks.) The task repeat-
edly releases dag-jobs, each of which is a collection of (sequential) jobs—releas-
ing a dag-job corresponds to making all |V| jobs available for execution (subject, of
course, to their inter-job precedence constraints). Successive dag-jobs are released a
duration of at least T time units apart. The DAG G is specified as G = (V ,E) , where
V is a set of vertices and E a set of directed edges between these vertices. Each v ∈ V
represents the execution of a sequential piece of code (a “job”), and is characterized
by a worst-case execution time (WCET). The edges represent dependencies between
the jobs: if (v1, v2) ∈ E then job v1 must complete execution before job v2 can begin
execution. If a dag-job is released at time-instant t then all |V| jobs that were released
at t must complete execution by time-instant t + D.

The HPC-DAG model (Houssam-Eddine et al. 2020) is obtained from the spo-
radic DAG model described above by incorporating three enhancements—hetero-
geneous platforms, conditional execution, and implementation alternatives. While
the first two enhancements have previously been proposed the third is, to our knowl-
edge, novel. We will discuss these three enhancements separately below.

3.1 � Heterogeneity

The HPC-DAG model is intended for specifying application systems that are
designed for execution upon multiprocessor platforms comprising different kinds of
computing engines (henceforth, they will all be referred to as “processors” which
may be different from each other—hence, heterogeneous). Recall that each vertex
in G represents a sequential piece of code: it is reasonable to assume that this code
is written to be implemented upon a particular kind of processor. The HPC-DAG
model therefore associates a tag with each processor, and each vertex v ∈ V is char-
acterized by a tag identifying the kind of processor upon which it may execute.

3.2 � Conditional execution

To enable the modeling of conditional branching, the HPC-DAG model incorporates
the conditional DAG (C-DAG) task model that had been introduced (Baruah et al.
2015; Melani et al. 2015) as a generalization to DAG tasks. A conditional DAG task,
too, is specified as a DAG G = (V ,E) plus a relative deadline D and a period T;
it differs from regular sporadic DAGs in that certain vertices in V are designated
as conditional vertices that are defined in matched pairs, each such pair defining a
conditional construct. A conditional construct represents a point in the code where
some conditional expression, whose outcome is not known beforehand and may dif-
fer upon different executions of the task, is executed and the subgraph that must be
executed between this conditional vertex and its paired counterpart depends upon

1 3

Real-Time Systems	

this outcome. Let (c1, c2) be such a pair in the DAG G = (V ,E) — see Fig. 2. Infor-
mally speaking, vertex c1 can be thought of as representing a point in the code where
a conditional expression is evaluated and, depending upon the outcome of this eval-
uation, control will subsequently flow along exactly one of several different possi-
ble paths in the code (in this paper we restrict attention to conditional constructs
in which there are exactly two such outgoing edges, as in Fig. 2). It is required that
all these different paths meet again at a common point in the code, represented by
the vertex c2 . Edges (v1, v2) between pairs of vertices neither of which are condi-
tional vertices represent precedence constraints exactly as in traditional sporadic
DAGs, while edges involving conditional vertices represent conditional execution of
code. More specifically, let (c1, c2) denote a defined pair of conditional vertices that
together define a conditional construct. The semantics of conditional DAG execution
mandate that

•	 After the job c1 completes execution, exactly one of its successor jobs becomes
eligible to execute; it is not known beforehand which successor job may execute.

•	 Job c2 begins to execute upon the completion of exactly one of its predecessor
jobs.

There are additional syntactic rules concerning the structure of conditional DAG
tasks; e.g., it is required that the two subgraphs reached by the outgoing edges from
c1 be disjoint from the remainder of the DAG (as stated in the caption of Fig. 2), that
conditional constructs may be nested, etc., that we are not stating here because they
are not needed in the remainder of this paper—please see Baruah et al. (2015); Mel-
ani et al. (2015) for a more complete description of the conditional sporadic DAG
task model.

3.3 � Implementation alternatives

The HPC-DAG task model introduces a further generalization to the sporadic DAG
task model that, to our knowledge, has not been previously considered in the sched-
uling literature: alternative implementations for part of the task. This is achieved by
designating certain matched pairs of vertices in V as alternative vertices. From a

Fig. 2   A canonical conditional construct. Subgraphs G�
1
= (V �

1
,E�

1
) and G�

2
= (V �

2
,E�

2
) are disjoint, and

vertices s1 and t1 (vertices s2 and t2 , resp.) are the sole source vertex and sink vertex of the sub-graphs G′
1

( G′
2
 , resp.)

	 Real-Time Systems

1 3

syntactic perspective their definition is essentially identical to the manner in which
conditional vertices were defined. (For instance, the vertices c1, c2 in Fig. 2 could be
considered to represent a matched pair of alternative vertices rather than a matched
pair of conditional vertices.) However their interpretation is very different: they
model alternative ways of implementing some functionality that must be achieved
by some part of the task. Prior to run-time exactly one of the alternative implemen-
tations that are available between a matched pair of alternative vertices must be cho-
sen. Once such a choice has been made for each pair of alternative vertices, we are
left with a conditional DAG that is subsequently executed during run-time. Suppos-
ing vertices c1 and c2 in Fig. 2 were a matched pair of alternative vertices rather than
of conditional vertices (as stated above, conditional vertices are syntactically identi-
cal to alternative vertices), the interpretation would be that either the subgraph G′

1
 or

the subgraph G′
2
 needs to be selected, prior to run-time, as comprising a part of the

conditional DAG that will be executed during run-time.

Example 1  Figure 3 illustrates some of the features of the HPC-DAG model. The
circular vertices in this figure depict regular jobs—those representing the execution
of sequential code. The square vertices () denote alternative choices—an imple-
mentor may choose to implement either the vertices contained in the upper dashed
box or those contained in the lower dashed box. The diamond-shaped vertices (
) denote a conditional construct. (The heterogeneity feature is not depicted in this
example.)

If the system implementor chooses to implement the vertices contained in the
lower dashed box then during each execution either the solitary vertex reached by
the outgoing bottom arrow or the four vertices reached by the outgoing upper arrow,
must be executed. The vertices that must be executed may differ upon different exe-
cutions of the task. 	� ◻

Fig. 3   Illustrating the HPC-DAG model (Houssam-Eddine et al. 2020): this task has one conditional
construct and one pair of alternative vertices. (This task is discussed in Example 1.)

1 3

Real-Time Systems	

3.3.1 � Some additional terminology

Houssam-Eddine et al. (2020) refer to a task specified in the HPC-DAG model as a
“specification task”, and the instantiation obtained by making a choice between each
pair of alternative vertices as a “concrete task.” That is, a concrete task is obtained
from a specification task prior to run-time, by both (i) for each matched pair of alter-
native vertices, choosing an implementation from amongst the specified alternatives;
and (ii) assigning each job to a particular processor of the kind specified by the tag
characterizing the corresponding vertex.

3.4 � Some challenges in scheduling HPC‑DAG tasks

Given the specifications of a single HPC-DAG task and of the platform upon which
this task is to be implemented, feasibility analysis, the problem we are considering
in this paper, is to determine whether it is possible to choose from amongst the alter-
native implementations that are specified for the task such that the resulting condi-
tional DAG task can be scheduled upon the specified platform in such a manner that
the task deadline is always met. In this section we take a closer look at the HPC-
DAG model in order to better understand the sources of difficulty in doing such fea-
sibility analysis.

As stated above, selecting amongst implementation alternatives provided in an
HPC-DAG task [a specification task in the terminology of Houssam-Eddine et al.
(2020)] is done prior to run-time. However for conditional constructs [in the con-
crete task (Houssam-Eddine et al. 2020) that results from having made these selec-
tions] the choice as to which branch out of a conditional vertex to take is not made
beforehand; rather, this decision is determined at run-time by the prevailing ambient
state of the environment within which the system is executing. Since this state does
not in general remain constant, the same conditional expression may evaluate dif-
ferently during different executions of the task. This means that the same (concrete)
task may require different subsets of its set of vertices to be executed during dif-
ferent executions of the task; it has been shown (Fonseca et al. 2015; Baruah et al.
2015; Melani et al. 2015) that this can lead to combinatorial explosion: exponen-
tially many different combinations of outcomes are possible of the evaluation of the
different conditional constructs in a single task, each of which may require a very
different collection of jobs to be scheduled for execution. Consider, for instance,
the conditional DAG task depicted in Fig. 4: it is evident that any of 2n different

Fig. 4   Illustrating combinatorial explosion: this task may require the execution of any one of 2n different
collections of jobs

	 Real-Time Systems

1 3

collections of jobs may need to be executed during any particular execution of the
task, depending upon which of the n conditional expressions evaluate to true and
which to false.

This combinatorial explosion problem for conditional DAG tasks has previously
been recognized (Fonseca et al. 2015; Baruah et al. 2015; Melani et al. 2015). How-
ever, there is an additional aspect to the difficulty of scheduling conditional DAG
tasks that has received somewhat less attention: its inherently on line nature, arising
from the fact that during run-time scheduling decisions for certain parts of the DAG
task may need to be made without knowing how future conditional vertices will
evaluate. Consider the following simple illustrative example adapted from Baruah
and Marchetti-Spaccamela (2021).

Example 2  Figure 5 depicts a conditional DAG task that is the concrete task obtained
from some HPC-DAG task (i.e., after the choices made available by all the alterna-
tive vertices have been made), for which a deadline of four is specified. In the figure
the tag characterizing each vertex are listed above the vertices—is it is evident that
there is only one possible job-processor assignment:

•	 the pair of jobs A and H must both execute upon processor P1 ;
•	 the four jobs B, C, J, and K must all execute upon processor P2;
•	 the pair of jobs D and F must both execute upon processor P3 ; and
•	 the pair of jobs E and G must both execute upon processor P4.

Job H has WCET 2 while the WCET for every other vertex is equal to one (except
for the conditional vertices, which are assumed to have WCET zero).

Note that the chain of three jobs comprising A, one of D or E, and H has cumula-
tive execution duration 4 and must hence execute uninterrupted throughout the inter-
val [0, 4] if the deadline of four is to be met. Note also that the four jobs B, C, J, and
K are all assigned to processor P2 ; hence this processor must be kept busy through-
out [0, 4] if the deadline of four is to be met. Let us now separately consider both
possible outcomes of the execution of the conditional construct:

1.	 Suppose the execution of the conditional construct results in the upper branch
being taken (i.e., D must be executed).

–	 If job B had executed upon P2 during [0, 1], then job C may execute upon it
during [1, 2]. However, job F cannot execute upon its designated processor,
P3 , during [1, 2] (since job D will be executing upon P3 during this interval).
This means that neither J nor K are ready to execute at time-instant 2 and
hence processor P2 must be idled during [2, 3]. This will result in a deadline
miss.

–	 If however job C were executed upon P2 during [0, 1], then job B may execute
upon it during [1, 2]. Additionally, job G may execute upon P4 during [1, 2]
(since the only other job assigned to P4 , job E, does not need to execute at
all), and hence K is available to execute upon P2 during [2, 3] (and J during
[3, 4]).

1 3

Real-Time Systems	

	  Hence during the time-interval [0, 1] processor P2 should be executing job C
rather than job B in order that the deadline of four be met.

2.	 It may similarly be verified that if the execution of the conditional construct
instead results in the lower branch being taken (i.e., E must be executed), then
executing B during [0, 1] allows all deadlines to be met whereas instead executing
C during this interval (i.e., during [0, 1]) results in a missed deadline.

We thus see that the “correct” job from amongst {B,C} to execute upon processor
P2 during the time-interval [0, 1] is different for the two outcomes of the conditional
expression. But the conditional expression is only evaluated after that interval has
elapsed, and hence this information is revealed too late. 	� ◻

Example 2 above illustrates the second challenge in scheduling conditional
DAGs: since the collection of vertices (jobs) that need to be executed depends upon
the outcome of the evaluation of the conditional expressions which only happens at
run-time, this scheduling problem is an inherently on-line one.

3.5 � A restricted execution model for conditional DAG tasks

We saw above (Sect. 3.1) that there are two factors, combinatorial explosion and
the on-line manner in which information is revealed regarding which jobs need to
be executed, that contribute to the challenge of determining feasibility for condi-
tional DAG tasks. Considering both aspects together results in a highly intractable
problem: it has recently been shown (Baruah and Marchetti-Spaccamela 2021) that
feasibility analysis for conditional DAG tasks with vertices restricted to execute
upon specified processors is pspace complete. Suppose now that a further restric-
tion were placed upon the execution model for conditional DAG tasks, requiring that
the outcomes of the evaluation of all the conditional expressions in a task be known
prior to beginning the execution of each instance (dag-job) of the task. Under this
restriction, the on-line nature of the problem is essentially defined away and only the
combinatorial explosion problem remains: feasibility analysis reduces to determin-
ing whether all of the potentially exponentially many different collections of jobs
that may need to be scheduled upon different executions of the task are all feasible
or not.

Fig. 5   A conditional DAG
task that is the concrete task
instantiation for some HPC-
DAG specification task—see
Example 2

	 Real-Time Systems

1 3

From a pragmatic perspective, where might such a model be useful? Consider
application systems that are designed to operate under a variety of different environ-
mental conditions that can be described by assigning values to a number of orthogo-
nal parameters, such that these environmental conditions change relatively slowly
compared to the time-scale (the relative deadline and period) of the DAG task.1 In
such application systems the conditional constructs serve as a compact representa-
tion of multiple possible different execution modes for the system being modeled as
a task, subject to the restriction that if a mode change is signaled whilst a dag-job is
executing, the currently-executing dag-job executes under the prior mode and the
new mode only applies to subsequent dag-jobs of the task.

As stated above, feasibility analysis for conditional DAGs has been shown
(Baruah and Marchetti-Spaccamela 2021) to be pspace complete. Since the HPC-
DAG model is even more general than the conditional DAG model (recall that the
HPC-DAG model includes all features of the conditional DAG model plus the option
of using alternative vertices to specify implementation alternatives for parts of the
task), it immediately follows that feasibility analysis for HPC-DAG tasks is at least
pspace hard; it can be shown with little additional effort that it in fact remains pspace
complete. In the remainder of this paper we will establish that for the restricted
execution model introduced above, which requires that the outcomes of evaluating
all the conditional constructs be known prior to executing each dag-job, feasibility
analysis falls quite some way down the polynomial hierarchy (Fig. 1), from pspace
to �P

2
 for conditional DAG tasks with vertices restricted to execute upon specified

processors, and to �P
3
 for HPC-DAG tasks.

4 � Feasibility analysis of conditional DAG tasks

In this section we will show that under the restricted execution model where the out-
comes of the evaluation of all the conditional expressions in a task must be known
prior to executing each instance of the task, the feasibility-analysis problem for con-
ditional DAG tasks with vertices restricted to execute upon specified processors is
�P

2
-complete. [The contents of this section are a minor modification of material first

presented in Baruah (2021).] We will explicitly show membership of this problem in
�P

2
 , and establish its �P

2
-hardness by presenting a polynomial-time reduction to this

problem from the ∀∃ 3SAT problem, which is defined in the following manner:

Definition 1  (The ∀∃ �SAT Problem)

1  A contrived and highly simplified example: consider a cyber-physical system designed to operate in
wet or dry weather; in darkness or well-lit conditions; under strong winds or in mild ones; etc. While
the space of possible operating conditions has cardinality 2 × 2 ×⋯ × 2 = 2n , it may be reasonable to
assume that the conditions along each dimension—whether it is raining or not, the ambient light, the
wind-speed, etc.—are all known at the start of each invocation of the task.

1 3

Real-Time Systems	

Instance. A Boolean formula �(�, �) in 3CNF (Conjunctive Normal Form—i.e.,
as the conjunct—the ‘and’—of clauses each of which comprises exactly 3 literals).
Question. Is is true that (∀�)(∃�)�(�, �) ? 	� ◻

It is known (Stockmeyer 1976; Wrathall 1976) that the ∀∃ 3SAT problem is com-
plete for complexity class �P

2
.

Theorem 1  Under the restricted execution model where the outcomes of the evalu-
ation of all the conditional expressions in a task must be known prior to executing
each instance of the task, it is �P

2
-complete to determine whether a given condi-

tional DAG in which each job is restricted to execute upon a specified processor, is
guaranteed to always complete execution by a specified deadline.

Proof  We first show that this problem is in �P
2

 , by showing that the complementary
problem: determining whether such a conditional DAG may miss a deadline, is in
the class �P

2
 . Consider a computer equipped with an oracle for determining whether

a given “regular” (i.e., not conditional) DAG can be scheduled to completion within
a specified deadline—this is known (Jansen 1994) to be an NP-complete problem.
Such a computer can “guess”, in polynomial time, which branch of each conditional
construct is executed during an execution of the conditional DAG that results in a
deadline miss, and verify its guess in polynomial time by querying its oracle as to
whether the regular DAG resulting from taking exactly these guessed branches is
schedulable within the specified deadline.

Having shown above that the problem is in �P
2

 , it remains to establish that it
is �P

2
-hard. We do this by reducing a given ∀∃ �SAT expression with (nx + ny)

boolean variables and m 3CNF clauses

where each �k,j is one of the xi or yj boolean variables or its negation, to a condi-
tional DAG with

–	 (7nx + 2ny + 3m) nodes, of which 2nx are conditional nodes and the rest represent
jobs;

–	 (5nx + 3m) edges;
–	 (3nx + ny + m) processors; and
–	 deadline D = 4

that is feasible if and only if the ∀∃ �SAT expression evaluates to true. The reduc-
tion proceeds in the following manner.

For each boolean variable xi . We define four jobs labeled Xi,¬Xi , Ai , ¬Ai with
unit execution requirements, and a single job Bi with execution requirement 3. (We
will say that the job Xi corresponds to the literal xi , and the job ¬Xi corresponds to
the literal ¬xi.)

(1)∀
(

x1, x2,… , xnx

)

∃

(

y1, y2,… , yny

)

m
⋀

k=1

(

�k,1 ∨ �k,2 ∨ �k,3

)

	 Real-Time Systems

1 3

The edges connecting these vertices are as shown in Fig. 6: we have a conditional
construct (start-node and associated end-node), with Ai on one branch and ¬Ai on
the other, and an edge from the end-node of the conditional construct to the node Bi.

Job Bi is assigned to processor P1,i . Jobs Xi and Ai are both assigned to proces-
sor P2,i . Jobs ¬Xi and ¬Ai are both assigned to processor P3,i.

Since the deadline is at time-instant 4 and job Bi has an execution duration of
3, Bi must begin executing no later than time-instant 1 if it is to complete by the
deadline. Hence, the conditional construct must complete execution no later than
time-instant 1, implying that exactly one of the jobs {Ai,¬Ai} must execute dur-
ing the time-interval [0, 1]. Since job Ai (job ¬Ai , respectively) is assigned to the
same processor as job Xi (job ¬Xi , resp.), this in turn implies that

Fact 1  For each i, 1 ≤ i ≤ nx , at most one of the jobs {Xi,¬Xi} completes execution
by time-instant 1 in any schedule in which the deadline is met.

For each boolean variable yj . We define two jobs labeled Yj and ¬Yj with unit
execution requirements, both assigned to the same processor P4,j . Analogously to
above, we will say that the job Yj (job ¬Yj , respectively) corresponds to the literal
yj (the literal ¬yj , resp.).

Since both jobs Yj and ¬Yj are assigned to the same processor, it follows that

Fact 2  For each j, 1 ≤ j ≤ ny , at most one of the jobs {Yj,¬Yj} completes execution
by time-instant 1 in any schedule in which the deadline is met.

Hence by time-instant 1 in any schedule in which the deadline is met, at most one
of each pair of jobs {Xi,¬Xi} , and at most one of each pair of jobs {Yj,¬Yj} , could
have completed execution. The literals to which the executed jobs correspond can be
considered to comprise a truth assignment to the boolean variables

(

{xi, x2,… , xnx}
⋃

 {y1, y2,… , yny}
)

 ; this leads to the conclusion

Fig. 6   The jobs constructed for each universally quantified boolean variable xi

1 3

Real-Time Systems	

Fact 3  The jobs that have completed execution by time-instant 1 in any schedule in
which the deadline is met are those corresponding to the literals in some (complete
or incomplete) truth-assignment to the boolean variables of Expression 1.

For each clause
(

�k,1 ∨ �k,2 ∨ �k,3

)

 . We will define three unit-sized jobs
Ck,1,Ck,2 , and Ck,3 , all of which are assigned to the same processor P5,k , and show
that at least one of these jobs will be eligible to execute at time-instant 1 if and
only if the truth-assignment of Fact 3 above causes the clause

(

�k,1 ∨ �k,2 ∨ �k,3

)

 to
evaluate to true; i.e., at least one of the three literals �k,1,�k,2, or �k,3 , is assigned
the truth value T (for “true”). We do so by having a single incoming edge into
job Ck,1 from the job corresponding to the literal �k,1 , a single incoming edge into
job Ck,2 from the job corresponding to the literal �k,2 , and a single incoming edge
into job Ck,3 from the job corresponding to the literal �k,3.

We point out that some boolean variable not being assigned a truth value (i.e.,
the truth assignment of Fact 3 not being a complete one) cannot cause some job
to become eligible to execute, that would subsequently be rendered ineligible if
the truth assignment were completed. That is,

Fact 4  The number of Ck,� jobs that become eligible to execute at time-instant 1 is
maximized when the truth assignment of Fact 3 is a complete one.

That concludes our description of the construction of our conditional DAG
from Expression 1. We now prove that it can be scheduled to always complete by
its deadline of 4 if and only if Expression 1 is valid.

Lemma 1  If Expression 1 is true, then the conditional DAG constructed above can
be scheduled to always complete by its deadline.

Proof  Suppose that Expression 1 is valid: for any assignment of truth values to the
boolean variables

(

x1, x2,… , xnx

)

 , there is an assignment of truth values to the
boolean variables

(

y1, y2,… , yny

)

 that causes each of the m clauses of Expression 1
to evaluate to true. We point out that

1.	 Each assignment of truth values to the boolean variables

 can be emulated by executing the appropriate branch of the conditional con-
struct that appears in our conditional DAG. For instance, suppose xi ← T ; the
execution of the conditional construct that causes the job ¬Ai to execute would
prevent job ¬Xi from executing, but would permit job Xi to execute, by time-
instant 1.

2.	 The assignment of truth values to the boolean variables

(

x1, x2,… , xnx

)

	 Real-Time Systems

1 3

 that causes each of the m clauses of Expression 1 to evaluate to true can be
emulated by executing the appropriate one of the two jobs that were generated
for each yj . Suppose, for instance, that yj ← F in this assignment; this can be
emulated by executing the job ¬Yj by time-instant 1.

3.	 Hence, each truth-assignment to the boolean variables that cause the m clauses of
Expression 1 to evaluate to true can be emulated such that the jobs corresponding
to the literals that are true in such a truth-assignment are executed by time-instant
1.

4.	 Consequently, at least one of the three jobs Ck,1,Ck,2 , and Ck,3 corresponding to
each clause is eligible to execute by time-instant 1, thereby allowing all three jobs
to complete execution on their shared processor by the deadline at time-instant 4.

And this concludes the proof of Lemma 1. 	� ◻

Lemma 2  If the conditional DAG constructed above can be scheduled to always
complete by its deadline, then Expression 1 is true.

Proof  Suppose that the conditional DAG we have constructed can be scheduled to
always complete by its deadline.

1.	 The job Bi that was defined for each variable xi has execution requirement 3, and
so must begin execution no later than time-instant 1 in order to complete by the
deadline. Hence the conditional construct defined for the variable xi must com-
plete execution by time-instant 1.

2.	 Since each of the nx conditional constructs are independent of each other, the
choice of which branches of each to execute, which in turn restricts which of the
pair of jobs Xi,¬Xi may execute over the interval [0, 1] for each i, 1 ≤ i ≤ nx , can
force each of the 2nx possible truth-assignments to the variables

(

x1, x2,… , xnx

)

to be emulated by time-instant 1.

3.	 For each of these truth-assignments, it must be the case that at least one of the
three jobs Ck,1,Ck,2 , and Ck,3 corresponding to the k’th clause is eligible to execute
by time-instant 1 (in order that all three of these jobs may complete on their com-
mon processor by time-instant 4), for each k, 1 ≤ k ≤ m.

4.	 Hence it must be possible to execute exactly one of the two jobs Yj,¬Yj upon their
shared processor during the time-interval [0, 1] for each j, 1 ≤ j ≤ ny , such that
the assignment of truth values to the boolean variables

(

y1, y2,… , yny

)

 , when
combined with the choice of assignment to the boolean variables

(

x1, x2,… , xnx

)

implied by the conditional branches that were executed, causes each of the clauses
to be satisfied.

This establishes that Expression 1 is true, and concludes the proof of Lemma 2. 	� ◻
Taken together, Lemmas 1 and 2 lead us to conclude that under the restricted exe-

cution model where the outcomes of the evaluation of all the conditional expressions
in a task must be known prior to executing each instance of the task, determining

(

y1, y2,… , yny

)

1 3

Real-Time Systems	

whether a conditional DAG with vertices restricted to execute upon specified pro-
cessors can be scheduled to always meet its deadline is �P

2
-hard. Having already

shown that this problem in in �P
2

 , we have thus established the truth of Theorem 1. 	
� ◻

5 � Feasibility analysis of HPC‑DAG tasks

We will now extend the results of Sect. 4, which were for the conditional DAG
task model, to the more general HPC-DAG task model. In particular, we extend the
proof of Theorem 1 above to show that under the restricted execution model where
the outcomes of the evaluation of all the conditional expressions in a task must be
known prior to executing each instance (dag-job) of the task, the feasibility-analysis
problem for HPC-DAG tasks is �P

3
-complete. That is, the increased expressiveness

of the HPC-DAG model over the conditional DAG model (by providing the added
option of using alternative vertices to specify implementation alternatives for parts
of the task) results in the computational complexity of feasibility analysis being one
rung higher up the polynomial hierarchy of Fig. 1.

We will use the following problem analogously to the manner in which the
∀∃ 3SAT problem (Definition 1) was used in Sect. 4:

Definition 2  (The ∃∀∃ �SAT Problem)
Instance. A Boolean formula �(�, �, �) in 3CNF (Conjunctive Normal Form—

i.e., as the “and” of clauses each comprising exactly 3 literals)
Question. Is is true that (∃�)(∀�)(∃�)�(�, �, �) ? 	� ◻

It is known (Stockmeyer 1976; Wrathall 1976) that the ∃∀∃ �SAT problem is
complete for complexity class �P

3
.

Theorem 2  Under the restricted execution model where the outcomes of the evalu-
ation of all the conditional expressions in a task must be known prior to executing
each instance of the task, it is �P

3
-complete to determine whether a given HPC-DAG

task is guaranteed to always complete execution by a specified deadline.

Proof Sketch  We first show that this problem is in �P
3
 . Consider a computer equipped

with an oracle for determining whether a given conditional DAG in which each job
is restricted to execute upon a specified processor can be scheduled to completion
within a specified deadline. Such a computer can “guess”, in polynomial time, which
implementation alternative from amongst the ones made available by each matched
pair of alternative vertices should be chosen, and verify its guess in polynomial time
by querying its oracle as to whether the resulting concrete task (which is a condi-
tional DAG) is schedulable within the specified deadline. But as proved in Theo-
rem 1 above, this oracle is solving a �P

2
-complete problem; this serves to establish

that under the restricted execution model where the outcomes of the evaluation of all

	 Real-Time Systems

1 3

the conditional expressions in a task must be known prior to executing each instance
of the task, feasibility analysis for HPC-DAG tasks is in �P

3
.

Next, we briefly outline how the �P
2

-hardness reduction in the proof of Theo-
rem 1 above may be extended to show that feasibility analysis for HPC-DAG tasks is
�P

3
-hard. Analogously to that hardness proof, we will reduce an instance

(where each �k,j is one of the xi , yi , or zi boolean variables or its negation) of the
∃∀∃ �SAT problem to an HPC-DAG task with deadline 4 that is feasible if and only
if the ∃∀∃ �SAT instance of Expression 2 evaluates to true. We do so in the follow-
ing manner:

•	 The boolean variables
(

x1, x2,… , xnx

)

 and
(

y1, y2,… , yny

)

 are dealt with in
exactly the same manner as in the �P

2
-hardness reduction in the proof of The-

orem 1. (That is, exactly the same jobs, the same processors and processor
assignments, and the same inter-job precedence constraints, are defined as in
the proof of Theorem 1.)

•	 For each zh ∈
(

z1, z2,… , znz

)

 , four additional jobs labeled Bh , ¬Bh , Zh and ¬Zh
each with unit execution requirement, and a single job Eh with execution require-
ment 3, are defined. (As before, we will say that the job Zh corresponds to the
literal zh , and the job ¬Zh corresponds to the literal ¬zh .) Jobs Zh and Bh are
assigned to a (new) processor P6,h ; jobs ¬Zh and ¬Bh are assigned to another new
processor P7,h ; and job Eh is assigned to yet another new processor P8,h . The
edges connecting these vertices are as shown in Fig. 7: a matching pair of alter-
native vertices (the square vertices in the figure) specify that exactly one of the
jobs {Bh,¬Bh} needs to be selected for implementation, and the job Eh must be
executed after the selected job.

•	 Recall the manner in which we had dealt with clauses in the proof of Theorem 1:
for each clause

(

�k,1 ∨ �k,2 ∨ �k,3

)

 we define three unit-sized jobs Ck,1,Ck,2 , and

(2)∃

(

z1, z2,… , znz

)

∀
(

x1, x2,… , xnx

)

∃

(

y1, y2,… , yny

)

m
⋀

k=1

(

�k,1 ∨ �k,2 ∨ �k,3

)

Fig. 7   The jobs constructed for (existentially quantified) boolean variable zh

1 3

Real-Time Systems	

Ck,3 , all assigned to the same processor P5,k , and have an incoming edge into job
Ck,1 from the job corresponding to the literal �k,1 , an incoming edge into job Ck,2
from the job corresponding to the literal �k,2 , and an incoming edge into job Ck,3
from the job corresponding to the literal �k,3 . This construction is repeated here
in the current proof as well, the only additional detail being that since the literals
in the clause may now include the variables

(

z1, z2,… , znz

)

 or their negations,
the jobs corresponding to the literals may now include the Zh and ¬Zh jobs con-
structed above.

According to the semantics of HPC-DAG tasks, one of {Bh,¬Bh} is selected prior to
run-time; during run-time, this job must execute over time-slot [0, 1] in order that
the deadline of 4 be met (since the selected job’s execution must be followed by the
execution of job Eh , which has WCET 3). Since jobs Bh and Zh share a processor as
do jobs ¬Bh and ¬Zh , if Bh ( ¬Bh , respectively) is the selected job, then only job ¬Zh
(only job Zh , resp.) can complete by time-instant 1. Hence, each assignment of truth
values to the boolean variables

(

z1, z2,… , znz

)

 by time-instant 1 is equivalent to the
selection of the appropriate alternatives from amongst each pair {B1,¬B1} ,
{B2,¬B2} , ..., {Bnz

,¬Bnz
} . With this observation is mind, it may readily be verified

that the proofs of Lemmas 1 and 2 continue to hold (with Expression 1 replaced by
Expression 2 in the statement of both lemmas); this completes the proof of Theo-
rem 2. 	� ◻

6 � Context and conclusions

The HPC-DAG task model (Houssam-Eddine et al. 2020) is a very expressive model
that was custom-designed with the goals of facilitating the exploration of the wide
space of design choices that become available when complex real-time applications
are implemented upon sophisticated modern computing platforms, and enabling
the tuning of system scheduling parameters in order to obtain feasible designs. It
achieves these goals by enhancing the sporadic DAG model (Baruah et al. 2012)
with several features: heterogeneity in the computing platform (via the specification
and use of tags that identify and distinguish amongst different processors); condi-
tional execution of code during run-time (by incorporating the previously-proposed
C-DAG task model (Baruah et al. 2015; Melani et al. 2015)); and the introduction of
alternative vertices to represent pre-run-time design choices. These innovative fea-
tures do indeed result in a very powerful and expressive model; however, the cost of
all this expressiveness is intractability—it follows from recent results (Baruah and
Marchetti-Spaccamela 2021) that feasibility analysis for HPC-DAG tasks is pspace
hard.

In this work, we proposed a restricted execution model for HPC-DAG tasks
(Sect. 3.2): one which requires that the outcomes of the evaluations of all conditional
expressions be known prior to the execution of each instance (dag-job) of a task.
While this execution model is no longer able to represent the conditional execution
of jobs based upon the evaluation of expressions at arbitrary points in time during

	 Real-Time Systems

1 3

run-time, it nevertheless has some expressive value in that it provides a compact rep-
resentation of tasks modeling systems that are designed to operate under a variety of
different “modes,” provided mode-changes are restricted to only being applicable to
following dag-jobs (rather than the currently-executing one). Under such a restricted
execution model, we showed that the feasibility analysis problem for C-DAG tasks
is at the second level of the polynomial hierarchy (it is �P

2
 complete), while that for

HPC-DAGs is at the third level of the polynomial hierarchy ( �P
3
 complete).

References

Arora S, Barak B (2009) Computational complexity—a modern approach. Cambridge University Press,
Cambridge

Baruah S (2021) Feasibility analysis of conditional DAG tasks is co-NPNP-hard (why this matters). In:
Proceedings of the twenty-ninth international conference on real-time and network systems, RTNS
’21, New York, NY, USA. ACM

Baruah S, Marchetti-Spaccamela A (2021) Feasibility analysis of conditional DAG tasks. In: Branden-
burg BB (ed) 33rd Euromicro conference on real-time systems (ECRTS 2021), vol 196. Leibniz
international proceedings in informatics (LIPIcs), Dagstuhl, Germany. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, pp 12:1–12:17

Baruah S, Bonifaci V, Marchetti-Spaccamela A, Stougie L, Wiese A (2012) A generalized parallel task
model for recurrent real-time processes. In: Proceedings of the IEEE real-time systems symposium,
RTSS 2012, San Juan, Puerto Rico, pp 63–72

Baruah S, Bertogna M, Buttazzo G (2015) Multiprocessor scheduling for real-time systems. Springer
Publishing Company Incorporated, New York

Baruah S, Bonifaci V, Marchetti-Spaccamela A (2015) The global EDF scheduling of systems of con-
ditional sporadic DAG tasks. In: Proceedings of the 2014 26th Euromicro conference on real-time
systems, ECRTS ’15, Lund (Sweden). IEEE Computer Society Press, pp 222–231

Fonseca J, Nelis V, Raravi G, Pinho LM. A multi-DAG model for real-time parallel applications with
conditional execution. In: Proceedings of the ACM/ SIGAPP symposium on applied computing
(SAC), Salamanca, Spain, April (2015). ACM Press

Houssam-Eddine Z, Capodieci N, Cavicchioli R, Bertogna M, Lipari G (2020) The HPC-DAG task
model for heterogeneous real-time systems. IEEE Trans Comput 70:1747–1761

Klaus J (1994) Analysis of scheduling problems with typed task systems. Discret Appl Math
52(3):223–232

Melani A, Bertogna M, Bonifaci V, Marchetti-Spaccamela A, Buttazzo G (2015) Response-time analysis
of conditional DAG tasks in multiprocessor systems. In: Proceedings of the 2014 26th Euromicro
conference on real-time systems, ECRTS ’15, Lund (Sweden). IEEE Computer Society Press, pp
222–231

Papadimitriou CH (1994) Computational complexity. Addison-Wesley, Reading, MA
Stockmeyer L (1976) The polynomial-time hierarchy. Theoret Comput Sci 3:1–22
Wrathall C (1976) Complete sets and the polynomial-time hierarchy. Theoret Comput Sci 3:23–33

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

1 3

Real-Time Systems	

Sanjoy Baruah  is the Hugo F. & Ina Champ Urbauer Professor of
Computer Science & Engineering at Washington University in St.
Louis. His research interests and activities are in real-time and
safety-critical system design, scheduling theory, and resource alloca-
tion and sharing in distributed computing environments.

	Feasibility analysis for HPC-DAG tasks
	Abstract
	1 Introduction
	1.1 Organization

	2 Some background from complexity theory
	3 The HPC-DAG task model
	3.1 Heterogeneity
	3.2 Conditional execution
	3.3 Implementation alternatives
	3.3.1 Some additional terminology

	3.4 Some challenges in scheduling HPC-DAG tasks
	3.5 A restricted execution model for conditional DAG tasks

	4 Feasibility analysis of conditional DAG tasks
	5 Feasibility analysis of HPC-DAG tasks
	6 Context and conclusions
	References

