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NUMERICAL DISCRETIZATION AND FAST APPROXIMATION OF A
VARIABLY DISTRIBUTED-ORDER FRACTIONAL WAVE EQUATION

Jinhong Jia1, Xiangcheng Zheng2 and Hong Wang3,*

Abstract. We investigate a variably distributed-order time-fractional wave partial differential equa-
tion, which could accurately model, e.g., the viscoelastic behavior in vibrations in complex surroundings
with uncertainties or strong heterogeneity in the data. A standard composite rectangle formula of mesh
size 𝜎 is firstly used to discretize the variably distributed-order integral and then the L-1 formula
of degree of freedom 𝑁 is applied for the resulting fractional derivatives. Optimal error estimates of
the corresponding fully-discrete finite element method are proved based only on the smoothness as-
sumptions of the data. To maintain the accuracy, setting 𝜎 = 𝑂(𝑁−1) leads to 𝑂(𝑁3) operations of
evaluating the temporal discretization coefficients. To improve the computational efficiency, we develop
a novel time-stepping scheme by expanding the fractional kernel at a fixed fractional order to decouple
the fractional operator from the variably distributed-order integral. Only 𝑂(log 𝑁) terms are needed for
the expansion without loss of accuracy, which consequently reduce the computational cost of generating
coefficients from 𝑂(𝑁3) to 𝑂(𝑁2 log 𝑁). Optimal-order error estimates of this time-stepping scheme
are rigorously proved via novel and different techniques from the standard analysis procedure of the
L-1 methods. Numerical experiments are presented to substantiate the theoretical results.
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1. Introduction

We begin with a viscoelastic vibratiion model. Consider a homogeneous membrane tautly stretched in a
bounded domain Ω in the horizontal plane in its equilibrium position, which undergoes small transverse vibra-
tions in the vertical direction due to the influence of the loading 𝑞(𝑥, 𝑡) or the nonzero initial position or initial
velocity. Let 𝑢(𝑥, 𝑡) denote the (positive upward) displacement of the membrane at point 𝑥 ∈ Ω at time 𝑡 in
the vertical direction. Because a membrane provides no resistance to bending, the restoration force results only
from the tension of the membrane. Let 𝜏 be the constant tension per unit length of the membrane and 𝜌 be
the mass per unit area of the membrane. Let ∆𝑆 be a small area in the membrane and its projection in the
horizontal plane is ∆Ω. Apply Newton’s second law to the dynamic equilibrium of vertical forces in the beam
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element (𝑥, 𝑥 + ∆𝑥) to obtain∫︁
ΔΩ

𝜌 𝜕2
𝑡 𝑢(𝑥, 𝑡)𝑑𝑥 =

∫︁
𝜕(ΔΩ)

𝜏𝜕𝜈𝑢(𝑥, 𝑡)𝑑𝑠 +
∫︁

ΔΩ

𝑞(𝑥, 𝑡)𝑑𝑥, (1.1)

where 𝜕𝜈 refers to the outward normal differential operator to the boundary 𝜕Ω. Applying Green’s formula to
the first term on the right-hand side, diving the equation by 𝜌|∆Ω| and then taking the limit as the diameter
of ∆Ω tends to zero gives rise to the classical vibration equation

𝜕2
𝑡 𝑢(𝑥, 𝑡)−𝐾∇2𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ],

𝑢(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω× [0, 𝑇 ]; 𝑢(𝑥, 0) = 𝑢0(𝑥), 𝜕𝑡𝑢(𝑥, 0) = 𝑢̌0(𝑥), 𝑥 ∈ Ω.
(1.2)

Here 𝐾 := 𝜏/𝜌, 𝑓 := 𝑞/𝜌, and we assume that the membrane is clamped on the boundary 𝜕Ω. We have assumed
that the membrane is clamped on the boundary 𝜕Ω.

However, the classical vibration equation (1.2) does not always provide a physically correct prediction. For
instance, model (1.2) predicts that a free vibration (i.e., 𝑓 ≡ 0) will continue forever, which contradicts to the
reality that the vibration will die off eventually. The discrepancy is due to the fact that model does not account
for the dissipation mechanism in the vibrations. When the membrane is immersed in a viscous medium such as
water or air, an additional viscous damping term of the form −𝑘

∫︀
ΔΩ

𝜕𝑡𝑢𝑑𝑥, with 𝑘 being the viscous damping
coefficient, needs to be included to the right-hand side of equation (1.1) to account for the viscous friction of
the medium. On the other hand, if the membrane is attached to elastic material, then the friction assumes a
form of −𝑘

∫︀
ΔΩ

𝑢𝑑𝑥 with 𝑘 being the elastic modulus of the medium. Finally, when the membrane is immersed
in a viscoelastic medium, such as body fluids in biological and medical fields, then the viscoelastic damping
exhibits both viscous property of liquids and elastic character of solids, which shows power-law behavior. Hence,
the viscoelastic damping impact can be modeled by −𝑘

∫︀
ΔΩ

𝜕𝛾
𝑡 𝑢𝑑𝑥 with 0 ≤ 𝛾 ≤ 1, which is well known to

accurately describe power-law behaviors [3, 27, 31]. Here the fractional differential operator 𝜕𝛾
𝑡 := 0𝐼

1−𝛾
𝑡 𝜕𝑡 for

0 ≤ 𝛾 < 1 with the fractional integral operator 0𝐼
1−𝛾
𝑡 𝑔 := (𝑡−𝛾/Γ(1 − 𝛾)) * 𝑔 and 𝜕𝛾

𝑡 := 𝜕𝑡𝑢 for 𝛾 = 1 [31].
Hence, the viscoelastic damping term −𝜅

∫︀
ΔΩ

𝜕𝛾
𝑡 𝑢𝑑𝑥 accurately describes the behavior of viscoelastic damping,

and includes the elastic resistance and viscoelastic damping as special cases[3, 4, 8, 26, 27, 31, 37, 38], and has
attracted growing research activities [9, 11, 13, 18, 19, 22, 25, 29, 33, 34, 41, 42, 44]. Consequently, the modeling
equation becomes

𝜕2
𝑡 𝑢(𝑥, 𝑡) + 𝜅𝜕𝛾

𝑡 𝑢(𝑥, 𝑡)−𝐾∇2𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ],
𝑢(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω× [0, 𝑇 ]; 𝑢(𝑥, 0) = 𝑢0(𝑥), 𝜕𝑡𝑢(𝑥, 0) = 𝑢̌0(𝑥), 𝑥 ∈ Ω,

(1.3)

with 𝜅 := 𝑘/𝜌 being the viscoelastic damping coefficient and 0 ≤ 𝛾 < 1.
When the surrounding viscoelastic medium is highly heterogeneous, the vibration model (1.3) with a vis-

coelastic damping term of a single fractional order 0 ≤ 𝛾 < 1, which is related to the fractal dimension of the
medium via the Hurst index [30], often does not suffice to characterize the impact of the medium. Distributed-
order fractional differential operators were introduced to accommodate the integrated effect of the fractional
differential operators with respect to a spectrum of fractional orders 𝛾 [6, 7, 24], which have attracted growing
research activities [10,15]. In applications the cyclic motions of the material may change the complex structure
of media, leading to a variably distributed-order fractional wave equation [32,36]

𝜕2
𝑡 𝑢(𝑥, 𝑡) + 𝜅(𝑡)𝜕𝜔(𝛾,𝑡)

𝑡 𝑢(𝑥, 𝑡)−𝐾∇2𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ Ω× (0, 𝑇 ],
𝑢(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω× [0, 𝑇 ],

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝜕𝑡𝑢(𝑥, 0) = 𝑢̌0(𝑥), 𝑥 ∈ Ω.

(1.4)

Here Ω ⊂ R𝑑 (𝑑 = 1, 2, 3) is a 𝑑-dimensional convex polytope, 𝜅(𝑡) ≥ 0, ∇2 represents the 𝑑-dimensional
Dirichlet Laplacian, and

𝜕
𝜔(𝛾,𝑡)
𝑡 𝑔 :=

∫︁ 1

0

𝜔(𝛾, 𝑡)𝜕𝛾
𝑡 𝑔(𝑡)𝑑𝛾, with

∫︁ 1

0

𝜔(𝛾, 𝑡)𝑑𝛾 = 1, 𝜔 ≥ 0.
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Over the past few decades, there are fruitful progresses on the mathematical and numerical analysis of
distributed-order fractional partial differential equations (PDEs) as well as the corresponding fast solvers. For
distributed-order problems with 𝜔 = 𝜔(𝛾), traditional analysis techniques like the Laplace transform could
be used to analyze their well-posedness and regularity [5, 7, 14, 23], which may not be applicable if 𝜔 is time
dependent as in the current context. In a recent work the spectral decomposition approach was adopted to
analyze a variable-order fractional PDE [43], which circumvents the difficulties caused by the time-dependent
variable order and the ideas may work for the propsoed model. Numerical methods and associated analysis for
distributed-order PDEs have been extensively investigated [10, 21, 28]. A typical discretization of distributed-
order fractional derivative is to apply the quadrature rules for distributed-order integrals to obtain multi-term
fractional derivatives, and then use well-developed schemes like the L-1 methods to discretize each single-
order fractional derivative. However, such discretizations lead to significant computational costs for the case of
variably distributed-order fractional derivatives as mentioned in the abstract. Though there are well-developed
fast algorithms for distributed-order space-fractional derivatives, see e.g., [17,35], the corresponding studies for
variably distributed-order time-fractional problems are meager.

In this paper we develop and analyze a numerical discretization of problem (1.4) and its fast evaluation. In
Section 2 we analyze problem (1.4). In Section 3 we develop and analyze a numerical discretization of problem
(1.4). In Section 4 we develop and analyze a fast solver of the discretization. In Section 5 we carry out numerical
experiments to substantiate the numerical discretization and its fast solver. We finally present concluding
remarks for possible extensions of the current work.

2. Analysis of the variably distributed-order fractional wave equation

Let 𝐶𝑚(Ω̄) with 𝑚 ∈ N be the space of continuously differentiable functions of order 𝑚 on Ω̄, 𝐻𝑠(Ω) with
𝑠 ∈ R≥0 be the fractional Sobolev space of order 𝑠 on Ω, 𝐻𝑠

0(Ω) be the subspace of 𝐻𝑠(Ω) enforced with the
proper zero boundary conditions, and 𝐶𝑚(ℐ;𝒳 ), with ℐ being a time interval and 𝒳 being a Banach space, be
the space-time space, all equipped with the conventional norms [1, 12].

Throughout this paper, let 𝑄 denote a generic positive constant that may assume different values at different
occurrences, and we may drop the subscript 𝐿2 in (·, ·)𝐿2 and ‖ · ‖𝐿2 as well as the Ω in spatial norms. We make
the following assumptions on 𝜔:

Condition 𝜔: supp 𝜔 ⊂ [𝛾, 𝛾] for constants 0 ≤ 𝛾 < 𝛾 < 1 and 𝑡 ∈ [0, 𝑇 ]; 𝜔 ∈ 𝐶1([𝛾, 𝛾]× [0, 𝑇 ]).
Let {𝜆2

𝑖 , 𝜙𝑖}∞𝑖=1 be the eigen-pairs of −𝐾∇2 with homogeneous Dirichlet boundary conditions, and 𝐻̌𝑠(Ω) :={︀
𝑣 ∈ 𝐿2(Ω) : ‖𝑣‖2

𝐻̌𝑠(Ω)
:=
∑︀∞

𝑖=1 𝜆2𝑠
𝑖 (𝑣, 𝜙𝑖)2 < ∞

}︀
be a subspace of 𝐻𝑠(Ω) such that 𝐻̌0(Ω) = 𝐿2(Ω) and

𝐻̌2(Ω) = 𝐻2(Ω) ∩𝐻1
0 (Ω) [33,40].

We express the solution of problem (1.4) in terms of {𝜙𝑖}∞𝑖=1 [33, 39]

𝑢(𝑥, 𝑡) =
∞∑︁

𝑖=1

𝑢𝑖(𝑡)𝜙𝑖(𝑥), 𝑢𝑖(𝑡) :=
(︀
𝑢(·, 𝑡), 𝜙𝑖

)︀
, 𝑡 ∈ [0, 𝑇 ],

while also expand 𝑢0, 𝑢̌0, and 𝑓 similarly with the Fourier coefficients {𝑢0,𝑖}∞𝑖=1, {𝑢̌0,𝑖}∞𝑖=1 and {𝑓𝑖(𝑡)}∞𝑖=1,
respectively. We plug these expansions into (1.4) to conclude that for any 𝑥 ∈ Ω, 𝑡 ∈ (0, 𝑇 ],

∞∑︁
𝑖=1

(︀
𝑢′′𝑖 (𝑡) + 𝜅(𝑡)𝜕𝜔(𝛾,𝑡)

𝑡 𝑢𝑖(𝑡) + 𝜆2
𝑖 𝑢𝑖(𝑡)

)︀
𝜙𝑖(𝑥) =

∞∑︁
𝑖=1

𝑓𝑖(𝑡)𝜙𝑖(𝑥).

Therefore, 𝑢 is a solution to problem (1.4) if and only if {𝑢𝑖}∞𝑖=1 satisfy

𝑢′′𝑖 (𝑡) + 𝜅(𝑡)𝜕𝜔(𝛾,𝑡)
𝑡 𝑢𝑖(𝑡) + 𝜆2

𝑖 𝑢𝑖(𝑡) = 𝑓𝑖(𝑡), 𝑡 ∈ (0, 𝑇 ],
𝑢𝑖(0) = 𝑢0,𝑖, 𝑢′𝑖(0) = 𝑢̌0,𝑖, 𝑖 = 1, 2, · · · .

(2.1)
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2.1. A corresponding fractional wave ordinary differential equation

We prove the well-posedness and regularity analysis of a variably distributed-order fractional wave ordinary
differential equation

𝑣′′(𝑡) + 𝜅(𝑡)𝜕𝜔(𝛾,𝑡)
𝑡 𝑣(𝑡) + 𝜆2𝑣(𝑡) = 𝑔(𝑡), 𝑡 ∈ (0, 𝑇 ]; 𝑣(0) = 𝑣0, 𝑣′(0) = 𝑣0. (2.2)

Here 𝜆 > 0 is a prescribed constant and 𝑣0, 𝑣0 and 𝑔(𝑡) are given data.

Theorem 2.1. Suppose the Condition 𝜔 holds. If 𝜅 ∈ 𝐶1[0, 𝑇 ] and 𝑔 ∈ 𝐻1(0, 𝑇 ), then model (2.2) has a unique
solution in 𝐶2[0, 𝑇 ] with

‖𝑣‖𝐶𝑚[0,𝑇 ] ≤ 𝑄
(︀
𝜆𝑚|𝑣0|+ 𝜆−1+𝑚|𝑣0|+ 𝜆−2+𝑚‖𝑔‖𝐻1(0,𝑇 )

)︀
, 𝑚 = 1, 2. (2.3)

If 𝑔 ∈ 𝐶1[0, 𝑇 ], then 𝑣′′′ ∈ 𝐶(0, 𝑇 ] and for any 𝑡 ∈ (0, 𝑇 ],

|𝑣′′′(𝑡)| ≤ 𝑄
(︀
𝜆3|𝑣0|+ 𝜆2|𝑣0|+ 𝜆‖𝑔‖𝐻1(0,𝑇 ) + |𝑔′|+ 𝑡−𝛾 |𝑣0|

)︀
, (2.4)

where the constant 𝑄 is independent of 𝜆, 𝑣0, 𝑣0, or 𝑔.

Proof. We move 𝜅(𝑡)𝜕𝜔(𝛾,𝑡)
𝑡 𝑣(𝑡) in (2.2) to the right-hand side and treat the equation formally as a second-order

constant-coefficient inhomogeneous wave equation

𝑣′′(𝑡) + 𝜆2𝑣(𝑡) = 𝐺(𝑡) := 𝑔(𝑡)− 𝜅(𝑡)𝜕𝜔(𝛾,𝑡)
𝑡 𝑣(𝑡), 𝑡 ∈ (0, 𝑇 ]; 𝑣(0) = 𝑣0, 𝑣′(0) = 𝑣0, (2.5)

the solution of which could be expressed by

𝑣(𝑡) = 𝑣0 cos(𝜆𝑡) +
𝑣0

𝜆
sin(𝜆𝑡) +

1
𝜆

𝐺(𝑡) * sin(𝜆𝑡). (2.6)

We differentiate (2.6) twice and apply the reformulation of the convolution term

𝐺(𝑡) * sin(𝜆𝑡) =
∫︁ 𝑡

0

𝐺(𝑠) sin(𝜆(𝑡− 𝑠))𝑑𝑠 =
1
𝜆

[𝐺(𝑡)−𝐺(0) cos(𝜆𝑡)−𝐺′(𝑡) * cos(𝜆𝑡)] ,

to obtain
𝑣′′(𝑡) = 𝐺(𝑡)− 𝜆2𝑣0 cos(𝜆𝑡)− 𝜆𝑣0 sin(𝜆𝑡)− 𝜆𝐺(𝑡) * sin(𝜆𝑡)

= −𝜆2𝑣0 cos(𝜆𝑡)− 𝜆𝑣0 sin(𝜆𝑡) + 𝐺(0) cos(𝜆𝑡) + 𝐺′(𝑡) * cos(𝜆𝑡).
(2.7)

From (2.5), we express 𝐺′(𝑠) in the form

𝐺′(𝑠) =
(︀
𝑔(𝑠)− 𝜅(𝑠)0𝐷𝜔(𝛾,𝑠)

𝑠 𝑣(𝑠)
)︀′ = 𝑔′(𝑠)−

(︁
𝜅(𝑠)

∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑠)
Γ(1− 𝛾)

∫︁ 𝑠

0

𝑣′(𝑦)𝑑𝑦

(𝑠− 𝑦)𝛾
𝑑𝛾
)︁′

= 𝑔′(𝑠) +
(︁∫︁ 𝛾

𝛾

𝜅(𝑠)𝜔(𝛾, 𝑠)
Γ(2− 𝛾)

∫︁ 𝑠

0

𝑣′(𝑦)𝑑(𝑠− 𝑦)1−𝛾𝑑𝛾
)︁′

= 𝑔′(𝑠)−
(︁
𝜅(𝑠)

∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑠)𝑠1−𝛾

Γ(2− 𝛾)
𝑑𝛾
)︁′

𝑣′(0)−
(︁∫︁ 𝛾

𝛾

𝜅(𝑠)𝜔(𝛾, 𝑠)
Γ(2− 𝛾)

∫︁ 𝑠

0

𝑣′′(𝑦)(𝑠− 𝑦)1−𝛾𝑑𝑦𝑑𝛾
)︁′

= 𝑔′(𝑠)−
(︁
𝜅(𝑠)

∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑠)𝑠1−𝛾

Γ(2− 𝛾)
𝑑𝛾
)︁′

𝑣0 −
∫︁ 𝑠

0

𝑣′′(𝑦)
∫︁ 𝛾

𝛾

𝜕𝑠

(︀
𝜅(𝑠)𝜔(𝛾, 𝑠)(𝑠− 𝑦)1−𝛾

)︀
Γ(2− 𝛾)

𝑑𝛾𝑑𝑦,

and thus the convolution of the third term with cos(𝜆𝑡) could be expressed as∫︁ 𝑡

0

∫︁ 𝑠

0

𝑣′′(𝑦)
∫︁ 𝛾

𝛾

𝜕𝑠

(︀
𝜅(𝑠)𝜔(𝛾, 𝑠)(𝑠− 𝑦)1−𝛾

)︀
Γ(2− 𝛾)

𝑑𝛾𝑑𝑦 cos(𝜆(𝑡− 𝑠))𝑑𝑠

=
∫︁ 𝑡

0

𝑣′′(𝑦)
∫︁ 𝛾

𝛾

1
Γ(2− 𝛾)

∫︁ 𝑡

𝑦

𝜕𝑠

(︀
𝜅(𝑠)𝜔(𝛾, 𝑠)(𝑠− 𝑦)1−𝛾

)︀
cos(𝜆(𝑡− 𝑠))𝑑𝑠𝑑𝛾𝑑𝑦.
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By setting 𝑤 = 𝑣′′ and incorporate the preceding two equations into (2.7) to rewrite (2.7) as a Volterra integral
equation as follows

𝑤(𝑡) = −
∫︁ 𝑡

0

𝑤(𝑦)
∫︁ 𝛾

𝛾

1
Γ(2− 𝛾)

∫︁ 𝑡

𝑦

𝜕𝑠

(︀
𝜅(𝑠)𝜔(𝛾, 𝑠)(𝑠− 𝑦)1−𝛾

)︀
cos(𝜆(𝑡− 𝑠))𝑑𝑠𝑑𝛾𝑑𝑦

+
(︁
𝑔(𝑡)− 𝜅(𝑡)

∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡)𝑡1−𝛾

Γ(2− 𝛾)
𝑑𝛾𝑣0

)︁′
* cos(𝜆𝑡)− 𝜆2𝑣0 cos(𝜆𝑡)− 𝜆𝑣0 sin(𝜆𝑡) + 𝑔(0) cos(𝜆𝑡).

(2.8)

By the assumptions of the theorem, the kernels of all the right-hand side terms are continuous. We apply the
theory of the second kind Volterra integral equation ([16], Thm. 2.1.1) and use the fact that |𝑔(0)| ≤ 𝑄‖𝑔‖𝐻1(0,𝑇 )

to conclude that (2.8) admits a unique solution 𝑤 ∈ 𝐶[0, 𝑇 ] with

‖𝑤‖𝐶[0,𝑇 ] ≤ 𝑄
(︀
𝜆2|𝑣0|+ 𝜆|𝑣0|+ ‖𝑔‖𝐻1(0,𝑇 )

)︀
. (2.9)

Consequently, 𝑣(𝑡) = 𝑤(𝑡) * 𝑡 + 𝑡𝑣0 + 𝑣0 ∈ 𝐶2[0, 𝑇 ] is the solution to (2.2) and all the derivations among (2.6)–
(2.8), such as interchanging the order of integration with differentiation or another integration, are applicable.
Hence, estimate (2.3) with 𝑚 = 2 holds by (2.9). The uniqueness of the 𝐶2 solution to (2.2) follows from that
of the continuous solution to the integral equation (2.8).

To estimate 𝑣′, we differentiate (2.6) to get

𝑣′(𝑡) = −𝜆𝑣0 sin(𝜆𝑡) + 𝑣0 cos(𝜆𝑡) +
1
𝜆

(︁∫︁ 𝑡

0

𝐺(𝑠) sin(𝜆(𝑡− 𝑠))𝑑𝑠
)︁′

= −𝜆𝑣0 sin(𝜆𝑡) + 𝑣0 cos(𝜆𝑡) + 𝐺(𝑡) * cos(𝜆𝑡).

As

𝐺(𝑡) * cos(𝜆𝑡) =
∫︁ 𝑡

0

𝑔(𝑠) cos(𝜆(𝑡− 𝑠))𝑑𝑠−
∫︁ 𝑡

0

𝜅(𝑠)
∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑠)𝜕𝛾
𝑠 𝑣𝑑𝛾 cos(𝜆(𝑡− 𝑠))𝑑𝑠

= 𝜆−1𝑔(0) sin(𝜆𝑡) + 𝜆−1𝑔′(𝑡) * sin(𝜆𝑡)−
∫︁ 𝑡

0

𝜅(𝑠)
∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑠)
Γ(1− 𝛾)

∫︁ 𝑠

0

𝑣′(𝑦)𝑑𝑦

(𝑠− 𝑦)𝛾
𝑑𝛾 cos(𝜆(𝑡− 𝑠))𝑑𝑠,

thus we obtain

𝑣′(𝑡) = −
∫︁ 𝑡

0

𝑣′(𝑦)
∫︁ 𝑡

𝑦

∫︁ 𝛾

𝛾

𝜅(𝑠)𝜔(𝛾, 𝑠)
Γ(1− 𝛾)(𝑠− 𝑦)𝛾

𝑑𝛾 cos(𝜆(𝑡− 𝑠))𝑑𝑠𝑑𝑦

−𝜆𝑣0 sin(𝜆𝑡) + 𝑣0 cos(𝜆𝑡) + 𝜆−1𝑔(0) sin(𝜆𝑡) + 𝜆−1𝑔′(𝑡) * sin(𝜆𝑡).

Applying Gronwall’s inequality yields (2.3) with 𝑚 = 1.
If 𝑔 ∈ 𝐶1[0, 𝑇 ], all terms on the right-hand side of (2.8) are continuously differentiable. This implies 𝑤 ∈

𝐶1(0, 𝑇 ]. We differentiate (2.8) to obtain

𝑤′(𝑡) = 𝜆

∫︁ 𝑡

0

𝑤(𝑦)
∫︁ 𝑡

𝑦

∫︁ 𝛾

𝛾

𝜕𝑠

(︀
𝜅(𝑠)𝜔(𝛾, 𝑠)(𝑠− 𝑦)1−𝛾

)︀
Γ(2− 𝛾)

𝑑𝛾 sin(𝜆(𝑡− 𝑠))𝑑𝑠𝑑𝑦

−
∫︁ 𝑡

0

𝑤(𝑦)
∫︁ 𝛾

𝛾

𝜕𝑡

(︀
𝜅(𝑡)𝜔(𝛾, 𝑡)(𝑡− 𝑦)1−𝛾

)︀
Γ(2− 𝛾)

𝑑𝛾𝑑𝑦 − 𝜆
(︁
𝑔(𝑡)− 𝑣0𝜅(𝑡)

∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡)𝑡1−𝛾

Γ(2− 𝛾)
𝑑𝛾
)︁′
* sin(𝜆𝑡)

+
(︁
𝑔(𝑡)− 𝑣0𝜅(𝑡)

∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡)𝑡1−𝛾

Γ(2− 𝛾)
𝑑𝛾
)︁′

+ 𝜆3𝑣0 sin(𝜆𝑡)− 𝜆2𝑣0 cos(𝜆𝑡)− 𝜆𝑔(0) sin(𝜆𝑡).

By the Condition 𝜔 and the fact⃒⃒⃒⃒
⃒(︁
∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡)𝑡1−𝛾

Γ(2− 𝛾)
𝑑𝛾
)︁′ ⃒⃒⃒⃒⃒ =

⃒⃒⃒⃒
⃒
∫︁ 𝛾

𝛾

𝜔𝑡(𝛾, 𝑡)𝑡1−𝛾 + (1− 𝛾)𝜔(𝛾, 𝑡)𝑡−𝛾

Γ(2− 𝛾)
𝑑𝛾

⃒⃒⃒⃒
⃒ ≤ 𝑄𝑡−𝛾 ,
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we get
|𝑣′′′(𝑡)| = |𝑤′(𝑡)| ≤ 𝑄

(︀
𝜆‖𝑤‖𝐶[0,𝑇 ] + 𝜆3|𝑣0|+ 𝜆2|𝑣0|+ 𝜆‖𝑔‖𝐻1(0,𝑇 ) + |𝑔′|+ 𝑡−𝛾 |𝑣0|

)︀
≤ 𝑄

(︀
𝜆3|𝑣0|+ 𝜆2|𝑣0|+ 𝜆‖𝑔‖𝐻1(0,𝑇 ) + |𝑔′|+ 𝑡−𝛾 |𝑣0|

)︀
.

Thus the proof is completed. �

2.2. Analysis of the PDE model (1.4)

Theorem 2.2. Suppose that the Condition 𝜔 holds, 𝜅 ∈ 𝐶1[0, 𝑇 ], 𝑢0 ∈ 𝐻̌2, 𝑢̌0 ∈ 𝐻̌1 and 𝑓 ∈ 𝐻1(0, 𝑇 ; 𝐿2).
Then problem (1.4) has a unique solution 𝑢 ∈ 𝐶2([0, 𝑇 ]; 𝐿2) ∩ 𝐶([0, 𝑇 ]; 𝐻̌2) with the stability estimate

‖𝑢‖𝐶2([0,𝑇 ];𝐿2) + ‖𝑢‖𝐶([0,𝑇 ];𝐻̌2) ≤ 𝑄
(︀
‖𝑢0‖𝐻̌2 + ‖𝑢̌0‖𝐻̌1 + ‖𝑓‖𝐻1(0,𝑇 ;𝐿2)

)︀
.

If 𝑢0 ∈ 𝐻̌2+𝑚, 𝑢̌0 ∈ 𝐻̌1+𝑚, and 𝑓 ∈ 𝐻1(0, 𝑇 ; 𝐻̌𝑚) for 𝑚 = 1, 2, then

‖𝑢‖𝐶𝑚([0,𝑇 ];𝐻̌2) ≤ 𝑄
(︀
‖𝑢0‖𝐻̌2+𝑚 + ‖𝑢̌0‖𝐻̌1+𝑚 + ‖𝑓‖𝐻1(0,𝑇 ;𝐻̌𝑚)

)︀
. (2.10)

Furthermore, suppose 𝑢0 ∈ 𝐻̌3, 𝑢̌0 ∈ 𝐻̌2, and 𝑓 ∈ 𝐻1(0, 𝑇 ; 𝐻̌1)∩𝐶1([0, 𝑇 ]; 𝐿2), then 𝑢 ∈ 𝐶3((0, 𝑇 ]; 𝐿2) and for
any 0 < 𝜀 ≪ 1

‖𝑢‖𝐶3([𝜀,𝑇 ];𝐿2) ≤ 𝑄
(︀
‖𝑢0‖𝐻̌3 + ‖𝑢̌0‖𝐻̌2 + ‖𝑓‖𝐻1(0,𝑇 ;𝐻̌1) + ‖𝑓‖𝐶1([0,𝑇 ];𝐿2) + 𝜀−𝛾‖𝑢̌0‖𝐿2

)︀
, (2.11)

where the constant 𝑄 is independent of 𝑢0, 𝑢̌0, or 𝑓 .

Proof. By Theorem 2.1, (2.1) admits a unique solution 𝑢𝑖 ∈ 𝐶2[0, 𝑇 ] for 𝑖 = 1, 2, . . . with the estimate

‖𝑢𝑖‖𝐶2[0,𝑇 ] ≤ 𝑄
(︀
𝜆2

𝑖 |𝑢0,𝑖|+ 𝜆𝑖|𝑢̌0,𝑖|+ ‖𝑓𝑖‖𝐻1(0,𝑇 )

)︀
. (2.12)

We find that the Fourier coefficients of

𝑢(𝑥, 𝑡) :=
(︂ ∞∑︁

𝑖=1

𝑢′′𝑖 (𝑡)𝜙(𝑥)
)︂
* 𝑡 + 𝑢̌0(𝑥)𝑡 + 𝑢0(𝑥)

are {𝑢𝑖} and thus satisfy (2.1), which implies that 𝑢 serves as a solution to model (1.4) and we apply 𝜕2
𝑡 𝑢(𝑥, 𝑡) =∑︀∞

𝑖=1 𝑢′′𝑖 (𝑡)𝜙𝑖(𝑥) and (2.12) to obtain

‖𝜕2
𝑡 𝑢‖2𝐶([0,𝑇 ];𝐿2) = max

𝑡∈[0,𝑇 ]

∞∑︁
𝑖=1

|𝑢′′𝑖 (𝑡)|2 ≤ 𝑄

∞∑︁
𝑖=1

(︀
𝜆4

𝑖 |𝑢0,𝑖|2 + 𝜆2
𝑖 |𝑢̌0,𝑖|2 + ‖𝑓𝑖‖2𝐻1(0,𝑇 )

)︀
≤ 𝑄

(︀
‖𝑢0‖2𝐻̌2 + ‖𝑢̌0‖2𝐻̌1 + ‖𝑓‖2𝐻1(0,𝑇 ;𝐿2)

)︀
.

(2.13)

Furthermore, we use (1.4) and (2.13) to find

‖𝑢‖𝐶([0,𝑇 ];𝐻̌2) = ‖ −𝐾∇2𝑢‖𝐶([0,𝑇 ];𝐿2) =
⃦⃦
𝜕2

𝑡 𝑢 + 𝜅(𝑡)𝜕𝜔(𝛾,𝑡)
𝑡 𝑢(𝑡)− 𝑓

⃦⃦
𝐶([0,𝑇 ];𝐿2)

≤ 𝑄
(︀
‖𝑢0‖𝐻̌2 + ‖𝑢̌0‖𝐻̌1 + ‖𝑓‖𝐻1(0,𝑇 ;𝐿2)

)︀
.

Let 𝑢̂ ∈ 𝐶2([0, 𝑇 ]; 𝐿2) be another solution to problem (1.4). The Fourier coefficients {𝑢𝑖 − 𝑢̂𝑖}∞𝑖=1 of 𝑢− 𝑢̂ satisfy
the homogeneous analogue of (2.1), the unique solvbility of which yields 𝑢𝑖 − 𝑢̂𝑖 ≡ 0 that gives 𝑢 ≡ 𝑢̂.

If 𝑢0 ∈ 𝐻̌3, 𝑢̌0 ∈ 𝐻̌2 and 𝑓 ∈ 𝐻1(0, 𝑇 ; 𝐻̌1), we use (2.3) with 𝑚 = 1 to obtain

‖𝑢‖2
𝐶1([0,𝑇 ];𝐻̌2)

≤ 𝑄

∞∑︁
𝑖=1

𝜆4
𝑖 ‖𝑢𝑖‖2𝐶1[0,𝑇 ] ≤ 𝑄

∞∑︁
𝑖=1

𝜆4
𝑖

(︁
𝜆2

𝑖 |𝑢0,𝑖|2 + |𝑢̌0,𝑖|2 + 𝜆−2
𝑖 ‖𝑓𝑖‖2𝐻1(0,𝑇 )

)︁
≤ 𝑄

(︀
‖𝑢0‖2𝐻̌3 + ‖𝑢̌0‖2𝐻̌2 + ‖𝑓‖2

𝐻1(0,𝑇 ;𝐻̌1)

)︀
.
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We thus prove (2.10) with 𝑚 = 1, and (2.10) with 𝑚 = 2 can be proved similarly using the corresponding
assumptions on the data.

If 𝑢0 ∈ 𝐻̌3, 𝑢̌0 ∈ 𝐻̌2 and 𝑓 ∈ 𝐻1(0, 𝑇 ; 𝐻̌1) ∩ 𝐶1([0, 𝑇 ]; 𝐿2), we apply the estimate (2.4) in Theorem 2.1 to
conclude that 𝑢 ∈ 𝐶3((0, 𝑇 ]; 𝐿2). Finally, we arrive at the following estimate

‖𝜕3
𝑡 𝑢(·, 𝑡)‖2 ≤ 𝑄

∞∑︁
𝑖=1

(︀
𝜆3

𝑖 |𝑢0,𝑖|+ 𝜆2
𝑖 |𝑢̌0,𝑖|+ 𝜆𝑖‖𝑓𝑖‖𝐻1(0,𝑇 ) + |𝑓 ′𝑖 |+ 𝑡−𝛾 |𝑢̌0,𝑖|

)︀2
≤ 𝑄

(︀
‖𝑢0‖2𝐻̌3 + ‖𝑢̌0‖2𝐻̌2 + ‖𝑓‖2

𝐻1(0,𝑇 ;𝐻̌1)
+ ‖𝑓‖2𝐶1([0,𝑇 ];𝐿2) + 𝑡−2𝛾‖𝑢̌0‖2𝐿2

)︀
.

We thus prove estimate (2.11) and the whole theorem. �

3. Finite element approximation and error estimates

To develop and analyze a finite element approximation to problem (1.4), we adopt the order reduction
approach [20] to reformulate problem (1.4) in terms of the following first-order system

𝜕𝑡𝑧 + 𝜅(𝑡)0𝐼
1−𝜔(𝛾,𝑡)
𝑡 𝑧 −𝐾∇2𝑢 = 𝑓(𝑥, 𝑡), 𝜕𝑡𝑢 = 𝑧. (3.1)

3.1. Discretization

Let 0 < 𝑁, 𝐿 ∈ N. Define a partition on [0, 𝑇 ] by 𝑡𝑛 := 𝑛∆𝑡 for 𝑛 = 0, 1, · · · , 𝑁 with ∆𝑡 = 𝑇/𝑁 , and a
partition on [𝛾, 𝛾] by 𝛾𝑙 = 𝛾 + 𝑙𝜎 for 𝑙 = 0, 1, · · · , 𝐿 with 𝜎 = (𝛾 − 𝛾)/𝐿. Let 𝑢𝑛 := 𝑢(𝑥, 𝑡𝑛), 𝑧𝑛 := 𝑧(𝑥, 𝑡𝑛),
𝜅𝑛 := 𝜅(𝑡𝑛) and 𝑓𝑛 := 𝑓(𝑥, 𝑡𝑛) and we use the piecewise constant approximation for the distributed-order
integral at 𝑡 = 𝑡𝑛 ∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)0𝐼
1−𝛾
𝑡𝑛

𝑧(𝑥, 𝑡𝑛)𝑑𝛾 = 𝜎

𝐿∑︁
𝑙=1

𝜔(𝛾𝑙, 𝑡𝑛)0𝐼
1−𝛾𝑙
𝑡𝑛

𝑧(𝑥, 𝑡𝑛) + 𝐹𝑛,

where

𝐹𝑛 = −
𝐿∑︁

𝑙=1

∫︁ 𝛾𝑙

𝛾𝑙−1

∫︁ 𝛾𝑙

𝛾

𝜕𝛽

(︀
𝜔(𝛽, 𝑡𝑛)0𝐼

1−𝛽
𝑡𝑛

𝑧
)︀
𝑑𝛽𝑑𝛾.

We discrete 𝜕𝑡𝑢, 𝜕𝑡𝑧 and 0𝐼
1−𝛾𝑙
𝑡 𝑧 at 𝑡 = 𝑡𝑛 for 1 ≤ 𝑛 ≤ 𝑁 by

𝜕𝑡𝑢(𝑥, 𝑡𝑛) = 𝛿Δ𝑡𝑢𝑛 + 𝐸̂𝑛 :=
𝑢𝑛 − 𝑢𝑛−1

∆𝑡
+

1
∆𝑡

∫︁ 𝑡𝑛

𝑡𝑛−1

𝜕𝑡𝑡𝑢(𝑥, 𝑡)(𝑡− 𝑡𝑛−1)𝑑𝑡,

𝜕𝑡𝑧(𝑥, 𝑡𝑛) = 𝛿Δ𝑡𝑧𝑛 + 𝐸𝑛 :=
𝑧𝑛 − 𝑧𝑛−1

∆𝑡
+

1
∆𝑡

∫︁ 𝑡𝑛

𝑡𝑛−1

𝜕𝑡𝑡𝑧(𝑥, 𝑡)(𝑡− 𝑡𝑛−1)𝑑𝑡,

0𝐼
1−𝛾𝑙
𝑡𝑛

𝑧(𝑥, 𝑡𝑛) =
1

Γ(1− 𝛾𝑙)

𝑛∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

𝑧(𝑥, 𝑠)𝑑𝑠

(𝑡𝑛 − 𝑠)𝛾𝑙
= 𝐼1−𝛾𝑙

Δ𝑡 𝑧𝑛 + 𝑅𝑙
𝑛,

(3.2)

where 𝐼1−𝛾𝑙

Δ𝑡 𝑧𝑛 and 𝑅𝑙
𝑛 are defined by

𝐼1−𝛾𝑙

Δ𝑡 𝑧𝑛 :=
1

Γ(1− 𝛾𝑙)

𝑛∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

𝑧𝑘−1 𝑑𝑠

(𝑡𝑛 − 𝑠)𝛾𝑙
=

𝑛∑︁
𝑘=1

𝑏𝑙
𝑛,𝑘𝑧𝑘−1,

𝑏𝑙
𝑛,𝑘 :=

(𝑡𝑛 − 𝑡𝑘−1)1−𝛾𝑙 − (𝑡𝑛 − 𝑡𝑘)1−𝛾𝑙

Γ(2− 𝛾𝑙)
, 𝑅𝑙

𝑛 :=
𝑛∑︁

𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

𝑧(𝑥, 𝑠)− 𝑧𝑘−1

Γ(1− 𝛾𝑙)(𝑡𝑛 − 𝑠)𝛾𝑙
𝑑𝑠.
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Thus the variably distributed-order integral 0𝐼
1−𝜔(𝛾,𝑡𝑛)
𝑡𝑛

𝑧𝑛 can be discretized by∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)0𝐼
1−𝜔(𝛾,𝑡𝑛)
𝑡𝑛

𝑧𝑛𝑑𝛾 = 𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝑧𝑛 + 𝐹𝑛 + 𝑅𝑛, (3.3)

where 𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝑧𝑛 and 𝑅𝑛 are given by

𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝑧𝑛 := 𝜎

𝐿∑︁
𝑙=1

𝜔(𝛾𝑙, 𝑡𝑛)
𝑛∑︁

𝑘=1

𝑏𝑙
𝑛,𝑘𝑧𝑘−1, 𝑅𝑛 := 𝜎

𝐿∑︁
𝑙=1

𝜔(𝛾𝑙, 𝑡𝑛)𝑅𝑙
𝑛.

Inserting (3.3) into (3.1), multiplying (3.1) by 𝜒 ∈ 𝐻1
0 (Ω) and integrating on Ω, we obtain the following

equation for any 𝜒 ∈ 𝐻1
0 and 𝑛 = 1, 2, · · · , 𝑁(︀

𝛿Δ𝑡𝑧𝑛 + 𝜅𝑛𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝑧𝑛, 𝜒

)︀
+
(︀
𝐾∇𝑢𝑛,∇𝜒

)︀
= (𝑓𝑛, 𝜒)− (𝐸𝑛 + 𝜅𝑛(𝑅𝑛 + 𝐹𝑛), 𝜒) , (3.4)

𝛿Δ𝑡𝑢𝑛 = 𝑧𝑛 − 𝐸̂𝑛. (3.5)

Define a quasi-uniform partition of Ω with the mesh parameter ℎ, and let 𝑆ℎ be the space of continuous
and piecewise linear functions with homogeneous boundary conditions with respect to the partition. The Ritz
projection Πℎ : 𝐻1

0 (Ω) → 𝑆ℎ is given by(︀
𝐾∇Πℎ𝑔,∇𝜒ℎ

)︀
=
(︀
𝐾∇𝑔,∇𝜒ℎ

)︀
, ∀𝜒ℎ ∈ 𝑆ℎ, (3.6)

which has the following approximation property [2, 40]

‖𝑔 −Πℎ𝑔‖ ≤ 𝑄ℎ2‖𝑔‖𝐻2(Ω), ∀𝑔 ∈ 𝐻2(Ω) ∩𝐻1
0 (Ω).

A discrete operator ℒℎ : 𝑆ℎ → 𝑆ℎ is defined such that for any 𝜁 ∈ 𝑆ℎ

(ℒℎ𝜁, 𝜒ℎ) = (𝐾∇𝜁,∇𝜒ℎ), ∀𝜒ℎ ∈ 𝑆ℎ. (3.7)

Drop the local truncation errors in (3.4)–(3.5) to obtain a finite element discretization of problem (3.1): find
𝑈𝑛, 𝑍𝑛 ∈ 𝑆ℎ such that for 1 ≤ 𝑛 ≤ 𝑁(︀

𝛿Δ𝑡𝑍𝑛 + 𝜅𝑛𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝑍𝑛, 𝜒ℎ

)︀
+
(︀
𝐾∇𝑈𝑛,∇𝜒ℎ

)︀
=
(︀
𝑓𝑛, 𝜒ℎ), ∀𝜒ℎ ∈ 𝑆ℎ, (3.8)

𝛿Δ𝑡𝑈𝑛 = 𝑍𝑛, 𝑈0 := Πℎ𝑢0, 𝑍0 := 𝑢̌0. (3.9)

3.2. Auxiliary estimates

We estimate the local truncation errors 𝐸𝑛, 𝐸̂𝑛, 𝑅𝑛, 𝐹𝑛, and the spatial truncation errors 𝜂(𝑥, 𝑡) := 𝑧(𝑥, 𝑡)−
Πℎ𝑧(𝑥, 𝑡) and 𝜂(𝑥, 𝑡) := 𝑢(𝑥, 𝑡)−Πℎ𝑢(𝑥, 𝑡) in the following theorem.

Theorem 3.1. Suppose Condition 𝜔 holds, 𝜅 ∈ 𝐶1[0, 𝑇 ], 𝑢0 ∈ 𝐻̌4, 𝑢̌0 ∈ 𝐻̌3 and 𝑓 ∈ 𝐻1(0, 𝑇 ; 𝐻̌2) ∩
𝐶1([0, 𝑇 ]; 𝐿2). Then we have the following estimates

‖𝐸‖𝐿̂∞(𝐿2) := max
1≤𝑛≤𝑁

‖𝐸𝑛‖ ≤ 𝑄𝑀(∆𝑡)1−𝛾 , ‖𝐸‖𝐿̂1(𝐿2) := ∆𝑡

𝑁∑︁
𝑛=1

‖𝐸𝑛‖ ≤ 𝑄𝑀∆𝑡,

‖𝐸̂‖𝐿̂∞(𝐿2) + ‖∇𝐸̂‖𝐿̂∞(𝐿2) + ‖𝑅‖𝐿̂∞(𝐿2) + ‖𝐹‖𝐿̂∞(𝐿2) ≤ 𝑄𝑀(𝜎 + ∆𝑡 + ℎ2),

‖𝜂‖𝐿̂∞(𝐿2) + ‖𝛿Δ𝑡𝜂‖𝐿̂∞(𝐿2) + ‖𝛿Δ𝑡𝜂‖𝐿̂∞(𝐿2) + ‖𝐼1−𝜔
Δ𝑡 𝜂‖𝐿̂∞(𝐿2) ≤ 𝑄𝑀(∆𝑡 + ℎ2),

where 𝑀 := ‖𝑢0‖𝐻̌4 + ‖𝑢̌0‖𝐻̌3 + ‖𝑓‖𝐻1(0,𝑇 ;𝐻̌2) + ‖𝑓‖𝐶1([0,𝑇 ];𝐿2) and 𝑄 is independent of ∆𝑡, 𝑢0, 𝑢̌0 and 𝑓 .
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Proof. We use Theorem 2.2 to bound 𝐸 and 𝐸̂ in (3.2) by

‖𝐸̂‖𝐿̂∞(𝐿2) ≤ max
1≤𝑛≤𝑁

∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡𝑡𝑢(·, 𝑡)‖𝑑𝑡 ≤ 𝑄‖𝑢‖𝐶2([0,𝑇 ];𝐿2)∆𝑡 ≤ 𝑄𝑀∆𝑡,

‖𝐸‖𝐿̂∞(𝐿2) ≤ max
1≤𝑛≤𝑁

∫︁ 𝑡𝑛

𝑡𝑛−1

‖𝜕𝑡𝑡𝑧(·, 𝑡)‖𝑑𝑡 ≤ 𝑄𝑀 max
1≤𝑛≤𝑁

∫︁ 𝑡𝑛

𝑡𝑛−1

𝑡−𝛾𝑑𝑡

≤ 𝑄𝑀 max
1≤𝑛≤𝑁

(︀
𝑡1−𝛾
𝑛 − 𝑡1−𝛾

𝑛−1

)︀
≤ 𝑄𝑀(∆𝑡)1−𝛾 ,

‖𝐸‖𝐿̂1(𝐿2) ≤ ∆𝑡

𝑁∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

‖𝜕𝑡𝑡𝑧(·, 𝑡)‖𝑑𝑡 ≤ ∆𝑡‖𝜕𝑡𝑡𝑧‖𝐿1(0,𝑇 ;𝐿2) ≤ 𝑄𝑀∆𝑡.

We may bound ∇𝐸̂ similarly. We combine the derivative of 𝜔(𝛽, 𝑡𝑛)0𝐼
1−𝛽
𝑡𝑛

𝑧(𝑥, 𝑡𝑛) with respect to 𝛽

𝜕

𝜕𝛽

(︁
𝜔(𝛽, 𝑡𝑛)0𝐼

1−𝛽
𝑡𝑛

𝑧(𝑥, 𝑡𝑛)
)︁

=
𝜕

𝜕𝛽

(︁ 𝜔(𝛽, 𝑡𝑛)
Γ(1− 𝛽)

)︁∫︁ 𝑡𝑛

0

𝑧(𝑥, 𝑠)𝑑𝑠

(𝑡𝑛 − 𝑠)𝛽
− 𝜔(𝛽, 𝑡𝑛)

Γ(1− 𝛽)

∫︁ 𝑡𝑛

0

𝑧(𝑥, 𝑠) ln(𝑡𝑛 − 𝑠)
(𝑡𝑛 − 𝑠)𝛽

𝑑𝑠

and Theorem 2.2 to find that⃒⃒⃒ 𝜕

𝜕𝛽

(︁ 𝜔(𝛽, 𝑡𝑛)
Γ(1− 𝛽)

∫︁ 𝑡𝑛

0

𝑧(𝑠)𝑑𝑠

(𝑡𝑛 − 𝑠)𝛽

)︁⃒⃒⃒
≤ 𝑄‖𝑧(·, 𝑡𝑛)‖

[︁ ∫︁ 𝑡𝑛

0

𝑑𝑠

(𝑡𝑛 − 𝑠)𝛽
+
∫︁ 𝑡𝑛

0

𝑑𝑠

(𝑡𝑛 − 𝑠)𝛽+ 1−𝛾
2

]︁
≤ 𝑄𝑀,

which leads to

‖𝐹‖𝐿̂∞(𝐿2) ≤
𝐿∑︁

𝑙=1

∫︁ 𝛾𝑙

𝛾𝑙−1

∫︁ 𝛾𝑙

𝛾

⃦⃦⃦
𝜕𝛽

(︀
𝜔(𝑦, 𝑡𝑛)0𝐼

1−𝛽
𝑡𝑛

𝑧
)︀⃦⃦⃦

𝑑𝛽𝑑𝛾 ≤ 𝑄𝑀𝜎.

We then bound 𝑅𝑛 by applying Theorem 2.2

‖𝑅‖𝐿̂∞(𝐿2) ≤ 𝑄𝜎 max
1≤𝑛≤𝑁

𝐿∑︁
𝑙=1

𝜔(𝛾𝑙, 𝑡𝑛)
𝑛∑︁

𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

∫︀ 𝑠

𝑡𝑘−1
‖𝜕𝑦𝑧(·, 𝑦)‖𝑑𝑦

(𝑡𝑛 − 𝑠)𝛾𝑙
𝑑𝑠

≤ 𝑄∆𝑡‖𝑧‖𝐶1([0,𝑇 ];𝐿2) max
1≤𝑛≤𝑁

𝑛∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

𝑑𝑠

(𝑡𝑛 − 𝑠)𝛾
≤ 𝑄𝑀∆𝑡.

Finally, we estimate 𝜂 and 𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝜂 by

‖𝛿Δ𝑡𝜂‖𝐿̂∞(𝐿2) = max
1≤𝑛≤𝑁

1
∆𝑡

⃦⃦⃦⃦ ∫︁ 𝑡𝑛

𝑡𝑛−1

𝜕𝑡𝜂𝑑𝑡

⃦⃦⃦⃦
≤ 1

∆𝑡
max

1≤𝑛≤𝑁

∫︁ 𝑡𝑛

𝑡𝑛−1

‖Πℎ𝜕𝑡𝑧 − 𝜕𝑡𝑧‖𝑑𝑡

≤ 𝑄ℎ2‖𝑧‖𝐶1([0,𝑇 ];𝐻2) ≤ 𝑄𝑀ℎ2,

⃦⃦
𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝜂

⃦⃦
𝐿̂∞(𝐿2)

≤ 𝜎 max
1≤𝑛≤𝑁

𝑛∑︁
𝑘=1

𝐿∑︁
𝑙=1

𝜔(𝛾𝑙, 𝑡𝑛)
Γ(1− 𝛾𝑙)

∫︁ 𝑡𝑘

𝑡𝑘−1

‖𝜂𝑘−1‖𝑑𝑠

(𝑡𝑛 − 𝑠)𝛾𝑙

≤ 𝑄ℎ2‖𝑧‖𝐶([0,𝑇 ];𝐻2)

𝑛∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

𝑑𝑠

(𝑡𝑛 − 𝑠)𝛾
≤ 𝑄𝑀ℎ2.

We could bound 𝜂 and 𝛿Δ𝑡𝜂 similarly and thus complete the proof. �

3.3. An error estimate of the scheme (3.8)–(3.9).

We follow the ideas in [45] to prove error estimate in the following theorem.
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Theorem 3.2. Suppose that Condition 𝜔 holds. If 𝜅 ∈ 𝐶1[0, 𝑇 ], 𝑢0 ∈ 𝐻̌4, 𝑢̌0 ∈ 𝐻̌3, and 𝑓 ∈ 𝐻1(0, 𝑇 ; 𝐻̌2) ∩
𝐶1([0, 𝑇 ]; 𝐿2), there exists a ∆𝑡0 > 0 such that the following optimal-order error estimate holds for
0 < ∆𝑡 ≤ ∆𝑡0

‖𝑢− 𝑈‖𝐿̂∞(𝐿2) + ‖𝜕𝑡𝑢− 𝑍‖𝐿̂∞(𝐿2) ≤ 𝑄𝑀(𝜎 + ∆𝑡 + ℎ2), (3.10)

where 𝑀 is given in Theorem3.1 and 𝑄 is independent of 𝑢0, 𝑢̌0, 𝑓 , ∆𝑡, 𝜎 or ℎ.

Proof. We set 𝜒 = 𝜒ℎ = 𝜉𝑛 in (3.4) and (3.8) and subtract (3.8) from (3.4) to get the following error equation(︀
𝛿Δ𝑡(𝑧𝑛 − 𝑍𝑛) + 𝜅𝑛𝐼

1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 (𝑧𝑛 − 𝑍𝑛), 𝜉𝑛

)︀
+
(︀
𝐾∇(𝑢𝑛 − 𝑈𝑛),∇𝜉𝑛

)︀
= − (𝐸𝑛 + 𝜅𝑛(𝑅𝑛 + 𝐹𝑛), 𝜉𝑛) .

By decomposing 𝑢𝑛−𝑈𝑛 = 𝜉𝑛+𝜂𝑛 with 𝜉𝑛 := Πℎ𝑢𝑛−𝑈𝑛 ∈ 𝑆ℎ and 𝑧𝑛−𝑍𝑛 = 𝜉𝑛+𝜂𝑛 with 𝜉𝑛 := Πℎ𝑧𝑛−𝑍𝑛 ∈ 𝑆ℎ,
the error equation can be rewritten as(︀

𝛿Δ𝑡𝜉𝑛, 𝜉𝑛

)︀
+
(︀
𝐾∇𝜉𝑛,∇𝜉𝑛

)︀
= −

(︀
𝜅𝑛𝐼

1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 (𝜉𝑛 + 𝜂𝑛), 𝜉𝑛

)︀
−
(︀
𝛿Δ𝑡𝜂𝑛, 𝜉𝑛

)︀
−
(︀
𝐸𝑛 + 𝜅𝑛(𝑅𝑛 + 𝐹𝑛), 𝜉𝑛

)︀
. (3.11)

We subtract (3.9) from reference equation (3.5) to obtain

𝜉𝑛 = 𝜉𝑛−1 + ∆𝑡
(︀
− 𝛿Δ𝑡𝜂𝑛 + 𝜉𝑛 + 𝜂𝑛 − 𝐸̂𝑛

)︀
. (3.12)

We multiply (3.12) by ℒℎ𝜉𝑛, integrate the resulting equation on Ω and apply (3.6) and (3.7) to get

(𝐾∇𝜉𝑛,∇𝜉𝑛)−∆𝑡(𝐾∇𝜉𝑛,∇𝜉𝑛) = (𝐾∇𝜉𝑛−1,∇𝜉𝑛)−∆𝑡(𝐾∇𝐸̂𝑛,∇𝜉𝑛),

which yields
∆𝑡(𝐾∇𝜉𝑛,∇𝜉𝑛) = (𝐾∇𝜉𝑛,∇𝜉𝑛)− (𝐾∇𝜉𝑛−1,∇𝜉𝑛) + ∆𝑡(𝐾∇𝐸̂𝑛,∇𝜉𝑛). (3.13)

We sum (3.11) multiplied by ∆𝑡 and (3.13) to get

‖𝜉𝑛‖2 + (𝐾∇𝜉𝑛,∇𝜉𝑛) = (𝜉𝑛−1, 𝜉𝑛) + (𝐾∇𝜉𝑛−1,∇𝜉𝑛)−∆𝑡(𝐾∇𝐸̂𝑛,∇𝜉𝑛)−∆𝑡
(︀
𝜅𝑛𝐼

1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 (𝜉𝑛 + 𝜂𝑛), 𝜉𝑛

)︀
−∆𝑡

(︀
𝛿Δ𝑡𝜂𝑛, 𝜉𝑛

)︀
−∆𝑡

(︀
𝐸𝑛 + 𝜅𝑛(𝑅𝑛 + 𝐹𝑛), 𝜉𝑛

)︀
.

We apply Cauchy inequality and cancel ‖𝜉𝑛‖2/2 and ‖
√

𝐾∇𝜉𝑛‖2/2 on both sides to get

‖𝜉𝑛‖2 + ‖
√

𝐾∇𝜉𝑛‖2 ≤ ‖𝜉𝑛−1‖2 + ‖
√

𝐾∇𝜉𝑛−1‖2 + ∆𝑡
(︀
‖𝜅𝑛𝐼

1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝜉𝑛‖2 + 4‖𝜉𝑛‖2 + ‖

√
𝐾∇𝜉𝑛‖2

+‖𝛿Δ𝑡𝜂𝑛 + 𝜅𝑛𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝜂𝑛‖2 + ‖

√
𝐾∇𝐸̂𝑛‖2 + ‖𝜅𝑛𝑅𝑛‖2 + ‖𝜅𝑛𝐹𝑛‖2 + ‖𝐸𝑛‖‖𝜉𝑛‖

)︀
.

(3.14)

We sum (3.14) from 𝑛 = 1 to 𝑛* for 1 ≤ 𝑛* ≤ 𝑁 , cancel the like terms, and use 𝜉0 = 𝜉0 ≡ 0 to get

‖𝜉𝑛*‖2 + ‖
√

𝐾∇𝜉𝑛*‖2 ≤ ∆𝑡

𝑛*∑︁
𝑛=1

(︀
‖𝜅𝑛𝐼

1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝜉𝑛‖2 + 4‖𝜉𝑛‖2 + ‖𝐸𝑛‖‖𝜉𝑛‖+ ‖

√
𝐾∇𝜉𝑛‖2

+‖𝜅𝑛𝐹𝑛‖2 + ‖𝛿Δ𝑡𝜂𝑛 + 𝜅𝑛𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝜂𝑛‖2 + ‖

√
𝐾∇𝐸̂𝑛‖2 + ‖𝜅𝑛𝑅𝑛‖2

)︀
.

(3.15)

Now we estimate the right-hand side of (3.15) term by term. By setting 𝑏*𝑛,𝑘 =
1

Γ(1− 𝛾)

∫︁ 𝑡𝑘

𝑡𝑘−1

𝑑𝑠

(𝑡𝑛 − 𝑠)𝛾
, we

have 𝑏𝑙
𝑛,𝑘 ≤ 𝑄𝑏*𝑛,𝑘 and

𝑛∑︁
𝑘=1

𝑏*𝑛,𝑘 =
1

Γ(1− 𝛾)

∫︁ 𝑡𝑛

0

𝑑𝑠

(𝑡𝑛 − 𝑠)𝛾
=

𝑡1−𝛾
𝑛

Γ(2− 𝛾)
≤ 𝑄,

𝑛*∑︁
𝑛=𝑘

𝑏*𝑛,𝑘 =
1

Γ(1− 𝛾)

𝑛*∑︁
𝑛=𝑘

∫︁ 𝑡𝑘

𝑡𝑘−1

𝑑𝑠

(𝑡𝑛 − 𝑠)𝛾
=

1
Γ(2− 𝛾)

𝑛*∑︁
𝑛=𝑘

[︀
(𝑡𝑛 − 𝑡𝑘−1)1−𝛾 − (𝑡𝑛 − 𝑡𝑘)1−𝛾

]︀
≤ 𝑄.

(3.16)
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Thus we estimate the first term on the right-hand side of (3.15) by

∆𝑡

𝑛*∑︁
𝑛=1

‖𝜅𝑛𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝜉𝑛‖2 ≤ 𝑄∆𝑡𝜎

𝑛*∑︁
𝑛=1

𝐿∑︁
𝑙=1

𝜔(𝛾𝑙, 𝑡𝑛)‖𝜅𝑛𝐼1−𝛾𝑙

Δ𝑡 𝜉𝑛‖2 ≤ 𝑄∆𝑡‖𝜅‖2𝐶[0,𝑇 ]

𝑛*∑︁
𝑛=1

(︂ 𝑛∑︁
𝑘=1

𝑏*𝑛,𝑘‖𝜉𝑘−1‖
)︂2

≤ 𝑄∆𝑡

𝑛*∑︁
𝑛=1

𝑛∑︁
𝑘=1

𝑏*𝑛,𝑘‖𝜉𝑘−1‖2
𝑛∑︁

𝑘=1

𝑏*𝑛,𝑘 ≤ 𝑄∆𝑡

𝑛*∑︁
𝑘=1

‖𝜉𝑘−1‖2
𝑛*∑︁

𝑛=𝑘

𝑏*𝑛,𝑘 ≤ 𝑄∆𝑡

𝑛*∑︁
𝑘=1

‖𝜉𝑘−1‖2.

By Theorem 3.1, the last four terms on the right-hand side of (3.15) can be bounded by 𝑄1𝑀
2(𝜎2 +(∆𝑡)2 +ℎ4).

We incorporate the preceding estimates to rewrite (3.15) as

‖𝜉𝑛*‖2 + ‖
√

𝐾∇𝜉𝑛*‖2 ≤ 𝑄1∆𝑡

𝑛*∑︁
𝑛=1

(︀
‖𝜉𝑛‖2 + ‖

√
𝐾∇𝜉𝑛‖2

)︀
+ 𝑄1𝑀

2(𝜎2 + (∆𝑡)2 + ℎ4) + ∆𝑡

𝑛*∑︁
𝑛=1

‖𝐸𝑛‖‖𝜉𝑛‖.

(3.17)
We choose ∆𝑡 sufficiently small such that 𝑄1∆𝑡 ≤ 1/2 and apply Gronwall’s inequality to (3.17) to obtain that
for 1 ≤ 𝑛* ≤ 𝑁

‖𝜉𝑛*‖2 + ‖
√

𝐾∇𝜉𝑛*‖2 ≤ 𝑄2𝑀
2(𝜎2 + (∆𝑡)2 + ℎ4) + 𝑄2∆𝑡

𝑛*∑︁
𝑛=1

‖𝐸𝑛‖‖𝜉𝑛‖. (3.18)

We use Theorem 3.1 and the geometric-arithmetic mean inequality to get

∆𝑡‖𝐸𝑛*‖‖𝜉𝑛*‖ ≤
(∆𝑡)2𝛾‖𝐸𝑛*‖2 + (∆𝑡)2(1−𝛾)‖𝜉𝑛*‖2

2
≤ 𝑄𝑀2(∆𝑡)2 +

(∆𝑡)2(1−𝛾)‖𝜉𝑛*‖2

2
.

We choose ∆𝑡 sufficiently small such that 𝑄2(∆𝑡)2(1−𝛾) ≤ 1 to rewrite (3.18) as

‖𝜉𝑛*‖2 ≤ 𝑄3𝑀
2(𝜎2 + (∆𝑡)2 + ℎ4) + 𝑄3∆𝑡

𝑛*−1∑︁
𝑛=1

‖𝐸𝑛‖‖𝜉𝑛‖, 1 ≤ 𝑛* ≤ 𝑁. (3.19)

By Theorem 3.1, we have 𝑄3

∑︀𝑁
𝑘=1 ‖𝐸𝑘‖ ≤ 𝑄4𝑀. Then it is clear from (3.19) that ‖𝜉1‖2 ≤ 𝑄3𝑀

2(𝜎2 + (∆𝑡)2 +
ℎ4). Assume

‖𝜉𝑚‖2 ≤ (
√︀

𝑄3 + 𝑄4)2𝑀2(𝜎2 + (∆𝑡)2 + ℎ4), 2 ≤ 𝑚 ≤ 𝑛* − 1. (3.20)

We plug (3.20) with 2 ≤ 𝑚 ≤ 𝑛* − 1 into (3.19) and use the fact that ∆𝑡 ≤
√︀

𝜎2 + (∆𝑡)2 + ℎ4 to find

‖𝜉𝑛*‖2 ≤ 𝑄3𝑀
2(𝜎2 + (∆𝑡)2 + ℎ4) + ∆𝑡(

√︀
𝑄3 + 𝑄4)𝑀

√︀
𝜎2 + (∆𝑡)2 + ℎ4

(︃
𝑄3

𝑛*−1∑︁
𝑛=1

‖𝐸𝑛‖

)︃
≤
(︁
𝑄3 + (

√︀
𝑄3 + 𝑄4)𝑄4

)︁
𝑀2(𝜎2 + (∆𝑡)2 + ℎ4) ≤ (

√︀
𝑄3 + 𝑄4)2𝑀2(𝜎2 + (∆𝑡)2 + ℎ4).

Thus, (3.20) holds for 𝑚 = 𝑛* and so for any 1 ≤ 𝑛* ≤ 𝑁 by induction.
To bound 𝜉𝑛, we use (3.12) to get

‖𝜉𝑛‖ ≤ ‖𝜉𝑛−1‖+ ∆𝑡
(︀
‖𝛿Δ𝑡𝜂𝑛‖+ ‖𝜉𝑛‖+ ‖𝜂𝑛‖+ ‖𝐸̂𝑛‖

)︀
, 1 ≤ 𝑛 ≤ 𝑁.

We sum this equation from 𝑛 = 1 to 𝑛*(≤ 𝑁) to find

‖𝜉𝑛*‖ ≤ ∆𝑡

𝑛*∑︁
𝑛=1

(︀
‖𝛿Δ𝑡𝜂𝑛‖+ ‖𝜉𝑛‖+ ‖𝜂𝑛‖+ ‖𝐸̂𝑛‖

)︀
, 1 ≤ 𝑛* ≤ 𝑁.

We apply Theorem 3.1 to get
‖𝜉𝑛*‖ ≤ 𝑄𝑀(𝜎 + ∆𝑡 + ℎ2), 1 ≤ 𝑛* ≤ 𝑁. (3.21)

Combining (3.20)–(3.21) with Theorem 3.1 we finish the proof of (3.10). �
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Remark 3.3. From the proof we observe that ∆𝑡0 → 0 if 𝛾 → 1−, which leads to 𝑁 → ∞. In practice, the
fractional derivative of order 0 < 𝛾 < 1 describes the viscoelastic damping and thus we set 𝛾 < 1, which avoids
the degeneration of ∆𝑡0. The case of 𝛾 = 1 is much more intricate and will be studied in the future work.

4. A novel discretization scheme and its analysis

In the previous section, we first discretize the variably distributed-order integral in (3.1) by a composite rect-
angle formula and then discretize each resulting constant-order fractional integral to approximate the variably
distributed-order operator, and the corresponding finite element scheme (3.8)–(3.9) has an optimal-order error
estimate 𝑂(𝜎 + ∆𝑡 + ℎ2). Numerically, we need to compute all the coefficients 𝑏𝑙

𝑛,𝑘 for 1 ≤ 𝑘 ≤ 𝑛 ≤ 𝑁 and
1 ≤ 𝑙 ≤ 𝐿. To maintain the first-order accuracy in time, we may set 𝜎 = 𝑂(∆𝑡), which leads to 𝑂(𝑁3) com-
putations to generate the coefficients {𝑏𝑙

𝑛,𝑘} that is computationally consuming. Motivated by this observation,
we consider a novel time-stepping scheme by discretizing the variably distributed-order fractional integral via a
different approach. We first discretize the fractional-order integral at 𝑡 = 𝑡𝑛 by∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)
Γ(1− 𝛾)

∫︁ 𝑡𝑛

0

𝑧(·, 𝑦)𝑑𝑦

(𝑡𝑛 − 𝑦)𝛾
𝑑𝛾 =

∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)
Γ(1− 𝛾)

(︁ 𝑛∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

𝑧𝑘−1𝑑𝑦

(𝑡𝑛 − 𝑦)𝛾
+

𝑛∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

∫︀ 𝑦

𝑡𝑘−1
𝜕𝑠𝑧(·, 𝑠)𝑑𝑠

(𝑡𝑛 − 𝑦)𝛾
𝑑𝑦
)︁
𝑑𝛾

=
𝑛∑︁

𝑘=1

∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)
Γ(2− 𝛾)

(︁
(𝑡𝑛 − 𝑡𝑘−1)1−𝛾 − (𝑡𝑛 − 𝑡𝑘)1−𝛾

)︁
𝑑𝛾𝑧𝑘−1

+
∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)
Γ(1− 𝛾)

𝑛∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

∫︀ 𝑦

𝑡𝑘−1
𝜕𝑠𝑧(·, 𝑠)𝑑𝑠

(𝑡𝑛 − 𝑦)𝛾
𝑑𝑦𝑑𝛾 :=

𝑛∑︁
𝑘=1

𝑏̃𝑛,𝑘𝑧𝑘−1 + 𝑅̃′𝑛,

(4.1)

where the coefficients 𝑏̃𝑛,𝑘 and local truncation error 𝑅̃′𝑛 are given by

𝑏̃𝑛,𝑘 :=
∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)
(︀
(𝑡𝑛 − 𝑡𝑘−1)1−𝛾 − (𝑡𝑛 − 𝑡𝑘)1−𝛾

)︀
Γ(2− 𝛾)

𝑑𝛾,

𝑅̃′𝑛 :=
∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)
Γ(1− 𝛾)

𝑛∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

∫︀ 𝑦

𝑡𝑘−1
𝜕𝑠𝑧(·, 𝑠)𝑑𝑠

(𝑡𝑛 − 𝑦)𝛾
𝑑𝑦𝑑𝛾.

(4.2)

The key is to develop a fast approximation method of {𝑏̃𝑛,𝑘}. Define a function

𝑔𝑎(𝑦, 𝑠) =
(𝑎 + 1)𝑦 ln𝑠(𝑎 + 1)− 𝑎𝑦 ln𝑠 𝑎

𝑠!
, 𝑎 > 1, 𝑦 ∈ [0, 1], 𝑠 ∈ N+.

We expand (𝑡𝑛 − 𝑡𝑘−1)1−𝛾 − (𝑡𝑛 − 𝑡𝑘)1−𝛾 for 𝑛− 𝑘 ≥ 2 at 𝛾 = 𝛾 up to order 𝑆 ∈ N+ to get

(𝑡𝑛 − 𝑡𝑘−1)1−𝛾 − (𝑡𝑛 − 𝑡𝑘)1−𝛾 = ℎ1−𝛾
[︀
(𝑛− 𝑘 + 1)1−𝛾 − (𝑛− 𝑘)1−𝛾

]︀
= ℎ1−𝛾

[︁
(𝑛− 𝑘 + 1)1−𝛾

(︁
1 + (𝛾 − 𝛾) ln(𝑛− 𝑘 + 1) + · · ·+

(𝛾 − 𝛾)𝑆

𝑆!
ln𝑆(𝑛− 𝑘 + 1)

)︁
−(𝑛− 𝑘)1−𝛾

(︁
1 + (𝛾 − 𝛾) ln(𝑛− 𝑘) + · · ·+

(𝛾 − 𝛾)𝑆

𝑆!
ln𝑆(𝑛− 𝑘)

)︁]︁
+ 𝐻*

𝑛,𝑘

= ℎ1−𝛾
𝑆∑︁

𝑠=0

(𝛾 − 𝛾)𝑠𝑔𝑛−𝑘(1− 𝛾, 𝑠) + 𝐻*
𝑛,𝑘,

where the local truncation error 𝐻*
𝑛,𝑘 is given by

𝐻*
𝑛,𝑘 = ℎ1−𝛾(𝛾 − 𝛾)𝑆+1𝑔𝑛−𝑘(1− 𝜈, 𝑆 + 1), 𝜈 ∈ [𝛾, 𝛾].
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Therefore, 𝑏̃𝑛,𝑘 with 𝑛− 𝑘 ≥ 2 in (4.2) can be approximated by 𝑐𝑛,𝑘 defined by

𝑐𝑛,𝑘 =

⎧⎪⎨⎪⎩
𝑏̃𝑛,𝑘, 𝑘 = 𝑛, 𝑛− 1,
𝑆∑︁

𝑠=1

𝐶𝑠
𝑛𝑔𝑛−𝑘(1− 𝛾, 𝑠), 𝑛− 𝑘 ≥ 2,

(4.3)

where

𝐶𝑠
𝑛 :=

∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)(𝛾 − 𝛾)𝑠ℎ1−𝛾

Γ(2− 𝛾)
𝑑𝛾,

and the corresponding error 𝐻**
𝑛,𝑘 := 𝑏̃𝑛,𝑘 − 𝑐𝑛,𝑘 (𝑛− 𝑘 ≥ 2) is given by

𝐻**
𝑛,𝑘 =

∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)𝐻*
𝑛,𝑘

Γ(2− 𝛾)
𝑑𝛾 =

∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)(𝛾 − 𝛾)𝑆+1ℎ1−𝛾

Γ(2− 𝛾)
𝑔𝑛−𝑘(1− 𝜈, 𝑆 + 1)𝑑𝛾. (4.4)

Substituting 𝑏̃𝑛,𝑘 by 𝑐𝑛,𝑘 in (4.1) we obtain a novel approximation of variably distributed-order fractional integral

0𝐼
1−𝜔(𝛾,𝑡𝑛)
𝑡𝑛

𝑧(𝑥, 𝑡𝑛)

0𝐼
1−𝜔(𝛾,𝑡𝑛)
𝑡𝑛

𝑧(𝑥, 𝑡𝑛)=
𝑛∑︁

𝑘=1

𝑐𝑛,𝑘𝑧𝑘−1 + 𝑅̃𝑛 := 𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝑧𝑛 + 𝑅̃𝑛 (4.5)

with the local truncation error 𝑅̃𝑛 := 𝑅̃′𝑛 + 𝑅̃′′𝑛 where 𝑅̃′′𝑛 =
𝑛−2∑︁
𝑘=1

𝐻**
𝑛,𝑘𝑧𝑘−1.

We multiply the governing equation by 𝜒 ∈ 𝐻1
0 (Ω) on Ω to obtain that for any 𝜒 ∈ 𝐻1

0 and 𝑛 = 1, 2, · · · , 𝑁

(𝛿Δ𝑡𝑧𝑛 + 𝜅𝑛𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝑧𝑛, 𝜒) + (𝐾∇𝑢𝑛,∇𝜒) = (𝑓𝑛, 𝜒)− (𝐸𝑛 + 𝜅𝑛𝑅̃𝑛, 𝜒), (4.6)

𝛿Δ𝑡𝑢𝑛 = 𝑧𝑛 − 𝐸̂𝑛. (4.7)

By dropping the truncation errors, we obtain a novel time-stepping finite element scheme of problem (3.1) which
is essentially different from (3.8)–(3.9): find 𝑈̃𝑛, 𝑍𝑛 ∈ 𝑆ℎ such that for 1 ≤ 𝑛 ≤ 𝑁(︀

𝛿Δ𝑡𝑍𝑛 + 𝜅𝑛𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝑍𝑛, 𝜒ℎ

)︀
+ (𝐾∇𝑈̃𝑛,∇𝜒ℎ) = (𝑓𝑛, 𝜒ℎ), ∀𝜒ℎ ∈ 𝑆ℎ, (4.8)

𝛿∆𝑡𝑈̃𝑛 = 𝑍𝑛, 𝑈̃0 := Πℎ𝑢0, 𝑍0 = 𝑢̌0. (4.9)

4.1. Estimates of truncation errors

Theorem 4.1. Suppose that Condition 𝜔 holds, 𝜅 ∈ 𝐶1[0, 𝑇 ], 𝑢0 ∈ 𝐻̌4, 𝑢̌0 ∈ 𝐻̌3, 𝑓 ∈ 𝐻1(0, 𝑇 ; 𝐻̌2) ∩
𝐶1([0, 𝑇 ]; 𝐿2) and the

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 𝑆 : 𝑆 > 𝑒𝜈 ln 𝑁 𝑓𝑜𝑟 𝜈 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝑒𝜈(𝜈 − 1) ≥ 2

holds. Then the following estimates hold

‖𝑅̃‖𝐿̂∞(𝐿2) ≤ 𝑄𝑀∆𝑡, ‖𝐼1−𝜔(𝛾,𝑡)
Δ𝑡 𝜂‖𝐿̂∞(𝐿2) ≤ 𝑄𝑀(∆𝑡 + ℎ2), (4.10)

where 𝑀 is given in Theorem3.1 and 𝑄 is a constant independent from data.

Proof. It is clear that 𝑅̃′𝑛 in (4.2) can be bounded by

‖𝑅̃′‖𝐿̂∞(𝐿2) ≤ 𝑄𝑀∆𝑡

∫︁ 𝑡𝑛

0

𝑑𝑦

(𝑡𝑛 − 𝑦)𝛾
≤ 𝑄𝑀∆𝑡.
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Fixing 𝑎 and 𝑠, 𝑔𝑎(𝑦, 𝑠) is monotonically increasing with respect to 𝑦, which implies that

sup
𝑥∈[0,1]

𝑔𝑎(𝑥, 𝑆 + 1) = 𝑔𝑎(1, 𝑆 + 1) = (𝑎 + 1) ln𝑆+1(𝑎 + 1)− 𝑎 ln𝑆+1 𝑎.

Combining thsi with the definition of 𝐻**
𝑛,𝑘 in (4.4) and the Stirling’s formula (𝑆 + 1)! > (𝑆 + 1)𝑆+3/2𝑒−(𝑆+1)

we find

‖𝑅̃′′‖𝐿̂∞(𝐿2) ≤
𝑛−2∑︁
𝑘=1

⃒⃒⃒ ∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)(𝛾 − 𝛾)𝑆+1ℎ1−𝛾

Γ(2− 𝛾)
𝑔𝑛−𝑘(1− 𝜈, 𝑆 + 1)𝑑𝛾

⃒⃒⃒
‖𝑧𝑘−1‖

≤
𝑛−2∑︁
𝑘=1

⃒⃒⃒
𝑔𝑛−𝑘(1, 𝑆 + 1)

∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)(𝛾 − 𝛾)𝑆+1ℎ1−𝛾

Γ(2− 𝛾)
𝑑𝛾
⃒⃒⃒
‖𝑧𝑘−1‖

≤ 𝑄𝑀

𝑛−2∑︁
𝑘=1

𝑔𝑛−𝑘(1, 𝑆 + 1)≤ 𝑄𝑀
𝑁 ln𝑆+1 𝑁

(𝑆 + 1)!
≤ 𝑄𝑀𝑁

(︁𝑒 ln 𝑁

𝑆 + 1

)︁𝑆+1

.

(4.11)

Thus in order to retain the first-order accuracy in time, we require(︁𝑒 ln 𝑁

𝑆 + 1

)︁𝑆+1

≤ 𝑁−2,

which is equivalent to

(𝑆 + 1) ln
(︁𝑒 ln 𝑁

𝑆 + 1

)︁
≤ −2 ln 𝑁.

Let 𝑆 + 1 = 𝑒𝜈 ln 𝑁 for some 𝜈 > 1 and thus

(𝑆 + 1) ln
(︂

𝑒 ln 𝑁

𝑆 + 1

)︂
= (𝑆 + 1)(1− 𝜈) ≤ −2 ln 𝑁 =⇒ 𝑒𝜈 ln 𝑁 = 𝑆 + 1 ≥ 2 ln 𝑁

𝜈 − 1
.

Therefore it suffices to select 𝜈 satisfying 𝑒𝜈(𝜈 − 1) ≥ 2, and (4.11) reduces to ‖𝑅̃′′‖𝐿̂∞(𝐿2) ≤ 𝑄𝑀∆𝑡 and
consequently

‖𝑅̃‖𝐿̂∞(𝐿2) ≤ ‖𝑅̃
′‖𝐿̂∞(𝐿2) + ‖𝑅̃′′𝑛‖𝐿̂∞(𝐿2) ≤ 𝑄𝑀∆𝑡.

Similar to (4.5), we decompose 𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 by

𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝜂 = 0𝐼

1−𝜔(𝛾,𝑡𝑛)
𝑡𝑛

𝜂 −
∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)
Γ(1− 𝛾)

𝑛∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

∫︀ 𝑦

𝑡𝑘−1
𝜕𝑠𝜂𝑑𝑠

(𝑡𝑛 − 𝑦)𝛾
𝑑𝑦𝑑𝛾

−
𝑛−2∑︁
𝑘=1

∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)(𝛾 − 𝛾)𝑆+1ℎ1−𝛾

Γ(2− 𝛾)
𝑔𝑛−𝑘(1− 𝜈, 𝑆 + 1)𝑑𝛾𝜂𝑘−1.

(4.12)

The first two terms on the right-hand side can be estimated by

⃦⃦
0𝐼

1−𝜔(𝛾,𝑡)
𝑡 𝜂

⃦⃦
𝐿̂∞(𝐿2)

= max
1≤𝑛≤𝑁

⃦⃦⃦ ∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)
Γ(1− 𝛾)

∫︁ 𝑡𝑛

0

𝜂(𝑠)𝑑𝑠

(𝑡𝑛 − 𝑠)𝛾
𝑑𝛾
⃦⃦⃦

≤ 𝑄ℎ2‖𝑧‖𝐶([0,𝑇 ];𝐻2) max
1≤𝑛≤𝑁

⃒⃒⃒ ∫︁ 𝑡𝑛

0

𝑑𝑠

(𝑡𝑛 − 𝑠)𝛾

⃒⃒⃒
≤ 𝑄𝑀ℎ2,

⃦⃦⃦ ∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)
Γ(1− 𝛾)

𝑛∑︁
𝑘=1

∫︁ 𝑡𝑘

𝑡𝑘−1

∫︀ 𝑦

𝑡𝑘−1
𝜕𝑠𝜂𝑑𝑠

(𝑡𝑛 − 𝑦)𝛾
𝑑𝑦𝑑𝛾

⃦⃦⃦
𝐿̂∞(𝐿2)

≤ 𝑄∆𝑡‖𝜂‖𝐶1([0,𝑇 ];𝐿2) max
1≤𝑛≤𝑁

⃒⃒⃒ ∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)
Γ(1− 𝛾)

𝑛∑︁
𝑘=1

∫︁ 𝑡𝑛

𝑡𝑛−1

1
(𝑡𝑛 − 𝑦)𝛾

𝑑𝑦𝑑𝛾
⃒⃒⃒
≤ 𝑄𝑀∆𝑡ℎ2.
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By Condition 𝑆 and similar techniques in (4.11), we bound the third term on the right-hand side of (4.12) by

max
1≤𝑛≤𝑁

⃦⃦⃦ 𝑛−2∑︁
𝑘=1

∫︁ 𝛾

𝛾

𝜔(𝛾, 𝑡𝑛)(𝛾 − 𝛾)𝑆+1ℎ1−𝛾

Γ(2− 𝛾)
𝑔𝑛−𝑘(1− 𝜈, 𝑆 + 1)𝑑𝛾𝜂𝑘−1

⃦⃦⃦
≤ 𝑄𝑀ℎ2 max

1≤𝑛≤𝑁

𝑛−2∑︁
𝑘=1

𝑔𝑛−𝑘(1, 𝑆 + 1) ≤ 𝑄𝑀∆𝑡ℎ2.

Therefore, we finish the proof of the second statement of (4.10). �

Lemma 4.2. Under Condition S, the following relations hold for 1 ≤ 𝑛* ≤ 𝑁

𝑛*∑︁
𝑘=1

𝑐𝑛,𝑘 ≤ 𝑄,

𝑛*∑︁
𝑛=𝑘

𝑐𝑛,𝑘 ≤ 𝑄, (4.13)

where 𝑄 is a positive constant independent from data.

Proof. By (4.5) with 𝑧 ≡ 1 we have

𝐼
1−𝜔(𝛾,𝑡𝑛)
𝑡𝑛

1 = 𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 1 +

𝑛−2∑︁
𝑘=1

𝐻**
𝑛,𝑘 =

𝑛∑︁
𝑘=1

𝑐𝑛,𝑘 +
𝑛−2∑︁
𝑘=1

𝐻**
𝑛,𝑘.

By Condition S and a similar derivation as (4.11) we have

𝑛−2∑︁
𝑘=1

⃒⃒
𝐻**

𝑛,𝑘

⃒⃒
≤ 𝑄

𝑛−2∑︁
𝑘=1

𝑔𝑛−𝑘(1, 𝑆 + 1) ≤ 𝑄𝑁−1,

which, together with 𝐼
1−𝜔(𝛾,𝑡𝑛)
𝑡𝑛

1 ≤ 𝑄, yields the first estimate in (4.13). For the second statement we have

𝑛*∑︁
𝑛=𝑘

𝑐𝑛,𝑘 =
𝑛*∑︁

𝑛=𝑘

(︁
𝑏̃𝑛,𝑘 −𝐻**

𝑛,𝑘

)︁
≤

𝑛*∑︁
𝑛=𝑘

𝑏̃𝑛,𝑘 +
⃒⃒⃒ 𝑛*∑︁

𝑛=𝑘+2

𝐻**
𝑛,𝑘

⃒⃒⃒
. (4.14)

Similar to the proof of (3.16), we obtain
∑︀𝑛*

𝑛=𝑘 𝑏̃𝑛,𝑘 ≤ 𝑄. The second term on the right-hand side of (4.14) can
be bounded via⃒⃒⃒ 𝑛*∑︁

𝑛=𝑘+2

𝐻**
𝑛,𝑘

⃒⃒⃒
≤ (𝑛* − 𝑘 + 1) ln𝑆+1(𝑛* − 𝑘 + 1)

(𝑆 + 1)!

∫︁ 𝛾

𝛾

‖𝜔(𝛾, ·)‖𝐶[0,𝑇 ]ℎ
1−𝛾

Γ(2− 𝛾)
𝑑𝛾 ≤ 𝑁 ln𝑆+1 𝑁

(𝑆 + 1)!
≤ 𝑄𝑁−1.

Thus we obtain from (4.14) that
𝑛*∑︁

𝑛=𝑘

𝑐𝑛,𝑘 ≤ 𝑄, which completes the proof. �

4.2. Error estimates and computational efficiency of the novel time-stepping scheme

Theorem 4.3. Suppose the Conditions 𝜔 and S hold, 𝜅 ∈ 𝐶1[0, 𝑇 ], 𝑢0 ∈ 𝐻̌4, 𝑢̌0 ∈ 𝐻̌3, and 𝑓 ∈ 𝐻1(0, 𝑇 ; 𝐻̌2) ∩
𝐶1([0, 𝑇 ]; 𝐿2). Then there exists a ∆𝑡0 > 0 such that the optimal-order error estimate holds for 0 < ∆𝑡 ≤ ∆𝑡0

‖𝑧 − 𝑍‖𝐿̂∞(𝐿2) + ‖𝑢− 𝑈̃‖𝐿̂∞(𝐿2) ≤ 𝑄𝑀(∆𝑡 + ℎ2),

where 𝑀 is given in Theorem3.1 and 𝑄 is independent of 𝑢0, 𝑢̌0, 𝑓 , ∆𝑡 or ℎ.



2226 J. JIA ET AL.

Proof. Let 𝑧𝑛 − 𝑍𝑛 = 𝜉𝑛 + 𝜂𝑛 with 𝜉𝑛 = Πℎ𝑧 − 𝑍𝑛 ∈ 𝑆ℎ and 𝑢𝑛 − 𝑈̃𝑛 = ˜̂
𝜉𝑛 + 𝜂𝑛 with ˜̂

𝜉𝑛 = Πℎ𝑢𝑛 − 𝑈̃𝑛 ∈ 𝑆ℎ.
Then we subtract (4.9) from (4.7), multiply the resulting equation by ℒℎ

˜̂
𝜉𝑛 and integrate on Ω to find

∆𝑡(𝐾∇ ˜̂
𝜉𝑛,∇𝜉𝑛) = (𝐾∇ ˜̂

𝜉𝑛,∇ ˜̂
𝜉𝑛)− (𝐾∇ ˜̂

𝜉𝑛−1,∇
˜̂
𝜉𝑛) + ∆𝑡(𝐾∇𝐸̂𝑛,∇ ˜̂

𝜉𝑛). (4.15)

We also subtract (4.8) from (4.6) with 𝜒 = 𝜒ℎ = 𝜉𝑛

(𝛿Δ𝑡𝜉𝑛, 𝜉𝑛) + (𝐾∇ ˜̂
𝜉𝑛,∇𝜉𝑛) = −

(︀
𝜅𝑛𝐼

1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 (𝜉𝑛 + 𝜂𝑛), 𝜉𝑛

)︀
− (𝛿Δ𝑡𝜂𝑛, 𝜉𝑛)− (𝜅𝑛𝑅̃𝑛 + 𝐸𝑛, 𝜉𝑛). (4.16)

Inserting (4.15) into (4.16), using Cauchy inequality and canceling ‖𝜉𝑛‖2/2 and ‖
√

𝐾∇ ˜̂
𝜉𝑛‖2/2 on the right-hand

side we get

‖𝜉𝑛‖2 + ‖
√

𝐾∇ ˜̂
𝜉𝑛‖2 ≤ ‖𝜉𝑛−1‖2 + ‖

√
𝐾∇ ˜̂

𝜉𝑛−1‖2 + ∆𝑡
(︁
‖
√

𝐾∇𝜉𝑛‖+ ‖
√

𝐾∇𝐸̂𝑛‖2 + ‖𝜅𝑛𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝜉𝑛‖2

+‖𝜅𝑛𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝜂𝑛‖2 + ‖𝛿Δ𝑡𝜂𝑛‖2 + ‖𝜅𝑛𝑅̃𝑛‖2 + ‖𝐸𝑛‖‖𝜉𝑛‖+ 4‖𝜉𝑛‖2

)︁
,

(4.17)

we sum (4.17) from 𝑛 = 1 to 𝑛 = 𝑛* for 1 ≤ 𝑛* ≤ 𝑁 to obtain

‖𝜉𝑛*‖+ ‖
√

𝐾∇ ˜̂
𝜉𝑛*‖2 ≤ ∆𝑡

𝑛*∑︁
𝑛=1

(︁
‖
√

𝐾∇𝜉𝑛‖2 + ‖𝜅𝑛𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝜉𝑛‖2 + 4‖𝜉𝑛‖2 + ‖𝐸𝑛‖‖𝜉𝑛‖+ ‖𝜅𝑛𝑅̃𝑛‖2

+‖
√

𝐾∇𝐸̂𝑛‖2 + ‖𝜅𝑛𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝜂𝑛‖2 + ‖𝛿Δ𝑡𝜂𝑛‖2

)︁
.

(4.18)

By Theorems 3.1 and 4.1, the last four right-hand side terms can be bounded by 𝑄𝑀2((∆𝑡)2 + ℎ4). Using
Lemma 4.2, the second term on the right-hand side of (4.18) can be bounded by

∆𝑡

𝑛*∑︁
𝑛=1

⃦⃦⃦
𝜅𝑛𝐼

1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 𝜉𝑛

⃦⃦⃦2

≤ ∆𝑡 ‖𝜅‖2𝐶[0,1]

𝑛*∑︁
𝑛=1

(︁ 𝑛∑︁
𝑘=1

𝑐𝑛,𝑘

⃦⃦
𝜉𝑘−1

⃦⃦)︁2

≤ 𝑄∆𝑡

𝑛*∑︁
𝑛=1

𝑛∑︁
𝑘=1

𝑐𝑛,𝑘

⃦⃦
𝜉𝑘−1

⃦⃦2
𝑛∑︁

𝑘=1

𝑐𝑛,𝑘

≤ 𝑄∆𝑡

𝑛*∑︁
𝑘=1

𝑛*∑︁
𝑛=𝑘

𝑐𝑛,𝑘

⃦⃦
𝜉𝑘−1

⃦⃦2 ≤ 𝑄∆𝑡

𝑛*∑︁
𝑘=1

⃦⃦
𝜉𝑘−1

⃦⃦2
.

We incorporate the preceding estimates in (4.18) to conclude

‖𝜉𝑛*‖2 + ‖
√

𝐾∇ ˜̂
𝜉𝑛*‖2 ≤ 𝑄𝑀2((∆𝑡)2 + ℎ4) + 𝑄∆𝑡

𝑛*∑︁
𝑛=1

(︀
‖𝜉𝑛‖2 + ‖

√
𝐾∇𝜉𝑛‖2

)︀
+ ∆𝑡

𝑛*∑︁
𝑛=1

‖𝐸𝑛‖‖𝜉𝑛‖.

The rest of this proof can be performed similar to that of Theorem 3.2 and thus be omitted. �

Theorem 4.4. Under the Condition S, 𝑂(𝑁2 log 𝑁) operations is required to generate the coefficients 𝑐𝑛,𝑘 for
1 ≤ 𝑘 ≤ 𝑛 ≤ 𝑁 , without loss of the numerical accuracy proved in Theorem4.3.

Proof. From (4.3), 𝑐𝑛,𝑘 for 1 ≤ 𝑘 ≤ 𝑛 ≤ 𝑁 can be generated by computing 𝑏̃𝑛,𝑛, 𝑏̃𝑛,𝑛−1, 𝐶𝑠
𝑛 and 𝑔𝑛−𝑘(1− 𝛾, 𝑠)

with 1 ≤ 𝑛 ≤ 𝑁 , 0 ≤ 𝑠 ≤ 𝑆 and 2 ≤ 𝑛− 𝑘 ≤ 𝑁 − 1. We prove the theorem from the following observations:

– {𝑏̃𝑛,𝑛−1, 𝑏̃𝑛,𝑛}𝑁
𝑛=1 can be approximated by the composite rectangle formula with the 𝑂(∆𝑡) accuracy, which

requires 𝑂(𝑁2) computational cost.
– Evaluating 𝐶𝑠

𝑛 for 1 ≤ 𝑛 ≤ 𝑁 and 0 ≤ 𝑠 ≤ 𝑆 with 𝑆 = 𝑂(log 𝑁) by the composite rectangle formula requires
𝑂(𝑆𝑁2) = 𝑂(𝑁2 log 𝑁) operations.

– By the translation invariance of 𝑔𝜈
𝑛−𝑘 for 0 ≤ 𝜈 ≤ 𝑆 and 𝑆 = 𝑂(log 𝑁), 𝑂(𝑆𝑁) = 𝑂(𝑁 log 𝑁) operations is

needed for computing 𝑔𝜈
𝑛−𝑘 for 2 ≤ 𝑛− 𝑘 ≤ 𝑁 − 1.
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– From (4.3), each 𝑐𝑛,𝑘 is a summation of 𝑔𝑛−𝑘(1− 𝛾, 𝑠) multiplied by 𝐶𝑠
𝑛 for 1 ≤ 𝑠 ≤ 𝑆, which totally leads

to 𝑂(𝑁2 log 𝑁) operations for 2 ≤ 𝑛− 𝑘 ≤ 𝑁 − 1.

We summarize the above observations to complete the proof. �

Remark 4.5. Based on the proof of Theorem 4.4, it suffices to approximate 𝑏̃𝑛,𝑘 by 𝑐𝑛,𝑘 for 𝑛− 𝑘 ≥ 𝑆 rather
than 𝑛− 𝑘 ≥ 2, with the same magnitude of computational cost.

5. Numerical experiments

We carry out numerical experiments to investigate the performance of the finite element method (FEM)
(3.8)–(3.9) and the novel FEM (nFEM) (4.8)–(4.9) by measuring their convergence rates and efficiency of
generating the coefficients in discretizations. We choose 𝑇 = 1, Ω = (0, 1) or (0, 1)2, 𝛾 = 0, 𝛾 = 0.6, 𝜅(𝑡) =
(𝛾2/2 + 𝛾𝑡(1− sin(𝜋𝑡))) /(𝛾2 + 𝛾 cos(𝜋𝛾)/𝜋 − sin(𝜋𝛾)/𝜋2) and 𝐾 = 0.01. The 𝜔(𝛾, 𝑡) is chosen to be

𝜔(𝛾, 𝑡) =
𝛾 + 𝑡(1− sin(𝜋𝑡))

𝛾2/2 + 𝛾𝑡(1− sin(𝜋𝑡))
,

∫︁ 𝛾

0

𝜔(𝛾, 𝑡)𝑑𝛾 = 1.

In numerical experiments, we apply the uniform rectangular partition on Ω with the mesh size ℎ, and set
𝜎 = ∆𝑡 and 𝑆 = ⌊𝑒3/2 ln 𝑁⌋ = −⌊𝑒3/2 ln ∆𝑡⌋ for the FEM and nFEM, respectively. As the spatial discretization
is standard, we set ℎ = 2−6 and only measure the temporal convergence rates by

‖𝑢− 𝑈‖𝐿̂∞(𝐿̂2) ≤ 𝑄𝑀(∆𝑡)𝛼, ‖𝑧 − 𝑍‖𝐿̂∞(𝐿̂2) ≤ 𝑄𝑀(∆𝑡)𝜄,

and similarly, ‖𝑢−𝑈̃‖𝐿̂∞(𝐿̂2) and ‖𝑧−𝑍‖𝐿̂∞(𝐿̂2) with respect to 𝛼̃ and 𝜄̃, respectively. We also record the following
two kinds of CPU times of generating entries of temporal discretization coefficients, that is, let 𝐶𝑃𝑈𝐹𝐸𝑀

and 𝐶𝑃𝑈𝑛𝐹𝐸𝑀 denote the CPU time of computing coefficients of 𝐼
1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 and 𝐼

1−𝜔(𝛾,𝑡𝑛)
Δ𝑡 for 1 ≤ 𝑛 ≤ 𝑁 ,

respectively. The increasing ratio of CPU times is defined by

𝑅𝑘 := log
(︁𝐶𝑃𝑈(𝑁𝑘+1)

𝐶𝑃𝑈(𝑁𝑘)

)︁
/ log

(︁𝑁𝑘+1

𝑁𝑘

)︁
,

where 𝑁𝑘 is the number of degree of freedom of the temporal partition in the 𝑘th computation and 𝑅𝑘 is the
corresponding order of magnitude.

5.1. Model (1.4) with smooth solutions

We test the performance of FEM and nFEM with smooth solutions given by

(𝑖). 𝑢(𝑥, 𝑡) = 𝑒−𝑡 sin(2𝜋𝑡) sin(𝜋𝑥), (𝑖𝑖). 𝑢(𝑥, 𝑦, 𝑡) = 𝑒−𝑡 sin(2𝜋𝑡) sin(𝜋𝑥) sin(𝜋𝑦),

and the right-hand side terms 𝑓(𝑥, 𝑡) or 𝑓(𝑥, 𝑦, 𝑡) are computed accordingly. We present errors of numerical
solutions in Tables 1–2, from which we observe that both FEM and nFEM have the same accuracy. We also
present 𝐶𝑃𝑈𝐹𝐸𝑀 and 𝐶𝑃𝑈𝑛𝐹𝐸𝑀 for case (i) in Table 3, from which we observe that nFEM is more efficient
that FEM. We further plot these CPU times in Figure 1, which indicates that the 𝐶𝑃𝑈𝐹𝐸𝑀 increases cubically
while the 𝐶𝑃𝑈𝑛𝐹𝐸𝑀 increases almost quadratically, which is highly consistent with the analysis in Theorem 4.4.

5.2. Model (1.4) with smooth data

We test the performance of FEM and nFEM with smooth right-hand side terms as

(𝑖𝑖𝑖). 𝑓(𝑥, 𝑡) = sin(2𝜋𝑡) sin(𝜋𝑥), (𝑖𝑣). 𝑓(𝑥, 𝑦, 𝑡) = sin(2𝜋𝑡) sin(𝜋𝑥) sin(𝜋𝑦).

As the exact solutions are not available, we set the numerical solutions of FEM with 𝑁 = 210 and ℎ = 2−6 to
be the reference solutions. The errors and convergence rates of the schemes are presented in Tables 4–5, which
again demonstrate the accuracy of the nFEM.
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Table 1. Accuracy of FEM and nFEM for case (i).

Δ𝑡 ‖𝑢− 𝑈‖𝐿̂∞(𝐿̂2) 𝛼 ‖𝑧 − 𝑍‖𝐿̂∞(𝐿̂2) 𝜄

2−4 3.2383E-01 - 6.5738E-01 -
2−5 1.6857E-01 0.94 3.2756E-01 1.00
2−6 8.5772E-02 0.97 1.6222E-01 1.01
2−7 4.3371E-02 0.98 8.0554E-02 1.01

Δ𝑡 ‖𝑢− 𝑈̃‖𝐿̂∞(𝐿̂2) 𝛼̃ ‖𝑧 − 𝑍‖𝐿̂∞(𝐿̂2) 𝜄̃

2−4 3.2383E-01 - 6.5738E-01 -
2−5 1.6857E-01 0.94 3.2756E-01 1.00
2−6 8.5772E-02 0.97 1.6222E-01 1.01
2−7 4.3371E-02 0.98 8.0554E-02 1.01

Table 2. Accuracy of FEM and nFEM for case (ii).

Δ𝑡 ‖𝑢− 𝑈‖𝐿̂∞(𝐿̂2) 𝛼 ‖𝑧 − 𝑍‖𝐿̂∞(𝐿̂2) 𝜄

2−4 2.3030E-01 - 4.6468E-01 -
2−5 1.2108E-01 0.93 2.2707E-01 1.03
2−6 6.2862E-02 0.95 1.0866E-01 1.06
2−7 3.3037E-02 0.93 5.0051E-02 1.18

Δ𝑡 ‖𝑢− 𝑈̃‖𝐿̂∞(𝐿̂2) 𝛼̃ ‖𝑧 − 𝑍‖𝐿̂∞(𝐿̂2) 𝜄̃

2−4 2.3030E-01 - 4.6468E-01 -
2−5 1.2108E-01 0.93 2.2707E-01 1.03
2−6 6.2862E-02 0.95 1.0866E-01 1.06
2−7 3.3037E-02 0.93 5.0051E-02 1.18

Table 3. CPU times of generating temporal discretization coefficients.

𝑁 28 29 210 211 212 213 214

𝐶𝑃𝑈𝐹𝐸𝑀 26s 3min 27s 27min 15s 3h 38 mins 1day 5h > 3 days > 8 days

𝐶𝑃𝑈𝑛𝐹𝐸𝑀 12s 57s 3min 28s 19min 45s 1h 26min 6h 13mins 1day 3hs

Concluding remarks

In this paper we prove the well-posedness and regularity of a variably distributed-order time-fractional vibra-
tion PDE (1.4), and develop and analyze a fast numerical discretization of the model. In the mathematical model
the fractional order time derivative term accurately describes the power-law behavior of viscoelastic damping
mechanisms in the vibrations. The time-dependent variably distributed-order time-fractional derivative term
accounts for the integrated effect of the fractional differential operators with respect to a spectrum of fractional
orders 𝛾 and its impact on the evoluation of the viscoelastic properties of the materials.

In the vibration model (1.4) the viscoelastic damping coefficient 𝜅 and the variably distributed order 𝜔 are
assumed to be spatially homogeneous based on the following motivations: The model (1.4) describes viscoelas-
tic vibrations of physical structures such as membranes (and strings), which have negligible thickness (and
width) and so provide only negligible resistance to bendings. In these circumstances the variation in thickness
(and width) in membrances (and strings) shall not introduce spatial variations of 𝜅 and 𝜔. Hence, the spatial
variations of the these parameters probably just introduce extra complexities in terms of measurements of the
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Figure 1. CPU times (first row) and orders of magnitude (second row) for case (i) (left) and
(ii) (right).

Table 4. Accuracy of FEM and nFEM for case (iii).

Δ𝑡 ‖𝑢− 𝑈‖𝐿̂∞(𝐿̂2) 𝛼 ‖𝑧 − 𝑍‖𝐿̂∞(𝐿̂2) 𝜄

2−4 1.2046E-02 - 3.1546E-02 -
2−5 6.0744E-03 0.99 1.5251E-02 1.05
2−6 2.9746E-03 1.03 7.3439E-03 1.05
2−7 1.3952E-03 1.09 3.4130E-03 1.11

Δ𝑡 ‖𝑢− 𝑈̃‖𝐿̂∞(𝐿̂2) 𝛼̃ ‖𝑧 − 𝑍‖𝐿̂∞(𝐿̂2) 𝜄̃

2−4 1.2046E-02 - 3.1546E-02 -
2−5 6.0744E-03 0.99 1.5251E-02 1.05
2−6 2.9746E-03 1.03 7.3439E-03 1.05
2−7 1.3952E-03 1.09 3.4130E-03 1.11

corresponding parameters and the design and manufacture of the physical structures, and the model (1.4) suf-
fices in many applications. Mathematically and numerically, these simplifications simplifies the analysis of the
model and its numerical discretizations.

Space-dependent parameters do occur in complicated scenarios. For instance, long time vibrations may lead
to material fatigue or even damage such as locally reduced stiffness or tension, which may yield spatial hetero-
geneities. The corresponding mathematical model may assume the form of (1.4) where 𝜅 and 𝜔 are also space
dependent, with possible nonlinearities and couplings to other equation or constraints. Additional issues that
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Table 5. Accuracy of FEM and nFEM for case (iv).

Δ𝑡 ‖𝑢− 𝑈‖𝐿̂∞(𝐿̂2) 𝛼 ‖𝑧 − 𝑍‖𝐿̂∞(𝐿̂2) 𝜄

2−4 6.8496E-02 - 1.8091E-01 -
2−5 3.4523E-02 0.99 8.7470E-02 1.05
2−6 1.6907E-02 1.03 4.2142E-02 1.05
2−7 7.9304E-03 1.09 1.9587E-02 1.11

Δ𝑡 ‖𝑢− 𝑈̃‖𝐿̂∞(𝐿̂2) 𝛼̃ ‖𝑧 − 𝑍‖𝐿̂∞(𝐿̂2) 𝜄̃

2−4 6.8496E-02 - 1.8091E-01 -
2−5 3.4523E-02 0.99 8.7470E-02 1.05
2−6 1.6907E-02 1.03 4.2142E-02 1.05
2−7 7.9304E-03 1.09 1.9587E-02 1.11

need to be addressed include the following: (i) The spectral decomposition based mathematical analysis in this
paper does not apply to this case. (ii) Numerically, due to the coupling of 𝜔, 𝜅 and the inner product in the
FEM, the corresponding temporal discretization coefficients could not be separated from the inner product,
which could complicate the numerical analysis. Finally, it is possible to combine the novel discretization and
the fast algorithm developed and analyzed in this paper, which are devoted only for the evaluation of the vari-
ably distributed-order time-fractional derivative, with the existing numerical techniques on complex domains
to analyze the proposed model on a more complex geometry. All the possible extensions will be investigated in
the near future.
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