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Abstract
Water temperature, ice cover, and lake stratification are important physical properties of lakes and reservoirs that control 
mixing as well as bio-geo-chemical processes and thus influence the water quality. We used an ensemble of vertical one-
dimensional hydrodynamic lake models driven with regional climate projections to calculate water temperature, stratification, 
and ice cover under the A1B emission scenario for the German drinking water reservoir Lichtenberg. We used an analysis 
of variance method to estimate the contributions of the considered sources of uncertainty on the ensemble output. For all 
simulated variables, epistemic uncertainty, which is related to the model structure, is the dominant source throughout the 
simulation period. Nonetheless, the calculated trends are coherent among the five models and in line with historical obser-
vations. The ensemble predicts an increase in surface water temperature of 0.34 K per decade, a lengthening of the summer 
stratification of 3.2 days per decade, as well as decreased probabilities of the occurrence of ice cover and winter inverse 
stratification by 2100. These expected changes are likely to influence the water quality of the reservoir. Similar trends are to 
be expected in other reservoirs and lakes in comparable regions.

Keywords  Water temperature trend · Climate warming · Stratification · Ice cover · Model ensemble

Introduction

Climate warming is impacting surface waters world-
wide (Woolway et al. 2020) and along with eutrophica-
tion is threatening water quality (Moss 2011). The direct 
effects of climate warming on lakes are increasing surface 
water temperature (O’Reilly et al. 2015; Piccolroaz et al. 
2020), changes in stratification patterns (Ficker et al. 2017; 
Woolway and Merchant 2019; Woolway et al. 2021), and 

decreasing ice cover (Dibike et al. 2011; Gebre et al. 2014). 
But not all lakes are affected in the same way and the sus-
ceptibility of a specific lake is controlled by different factors. 
The rate of surface water temperature warming is influenced 
by geomorphic factors like maximum depth and the climatic 
region (O’Reilly et al. 2015; Piccolroaz et al. 2020). The 
susceptibility to changes in stratification is influenced by 
the morphology and average water temperature (Kraemer 
et al. 2015). Change in ice cover is sensitive to the mean 
depth and surface area (Magee and Wu 2017). To predict 
impacts of climate warming on a specific lake, it is crucial 
to understand its specific morphological, and hydrological 
characteristics as well as its mesoclimatic conditions. With 
this knowledge, mechanistic models can be used to produce 
estimates on ice cover properties (Magee et al. 2016) and 
stratification patterns (Butcher et al. 2015; Calamita et al. 
2021).

Stratification duration and water temperature influence 
oxygen dynamics and can potentially cause or prolong 
anoxic periods (Missaghi et al. 2017; Darko et al. 2019; 
Ladwig et al. 2021). This effect is caused by inhibition of 
oxygen exchange between deeper water and the surface due 
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to lower vertical diffusion rates and high water column sta-
bility (Zhang et al. 2015). In deep lakes, mixing can be even 
more important in controlling deep layer oxygen concen-
tration than eutrophication (Schwefel et al. 2016). Under 
anoxic conditions, phosphorus release from the sediment 
can increase (North et al. 2014). However, anoxia is more 
important for controlling seasonal and sub-seasonal varia-
tions in phosphorus than for controlling its long-term release 
(Hupfer and Lewandowski 2008).

Compared to lakes, reservoirs react differently to changes 
in the climate, whereas catchment and management are 
more important mediators (Hayes et al. 2017). Especially, 
multipurpose reservoirs experience additional stress due 
to (often) contradictory management goals. For example, 
flood protection requires a reduced water volume in the res-
ervoir, whereas for drinking water production, a larger water 
volume is preferable. With reduced volume and residence 
time, anoxic conditions can additionally be problematic, as 
changed redox conditions can cause the release of dissolved 
metals, e.g., iron or manganese, from the sediment (Davison 
1993). When oxygen is reintroduced into the raw water dur-
ing purification, metal ions are oxidized and precipitated. 
The precipitation can lead to clogging of pipes and filters, 
so iron and manganese need to be removed in an additional 
step at the treatment plant (Tobiason et al. 2016).

Changes in lake physics also impact lake ecology at dif-
ferent levels from phytoplankton community composition 
(Rühland et al. 2015) to trophic interactions due to warm-
ing in sensitive periods like winter or onset of stratification 
(Wagner et al. 2013). Changes in lake mixing can lead to 
increases of phytoplankton biomass, even in lakes where the 
nutrient loading is decreasing (see, e.g., Horn et al. 2015; 
Swann et al. 2020; Mesman et al. 2021). This effect can be 
caused by increased internal nutrient recycling and shifts 
in the phytoplankton community (bottom-up) or by preda-
tor–prey interaction (top-down, Anneville et al. 2019). The 
changes induced by climate warming are reported to favor 
cyanobacteria and thus increase the risk of cyanobacteria 
mass development (e.g., Jöhnk et al. 2008; Huisman et al. 
2018), which is a problem for water quality.

To prepare and plan mitigation strategies, it is impor-
tant to have impact predictions, which can be realized 
using process-based lake models fed with meteorological 
forcing of future conditions. There are different methods 
to generate such forcing: adapting observed data based 
on historic trends or general circulation models (Dibike 
et al. 2011; Jeznach and Tobiason 2015), applying weather 
generators—software that can generate forcing data with a 
given (shifted) distribution (Gal et al. 2020)—or using the 
output of regional climate models (RCM, Buccola et al. 
2016; Ladwig et al. 2018). Whereas data from regional 
climate models are not precise enough to correctly simu-
late short stratification events, atmospheric reanalysis data 

can predict diurnal patterns and seasonal thermodynamics 
in large shallow lakes over the year (Frassl et al. 2018). 
Model studies using locally downscaled climate data have 
successfully been used to, e.g., evaluate the impact of cli-
mate warming on surface water temperature (Piccolroaz 
et al. 2020) or the possible change in water temperature 
for a drinking water reservoir (Mi et al. 2020). In addition, 
precipitation-runoff models can be coupled to obtain dis-
charges as input for the lake model (Buccola et al. 2016) 
and inflow temperature or suspended sediment concentra-
tion of the inflow can be estimated by additional models 
(Råman Vinnå et al. 2018).

When communicating modeling results, especially if they 
are intended for decision support, it is important to address 
the associated uncertainties (Schuwirth et al. 2019; Saltelli 
et al. 2020). For lake models, sources of uncertainty are 
related to forcing data, initial conditions, model parameter 
values, and imperfect process representation in the model 
(Thomas et al. 2020). When dealing with these uncertain-
ties, a possible solution is to use ensembles. In climate and 
weather forecasting, the use of model ensembles is state 
of the art (e.g., Gneiting and Raftery 2005; Parker 2010), 
but in lake modeling, use of ensembles is not yet common. 
An ensemble can be several realizations of the same model 
using different forcing data (Shatwell et al. 2019; Bartosie-
wicz et al. 2021; Piccolroaz et al. 2021), several realizations 
of the same model using different initial or parameter val-
ues (e.g., Gal et al. 2014; Nielsen et al. 2014), or different 
models fed with the same forcing data (Gal et al. 2020; Zhu 
et al. 2020). Especially, for simulating ice cover, there are 
some successful applications of ensembles in lakes (Yao 
et al. 2014; Kobler and Schmid 2019), and there are also 
ensembles of water quality models (Nielsen et al. 2014; 
Trolle et al. 2014). In a large international cooperation, the 
Lake Sector of the Inter-Sectoral Impact Model Intercom-
parison Project (ISIMIP) is working on a protocol for using 
an ensemble of lake models and climate change scenarios 
(Golub et al. 2022).

While using ensembles with different parametrization 
or different forcing is state of the art, applying the novel 
R package LakeEnsemblR (Moore et al. 2021), it is now 
also possible to analyze structural uncertainty, also called 
epistemic uncertainty (see, e.g., Efstratiadis and Koutsoyian-
nis 2010), introduced by different models using an unified 
interface. The current study exemplifies its application for 
the Lichtenberg drinking water reservoir, for which regional 
climate simulations and a calibrated precipitation-runoff 
model were available. As meteorological forcing, we use 10 
realizations of a regional climate model following the A1B 
climate scenario, and for each of them, we ran the ensem-
ble with 10 different parametrizations, thereby addressing 
uncertainties associated with forcing data, calibrated param-
eters, and model structure.
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Methods

Study site

The drinking water reservoir Lichtenberg is located in the 
low mountain range Erzgebirge in Germany next to the city 
of Freiberg (Fig. 1). It has a 46 m-high rock-fill embankment 
dam impounding the river Gimmlitz with a catchment area 
of about 39 km2 (LTV 2008). The reservoir water body has a 
length of about 3000 m, a maximum width of approximately 
300 m, a mean depth of 15 m, and a maximum depth of 39 
m. The reservoir bottom is located at an altitude of 455 m 
above sea level, and the water has a mean residence time of 
about 200 days. The reservoir is managed and maintained 
by the State Reservoir Administration of Saxony (LTV). In 
addition to drinking water production, the reservoir is used 
for flood protection.

Climate scenarios and data

The environmental agencies of the federal states Saxony, 
Thuringia, and Saxony-Anhalt, together with the Technische 

Universität Dresden, host a joint climate information system 
called ReKIS (https://​rekis.​hydro.​tu-​dresd​en.​de/) that pro-
vides regionalized climate projections for different emission 
scenarios for the period 1961–2100 with up to daily resolu-
tion. The platform is intended to provide data for decision-
makers, the interested public, and scientists to be used in 
climate impact analysis (e.g., Kronenberg et al. 2015). When 
preparing this study, regionalized data based on emission 
scenarios (SRES) as used in the fourth IPCC report (IPCC 
2007) were available.

We forced our model ensemble with 10 realizations 
of a climate projection following the A1B scenario. This 
describes a world with rapid economic growth and a popu-
lation that starts to decrease after the middle of the cen-
tury and uses a balanced energy production between fossil 
and renewable (Nakicenovic et al. 2000). The projections 
were generated using the statistical downscaling method 
WETTREG2010 (Kreienkamp et al. 2010; Spekat et al. 
2010) forced with data from the general circulation model 
(GCM) ECHAM5 (Roeckner et al. 2003). This approach 
applies an environment-to-circulation classification 
method (see Spekat et al. 2010) to generate data for specific 
weather stations based on observations and GCM. Using 

Fig. 1   Location and catchment of the Lichtenberg reservoir and near 
by weather stations from the German weather service (DWD) Chem-
nitz (1), Zinnwald-Georgenfeld (2), and Freiberg (3). Reservoir data 
were measured close to the reservoir dam (red star) and provided by 
the State Reservoir Administration of Saxony (LTV). Meteorologi-
cal forcing and climate simulations were taken from stations 1 and 

2. © OpenStreetMap and the OpenStreetMap Foundation 2021. Dis-
tributed under a Creative Commons BY-SA License. Additional data 
from GADM (https://​gadm.​org). Reservoir, river, and catchment 
shape data were obtained from the Saxon State Office for Environ-
ment, Agriculture and Geology (LfULG)

https://rekis.hydro.tu-dresden.de/
https://gadm.org
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station-based data has the advantage that the same data pro-
cessing steps can be used consistently for calibration, vali-
dation, and climate projections. The same work flow is also 
used for the precipitation discharge model, that inherently 
provides tools for automatic pre-processing of station-based 
meteorological forcing data.

For meteorological forcing, we used data from two of the 
close-by stations that provided all necessary model driver 
data (stations Chemnitz and Zinnwald, Fig. 1). We interpo-
lated the data from the two stations using weights propor-
tional to the altitude difference between the stations and the 
reservoir. We calibrated and validated the lake models using 
interpolated observational data from the same two weather 
stations. For calibration and validation, we used water tem-
perature profiles provided by LTV, that were measured on a 
2–4 week basis at the deepest point of the reservoir in front 
of the dam. The data were available from 01 January 2000 
to 31 December 2016. Daily observations of ice thickness 
at the reservoir dam were available for the whole modeling 
period.

As hydrological forcing, we used observed discharge 
data from the gauge upstream the pre-dam, measured by 
the LTV. For the climate scenario, we used inflow data that 
were simulated using a site-specific rainfall–runoff model 
that was built using ECHSE, an open source framework 
for rapid development of hydrological catchment models 
(https://​echse.​github.​io/). The rainfall–runoff model used in 
this study is an extension of the HYPSO-RR model engine 
included in the ECHSE framework (Kneis 2015) with addi-
tional state variables for stream water temperature (Zün-
dorf 2018). The precipitation discharge model was fed with 
meteorological data from ReKIS and calculated daily inflow 
discharges and water temperature. After calibration, the fit 
of simulated to observed discharges had a mean absolute 
error (MAE) of 0.2 m 3 s −1 , a Nash Sutcliffe Efficiency Index 
(NSE) of 0.70 for the calibration phase, and an NSE of 0.81 
for the validation phase. The fit of simulated to observed 
water temperature had an MAE of 1.2 K, NSE of 0.86 for the 
calibration phase, and NSE of 0.84 for the validation phase.

Lake model ensemble

The dynamics of water temperature and ice cover in the 
reservoir were simulated by five different one-dimensional 
lake models using the R package LakeEnsemblR (Moore 
et al. 2021). The five applied hydrodynamic models were: 
the General Lake Model (GLM—Hipsey et al. 2019), the 
General Ocean Turbulence Model (GOTM—Umlauf et al. 
2005), Simstrat (Goudsmit et al. 2002), the Freshwater Lake 
model (FLake—Mironov 2008), and the Multi Year Lake 
model (MyLake—Saloranta and Andersen 2007). Out of the 
five models, only GLM, GOTM, and Simstrat can simulate 
outflows from depths different than the surface, whereas 

MyLake only simulates surface outflow and FLake simulates 
no outflow at all. FLake assumes a rectangular-shaped basin 
with constant mean depth instead of a hypsographic curve.

To avoid making assumptions about future water use and 
consumption, we assumed outflow to be equal to inflow for 
all simulations, including calibration and validation. This 
resulted in a constant water level of 36 m, which was the 
average water level in the period 1990–2010. For the models 
that can simulate withdrawal from below the surface, the 
outflow was split equally in two parts: 2 and 14 m above 
the reservoir bottom representing withdrawal for drinking 
water production and water released to the downstream river, 
respectively. The equal division of outflow between the two 
depths is close to the long-term average ratio of the two, 
which is 56:44.

For a qualitative evaluation, we calculated annual char-
acteristic features for every realization, parametrization, and 
model, which are: annual average water temperature at 3 and 
25 m depth, start, end, and duration of summer stratification, 
inverse stratification, and ice cover. As FLake uses the mean 
depth (about 15 m), water temperature at 25 m is omitted 
for FLake in the data analysis. The reservoir was assumed 
to be stratified if the difference between surface and bottom 
temperature exceeded the 1 K criterion (see Engelhardt and 
Kirillin 2014). We assumed inverse stratification when the 
surface water was more than 1 K cooler than the bottom 
temperature.

Calibration

All five models were calibrated using the Latin hypercube 
calibration method (see, e.g., Mckay et al. 2000) included 
in the LakeEnsemblR package. Therefore, upper and lower 
bounds for the selected parameters and meteorological scal-
ing factors were supplied, and then, a given number (2000) 
of parameter sets were sampled from a Latin hypercube, so 
that they were equally distributed in the parameter space. 
Then, the models were run for every parameter set and 
performance metrics were calculated. We chose the Latin 
hypercube method, as it provides additional information 
about the sensitivity and thus identifiability of the calibrated 
parameters. Using the model runs, we performed a visual 
analysis of the identifiability of the parameters by plotting 
the parameter values against the root-mean-squared error 
(see, e.g., Beven 1993; the plots can be found in Fig. S1 to 
S5 in the Supplementary Information).

The parameters that were calibrated are: the scaling fac-
tors for wind speed and short-wave radiation as well as one 
model-specific parameters for each model (see Table S1 in 
the Supplementary Information). The model-specific param-
eters were chosen from parameters used for calibration in 
previous studies (Peeters et al. 2002; Saloranta 2006; Layden 
et al. 2016; Bruce et al. 2018; Ayala et al. 2020). We split the 

https://echse.github.io/
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available observed temperature into a calibration phase (01 
January 2000–31 December 2008) and a validation phase 
(01 January 2009–31 December 2015).

To evaluate the model performance in recreating water 
temperature, five different goodness-of-fit metrics were 
calculated for the whole depth profile using daily values: 
root-mean-squared error—RMSE, Pearson correlation coef-
ficient—R, Nash Sutcliffe model efficiency index—NSE, 
normalized mean absolute error—NMAE, mean absolute 
error—MAE, and mean error or bias (c.f. Jachner et al. 
2007). In addition to the individual models, also the perfor-
mance of the ensemble mean was evaluated. The ensemble 
mean is calculated as the arithmetic mean of the simulated 
temperature (or ice cover thickness) values of the five mod-
els for every time step and depth (for water temperature). 
To evaluate the performance of the models to capture ice 
cover and summer stratification timing (start, end, duration), 
the MAE was calculated. We calculated the timings of the 
ensemble mean for summer stratification and ice cover by 
taking the average of the single models timings.

Data evaluation

To analyze the impact of climate warming on the investi-
gated annual characteristic features, two regression mod-
els were fitted for every single lake model, a simple linear 
regression and a segmented linear regression with break-
points using the R package segmented (Muggeo 2008). The 
best model, in terms of parsimony and explanatory power, 
was then selected as the model with minimum Bayesian 
Information Criterion (BIC; Schwarz 1978).

For the inverse stratification and ice cover, we also esti-
mated the probability of occurrence for every year by logis-
tic regression using a generalized linear model for binomial 
data

where p is the probability of occurrence of ice cover or 
inverse stratification in a year t given our model results and 
a and b are the parameters of the generalized linear model. 
A similar approach was used by Wagner et al. (2012).

Uncertainty partitioning

There are different sources of uncertainty which we 
addressed in this study, namely the uncertainty from the 
forcing data (Meteorology), the uncertainty related to the 
calibrated parameters (Parameter), and the epistemic uncer-
tainty which is the uncertainty related to the different model 
structures (Model). To quantify the contribution of these 
sources on the overall ensemble output, we used an analysis 

(1)p =
e(a+b⋅t)

1 + e(a+b⋅t)
,

of variance (ANOVA) approach similar as applied by Boss-
hard et al. (2013), but without subsampling (for a detailed 
description of the method, see Yip et al. 2011). For each 
year of the simulation period, we estimated the contributions 
of the three sources of uncertainty as well as interactions 
between them to the total variance in the ensemble output. 
We estimated the fraction of variance as the fraction of the 
individual effect sum of squares to the total sum of squares 
and summarized all interaction terms into one term which 
we called Interactions.

Results

Observed trends

For the period 1973–2016, the annual average air tempera-
ture, measured at the Lichtenberg reservoir (Fig. 1), showed 
a significant trend (Mann–Kendall test p < 0.05) of 0.47 K 
decade−1 (Fig. 2a). From observed surface water tempera-
tures, an even larger significant (Mann–Kendall test p < 
0.05) annual trend of 0.57 K decade−1 was estimated for the 
period 1977–2015 (Fig. 2b). This trend is in good agreement 
with earlier estimations for annual average water tempera-
ture trends at 3 m depth for the period 1992–2016 that were 
0.5 K decade−1 (Feldbauer et al. 2020). For the 1992–2016 
period, an increase of about 0.3 K decade−1 for the deep 
water temperature (25 m depth) and an earlier onset of sum-
mer stratification of about 4 d decade−1 were found. During 
the period 1975–2015, the ice cover break off advanced by 
6 d decade−1.

For the annual average air temperature of the applied cli-
mate scenario, an increase of 0.42 K decade−1 was estimated. 
As in the A1B climate scenario, the world population starts 
to decrease at the middle of the century, we additionally 
applied a segmented linear regression and compared the 
results with the simple linear regression using the BIC. The 
segmented linear regression slightly outperforms the sim-
ple linear regression in terms of parsimony and explanatory 
power with a BIC of 811.30 and R 2 of 0.93 compared to a 
BIC of 921.24 and R 2 of 0.92. The segmented linear regres-
sion has a first slope of 0.45 K decade−1 and after the break 
point in 2082 a slope of 0.08 K decade−1 (Fig. 2c).

Model performance

For GLM, Simstrat, and MyLake, the model performance 
was not sensitive to their model-specific parameters (see Fig. 
S1 to S5 in the Supplementary Information). We choose the 
model-specific parameters based on previous studies, experi-
ence, and personal communication. For GLM (Bruce et al. 
2018) and GOTM (Andersen et al. 2020), the sensitivity 
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of model parameters differs between lakes and we would 
assume the same for the other models. Why the model-
specific parameters were not sensitive cannot be explained 
from our study alone, but Bruce et al. (2018) found that most 
mixing parameters in GLM are not sensitive when using the 
whole temperature profile. For MyLake, Saloranta (2006) 
found C_shelter to be sensitive for the thermocline depth. 
In contrast, the parameter identified for our study site (an 
artificial reservoir) was quite insensitive within its range (see 
Fig. S5 in the Supplementary Information).

As the overall model performance was satisfactory com-
pared to other studies (e.g., Bruce et al. 2018; Kobler and 
Schmid 2019; Ayala et al. 2020), we choose not to calibrate 
other parameters and re-run the calibration using only the 
meteorological scaling factors for these three models. After 
calibration, all models simulated the observed water tem-
perature to a satisfactory level as all RMSE were below 2.0 
K and all NSE were above 0.87 (Fig. S6 and S7 in the Sup-
plementary Information, Table 1). In both the calibration 
and validation phase, Simstrat, GLM, and GOTM performed 
best from the single models, but the ensemble mean per-
formed even better with a RMSE that was about 10% smaller 
than the best of the three (Table 1).

For the summer stratification timing, Simstrat, GLM, 
GOTM, and the ensemble mean performed best (Table 2). 
In all cases, the end of stratification was estimated with a 
larger error than the beginning. As the average sampling 
interval was about 14 days, the errors for GLM, GOTM, 
and Simstrat are in the range of the maximum margin of 
error of the observations. For the estimation of ice cover 
timing Simstrat, MyLake, GOTM, and the ensemble mean 
performed best. The least successful performance for ice 
cover was seen from GLM. The capability of the models 
in predicting inverse stratification could not be evaluated, 
as during winter and especially during ice cover, water 
temperature observations were sparse.

As evaluation of the different model runs in the LHC 
calibration showed possible problems with nonuniqueness 
of the calibrated parameter sets (Fig S1 to S5 in the Sup-
plementary Information), we decided to run the ensemble 
with 10 different parameter sets instead of just using the 
single best one. We randomly selected these parameter 
sets from the 5% best sets (in terms of RMSE) for each 
model. The used parameter sets for each model are given 
in Table S1 in the Supplementary Information.

(a)

(c)

(b)

Fig. 2   Observed annual air temperature at the reservoir (a), observed 
annual surface water temperature (b), and annual average air tem-
perature of the used climate scenario (c). In a and b, years with 
observations missing for more than 1 month were removed from the 
analysis. For the climate scenario, 10 different realizations (mem-
bers) of the regional climate model were used. The green lines in a 

and b show the fitted linear regression with confidence interval and 
prediction interval. The orange lines in c show the fitted segmented 
linear regression with confidence interval and prediction interval and 
the vertical dashed purple line in c shows the break point of the seg-
mented linear regression
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Climate predictions

Water temperature

All five models predicted an increase of water temperature 
over time, for both surface (3 m) and deep water (25 m). 
There were some slight differences in the slope, intercept, 
and spread, but overall the five models gave similar results 
for the increase in water temperature (Fig. 3; Table 3). Espe-
cially, in the deeper water temperature, GLM and Simstrat 
showed a wider spread of simulated water temperature com-
pared to GOTM and MyLake (Fig. 3f–i).

At 3 m depth, the segmented linear regression described 
the change in average water temperature better than the lin-
ear regression (in terms of parsimony—BIC) for all models 
and except for Simstrat, the break points occurred around the 
year 2080. The larger slope was similar between the models 
with an average of 0.34 K decade−1 , whereas the average 
slope of the linear regression was slightly lower with 0.32 
K decade−1 (Table 3).

At 25 m depth, the segmented regression for GOTM, 
Simstrat, and MyLake gave a break at around 2015 and for 

GLM at 2001. For GOTM, Simstrat, and MyLake, the seg-
mented regression performed better than the linear regres-
sion (in terms of parsimony), whereas for GLM, the seg-
mented regression performed inferior compared to the linear 
regression (Table 3). The average slope of the linear regres-
sion for the annual water temperature at 25 m depth was 0.11 
K decade−1 , whereas the average of the steeper part of the 
segmented regression was 0.12 K decade−1.

Stratification and ice cover

All five models predicted a prolongation of the summer 
stratification (Fig. 4), with an earlier onset of stratification 
and except for FLake, all models showed a later end of sum-
mer stratification (Table 4). For the sake of simplicity, we 
decided to focus on the slopes of the linear regression. How-
ever, except for FLake, the segmented regression performed 
better than the linear regressions (in therms of BIC). The 
values for both fitted regression models and their BIC can be 
found in the Supplementary Information (Table S2).

All five models predicted a decreasing number of days 
with ice cover, shorter inverse stratification, later start of 

Table 1   Model performance 
measures for whole column 
water temperature data in 
calibration (01 January 2000–31 
December 2008) and validation 
(01 January 2009–31 December 
2015) period

The RMSE, MAE, and bias are given in units of Kelvin. Depth-specific model performance indicators are 
shown in Figure S8 in the supplemental material

Model Period RMSE NSE R bias MAE NMAE

GLM Calibration 1.257 0.933 0.967 0.144 0.882 0.175
GLM Validation 1.264 0.929 0.966 − 0.293 0.896 0.138
GOTM Calibration 1.211 0.938 0.975 − 0.429 0.919 0.164
GOTM Validation 1.223 0.933 0.970 − 0.354 0.940 0.136
Simstrat Calibration 1.162 0.943 0.974 0.299 0.842 0.146
Simstrat Validation 1.305 0.924 0.963 − 0.127 0.923 0.142
MyLake Calibration 1.723 0.874 0.938 0.333 1.227 0.212
MyLake Validation 1.661 0.876 0.937 − 0.049 1.174 0.174
FLake Calibration 1.737 0.917 0.960 − 0.290 1.211 0.190
FLake Validation 1.995 0.886 0.951 − 0.634 1.479 0.242
Ensemble mean Calibration 0.922 0.964 0.983 0.079 0.667 0.122
Ensemble mean Validation 1.087 0.947 0.975 − 0.217 0.763 0.108

Table 2   Mean absolute error 
(MAE) for start, end, and 
duration (dur) of simulated 
summer stratification (sum) 
and ice cover (ice) for all five 
models, and the ensemble mean

The ensemble mean was calculated as average of the timings of the five models. All values are in units of 
days and calculated for the combined calibration and validation period (01 January 2000–31 December 
2015)

Model Sum start Sum end Sum dur Ice dur Ice start Ice end

GLM 16.4 33.3 26.6 35.9 12.7 32.4
GOTM 10.2 12.9 17.9 17.5 10.8 16.4
Simstrat 6.4 10.8 14.7 23.9 14.5 21.0
MyLake 10.9 40.9 40.0 19.5 11.4 19.3
FLake 8.7 38.8 45.1 31.4 19.4 31.7
Ensemble mean 8.8 13.8 13.2 19.4 10.2 16.5
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the inverse stratification, and an earlier spring overturn 
(Table 4). Accordingly, all models predicted a decreasing 
probability of occurrence for both inverse stratification and 
ice cover (Fig. 5). Compared to the results for water tem-
perature and summer stratification, the predicted changes 
in ice cover and inverse stratification were less consistent 
between the models. Still, all showed decreasing ice cover 
and inverse stratification duration.

Uncertainty partitioning

From the three sources of uncertainty, the epistemic uncer-
tainty (Model) can account for the largest fraction of vari-
ance in all characteristic features (Fig. 6). The second most 

important were the uncertainties in meteorological forcing 
(Meteorology) and interaction terms (Interactions). For sum-
mer stratification duration, epistemic uncertainty is even more 
dominant than the other sources. There is a small amount of 
variance over the simulation period, and especially at the end 
of the century, some changes in the fraction of variance can be 
seen. Especially, for ice cover duration, Parameters becomes 
more important at the end of the century.

(a)

(f)

(b) (c) (d)

(g) (h) (i)

(e)

Fig. 3   Simulated annual average temperatures in 3 m depth (a–e) and 
25 m depth (f–i) from the five models with the fitted linear regression 
and segmented linear regression. The dots represent average values 
of the 100 ensemble runs for each year, and the shaded gray areas 

give the area containing 50 and 90% of the ensemble runs. At 25 m 
depth, no data for FLake are available, as FLake uses the mean depth 
(approximately 15 m) and assumes a rectangular basin

Table 3   Slope of linear 
regression (lr), slope of 
segmented linear regression 
before (slr 1) and after (slr 2) 
break point (BP), and Bayesian 
Information Criterion (BIC) for 
linear regression and segmented 
linear regression for water 
temperature at 3 and 25 m 
below the surface for all five 
models

A lower BIC (marked in bold) indicates a better performance in terms of parsimony

Model Depth (m) Slope lr (K 
decade−1)

Slope slr 1 
(K decade−1)

BP (year) Slope slr 2 
(K decade−1)

BIC lr (–) BIC slr (–)

GLM 3 m 0.28 0.29 2082 0.15 − 98.3 − 102.1
GOTM 3 m 0.31 0.33 2083 0.14 − 70.3 − 75.7
Simstrat 3 m 0.30 − 0.07 2007 0.31 − 87.6 − 88.0
MyLake 3 m 0.35 0.37 2084 0.08 − 43.3 − 60.2
FLake 3 m 0.37 0.40 2083 0.03 − 34.1 − 69.4
GLM 25 m 0.08 − 1.33 2001 0.08 − 54.3 − 48.7
GOTM 25 m 0.09 − 0.03 2015 0.10 − 175.0 − 185.3
Simstrat 25 m 0.08 − 0.16 2015 0.10 − 36.7 − 46.1
MyLake 25 m 0.17 0.00 2013 0.18 − 99.8 − 101.2
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Discussion

The simulated decrease in ice cover duration is in the 
range of values estimated from historic data for other 
German drinking water reservoirs (Wilmitzer et al. 2015) 
and lakes in Poland (Skowron 2009; Bartosiewicz et al. 
2021). The simulated average decrease in ice cover dura-
tion of 5.6 d decade−1 is slightly larger than the empiri-
cally observed decrease of about 4.8 d decade−1 (for the 
period 1975–2015) in the Lichtenberg reservoir, but this 
rate has accelerated in the last decades. Compared to 
warming rates calculated from historic data that are about 
0.5 K decade−1 (Fig. 2a), the average simulated surface 
water warming rates are lower (0.3 K decade−1 ). Also, 
the estimated prolongation of summer stratification was 
lower than recently observed (Feldbauer et al. 2020). The 

SRES scenario A1B used in this study is comparable to 
the newer RCP 6.0 scenario, in terms of socio-economic 
development, radiative forcing, atmosphere composition, 
and climate (van Vuuren and Carter 2014). Recent climate 
impact simulations for another German drinking water res-
ervoir (Rappbode) using the RCP 6.0 emission scenario 
showed similar warming rates (trend in 1 m depth: 0.32 
K decade−1 , in 50 m depth 0.06 K decade−1 ) and larger 
warming rates for the RCP 8.5 emission scenario (Mi 
et al. 2020). Simulations for other European lakes under 
the RCP 4.5 and 8.5 scenario are in agreement with this, 
yielding weaker and stronger trends than our simulations, 
respectively (Shatwell et al. 2019; Piccolroaz et al. 2021). 
The difference between the simulated and observed warm-
ing rates could be explained by the fact that historically 
observed greenhouse gas emissions were larger than the 
predicted emissions from the A1B scenario, that we used 

(a)

(d)

(b) (c)

(e)

Fig. 4   Annual summer stratification duration with the fitted linear regression and segmented linear regression for the five models. The dots rep-
resent average values of the 100 ensemble runs for each year and the shaded gray areas give the area containing 50 and 90% of the ensemble runs

Table 4   Linear trend for 
duration (dur), start, and end 
of summer stratification (sum), 
inverse stratification (inv), and 
ice cover (ice) for each of the 
five models estimated from the 
simulations along with mean 
and standard error (se) of the 
ensemble estimate

All trends are given in units of days per decade

Model Sum dur Sum start Sum end Ice dur Ice start Ice end Inv dur Inv start Inv end

GLM 3.4 − 1.9 0.7 − 4.5 0.5 − 3.8 − 1.2 − 0.3 1.9
GOTM 3.6 − 2.0 1.9 − 6.8 4.4 − 2.7 − 4.1 − 3.0 4.2
Simstrat 3.6 − 1.6 2.1 − 6.5 3.7 − 3.4 − 4.0 − 7.1 1.8
MyLake 4.6 − 3.0 2.4 − 7.7 3.6 − 5.3 − 6.9 − 3.7 4.4
FLake 1.0 − 1.9 − 0.7 − 2.5 2.6 − 1.7 − 1.7 − 0.0 2.9
mean 3.2 − 2.1 1.3 − 5.6 3.0 − 3.4 − 3.6 − 2.8 3.0
se 0.60 0.25 0.56 0.94 0.68 0.60 1.00 1.30 0.56



	 J. Feldbauer et al.

1 3

   50   Page 10 of 17

in this study. This is in accordance with findings that the 
RCP 8.5 scenario is best capturing recent and historic 
greenhouse gas emissions, that were underestimated by 
other scenarios (Schwalm et al. 2020).

For water temperature and summer stratification both 
linear and segmented linear regression gave similar values 
for the rate of warming. In all cases for surface water tem-
perature and in all except one case for summer stratifica-
tion duration (FLake), the segmented regression performed 
better (in terms of parsimony and explanatory power) than 
the linear regression. In all, except two of these segmented 

regressions, the break point was estimated around the year 
2080. When applying the segmented linear regression to 
the air temperature forcing data from the RCM, a break 
point around the same time was estimated (see Fig. 2c). We 
attribute this pattern to the A1B emission scenario that is 
assuming a decreasing population starting mid-twenty-first 
century. Nevertheless, the difference between the trends for 
water temperature and summer stratification estimated with 
the two regression methods was relatively small (see Table 3 
and Table S2 in the Supplementary Information). However, 
the segmented linear regression shows another feature: The 

Fig. 5   Probability of occurrence of ice cover (a–f) and probability 
of occurrence of inverse stratification (g–l) for the five models indi-
vidually and data from all models pooled (all) estimated by logistic 
regression (Eq. 1). The orange line shows the fitted generalized lin-

ear model. Each point represents a simulated year, where a value of 1 
represents occurrence of ice or inverse stratification in this year, and 0 
represents the absence of ice or inverse stratification. To improve vis-
ibility, the single data points are scattered around 0 and 1
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surface water temperature almost instantaneously responds 
to the change in air temperature as can be seen in the break 
points of the segmented linear regression (Figs. 2c, 3a–e), 
whereas no clear response of the deep water temperature can 
be seen within the time span of our simulations (Fig. 3f–i).

Surface water temperature trends are quite consistent 
between different lakes (O’Reilly et al. 2015), whereas deep 
water temperature trends show large variations and are gen-
erally less well understood (Pilla et al. 2020). Although the 
response of stratification to climate warming is dependent 
on the lake’s morphology and size (Kraemer et al. 2015; 
Butcher et al. 2015; Zhong et al. 2016), only little of the 
variation in deep water temperature trends can be explained 
by the lake characteristics (Pilla et al. 2020). To our knowl-
edge, no study has shown differences in the response time to 
changing forcing between surface and deep water tempera-
ture. For a better understanding of this response, a larger 
scale modeling study with different lakes using similar forc-
ing and evaluation would be needed.

As water temperature and mixing affect the water quality, 
reservoir managers are interested in their long-term trends. 

Along with increasing water temperature and stratifica-
tion duration, we saw an increase in temperature difference 
between surface and bottom and thus an increase in stratifi-
cation strength. This effect was also reported for other lakes 
and reservoirs (e.g., Mi et al. 2020). Increasing water tem-
perature gradients (and therefore stability) and stratification 
duration can cause or promote the formation of anoxic zones 
(Foley et al. 2012; Zhang et al. 2015; Ladwig et al. 2021), 
which in terms can cause the release of nutrients (North 
et al. 2014) or heavy metals (Davison 1993). Also, increased 
stratification and temperature can lead to a change in the 
food web (Wagner et al. 2013) and are expected to favor 
cyanobacteria mass development (Huisman et al. 2018). 
Thus, the predicted changes in the thermal structure can lead 
to water quality challenges.

There are indications that loss of ice cover, as predicted 
by all five models, can also influence the water quality of 
reservoirs and lakes. Winter lake ecology has long been 
neglected, but is now getting more attention (Hampton et al. 
2017; McMeans et al. 2020). The physical conditions under 
ice can potentially influence the oxygen concentrations in the 

(a)

(b)

(c)

(d)

Fig. 6   Variance decomposition of the uncertainty for the annual aver-
age water temperature in 3 m depth (a), the annual average water 
temperature in 25 m depth (b), the summer stratification duration 

(c), and the duration of ice cover (d) over the simulation period. The 
yearly fractions of variance were smoothed using a loess filter with a 
smoothing parameter of 0.2
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next spring due to primary production in winter (Yang et al. 
2020). A short ice cover period can increase spring mass 
development of phytoplankton (Horn et al. 2011). The ice 
cover period can additionally influence the composition of 
the spring phytoplankton bloom (Rühland et al. 2015) and 
shortening of the ice cover period can potentially result in 
changes of fish growth and reproduction (Shuter et al. 2012). 
There are strong hints that ice cover phenology can influ-
ence summer nutrients and zooplankton dynamics (Hampton 
et al. 2017) and that the different capacities of organisms to 
cope with under ice conditions help to promote species coex-
istence. Decreasing periods of ice cover could thus threaten 
biodiversity in lakes and reservoirs (McMeans et al. 2020).

Similar to another study (Kobler and Schmid 2019), all 
models using the MyLake ice module (MyLake, GOTM, and 
Simstrat) showed better performance in recreating ice cover 
phenology. In previous studies (Yao et al. 2014; Kobler and 
Schmid 2019), GLM was the least sensitive in terms of ice 
cover response to climate change. However, in our study, 
GLM was the most sensitive and predicted almost complete 
loss of ice cover. A reason for this distinction could be model 
code improvements in recent GLM versions. Altogether, the 
performance of ice cover simulation in our study (Table 4) 
was slightly worse than in previous studies that had mean 
average deviation (MAD) of about 6 days for both ice onset 
and break off (Dibike et al. 2011), or MAE between 8 and 
15 days for ice onset and an MAE between 7 and 19 days for 
ice-off (Kobler and Schmid 2019).

We saw higher variance in simulated deep water tem-
perature in GLM and Simstrat compared to GOTM and 
MyLake (Fig. 3). Compared to the range of annual average 
water temperature calculated from observations, the wider 
range of GLM and Simstrat seemed more realistic. However, 
evaluating the model performance in capturing deep water 
temperature in the calibration and validation phase did not 
show a large difference between GLM, GOTM, and Simstrat 
(validation RMSE at 25 m depth: GLM 1.17 K, GOTM 1.01 
K, Simstrat 1.14 K, MyLake 1.81 K; calibration RMSE at 25 
m: GLM 1.15 K, GOTM 0.96 K, Simstrat 0.93 K, MyLake 
2.00 K). Therefore, it is not quite certain if the higher vari-
ance of deep water temperatures in GLM and Simstrat are to 
be expected in the future, if they show the higher sensitivity 
of simulated deep water temperatures toward meteorological 
forcing of the two models, or if they are caused by the differ-
ent implementation of deep water withdrawal.

Using an ensemble approach, we were able to quan-
tify the contribution of the considered sources of uncer-
tainty to the total variance of the simulated variables. We 
highlight here that epistemic uncertainty was dominat-
ing for all characteristic features. Meteorology was less 
important as we were using different realizations of the 
same climate scenario. Additionally, using different cli-
mate scenarios, GCMs, or regionalization methods, we 

would expect Meteorology to be a more important factor 
(see, e.g., Her et al. 2019). Parameters were less impor-
tant, because we were varying them within the range of 
values that were performing well in the calibration. Still, 
they were more important for ice cover duration, which 
could be caused by the fact that we did only calibrate for 
water temperature. The even larger dominance of epis-
temic uncertainty for summer stratification duration was 
probably caused by the low summer stratification duration 
simulated by FLake (see Fig, 4). The increasing contribu-
tion of epistemic uncertainty for water temperature at 25 m 
depth was reflecting the larger difference in the estimated 
deep water temperature trend from the five models (see 
Table 3). In this study, we only investigated annual char-
acteristic features, but it would be interesting to also look 
at the uncertainties on seasonal or short scale periods like 
extreme events, where model errors are often larger (Mes-
man et al. 2020). Nevertheless, quantitative comparison 
of sources of uncertainty can help to put into perspective 
global modeling studies using a single model (e.g., Wool-
way and Merchant 2019). A larger comparative analysis of 
uncertainty partitioning over multiple lakes could further 
improve confidence in model predictions.

The better performance of GLM, GOTM, and Sim-
strat in simulating water temperature and stratification 
can be attributed to their ability to simulate water with-
drawal from deeper layers, as the withdrawal depth influ-
ences the water temperature profiles (Weber et al. 2017; 
Mi et al. 2019). We confirmed this hypothesis by fitting 
the three models using surface outflows, which resulted 
in inferior performance for all three models (Table S3 in 
the Supplementary Information). In contrast to natural 
lakes, where the end of summer stratification is mostly 
caused by convective cooling, in reservoirs, the end of 
summer stratification can be caused by withdrawal from 
deeper layers. The withdrawal reduces or in some cases 
completely discharges the hypolimnetic volume, thereby 
decreasing water column stability which can trigger the 
start of autumn turnover (Feldbauer et al. 2020). This 
effect explains the better performance of the models with 
variable withdrawal depth and our results highlight that 
the ensemble approach can help to identify the best suited 
models for a research question of interest (Janssen et al. 
2015). The superior performance of the ensemble mean in 
predicting water temperature, stratification, and ice cover 
additionally highlights the benefit of using an ensemble 
approach as also shown in other studies (Trolle et  al. 
2014). Regardless of their slightly inferior performance 
in simulating water temperatures, we still conclude that 
including MyLake and FLake in the ensemble was benefi-
cial. The simulated trends in the observed characteristic 
features were coherent between all models and MyLake 
performed well in simulating ice cover.
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Conclusions

We used an ensemble consisting of five vertical one-
dimensional lake models to simulate future water tempera-
ture, stratification, and ice cover by example of a drinking 
water reservoir located in the low mountain range Erzge-
birge, Germany. All models in the ensemble were able 
to recreate observed water temperature, stratification, and 
ice cover sufficiently well. To estimate the impact of cli-
mate warming, we used 10 realizations of WETTREG2010 
following the A1B emission scenario as meteorological 
forcing for the lake models and ran each of them with 
10 different parameter sets. Discharge and temperature of 
inflow were generated by a rainfall–runoff model and, for 
simplicity, the outflow was assumed to be same as the 
inflow.

Ensembles have not been used often in lake modeling 
studies, but in recent years are getting more attention 
(e.g., Yao et al. 2014; Kobler and Schmid 2019; Gal et al. 
2020; Zhu et al. 2020; Bartosiewicz et al. 2021). With the 
recently released LakeEnsemblR software (Moore et al. 
2021), applying lake ensemble in scientific studies became 
much more accessible. Out of the five used models, the 
three that can simulate water withdrawal from a chosen 
depth below the surface (GLM, GOTM, and Simstrat) per-
formed best in recreating observed water temperatures and 
summer stratification patterns. Moreover, the ensemble 
mean outperformed all single models in predicting water 
temperatures. For all observed annual characteristic fea-
tures, epistemic uncertainty was the dominant source of 
uncertainty.

All models showed coherent response to warming cli-
mate, with increasing water temperature, longer summer 
stratification, shorter ice cover duration, and decreased 
inverse stratification duration. The surface water tempera-
ture warming was estimated to be 0.34 ± 0.02 K decade−1 
and the summer stratification duration was prolonged by 
about 3.2 ± 0.6 d per decade. The overall probability of 
ice cover formation at the end of the century, estimated 
from all models, was just below 25%. These findings are 
in accordance with simulations for another drinking water 
reservoir in Germany under the RCP 6.0 pathway (Mi et al. 
2020), but are lower than rates estimated from historic 
observations.

We expect similar responses for other reservoirs, espe-
cially if comparable in terms of size and average temper-
ature (Kraemer et al. 2015). In any case, the predicted 
changes are challenges for reservoir management, because 
they will potentially decrease water quality (Woolway 
et al. 2020). There are suggestions on how to mitigate 
these effects by adapting the reservoir management strat-
egies. Most of them use dynamic adaptation of withdrawal 

depth and quantity (Weber et al. 2017; Mi et al. 2019; 
Weber et al. 2019; Feldbauer et al. 2020; Mi et al. 2020) to 
optimize water temperature or oxygen concentration in the 
reservoir. Most reservoir managers in Germany are already 
adapting their management strategies, but the amount of 
local mitigation that can be done is limited, whereas cli-
mate warming is accelerating. A global strategy to mini-
mize and reduce greenhouse gas emissions is therefore 
needed to—among other things—sustain the water quality 
of drinking water reservoirs.
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