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Abstract. Long-time evolution has shaped a harmonious host-
microbiota symbiosis consisting of intestinal microbiota in conjunction
with the host immune system. Inflammatory bowel disease (IBD) is a
result of the dysbiotic microbial composition together with aberrant
mucosal immune responses, while the underlying mechanism is far from
clear. In this report, we creatively proposed that when correlating with
the host metabolism, functional microbial communities matter more than
individual bacteria. Based on this assumption, we performed a systematic
analysis to characterize the co-metabolism of host and gut microbiota
established on a set of newly diagnosed Crohn’s disease (CD) samples
and healthy controls. From the host side, we applied gene set enrichment
analysis on host mucosal proteome data to identify those host pathways
associated with CD. At the same time, we applied community detec-
tion analysis on the metagenomic data of mucosal microbiota to identify
those microbial communities, which were assembled for a functional pur-
pose. Then, the correlation analysis between host pathways and microbial
communities was conducted. We discovered two microbial communities
negatively correlated with IBD enriched host pathways. The dominant
genera for these two microbial communities are known as health-benefits
and could serve as a reference for designing complex beneficial microor-
ganisms for IBD treatment. The correlated host pathways are all relevant
to MHC antigen presentation pathways, which hints toward a possible
mechanism of immune-microbiota cross talk underlying IBD.
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1 Introduction

The inflammatory bowel disease (IBD) known as Crohn’s disease (CD) and
ulcerative colitis are a result of accumulating alterations in intestinal micro-
biota and disorders of the immune system. However, the mechanisms leading to
the chronic mucosal inflammation that characterize IBD are ambiguous. There
has been a dramatic increase of metagenomic and metabolomic studies of IBD
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in the past decades [1] aiming to characterize IBD from host metabolic activi-
ties and the accompanied microbial dysbiosis. Studies aiming to understand the
host pathways involved in IBD initiation have revealed that IBD are strongly
associated with the immune system, including antigen processing and presenta-
tion pathways linked with major histocompatibility complex (MHC)[2] Antigen
presentation by intestinal epithelial cells (IEC) is crucial for intestinal home-
ostasis. Disturbances of MHC I- and II-related presentation pathways in IEC
are involved in an altered activation of CD4+ and CD8+ T cells in IBD [3].
From the microbial side, current literature has clearly demonstrated a perturba-
tion of the gut microbiota in IBD patients [4]. Gevers et al. linked alterations in
mucosal-associated microbiota with CD status using metagenomic analysis [5]. A
meta-analysis reported 467 out of 536 patients with CD (87%) experienced res-
olution of diarrhea after fecal microbiota transplant treatment [6], which proved
the significance of microbial dysbiosis in CD patients.

The microbes inside the human gut often have correlated functions, and can
be aggregated into different functional communities that are able to dynami-
cally respond to or modulate the host metabolic activities [7]. When correlat-
ing with the host metabolites, the functional communities of microbes matter
more than the relative abundance of individual microbes [8]. We proposed to
apply community detection algorithm on the microbial composition of human
gut to identify microbial communities and then cross-link these communities
with gene pathways enriched by IBD-associated genes. With this approach, gen-
era often reported as beneficial, such as Bacteroides, Blautia, Faecalibacterium
and Propionibacterium, are revealed as negatively interacting with the those host
immunological pathways enriched in IBD patients, especially those relevant to
MHC presentation.

2 Materials and Methods

2.1 Sample and Data Description

We retrieved data for 21 subjects with both 16S rRNA sequencing data of
mucosa-luminal interface (MLI) microbiota and proteome data of colon or ileum
from a previous study [9], including 11 Crohn’s disease patients and 10 healthy
controls (Table 1). These Crohn’s disease samples represent new-onset teenagers,
so there are no treatment influence and few co-morbidities compared with sam-
ples from adults. More details about the sampling and sequencing technologies
could be found in the reference [9].

Table 1. Sample information

Groups Number Age Male Female

Healthy controls 10 14.25 ± 2.70 6 4

Crohn’s diseases 11 13.3 ± 2.92 6 5
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2.2 Annotation of the 16S rDNA Sequencing Data of the
Mucosa-Luminal Interface Microbiota

The 16S rDNA sequencing data of the MLI microbiota were processed in a
standard pipeline [10]. Raw reads were downloaded from NCBI with accession
code SRP056939 [9]. Read quality control was conducted by applying FastQC.
Those high-quality reads passing quality controls were converted into fasta for-
mat and imported into QIIME using QIIME import command. Duplications
were removed for speeding up the annotation process. Dereplicated contigs were
clustered into operational taxonomic units (OTUs) using a closed-reference OTU
picking workflow against the Greengenes 16S rRNA gene database (version gg-
13-8) based on an average percentage of identity 0.97, after which a set of rep-
resentative sequences and an OTU relative abundance (proportion) matrix were
obtained. A taxonomic annotation was assigned to the representative sequence
of each OTU using classify-sklearn of QIIME. By summing up the abundance
of OTUs assigned to the same genus, a taxonomic abundance matrix can be
obtained on genus level.

2.3 Microbial Community Detection

The microbes inside human gut aggregate into different communities for func-
tional purposes. When analyzing crosstalks with the host metabolic pathways,
considering microbes in the same community as a whole is likely to shed new light
on the interaction mechanism between microbiota and host pathways. In order to
identify microbial communities, we first calculated a pairwise similarity matrix
for all OTUs. The similarity was quantified using the correlation between each
pair of OTUs regarding their relative abundance across all samples. In order to
make sure the microbes in the same community correlate with each other in the
same direction and also exclude spurious correlations induced by the unit-sum
constraint, only positive correlations were kept while negative correlations were
set as zeros. Furthermore, weak and insignificant correlations (i.e., correlation
coefficient |R| < 0.2 or p-value P > 0.05) were discarded and set as zeros. Once
the similarity matrix was generated, Louvain community detection algorithm
[11] was applied on it to identify OTU clusters. 12 OTU clusters were identified,
and each cluster of OTUs was considered as one microbial community.

We then defined the level of activity for each microbial community. Since only
positive correlations were considered during the community detection, the cross-
sample alteration of OTUs in the same microbial community are in the same
trend. The easiest way to quantify the level of community activity is summing
up the relative abundance of all OTUs in each OTU cluster/community.

2.4 Proteome Data of the Host Tissue (Human Colon or Ileum)

For the same set of 21 subjects with 16S rDNA sequencing data of MLI, the
biopsies of their colon or ileum were profiled by mass spectrometry to char-
acterize their proteome. We retrieved the relative abundance matrix of 3,861
proteins/genes from a public data source released by Mottawea et al. [9].
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2.5 Gene Set Enrichment Analysis

IBD enriched gene pathways were identified by applying Gene Set Enrichment
Analysis (GSEA) [12] using gene sets in the KEGG database [13] as the reference
database. Genes were sorted according to their fold change, and the fold change
(FC) for gene i was defined as

FCi =
1

NC

∑j=NC

j=1 Cij − 1
NH

∑j=NH

j=1 Hij

1
(NC+NH) (

∑j=NC

j=1 Cij + 1
NH

∑j=NH

j=1 Hij)
(1)

where, NC is the total number of samples in the Crohn’s group and NH is the
total number of samples in the group of healthy control. Cij and Hij are the
relative abundance of gene i in the jth Crohn’s sample and jth healthy sample,
respectively. When performing GSEA, the number of permutations was set as
1000, the minimal gene set size was set as 20, and the cutoff for p-value was set
as 0.05 .

2.6 The Activeness of Each Gene Pathway

The activeness of a metabolic pathway can be quantified by the expression lev-
els of genes in the pathway. The simplest idea for calculating the activeness of a
pathway is to compute the average of gene expression levels in this pathway. How-
ever, genes in the same gene pathway may be positively correlated but may also
be negatively correlated. Therefore, when computing the simple average within
a gene pathway, the negatively correlated genes will cancel out each other. As
an alternative approach, principle component analysis (PCA) was adopted here.
PCA performs dimension reduction by linearly combining the genes/features to
derive principle component scores that maximally preserve the variance. In a
gene pathway where a large portion of genes are correlated, the first principle
component score is typically dominated by a weighted combination of the cor-
related genes, where the signs of the weights are able to avoid the cancelling
effect due to negative correlations among genes in the pathway. Therefore, oper-
ationally, given the gene list for a gene pathway, a sub-matrix containing the
relative abundance of these genes was retrieved. The first principle component
of the sub-matrix was used to represent the overall activeness of this pathway.

3 Results

As shown in Fig. 1, based on the proteome data of host colon and ileum, our
approach aims to identify gene pathways significantly enriched by those genes
associated with the IBD condition. In parallel, our approach takes the taxonomic
composition of intestinal microbiota, and identifies microbial communities. After
that, the correlations between gene pathways and OTU communities are exam-
ined to discover OTU communities that are closely linked with IBD-enriched
pathways.
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Fig. 1. Schematic diagram of the analysis pipeline. The left side shows the procedure of
identifying host pathways and calculating their activeness. Genes were sorted according
to their fold change of expression levels in CD vs healthy controls. Then GSEA iden-
tified those KEGG pathways significantly enriched/depleted in CD patients. Then the
activeness of these KEGG pathways were calculated using PCA analysis as described
in the Material and Method section. The right side of Fig. 1 illustrated how microbial
OTUs were aggregated into different communities. The activeness of each microbial
community was calculated by simply summing up the relative abundance of every
OTU in that community. Finally, for each combination of host pathway and microbial
community, a Pearson Correlation was calculated based on their activeness. Significant
correlation implied a strong interaction between host metabolic pathways and activities
of those bacteria in the corresponding microbial community.

3.1 Pathways Enriched in IBD Patients

Several metabolic pathways were identified as significantly enriched or down-
regulated in IBD patients compared to the healthy controls. Using the KEGG
pathway database as reference, we performed GSEA and identified 17 KEGG
pathways as significantly enriched (as shown in Fig. 2). Among these 17 KEGG
pathways, five pathways are involved in virus infection, i.e., Epstein-Barr virus
infection, Herpes simplex virus 1 infection, Measles, Hepatitis B and Influenza
A; two pathways are related to bacterial infection, i.e., Tuberculosis and Staphy-
lococcus aureus infection; one pathway is associated with Toxoplasmosis, which
is also an infectious disease. These infectious diseases are all linked with disor-
dered immune responses [14]. The other nine pathways are also relevant to immune
response. NOD-like receptor (NLR) signaling pathway mediates the production of
pro-inflammatory cytokines. NLR together with inflammatory factors enhance the
body’s inflammatory response and antimicrobial infection [15]. Pathway Comple-
ment and coagulation cascades, and pathway Antigen processing and presentation
are well known as part of immune system. Pathway Phagosome is linked to abnor-
mal immune response. Transcriptional misregulation in cancer is a NF-kappa B
related pathway. Osteoclast differentiation is mainly regulated by signaling path-
ways activated by immune receptors. Systemic lupus erythematosus is an autoim-
mune disease. IL-17 signaling pathway is mainly involved in mucosal host defense
mechanisms. The IL-17 family signals via their correspondent receptors and acti-
vates downstream pathways that include NF-kappaB, MAPKs and C/EBPs to
induce the expression of antimicrobial peptides, cytokines and chemokines.
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Eight of the 17 identified KEGG pathways were indicated as infectious dis-
eases, and these eight pathways cover a broad range of biological processes. To
identify the key effectors of the metabolic alterations in these pathways, we
used the Hallmark gene sets in MsigDB [16] as the reference database to per-
form another set of GSEA analyses. Six pathways were significantly enriched
by genes associated with IBD, i.e., Complement, Interferon gamma response,
Allograft rejection, Coagulation, Interferon alpha response, and TNFA signal-
ing via NFKB. These pathways points to the up-regulation of adaptive immune
responses during IBD, which is consistent with what we found in the KEGG
pathway analyses, and confirms our previous conjecture that these eight KEGG
pathways were related to infectious diseases, indicating alterations of the immune
system.
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Fig. 2. Pathways enriched in CD patients. These 17 pathways were identified through
GSEA with KEGG database as reference. The size of each dot represents the number
of genes in each gene set and the adjusted P values of testing enrichment significance
were illustrated using different colors as shown in the color bar.

3.2 OTU Communities Within Human Gut

Stintzi and his colleagues reported significant OTUs as those negatively cor-
related with the severity of host suffering IBD. In contrast, our analysis takes
a different perspective. We proposed to examine microbial communities, which
are aggregated by multiple OTUs. Before being manifested in disease severity,
alterations in the human gut microbiota first interact with the host metabolism.
Instead of individually interacting with the host metabolism, different microbes
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share common set of metabolic activities aggregated into functional microbial
communities. After taxonomic binning of all high-quality raw reads of whole-
genome-sequenced human gut microbiota, we searched for microbial communities
based on pairwise correlations between OTUs. The correlations were quantified
using Spearman correlation coefficients, and the OTU communities were iden-
tified using Louvain community detection algorithm. Overall, 12 OTU commu-
nities were discovered. Different OTU communities were dominated by different
genera, and the genera in the same community are supposed to participate in
the same sets of metabolic pathways.

3.3 Multiple Health Beneficial Genera Are Negatively Correlated
with Inflammation-Relevant MHC Pathways

As described in the Material and Methods section, the correlation between micro-
bial OTU communities and host metabolic pathways could be computed based
on the activeness of each OTU community and host metabolic pathway. Two out
of the 12 OTU communities (OTU community number 2 and number 7) were
identified to be negatively correlated with seven Crohn-enriched host metabolic
pathways (Pearson correlation with correlation coefficient |R| > 0.4 and the
correlating significance test p-value P < 0.05) (Fig. 3).

By counting the occurrences of different genera in these two OTU communi-
ties, the dominant genera were found to be beneficial ones. Nine most dominant
genera (assigned to > 5 OTUs) these two OTU communities affiliated to include
Bacteroides, Blautia, Clostridium, Dorea, Faecalibacterium, Propionibacterium,
Prevotella, Ruminococcus and Parabacteroides. Out of these nine dominant
genera, five genera Blautia, Roseburia, Ruminococcus, Clostridium and Faecal-
ibacterium were reported as negatively correlated with IBD severity in the paper
where we obtained the raw data [9], which supported our findings here. Com-
prehensive literature review of these nine dominant genera advanced our under-
standing about the metabolic roles of these genera and provided evidence of
the health beneficial roles of these genera. Bacteroides has been shown to have
the ability to influence the host immune system and inhibit the activities of
other competing pathogens [17]. Blautia is associated with the remission of IBD
and one of the most important features characterizing disease activity levels in
pediatric IBD patients [18]. Clostridium spp. takes colonization resistance in the
mucosa and plays an important role in host immune response, and is one of those
strong inducers of colonic T regulatory cell (Treg) accumulation [19]. Dorea genus
has also been reported to play an important role in host immune system activity
[20], suggested by an elevated abundance in patients with an autoimmune condi-
tion. As a butyrate-producing genus, Faecalibacterum are decreased in Crohn’s
diseases compared to healthy controls [21]. Species in genus Propionibacterium
have been shown to display promising immunomodulatory properties and anti-
inflammatory effects via interacting with surface proteins [22,22,23]. Prevotella
was associated with T helper type 17 (Th17) immune response, which can be
beneficial to the host during infection [24]. Ruminococcus species R. albus, R.
callidus, and R. bromii are less abundant in patients with IBD compared to the



18 C. Xu et al.

CB

0.0

0.2

0.4

0.6

0.8

R
un

ni
ng

 E
nr

ic
hm

en
t S

co
re

Antigen processing and presentation
Epstein−Barr virus infection
Hepatitis B
Leishmaniasis
Phagosome
Staphylococcus aureus infection
Systemic lupus erythematosus

Host pathways

−2

−1

0

1

2

1000 2000 3000
Rank in Ordered Dataset

R
an

ke
d 

lis
t m

et
ric

A

Dominant genera for cluster 2

Bacteroides

Blautia

Clostridium
Dorea

Faecalibacterium
Parabacteroides

Prevotella

Ruminococcus

others

Dominant genera for cluster 7

Bacteroides

Blautia

Faecalibacterium

Propionibacterium

others

Fig. 3. Two microbial communities were closely correlated with seven immune related
host pathways. A, Those seven host pathways enriched in CD samples and also cor-
related with the microbial communities. On the bottom of plot A, each vertical line
represents the fold change of one gene regarding gene expression levels in CD vs.
healthy controls. A positive value indicates this gene is more abundant in CD, other-
wise more abundant in healthy controls. All genes were sorted in a descending order
of fold changes. For each host pathway, an enrichment score is calculated based on the
fold changes of those genes emerging in this pathway. A positive enrichment score indi-
cates that pathway is up-regulated in CD, vice versa. B, Dominant genera for those two
OTU communities closely correlated the host pathways. Only those genera with more
than five OTUs affiliated with were illustrated. The area size on pie plot represents the
number of OTUs assigned to that genus.

healthy controls [25]. Furthermore, Prevotella, Parabacteroide, Bacteroides, Fae-
calibacterium and Clostridium have been shown to have increased abundance in
healthy controls compared to multiple sclerosis patients, which further proved



Immune-Microbiota Crosstalk Underlying Inflammatory Bowel Disease 19

the immunomodulatory role of these genera [26,26–29]. Giri et al. also reported
Prevotella, Parabacteroides, Clostridium, and Adlercreutzia as part of the anti-
inflammatory symbionts [30].

Seven Crohn-enriched host metabolic pathways were correlated with the
alteration of the microbial communities. These seven KEGG pathways are Leish-
maniasis, Epstein-Barr virus infection, Staphylococcus aureus infection, Hep-
atitis B, Antigen processing and presentation, Systemic lupus erythematosus
and Phagosome. Literature review of these seven pathways led to an interesting
finding that they are all relevant to MHC processing and presentation path-
ways. Leishmaniasis was reported to be associated with the defective expres-
sion of MHC genes, which silences subsequent T cell activation mediated by
macrophages, resulting in abnormal immune responses [14,14,31]. MHC class
II was observed to be induced following Epstein-Barr virus infection [32,32,33].
Staphylococcus aureus expresses an MHC class II analog protein (Map), which
influences the immune response of T cells [34]. MHC class I-related chain A
(MICA) was induced after HBV infection compared with the uninfected control
[35]. Antigen processing and presentation is closely relevant to EBV and MHC
presentation. Systemic lupus erythematosus is closely linked with the MHC rele-
vant pathways [36]. Bacterially derived antigens within the phagosome are closely
linked with the MHC-I processing and presentation pathway [37].

4 Conclusions

In the literature, most studies on the host metabolism and the microbial commu-
nity have been conducted separately. To the best of our knowledge, none of the
previous studies correlated the host metabolism with microbes in a community
manner. Here we explored a new analysis approach addressing the importance of
microbial communities for the interplay between microbiota and host metabolic
pathways. We identified two microbial communities of beneficial microbes that
provide potential directions for developing beneficial microbes to treat IBD. Ani-
mal studies should be designed to test the influence of these beneficial microbes
on host medical conditions, by transplanting the combination of these microbes
to mucosal of IBD mouse.
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