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Abstract— Mixture distributions are extensively used as a
modeling tool in diverse areas from machine learning to com-
munications engineering to physics, and obtaining bounds on the
entropy of mixture distributions is of fundamental importance in
many of these applications. This article provides sharp bounds on
the entropy concavity deficit, which is the difference between the
differential entropy of the mixture and the weighted sum of differ-
ential entropies of constituent components. Toward establishing
lower and upper bounds on the concavity deficit, results that are
of importance in their own right are obtained. In order to obtain
nontrivial upper bounds, properties of the skew-divergence are
developed and notions of “skew” f-divergences are introduced;
a reverse Pinsker inequality and a bound on Jensen-Shannon
divergence are obtained along the way. Complementary lower
bounds are derived with special attention paid to the case that
corresponds to independent summation of a continuous and a
discrete random variable. Several applications of the bounds
are delineated, including to mutual information of additive
noise channels, thermodynamics of computation, and functional
inequalities.

Index Terms— Mixture distributions, differential entropy, con-
cavity, f-divergence.

I. INTRODUCTION

IXTURE models are extensively employed in diverse
disciplines including genetics, biology, medicine, eco-
nomics, speech recognition, as the distribution of a signal at
the receiver of a communication channel when the transmitter
sends a random element of a codebook, or in models of
clustering or classification in machine learning (see, e.g., [29],
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[71]). A mixture model is described by a density of the
form f =", p;fi(x), where each f; is a probability density
function and each p; is a nonnegative weight with ) . p; = 1.
Such mixture densities have a natural probabilistic meaning as
outcomes of a two stage random process with the first stage
being a random draw, ¢, from the probability mass function
p, followed by choosing a vector x according to a probability
density function f;(-) on a Euclidean space; equivalently, it is
the density of X + Z, where X is a discrete random variable
taking values z; with probabilities p;, and Z is a dependent
variable such that P(Z € A|X = ;) = [, fi(z + x;)dz. The
differential entropy of this mixture is of significant interest.

Our original motivation for this paper came from the fun-
damental study of thermodynamics of computation, in which
memory models are well approximated by mixture models,
while the erasure of a bit of information is akin to the
state described by a single unimodal density. Of fundamental
importance here is the entropy of the mixture model which is
used to estimate the thermodynamic change in entropy in an
erasure process and for other computations [38], [75]. It is not
possible, analytically, to determine the differential entropy of
the mixture model > p; fi, even in the simplest case where
each f; is a Gaussian density, and hence one is interested
in refined bounds on the same. While this was our original
motivation, the results of this paper are of broader interest
and we strive to give general statements, so as not to limit the
applicability.

For a random vector Z taking values in R? with probability
density f, the differential entropy is defined as h(Z) = h(f) =
— Jga f(2)1og f(z)dz, where the integral is taken with respect
to Lebesgue measure. We will frequently omit the qualifier
“differential” when this is obvious from context and simply
call it the entropy. It is to be noted that, unlike ~(>_ p; f;), the
quantity >, p;h(f;) is more readily determinable and thus the
concavity deficit h(>_ p;fi) — >_pih(fi) is of interest. This
quantity can also be interpreted as a generalization of the
Jensen-Shannon divergence [15], and its quantum analog (with
density functions replaced by density matrices and Shannon
entropy replaced by von Neumann entropy) is the Holevo
information, which plays a key role in Holevo’s theorem
bounding the amount of accessible (classical) information in
a quantum state [33].

It is a classical fact, going back at least to the origins of
information theory,' that the entropy h is a concave function,

"Mathematically, the concavity of entropy is equivalent to the concavity of
¥ : 2 — —xlogx, seen by integrating V(> pifi) > >, pi¥(fs). Thus,
classical may refer to the 17th century depending on ones interpretation.
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which means that the concavity deficit is always non-negative:
h(f) = pih(f:) >0, (1)
i

with equality when f; = f; for all 4, j. Let X be a random
variable that takes values in a countable set where X = z;
with probability p;. Intimately related to the entropy h of
a mixture distribution f = Y p;f; and the concavity deficit
are the quantities H(p) := — Y p; logp;, and the conditional
entropies h(Z|X) and H(X|Z). Indeed, it is easy to show
an upper bound on the concavity deficit (see, e.g., [11], [19],
[85]) in the form

h(f) = pih(fi) < H(p), )
with equality when the supports of f; and f; are disjoint
when i # j. The main thrust of this article will be to provide
quantitative refinements of the upper and lower bounds on the
concavity deficit, improving upon the basic bounds (1) and (2).

As will be explained in more detail, both improvements
can be understood as “stability” results. In general, a stability
result for an inequality A(z) < B(z), with a known equality
case 2’ such that A(z’) = B(z'), is a result which shows that
when B(z) — A(x) is small, then the distance (in some sense)
between x and x’ is small as well. Examples of stability results
and quantitative sharpenings of information theoretic inequal-
ities in recent research include the following: the entropy
power inequality [18], [79], Talagrand’s inequality [57], the
Gaussian logarithmic Sobolev inequality [10], [24]-[26], and
Han’s inequality [5].

The main upper bound we establish is inspired by bounds in
the quantum setting developed by Audenaert [3] and utilizes
the total variation distance. Given two probability densities
f1 and fo with respect to a common measure u, the total
variation distance between them is defined as || f1 — fal|7v =
5 [ 11— faldp.

We will state the following theorem in terms of the usual
differential entropy, on Euclidean space with respect to the
Lebesgue measure. Within the article, the statements and
proofs will be given for a general Polish’> measure space
(E, ), from which the result below can be recovered as a
special case.

Theorem 1: Suppose f = >, p;fi, where f; are probability
density functions on R?, p; € [0,1), >, p; = 1. Define the

mixture complement of f; by fj(z) =3 Pi_ f.. Then

i#j 1—p;

h(f) — Z_mh(fi) < T;H(p)

where R
Ty = sup I fi = fill v
(2

Note that fj is characterized by the equality f = (1 —
Pj) fj +p; f;, which motivates the term “mixture complement”.
With this decomposition in mind, one can take the convention
that f; == f; when p; = 1 to extend the theorem to p; € [0, 1].
Theorem 1 shows that as distributions cluster in total variation

2A topological space is Polish when it is homeomorphic to a complete
metric space that possess a countable and dense subset.
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distance, the concavity deficit vanishes. The above result thus
considerably reduces the conservativeness of the upper bound
on the concavity deficit given by (2). Indeed consider the
following example with ¢ a symmetric unimodal density,
p €10,1], f1(z) = ¢(x —a) and fo(x) = ¢(z+ a) for a > 0.
Then by (2) h(pfi + (1 —p)f2) < H(p) + h(¢). However
noting that f1 = f5 and fo = f1 gives,

Ty = | f1 — fallrv
—/ 6z — a) — $(x + a)) da

B 0
-9 dz,
/Oqs(:c)x

so that Theorem 1 reduces to

h(pfi + (1= p)fa) < 2 ( / ' qs(:c)da:) H(p) + h(o). @)

Note that the right side of (3) is of the form h(¢) +
2¢(0)H (p)a + o(a). Taking ¢(x) = 1j_1/2.1/2)(7), we see
that equality in Theorem 1 holds for uniform distribu-
tions on intervals, since direct computations yields h(f) =
2 (J ¢(x)dz) H(p), and h(f;) = h(¢) = 0.

Let us also point out a mutual information interpretation of
the above in this special case. Observe that 2 foa ¢(x)dx =
1 —P(]Z2| > a) where Z has a symmetric unimodal density
¢. Thus, an alternative representation of these bounds in this
special case is as mutual information bounds

I(X;X +2) < HX)-P(|2]| > ) H(X) @

where X denotes an independent Bernoulli taking the values
+a with probability p and 1 — p.

Another interpretation of Theorem 1, is as a generalization
of the classical bounds on the Jensen-Shannon divergence by
the total variation distance [43], [78], which is recovered by
taking p; = p2 = % see Corollary 4.

As a stability result, Theorem 1 shows that a family of
distributions { f;} near equality in (2) only when the family
possesses an f; far from f; in total variation distance. When
n = 2 this forces || f1 — f2||7v to its maximum of 1.

The methods and technical development toward establishing
Theorem 1 are of independent interest. We develop a notion
of skew f-divergence for general f-divergences generalizing
the skew divergence (or skew relative entropy) introduced by
Lee [40], and in Theorem 4 we show that the class of f-
divergences is stable under the skew operation. After proving
elementary properties of the skew relative entropy in Proposi-
tion 4 and the skew chi-squared divergence in Proposition 5,
we adapt arguments due to Audenaert [3] from the quantum
setting to prove the two f-divergences are intertwined through
a differential equality. Further, it is demonstrated that classical
upper bound of the relative entropy by the chi-square diver-
gence can be generalized to the skew setting (see Theorem 5).
This is used to obtain a bound of the skew divergence by
the total variation in Theorem 6. As a corollary we obtain
a reverse Pinsker inequality due to Verdud [82]. With these
tools in hand, Theorem 1 is proven and we demonstrate that
the bound of the Jensen-Shannon divergence by total variation
distance [43], [78] is an immediate special case.
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In the converse direction (providing lower bounds on the
concavity deficit), our main result applies to the case where
all the component densities come from perturbations of a
random vector W in R¢ that has a log-concave and spherically
symmetric distribution. We say a random vector W has a log-
concave distribution when it possesses a density ¢ satisfying
o((1=t)z+ty) > ' =t(2) ¢! (y). We say W has a spherically
symmetric distribution when there exists ¢ : R — [0, 00)
such that the density p(z) = (|z]) for every z € RY,
where |z| = (/2 + 23 +...25. We employ the notation
By = {x € R? : |z| < A} for the centered closed ball of
radius \ in RY, 7 (t) = Fy(t) = P(|W| > t) for the tail
probability of W, and [|A|| := supy,, |1 |Aw| for the operator
norm of a matrix A : R — R<.

Theorem 2: Suppose that X is a discrete variable taking
values {z;} C RY, that satisfy |z; — ;| > 2\ for i # j
and W is independent, log-concave, and spherically symmetric
density, then there exists a constant C' := C'(\, W)

I(X+W;X)>H(X)-C T3()\)
with limy ., C(\, W) = Vd.

In fact an explicit bound for C'(A, W) can be given. One
can take

CO\W) = Vd+ < /B o(w) log? {3 + @} dw>5

+ A TN,

c
A

with A = 14+ h(W) + log [([|¢]le + () wy )], where wq
denotes the volume of the d-dimensional unit ball, BS denotes
the complement of By € R?.

Note, |W] is a log-concave variable, and hence .7 (\) =
Pz (|W| > \) is sub-exponential in A. Theorem 2 quantifies a
natural heuristic, for a sufficiently strong signal X, the noise
W has an insignificant effect. Up to a sub-exponentially small
term, h(f) — >, pih(fi) = (X + W;X) =~ H(X). As a
stability result this shows that within the regime of families
comprised of translations of a symmetric log-concave distrib-
ution, approaching equality in (1) forces .7 (\) large.? By the
sub-exponential decay of .7 (\) for log-concave distributions,
A cannot be too large, and hence at least for one pair of z;, x;
we must have |z; — x;| small, so that f; and f; must be close
to identical.

The following result generalizes Theorem 2. Building on
the same intuition, but allowing for dependent noise.

Theorem 3: Suppose that (Z,X) is an R?Y x N valued
random variable and 7 > 1 are such that for each 7 € N,
Z|X = i has distribution given by T;(W) where W has
density ¢, spherically symmetric and log-concave and 7; is
a /7 bi-Lipschitz function. For i, j € N, take T}j; :== T, ' o T}
and further assume there exists A > 0 such that for any k # i
Tij(B)\) N Tkj(B,\) = (). Then

I(Z;X) = WZ)=h(Z|X)> H(X)=C(W), (5

_\2
3Greater than (H()é) 6) L for h(f) =32, h(fi) <e.
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where C' is the following function,
CW)= TN +hW))+ TN Vd+EK(p) (6

with

() =tog [ (Il + (3 ) ) | BEAWI>

9 3
+d</ o(w) log? {1—1—27’—1— %—TM] dw) .
B

To obtain Theorem 2 one can take T,w = w + xz;,
so that Tj;w = w — x; + x; are 1 bi-Lipschitz, and observe
that the hypothesis |z; — x| > 2 for k # ¢ implies that
T;;(Bx) N Ty;(By) = 0 for k # i. For a noise dependent
example, consider W a standard Gaussian and T;(w) =
o;w + p; for p; € R% and o; € (0,00), corresponds to an
additive signal dependent Gaussian noise model. Here, the 7;

are all /7 bi-Lipschitz with 7 = max; o2, and one may take
[ (prg —pi) F(A—tin) (e —p15) |

c
A

where t;, = #’“ﬁk,

)\ = inf j,i#k o;
is determined by the variances.*

We note the quantity H(X|Z) connotes the uncertainty in
the discrete variable X conditioned on the continuous variable
Z; such a quantity needs to be defined/determined from
the knowledge of probabilities, p;, that the discrete variable
X = x; and the description of the conditional probability
density function p(z|xz;) = f;(z). These notions are made
precise in Section II. Here, it is also established that (2)
can be equivalently formulated as H(X|Z) < H(X) for a
particular coupling of a discrete variable X taking values
with probabilities {p;}, and a variable Z with density f;
when conditioned on X = ;. From this perspective the
super-concavity bound of Theorem 8 gives H (X |Z) < C(W).
One should also note that when {p;}}"_; is a finite sequence,
H(X|Z) can be bounded by Fano’s inequality, which we now
recall. For a Markov triple of random variables X — 7 — X,
and e = {X # X}, Fano’s inequality states that

H(X|Z) < H(e) + B(e)log(#X — 1), (D)

where #X denotes the cardinality of the set X, and we
have employed the notation for a measurable set A, H(A) =
—P(A)logP(A) — (1 — P(A))log(1l — P(A)). This can be
restated in terms of mixture distributions in the following way,

B(f) = S pih(f) + H(p) — (H(e) + B(e) log(#X — 1)).
i=1
To compare the strength of the bounds derived in Theorem 8
to Fano’s we compare H (e)+P(e) log(#X —1) and C(W); as
is established in Section IV, even in simple cases, C (W) can
be arbitrarily small even while min ¢ H(e)+P(e) log(#X —1)
is arbitrarily large.

The study of entropy of mixtures has a long history and is
scattered in a variety of papers that often have other primary
emphases. Consequently it is difficult to exhaustively review

“To see this, comsider |z|,|y| < A, then [Tz — Tyl =
ojr—pitp; oY —prtpg > Hj—Hi + B —HE gjr T3y
o ok = o ok o ok
Since | 2% — Zi%| < Ao (ot +0, 1), rearranging gives |Ti;x— T y| >
o; g™ I\"q k) 7 J
0.
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all related work. Nonetheless, the references that we were able
to find that attempt to obtain refined bounds under various
circumstances are [1], [9], [34], [37], [58], [63]. In all of
these papers, however, either the bounds deal with specialized
situations, or with a general setup but employing different (and
typically far more) information than we require. We emphasize
that our bounds deal with general multidimensional situations
(including in particular multivariate Gaussian mixtures, which
are historically and practically of high interest) and in that
sense go beyond the previous literature.

The article is organized as follows. In Section IT we will give
notation and preliminaries, where we delineate definitions and
relationship for entropies, conditional entropies emphasizing
a mix of continuous and discrete variables. Section III is
devoted to the proof of Theorem 1 (a preliminary version has
appeared in the conference paper [54]). In Section IV we prove
Theorem 8. These results give a considerable generalization of
earlier work of authors in [55], [76]. The result will hinge on a
Lemma 2 bounding the sum . ¢(x;) for 2; well spaced and
 log-concave and spherically symmetric, and a concentration
result from convex geometry [28]. We close discussing bounds
of P(JW| > t) in the case that W is log-concave and strongly
log-concave, see Corollary 8. Section V we demonstrate
applications of the theorems to a diverse group of problems;
hypothesis testing, capacity estimation, nanoscale energetics,
and functional inequalities.

II. NOTATION AND PRELIMINARIES

In this part of the article, we will elucidate definitions and
results for conditional entropy and mutual information, when
a mix of discrete valued and continuous random variables are
involved. We will assume that

1) X takes values in a countable set X', indexed by N and
that IP(X = J)i) =p; > 0.
2) Z is a random variable which takes values in a Polish
space F. The conditional distribution is described by
P(Z € AIX = x;) = [, fi(z)dy(z) where fi(z) is
a density function with respect to a Radon reference
measure .
We will denote by m the counting measure on X', so that for
A C X, the measure of A is its cardinality,

m(A) = #(A).

We denote integration with respect to the counting measure,
corresponding to summation, in the following way; for ¢ :
X — R such that 37, [g(x)] < oo,

| st@yim = ¥ a(0) =3 e

zeX

We will denote by dm d~y the product measure on X x E
where, for A C X and measurable B C F,

/ Lix (e, 2)dm(z) dy(z) = m(A)y(B),
XXE

when v denotes the d-dimensional Lebesgue measure. We will
use |B|4 or |B| when there is no risk of confusion to denote
the Lebesgue volume of a measureable set B. For measures p
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and v on a shared measure space, we say that x4 has a density
o with respect to v when,

n(A) = /Asodv

holgs for every measurable A. Such a ¢ will also be written
as 2£.

ch;)r random variables U and V' whose induced probability
measures admit densities with respect to a reference measure
7, in the sense that u(A) = P(U € A) = [, udy and
v(A) =P(V e A) = [,vdy where u and v are density
functions with respect to -, the relative entropy (or KL

divergence) is defined as

®)

DWIV) = Dlllv) = Dalle) = [ ulog %y, ©)

where we take here and throughout log to be the natural
logarithm. When U is an F valued random variable, with
density v with respect to a reference measure 7y, denote the
entropy

- / u(z)logu(2)dy(z),  (10)

whenever the above integral is well-defined. When £ = R?

and dy = dx is the Lebesgue measure we denote the usual

differential entropy,

- /u(m) log u(x)dx, (11)
When U is discrete, taking values z; € X with probability

pi, define

H(U) = H(p) == —»_ pilogp:. (12)
i=1

In the case of a variable taking only two values, we identify

p = (t,1 —t) with ¢t € [0,1], we define H(t) to the entropy

of a Bernoulli random variable with parameter ¢, H(t) =

—(1—t)log(1—t)—tlogt, fort ¢ [0, 1] we define H(t) = oc.

When A is an event, H(A) := H(P(A)).

The following propositions elucidate notions of conditional
entropy and joint entropy of a mix of discrete and continuous
random variables. They are likely known to some readers, but
we include their proofs for completeness.

Proposition 1: Suppose X is a discrete random variable
with values in a countable set X' and Z is a Borel measurable
random variable taking values in E. Suppose, for all z; € &,
P(Z € A|X = a;) = [, fi(z) dvy(z) for density f;(z) with
respect to a common reference measure «. Then the following
hold.

 The joint distribution of (X, Z) on X’ x E, has a density

F(z;,2) = pifi(2) (13)
with respect to dm d~y.
e Z has a density
f(z) = pifi(2) (14)
i=1

with respect to y on E.

Authorized licensed use limited to: University of Minnesota. Downloaded on September 05,2022 at 21:55:00 UTC from IEEE Xplore. Restrictions apply.
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o The conditional density of X with respect to Z =
defined as

for f(z) >0

0 otherwise,

satisfies P(X = x;) = [, p(xi]2) f(2)dz = pi.

Proof: Note that since a set A C X X E can be
decomposed into a countable union of disjoint sets {z;} x A;
where A, = {z € E : (z;,2z) € A}, to prove F(z;,2)
is the joint density function of (X, 7). Thus, by additiv-
ity of measure,’ it suffices to prove Pxz({z;} x 4;) =
f{x,;}xA,; F(x;,z)dm dy. By Bayes’ Theorem, Pxz({z;} X
A) = PX = )]P(Z € Ai|X = ), which by
definition is p; [, fi(2)dy,= f{xi} [pi [ [i(2) dy] dm =
f{fﬂi}XAi F(z,z)dm dv. This gives the first claim.

For the second, P(Z € A) Zfil PX =2;,,Z € A) =

z 1pz fA fi d’)/ fA

The last assertion is 1mmed1ate, Jppzlz:) f(2)dy =
Jo A Gl — . ;

Proposition 1 allows the following definitions of conditional
entropies.

h(Z]X) = E,[h,

= — i i 1 i d
> /ZEEf(Z) og fi(2)d
:Zpihv(fi)a
i1

15)

(Z|1X = )]

(16)

and

H(X|Z) =Ez[H

= —/E (ZP(%IZ) 10gp(xi|2)> f(2)dy.

i=1

(X|Z = 2)]

Let us note how the entropy of a mixture can be related to
its relative entropy with respect to a dominating distribution
g. The entropy concavity deficit of a convex combination of
densities f;, is the convexity deficit of the relative entropy with
respect to a reference measure in the following sense.
Proposition 2: For a density g such that ). p; D(fil|g) <

oo,
_ Zpih'y(fz) = ZPiD(fng)
Proof:

ZpiD(fng)

—D(fllg). (7

D(fllg) = sz/(filog%—filogﬁdv
=S / (filog f; — filog f)dvy
_Zpih’y(fz)

SIndeed, sz(A)sz(Uz{l’z} X Az) =
A;) while [, F(x 2)dm dy =

EE1 [, Flai,2)

Yo Pxz({zi}
fu {exa,; Fl@2)dmdy =
dry. and the result would follow.

X
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Note that the left hand side of Proposition 2 is invariant with
respect to g. Thus for g1, g2 such that >, p; D(fi|[g;) < oo,

ZPiD(fi”gl) D(fllg1) sz (fillg2) = D(fllg2)-
Z (18)

Taking g1 = g and g2

identity,
Z piD(fillg)
which is often used to obtain its immediate corollary
mgiHZPiD(fng) = ZpiD(fin)'

We define the mutual information between probability
measures Py and Py with joint distribution Py and their
product distribution PPy, as the relative entropy of their
joint distribution with respect to the product distribution,

D(Pyv||PuPy).

For the random variables U and V inducing probability
measures Py and Py, we will write I(U; V) = I(Py; Py ).
Proposition 3: For X discrete with P(X = x;) = p; and

= f =", pifi yields the compensation

= p:DUSIN) +D(fllg), (19)

(20)

I(]PU;]P\/) =

Z satisfying P(Z € B|X = x;) = [ fi(2)dz
1(X;2) = H(X) - H(X|2) an
=D _pD(fillF). (22)
— h(Z) - h(2|X) 23)

Proof: By Proposition 1, Pxz has density F(x;,z) =
pifi(z) with respect to dm(x;) dy(z) the product of the
counting measure m and . The product measure PxP,
has density G(z;,2) = p;f(z) with respect to dm d~y and
it follows that

Pxz (o dwd@02) Pl fie) o,
dPxPz 0T G (i) Glaz) ()
By equation (24),
(Pxz||PxPz) = / F(x;,2)log fi(z) dm dry

Recalling p(z|z) from Proposition 1, using the algebra of
logarithms and Fubini-Tonelli,

[ Epscrme o)
:—;pilogpi /E fi(2)dv(2)

+ /E 12) L) logp(alz)e )

:H(X)_

H(X|Z),
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giving (21). By Fubini-Tonelli,

/szfz )log f’ dv Z / filz log

which gives expression (22). By Proposition 2,
Y piD(fillf) = ha(f) =Y pihn (i) = h(Z) -

(23) follows. O
Using Proposition 3, we can give a simple information
theoretic proof of a result proved analytically in [11], [85].
Corollary 1: When X C FE, and ~ is a Haar measure,® then
X and Z satisfy,

d(2),

h(Z|X),

h (X +Z) < HX)+ hy(Z|X) (25)
which reduces to
hy(X+Z) < H(X)+ hy(2) (26)

in the case that X and Z are independent.
Proof: Applying Proposition 3 to X and Z = X + Z we
have

hy(X + Z) = H(X) + hy(X + Z|X) — HX|X + 2)
(27)
= H(X) +hy(Z|X) - HX|X + Z), (28)

where the second equality follows from the translation invari-
ance of Haar measures.” Since H(X|X + Z) > 0, (25)
follows, while (26) follows from h.(Z|X) = h,(Z) under
the assumption of independence. O

Incidentally, the main use of Corollary 1 in [85] is to give
a rearrangement-based proof of the entropy power inequality
(see [48] for much more in this vein).

We will first introduce the notion of f-divergences.

Definition 1: For a convex function f : (0,00) — R,
satisfying f(1) = 0, and probability measures p and v, with
densities u = % and v = g—: with respect to a common
reference measure +, the f divergence from p to v is

Dy (ullv) =Dy (ullv)

(2
i)

+ fO)v{u =0} + f*(0)u{v = 0}

where f(0) == limyo f(t), and f*(0) = lim,— o £, with
the convention that 0 - co = 0.

Note that a common reference measure for measures p
and v always exists, take %(u + v) for instance. To see that
the definition of Dy(u||v) is independent of the choice of
reference measure, consider 4 a measure that v is absolutely

(29)

An inner and outer regular measure ~ on a commutative group is a Haar
measure when it is finite on compact sets and satisfies y(z + A) = v(A),
for all points  and measurable sets A.
~7Note that by the translation invariance of -, the conditional densities of
Z with respect to v are of the form z — f;(z — z;). Thus, hy(Z|X) =
=22 pi [ filz —ai)log fi(z — wi)dy(2) = = 32, pi fi log fidy.
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continuous with respect to. By the chain rule for Radon-

Nikodym derivatives, @ := d—“ = ugY and 0 = filfy =
UZ_ZY’ so that [ f(u/v)vdy = [ f(a/0)ody. To compare

two proposed reference measures, g and 7y, not necessarily
absolutely continuous with respect to one another, one needs
only to observe that the ~; are both absolutely continuous with
respect to Yo + V1.

When the value of a functional of a pair of probability
distributions p, v is given by (29), we will call the functional
an f-divergence. An f-divergence satisfies the following:
(i) Non-negativity, Ds(u||v) > 0, by Jensen’s inequality and
(ii) The map (p,v) — Dy(p||lv) is convex, which follows
from the convexity of (z,y) — yf(z/y) for f convex.
We direct the reader to [42], [67], [69] for further background
on f-divergences and their properties. When f(z) = zlogx,
the divergence induced is the relative entropy.

III. UPPER BOUNDS

In this section we will provide upper bounds on h(f) —
> ;pihy(fi) through a generalization of Theorem 1. This
section is organized as follows. We first introduce the con-
cept of skewing an f-divergence. In short, comparing the
f-divergence from a convex combination (1 — ¢)u + tv to v,
in place of the f-divergence from p to v. Skewing provides a
more regular version of the original divergence measure. For
example the Radon-Nikodym derivative of p with respect to
(1 —t)p+ tv always exists even if Radon-Nikodym derivative
of p with respect to ¥ may not, whereby skew divergence is
well-defined unlike divergence while still preserving important
features of the original divergence. We first state elementary
properties of the skew relative information (corresponding
to skewing the relative entropy), with proofs given in an
appendix, and then introduce a skew y2-divergence which
interpolates between the well known Neyman y2-divergence
and the Pearson y2-divergence.

We will pause to demonstrate that the class of f-divergences
is stable under skewing and recover as a special case, a recent
result of Nielsen [62], that the generalized Jensen-Shannon
divergence is an f-divergence. Then we establish several
inequalities between the skew relative information and the
skew x?2-divergence. We will show in Theorem 5 that the
skew relative information can be controlled by the skew 2
divergence extending the classical bound of relative entropy
by Pearson y2-divergence. Further, using an argument due to
Audenart in the quantum setting [3], we show that the rate of
decrease of the skew relative information with respect to the
skewing parameter can be described exactly as a multiple of
the skew y2-divergence.

Theorem 6 also appropriates a quantum argument [3] to
show that though neither the Neyman or Pearson divergences
can be controlled by total variation, their skewed counterparts
can be. We harness this bound along side the differential
relationship between the two skew divergences to bound the
skew relative entropy by the total variation as well. As a
brief aside we demonstrate that the this bound is equivalent
to a reverse Pinsker type inequality from [82], before using
Theorem 6 to give our proof of Theorem 1. Finally to conclude
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the section, we demonstrate that one may obtain the classical
result of Lin [43], bounding the Jensen-Shannon divergence
by total variation as a special case of Theorem 1.

A. Skew Relative Information

We will consider the following generalization of the relative
entropy due to Lee.

Definition 2 [40]: For probability measures g and v on
a common set Y and ¢ € [0,1] define their skew relative

information
Se(ul|v) = Ds(pllv),

where f(x) = xzlog(z/(tx + (1 —t)). In the case that du =
udy, and dv = vdy we will also write

Si(ullv) = Si(pl|v).

We state some important properties of skew relative infor-

mation with the proofs provided in the Appendix.

Proposition 4: For probability measures ; and v on a

common set and ¢ € [0,1] the skew relative information
satisfies the following properties.

1) Si(u||v) = D(p|ltp+(1—t)v). In particular, So(p||v) =
D(y).

2) Si(p|lv)=0iff t=1o0r u=v.

3) For 0 <t < 1 the Radon-Nikodym derivative of p with
respect to tu + (1 — ¢)v does exist, and Si(u||lv) <
—logt.

4) Si(u||v) is convex, non-negative, and decreasing in ¢.

5) Siisan f-divergence with f(z) = zlog(z/(tz+(1—t)).

Motivated by the fact that the act of skewing the relative

entropy preserves its status as an f-divergence we introduce
the act of skewing of an f-divergence.

Definition 3: Given a convex function f : [0,00) — R with

f(1) = 0 and its associated divergence Dy(-||-), define the
r,t-skew of Dy by

Spri(ullv) = Dy(rp+ (1 = rllip + (1 = t)v).

It can be shown that for ¢ € (0,1), Sy, (ul||v) < oo
Theorem 4: The class of f-divergences is stable under
skewing. That is, if f is convex, satisfying f(1) = 0, then

fla) = (e (1= 007 (0=

is convex with f(1) = 0 as well, so that the r,¢ skew of D;
defined in (30) is an f-divergence as well.

Proof: 1f p and v have respective densities u and v with
respect to a reference measure 7, then ru + (1 — r)v and
tp + 1 — tv have densities ru + (1 — 7)v and tu + (1 — t)v

Spratul) = [ £ (02 ) k(1 ey

(30)

€1V

tut (1—1)
(32)
rt4(1—7) u
= [ (g €+
(33)
= /f(%) vdry. (34)
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Since f(1) = f(1) = 0, we need only prove f convex. For
this, recall that the conic transform g of a convex function f
defined by g(z,y) = yf(z/y) for y > 0 is convex. Indeed,
for A € (0,1),

(1 — )\)331 + Ao
d ((1—>\)y1+>\y2>
1-=Ny1 =

:f((l—A)y1+>\y2£

(1—=Nun i Ay2 2
= (1= Ny +>\y2f <y1> BT +>\y2f <y2> '

Thus,

Ay2 Q)
(1= Ny1 + \y2 y2

(1= Vg1 +Awa) f (O—Wc—wAwQ)

(1= Ny1 + Ay2

e (2) o (2).

Our result follows since f is the composition of the affine
function A(x) = (rez+ (1 —r),tx + (1 —¢)) with the conic
transform of f,

(35)

]
Let us note that in the special case that Dy corresponds to
relative entropy, Theorem 4 demonstrates that the “Generalized
Jensen-Shannon divergence” developed recently by Nielsen
see [62, Definition 1] is in fact an f-divergence, as it is defined
as the weighted sum of r;, t-skew divergences associated to the
relative entropy.
Corollary 2: For a vector « € [0,1]* and w; > 0 such that
> ;w; = 1, the (o, w)-Jensen-Shannon divergence between
two densities p, ¢ defined by:

- Y

with & = Ei w;;, is an f-divergence.

Proof: By Theorem 4 the mapping (p, q¢) — D((1—a;)p+
a;q||(1 —a)p+ aq) is an f-divergence, and the result follows
since the class of f-divergences is stable under non-negative
linear combinations. O

We note that an application of Theorem 7 is used in [53] to
upper bound the JS“%(p : q) by a constant® multiple of the
total variation. This extends the classical bound of the Jensen-
Shannon divergence, see Corollary 4 below. A complimentary
lower bound for the JS*" by the square of the total variation
is derived in [53] as well.

We will only further pursue the case that » = 1, and write
Sralullv) = Spai(ullv).

We now skew Pearson’s y2-divergence, which we recall
below.

JS¥(p:q) (1 = i)p + aiql|(1 — a@)p + aq)

8Explicitly, JS®™(p : q) < H(w)A|lp—q|rv, where A := max; |a; —
2z wierj /(1 —w;)|. Note that this reduces to the classical bound for the
Jensen-Shannon divergence when k =2, w = (1/2,1/2), and o = (0, 1).
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Definition 4 [66]: For measures p and v define the
x2-divergence
X (s v) = Dy (plv),

where f(z) = (1 — )%

Note that the y2-divergence is clearly an f digergence, and
for dp = udy, dv = vdy, x\*(u;v) = [ %dv. Its dual
divergence, the y2-divergence of Neyman [60] differs only
by a notational convention x%(v;u) = x2(u;v), see [42]
for more modern treatment and [20] for background on the
distances significance in statistics. Now let us present a skew
x2-divergence, which interpolates the Pearson and Neyman
x?2-divergences.

Definition 5: For t € [0,1] and measures u, and v, define
the skew x7 via:

X¢ (i v) = Dy (pllv),
where f(z) = (z — 1)2/(1 +t(z — 1)).

The skew y2-divergence, may be more appropriately known
as the Gyorfi-Vajda divergence, who originally introduced it
in [32]. In addition to interpolating the Pearson and Neyman
x2-divergences, the case t = % corresponds to the Vincze-Le
Cam divergence [39], [83]. We also direct the reader to recent
studies of the object in [53], [64].

Proposition 5: The skew x? divergence satisfies the follow-
ing,

1) When du = udy and dv = vdry with respect to some

reference measure vy, then

20N (u—v)?
Xt (s v) = /md%
with the understanding that the integrand is 0 when u
and v are both 0.
2) (1=t)°xF (s v) = XP(pstp + (1 = t)v).
3) xi(sv) = xi_ (Vi p).
4) x? is an f-divergence with f(z) = (z—1)2/(1 +t(z —

1)).
5) The skew X7 interpolates the divergences of Pearson
and Neyman, xj(p;v) = x*(u;v) and x3(uv) =
Xh ().
Proof: For (1), the formula follows from direct computa-
tion. Breaking the integral into three pieces, first

w 2
/ ) / =)
{uvso0} tu+ (1 —t)v {uwos0} tg +(1=1)

= / f (E) vdry.
{uv>0} v
Then the two limiting cases,

(u — v)? / u
/{u>0,v0} lu + (1 - t)’l) {v=0} 3

= /7 (0)pfv =0},

2
/ (u—v) iy = / v iy
{u=0,v>0} tu+ (1 —t)v fu=0y 1 =1

= f(O)r{u =0},

and

gives our first result.
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To prove (2), we use (1). Note that du = ud~y and dv = vdry
implies that d(tu + (1 — t)v) = (tu + (1 — t)v)dy so that

(u— (tu+ (1 —t)v))?
tu+ (1 —t)

_ 2 (u— U)2

- 0= [

= (1= )*x7 (u; v)-

It is immediate from (1) that (3) holds. That x? is an f-
divergence follows from (2) and Theorem 4, so that (4) fol-
lows. To prove (5), note that x2(u;v) = x?(u; v) is immediate
from the definition. Applying this and symmetry from (3) we
have xF(u;v) = x§(vi ) = X* (v ) = X% (3 v). O

The skew divergence and skew x? inherit bounds from ¢ =
0 case, and enjoy an interrelation unique to the skew setting
as described below.

Theorem 5: For probability measures ;4 and v and ¢ € (0, 1)

Se(ullv) < (1= 1*x¢ (s v)

X (s tp + (1= t)v) = /

(36)
and

d
27 Siully) = (¢ = 1)xi (w3 v). (37)

Proof: Recall that when ¢ = 0, the concavity of logarithm
bounds log x by its tangent line = — 1 so that,

/log (%) udry < / (% — 1) udy

2
= / (2 - 1) vdry,
v
giving the classical bound,

D(pllv) < x*(v)-
Applying (38) to the identities Proposition 4, (1) and Propo-
sition 5, (2) gives
Si(pllv) = D(ulltp + (1 = t)v)
<X (pstp+ (1 —=t)w)
= (1= t)’x{(mv).

Applying the identity (1 —¢)(y — 1) =y — (ty + (1 — t)) we
have

(38)

(1= X7 (s v) = / G- 1)53%&1((3%;)(1 L))
u_ "
= /WUCZ’}/—/(; — Dvdy
- [ i (39)

Observing the expression

i) = [ wiox (i )

we compute directly,

u—v

d
Giul) = = [ et
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Recall the total variation norm for a signed measure 7y to
be sup 4 |7(A)|, and adopting the notation xy = max{x,0}
then we that

= vliry = Dy(ully) = / (1 — ),

with f(x) = (z —1)4.
Theorem 6: For 1 and v, and ¢ € (0, 1),
20y < le=vlrv 40
Si(pllv) < —logtllp —v|Tv. (41)

Proof: From identity (39) we have,

L u(u —v)
X%(ﬂv’/)l_t/tu—i—(l—t)v !

S S ICDRT

_ lp—=vlzv
W=

Define the function

P(A) = Se-x(ul|v),

for A € [0,00) and note that ¢(0) = D(u||n) = 0. Thus by

(37), we can write

A
= [ &
A
:/0 e S(1—e )2, (p;v)ds.

Applying (40) gives

Soe(ullv)ds

A
Sumr (ullv) = 9(N) < / e = vllrvds = Al — vy

The substitution t = e~ gives (41). O
Observe that (41) of Theorem 6 recovers a reverse Pinsker
inequality due to Verdd [82], see also [68] for related upper
bounds on relative entropy and Rényi divergences.
Corollary 3 ([82] Theorem 7): For probability measures j
and ~ such that % < % with 3 € (0,1)

D(ull7)-

1-—

~ log

Proof: The hypothesis implies that v = % is a

probability measure satisfying v = Su + (1 — 8)v. Applying
(41)

—log 8
1-

D(plly)=Sp(pllv) < —log Bllu—v|rv = Hu Yy

|
It is easily seen that the two results, (41) and Theorem
7 of [82] are actually equivalent. In contrast the proof of (41)
hinges on foundational properties of the divergence metrics,
while Verdi leverages the monotonicity of = logz/(x —1) for
x> 1.
Theorem 7: Suppose f = > . p;fi, where f; are probability
density functions with respect to a reference measure v on
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a Polish space E, p; € [0,
complement of f;, f]( )=

) E pz = 1. For the mixture
Zz;é] 1—p, p f’u

sz

(fi) <T;H(p)

where

Ty = sup Ifi — fiHTV~
7

Theorem 1 follows by taking ~ to be the Lebesgue measure

and £ =R
Proof: From Proposition 2

hv(zpifz sz
= sz

By Theorem 6, S, (fil|fi) < 1og%|\fi
Holder’s inequality completes the proof,

S piS (fillf) < 3 p 1og]§|\fi — Fillrv

fz +sz fz”f
(f:) +sz o (fillfo).

— fill7v. Applying

1
<7y » pilog—,

where we recall 77 == sup; ||f; — fill7v. O

Since the total variation of any two measures is bounded
above by 1 this is indeed a sharpening of (2). Expressed in
random variables it is

h(2) < TrH(X) + by (Z1X),

When ~ is a Haar measure and we apply the above to Z =
X + Z this gives

ho(X + Z) < T H(X) + hy(Z]X). (42)

The right hand side of (42) reduces to
hy(X + Z) < TrH(X) + hy(2)

in the case that X and Z are independent.

Note that the quantity h(> . pifi) — >, pihy(fi) =
> piD(fillf) can be considered a generalized Jensen-
Shannon divergence, as the case that n = 2 and p; = p2 =
% this is exactly the Jensen-Shannon divergence.

Definition 6: For probability measures p and v define the
Jensen-Shannon divergence,

JSD(ullv) =

(D2 e+ ) + D2 (4 0))

Theorem 1 recovers the classical bound of the
Jensen-Shannon divergence by the total variation, due
to Lin, see also [77], [78] for other proofs.

Corollary 4 [43]: For p and v probability measures,

JSD(pllv) < |lp—vllrv log2.

Proof: Apply Theorem 1 to the Jensen-Shannon diver-
gence, and observe that 7y = || — v||7v in the case of two
summands. O
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IV. LOWER BOUNDS

Observe that when a mixture f = ). p;f; is composed
of densities f; (with respect to ~y), with disjoint support,
in the sense that f;f; = 0 for i # j, then h (>, pifi) —
> pih~y(fi) = H(p) and the trivial upper bound is attained.
The results of this section focus on the case that ~ is the
Lebesgue measure and can be understood as stability results.
The results quantify for log-concave densities, a natural heuris-
tic, densities with small overlap, are near equality in (1). Let
us state our assumptions and notations for this section.

1) X is a random variable taking values in countable space
X, such that for i € X, P(X =) = p;.

2) Z is an R valued random variable, with conditional
densities, f; satisfying,

P(Z € A|X =) = /Afi(z)dz = P(Ty(W) € A),

for T; a +/7 bi-Lipschitz? and W is a spherically
symmetric log-concave random vector with density ¢.
3) There exists A\, M > 0 such that for any ¢, j,

#{k : Tij(Bx) N Ti5(By) # 0} < M,

with # denoting cardinality and T;; = Ti_1 oTj.

Our assumption that W is log-concave and spherically
symmetric is equivalent to W possessing a density ¢ that
is spherically symmetric in the sense that p(z) = ¢(y) for
|z| = |y| and log-concave in the sense that p((1 —t)x+ty) >
o (x)p(y) holds for t € [0,1] and z,y € RY. By the
spherical symmetry of ¢, there exists ¢ : [0,00) — [0, 00)
such that ¢(z) = v (|x|). By Radamacher’s theorem, Lipschitz
continuous functions are almost everywhere differentiable,
and since by definition, bi-Lipschitz functions have Lipschitz
inverses, the following expression for the density of Z, based
on 1, is well-defined,

flz) = Zpifi(z) = Zpi</>(T[1(2)) det((Z;71)'(2))-

Note that 7; being /7 bi-Lipschitz implies 7, ' is /7
bi-Lipschitz as well, thus T;; is 7-bi-Lipschitz, thus after
potentially adjusting Ti’j on set of measure zero, we have
1 < ||T};(2)|| < 7. Under these assumptions we will prove
the following generalization of 3.

Theorem 8: For X and Z satisfying the assumptions of

Section (IV), and € > 0,
h(Z) = h(Z|X) = H(X) - C(W),

where C' is the following function of ¢,

C(W) =C(p) = (M — 1) + T(A\)(M + h())
+ TEN (VA + K(p))

9Recall that for e > 0 a function f is € bi-Lipschitz when f and its inverse
function f~1, satisty |f(z) — f(y)| < ez —yl. [f~'(z) = F71 ()| <
|z —y| for all x,y. This can be written in a single line as %y‘ <|f(z)—
fWI < elz —yl.
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with

() =to [r0 (el + (2) )| 70

1
2 2
+d </ o(w) log? {1 + QLTWW dw)

¢ A
(43)
where wy denoting the volume of the d-dimensional unit ball,
BY denotes the complement of B) € R?, and we recall the
notation .7 (\) = P(|W| > A).
Note that when M = 1, Theorem 8 reduces to Theorem 3.

Let us observe that the K () bound can be simplified by
choosing ¢ = )\, and that log®(z) is a concave function for

x >e, and 1+ 2 <T+ @) > 3 > e, so that by Jensen’s

inequality,
2 3
=)o)

( 1
)

g (12 (-4 2 Lot )

A

o(w) log? [1 +2 (r +

c
A

Thus we can further bound
3 1
K() <tog [ (Il + (3 ) ") | BEOWI >

o (143 (5 T Letwlvtde )

We will have use for the following lemma.

Lemma 1: Let M > 1 be an integer. Suppose A = (4;)
is a family of subsets indexed by I such for all ¢ we have
#{jel:A;NA; #0} <M. Then A can be partitioned into
parts Aj, ..., Ay such that the members of A; are pairwise
non-intersecting.

Proof: We proceed by induction. If M = 1, the result is
immediate, so assume the lemma holds for k& < M. Choose
A’ to be a maximal subset of A such that A;, A; € A’. This
implies that A; N A; = (0. For A, ¢ A" we have

#{AJEA—AIAkﬂAJ7£®}§M—1

Indeed for every A; € A, A; intersects at most M others, and
since A, € A’, A, intersects at least one element of A’ and
must intersect at most M — 1 elements of A—.4’. By induction
A— A’ can be partitioned into no more than M — 1 collections
of disjoint subsets, and the result follows. O
We now derive some implications of our assumptions on
Tj;; a partitioning result on 7);(By) based on the axiom
of choice and for the reader’s convenience we prove some
elementary consequences of the boundedness of the derivatives
of Tij.
Proposition 6: For T; and T3, /7T bi-Lipschitz, and T;; =
T, ' o1y,
T;;(0) + Byj» € Ti;(Bx) € Ti5(0) + B, (44)

Proof: As the composition of /7-bi-Lipschitz functions
T[l and T, T;; is 7-bi-Lipschitz. Thus (44) is a set theoretic
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statement of the fact that T;; is 7-bi-Lipschitz at 0, that @ <
|Tij(x) — Ti; (0)| < 7lzl. O
We will need the following concentration result for the
information content of a log-concave vector [8], [28], [61],
[84].
Theorem 9: For a log-concave density function ¢ on R?,

/ (1og - h(sa))Q olw)da < d,

where h(yp) is the entropy of the density .

See [27] for a generalization to convex measures, which can
be heavy-tailed.

The following upper bounds the sum of a sequence whose
values are obtained by evaluating a spherically symmetric
density at well spaced points.

Lemma 2: If ¢ is a density on RY, not necessarily log-
concave, given by ¢(z) = ¥(|x|) for ¢ : [0,00) — [0, 00)
decreasing, A > 0, and a discrete set X' C R4 admitting
a partition X7, ..., Xs such that distinct xz,y € A} satisfy
|z —y| > 2], then there exists an absolute constant ¢ < 3 such
that

(45)

> o) < (ol + (5) i),

reX

where wg = |{z : x| < 1}|4, where we recall | - |4 as the d-
dimensional Lebesgue volume. In particular, if for all xp € X

#{r e X |z—xo| < 2A} < M, (46)

then (45) holds.

Note, that when M = 1 and ¢ is the uniform distribution
on a d-dimensional ball of radius R, implicitly determined by
||#]lco = 1, this reduces to a sphere packing bound,

d
#{disjoint A-balls contained in Briy} <1+ <%> .

From which it follows, due to classical bounds of Minkowski,
that ¢ > %
For the proof below we use the notations By (z) = {w €
RY| [w — z| < A} and we identify By = B,(0).
Proof: Let us first see that it is enough to prove the result
when M = 1, as with this case in hand,

> o) = i Y d@) <M (||¢|oo + (g)dw;) .

rzeX k=1 x€X)

We proceed in the case that M = 1 and observe that i) non-
increasing enables the following Riemann sum bound,

(47)

> i V(N waA? (k7 — (k —1)%), (48)

where wgA((k + 1) — k%) is the volume of the annulus
B(kJrl)/\ — Bg. Define

Ap={zeX:|z] €[k (k+1N) }.
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Then,
Do)=Y ¢ (49)
zeX k=0x€Ay
<D H#HMD(RN), (50)
k=0

as 1 is non-increasing. Let us now bound #Aj. Using the
assumption that any two elements x and y in X satisfy |z —
y| > 2,

= #A\y|B)|

= #Akwd)\d7

(51

U B
zEAk{m * /\}

(52)

so that it suffices to bound | Y {x + Bx}|. Observe that we
xENL

also have
T

oo, Ba@) S {a s fal € [(k —1)A, (k +2)M)},

Lﬁ\ {x + B,} contained in an annulus,
ENg

which combined with (52) gives

#Awar? < [{z: |2] € [(k — DA, (k+2)A)}Ha
=wiA ((k+2)* = (k— 1)),

so that
#Ap < (k+2)4 = (E—1)% (53)
Note the following bound, for & > 1
(k+2) = (k—1)? <3 (k%= (k—1)%). (54

To see this, observe it is enough to prove (z + 3)¢ — z¢ <
34((x +1)? — x) for > 0, which after dividing by z¢, and
substituting w = %, this is equivalent to (1 + 3w)? — 1 <
3¢((1 + w)? — 1) for w > 0. Binomial expansion shows that
our desired inequality is

d

5 (;z) Sl < Z (;z) 3l

=1
which is obviously true. Thus for k£ > 1, (53) and (54) give,

#Ap <34 ((k+1)" = k7).
Applying this inequality to (49) gives

dobla) <Y vk

(55)
TEX k=0 z€A
< Dlloo + Y (Ak)F#AR (56)
k=1
<dlloe + > (AE)3 (K = (k= 1)%) (57
k=1

3\ ¢
<ol +e" (3) 58)
where (57) follows from the fact that #Ay < 1 (any x €
Ap has 0 € {z + By}), and the last inequality follows from
the Riemann sum bound (48).
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To see that any X satisfying (46) necessarily satisfy (45),
we need only to apply Lemma 1 to A = {A,} where 4, =
Bsy(x) to see that such a collection satisfies the hypothesis
of the current lemma. O

Lemma 3: For {T;} a collection of y/7-bi-Lipshitz maps,
fix j and suppose that #{l : |T;;(0) — T3;(0)| < 2A} < M
holds for all ¢, then for ¢ > 0,

d
#{:|Tij(w) = Tij(w)| < e} <M (H%W) :

(59)

holds for every i. In particular,

d
#5010 << <0 (S52) L @

holds for every .

Proof: We will first prove and then leverage (60). Note
that there is nothing to prove when € < 2\ as (60) is weaker
than the assumption. When 2\ < e choose (by Zorn’s lemma
for instance) A to be a maximal subset of N such that for
ke A, |Tk](0) — T”(O)| < ¢ and |Tkj(0) — Tk/](0)| > 2)
for k, k' € A, with k& # k’. By construction, for a fixed 7,
Ty;(0) + By are disjoint over k& € A contained in 7;;(0) +
BA+5. Thus

d — .
Nwa#A = ‘kgA{Tkj (0) + B,\}

< {Ti;(0) + Bage }|
= (A +&)%wy,

and we have the following bound on the cardinality of A,
d
LA < (/\ 1— 5)

Applying (61), the assumed cardinality bounds, and the max-
imality of A, imply that kUA{Tkj(O) + Ba)} contains every
€

T3;(0) such that |T3;(0) — T3;(0)| < e, we have
#{l: |T3;(0) — T1;(0)| < e}
<D #{m:|
kEA
A+e\?
<M
< (557)
Towards (59), by the mean value theorem, there exists ¢t €
[0, 1] such that

(61)

Tnj(0) — Ty (0)] < 2A}

Tij(w) = Tij(w) = Ti;(0) — T (0) + (T (tw) — Tf;(tw))w
Note that if |T;;(w) — Tj;(w)| < &, then
|T35(0) — T3;(0)]

= [Tij(w) = Tij(w) — (T4 (tw) — Tj; (tw) w|
< T (w) = T (w)| + (T35 (tw) — Tj; (tw))w|
< e+ 27wl

Thus

1 T (w) =T (w)] < e}

< #H{1: [T35(0) — Ti;(0)] < & + 27|w]}.
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Applying (60),

d
L 1Ty (w) - Ty(w)| < e} < M (“%W)

|

Corollary 5: For a density ¢(w) = ¥ (Jwl|), with ¢ decreas-

ing, ¢ > 0, T; \/7-bi-Lipschitz, T};; = Ti_loTj, such that there
exists M > 1 such that for a fixed j,

[{k : Ty (Bx) N Trj(By) # 0} < M,
holds for every i, we have,

> (T (w)) det(T; (w))

i
9 d d
3
st(uaiigﬂg @mw+(g<%?.

Proof: For any k suppose |T;;(0) — Ty;(0)| < 2X/T,
then {T”(O) + B)\/T} N {Tkj(()) + B,\/T} # (), which by
Proposition 6 implies T;;(Bx) N T;(By) # 0. Thus, #{k :
|T3;(0) — T3;(0)] < 2A/7} < M. By Lemma 3,

N d
#UﬂM@—%WW@@<M&iE§ﬁM)

T

et + 72 |w| d
A

=M <1+2
(62)

This shows that (46) holds for z; = T;;(w), A =€ and M

d
in (46) identified with A7 (1 -+ 255140 1t follows from
Lemma 2 that

> 6(Tij(w))

i
d d
<
d

This, combined with ||T;;(x)| < 7, which implies the deter-
minant bounds det(T’ (w)) < 7%, yields,

> oLy (w)) det(T}; (w))

i

<7l Z ¢(Tij(w))

d d
eT + 72 3 _
<ring (142N g+ (2) vt ).
A €

]

Corollary 6: Consider T;, +/T-bi-Lipschitz and suppose

there exists M, A > 0 such that #{k : T};(Bx) N T;;(Bxy) #

)} < M holds for any i,j. Then for any ¢ > 0, and a
spherically symmetric log-concave density ¢(x) = ¢(|z|),

/r w) log ZmZ@ 3 (
A

éK@)ﬂMﬂ>&

w)) det(T7;(w))
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where

K(p) =log [TdM <||s0||oo (2) e )] B (W] > )
+d (/& o (w) log? [1+2 (T—; + TQ';”'H dw)é .

(63)

Note that K(¢) depends only on the statistics of ¢, its
maximum in the first term and the second term is controlled
by the mean logarithm of ||, roughly the average number of
digits in , and not on the configuration of the mixture. The
proof does not leverage log-concavity, a stronger assumption
than 1) non-increasing,'” except to ensure that the relevant
statistics are finite.

Proof: Applying Corollary 5 with € = A, gives

Z}%Zw i (

STdM(l—I—Z(T—I—

w)) det (T (w))

Lw')) (wm H(3) )

Integrating this inequality against
Cauchy-Schwarz gives the result.

Proof of Theorem 8: Using fi(x) =
o(T; () det((T; 1) (x)),  applying the substitution
z = T;(w), and recalhng the definition of T;; = T, ' o T; we
can write

Jtoos (14 =220

_ /sp(w) log <1+Z”‘”p”(

By Jensen’s inequality,

¢(w)lp; and applying
]

) ST )

pz@(w)

> g [1 L Xizpie; pzfa (»)dew (w >>]
< log [H 2i Zm%w;{;@)det(T'( >>]
~log [H 5P Ly <¢( Ui) w)) det(T}; (w >>]
Thus,
Zm/fz )log {1+ Z#:ijzf;( )} dr
< [ otwyton(14 T Zees LD T o,

0Under spherical symmetry and log-concavity |¢|lcc = ¢(0). Indeed,
»(0) = go(%”) > Vp(—z)e(x) = p(z). Using log-concavity again for
t € (0,1), y(tlz]) = @((1-1)0+tz) > ¢! ~H(0)p (z) > p(z) = ¥(|z]).
Thus it follows that v/ is non-increasing.
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We will split the integral into two pieces. Using log(1+z) < z

on B)
[ et (12 BB Eoy AT T ),

/Zpgzsa ji(w)) det (T (w)) dw

J i#£]
=3 n X [ Tt der (T
J i#]
e /
Z ’ ; Tji B/\)
=Y "p > / (x)dx (64)
j (i3T5 (Ba)N B0} 7 T3 (BA)
+ ij /
j {zT“(B)\)rTB)\ gy 7 Lo (BU
<> p > / p(x)dz | (65)
j {i#5:Ty: (B )NBa#0} 7 T3 (0)+Bar
Y0 (M / so(x)dx)
J BX
<00 [ etws) 1x [ e
; B BS
=(M — DP(|W| < A7) + MB(|W| > \). (66)

Inequality (65) follows from the fact that T;(Bx) N
=0 implies that Tﬂ(B)\) C B¢, giving the bound
fT (Byy Pl@)dr < fo x)dz, while condition (3) of
Section IV and by Proposmon IV.1 demonstrates that this
family can be split into at most M, subfamilies whose
members are pairwise disjoint, that #{i : T;;(Bx) N By =
(0} < M. Inequality (66) follows from another application of
Proposition 6 and the fact that the map s(z) = [, | B, P(2)dz
is maximized at 0. To see this, observe that s can be realized
as the convolution of two spherically symmetric unimodal
functions, explicitly s(z) = ¢ % 1p,_(x). Since the class of
such functions is stable under convolution, see for instance
[41, Proposition 8], s is unimodal and spherically symmetric
which obviously implies s(0) > s(z) for all .
Using the fact that T;;(w) = w,

/;w(w)log( 205 iy P (w(u();v))det(T’( )))dw

:/BL w)log Zp]Zgo i(w)) det(T% (w)) | duw
- [ ewospwdu

B
<K@PHW >N - [ pw)logp(w)du,

B3
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where the bound K(p) is defined from Corollary 6.
By Cauchy-Schwarz, followed by Theorem 9,

- [ stwogpw)du

=h(W)P(|[W| > \) + /B p(w) (log ” :
JP(W] = X)

+ ¢ / <1og@ — b)) 2p(w)dw / elwav

< hW)P(|W| > X) + Vd Pz (W] > ).

- h(W)) dw

<h(W

A. Commentary on Theorem 8

Let us comment on the nature of P(|W]| > X) for W log-
concave. It is well known that in broad generality (see [12]—
[14], [30], [44]), log-concave random variables satisfy “sub-
exponential” large deviation inequalities. The following is
enough to suit our needs.

Lemma 4: [44, Theorem 2.8] When W is a log-concave
random vector, » > 1, and ¢ > 0, then,

P(W| > rt) <P(W|>t)F

Corollary 7: For a spherically symmetric log-concave ran-
dom vector W such that EW12 = 02, where W} is the random
variable given by the first coordinate of W, and ¢ > v202d

P(|W]>t) < Ce™,

1/2

, C=

where C' = 27 SN
Proof: By Chebyshev’s inequality P(|W| > v/202d) < 1.
Hence for » > 1, by Lemma 4

P(|W| > rV202d) < P(|W| > v202d)>

<9~

Taking ¢ = rv/202d gives the result. O]

Lemma 5: Suppose that a spherically symmetric W is uni-
modal with respect to the Gaussian, in the sense that its density
© has the form p(z) = p(|z|)e” #I°/2 for p non-increasing,
then,

P(W| > t) < P(Z] > 1),

where Z is a standard normal vector.

Note that W unimodal with respect to the Gaussian,
includes the so called strongly log-concave vectors (see [70]),
those with densities can be represented as e~ (%)~ 121”/2 with
V' convex.

Proof: Since p is non-increasing, define ¢y = inf; p(t) <
1, and U(t) = P(|W]| < t) —P(|Z] < t). It follows directly,
that ¥ is non-decreasing on [0,%y] and non-increasing on
[to, 00). Since ¥(0) = limy_,oc ¥(¢) = 0, we have ¥(¢) > 0,
which is equivalent to the claim. O

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 4, APRIL 2022

Corollary 8: Suppose X and z are variables satisfying the
conditions of Section IV for 7, M = 1, A\, and W possessing
spherically symmetric log-concave density ¢. Then

H(X|Z) < G2~ 2

Furthermore, if W is strongly log-concave then
H(X|Z) < CP3(|Z] > t),

where Z is a standard Gaussian vector and C =
(1 +Vd+h(W) + K(go)), with K () defined as in (43).
Proof: After recalling from Proposition 3 that H(X|Z) =
H(X)—h(Z)+h(Z|X), the proof is an immediate application
of Corollary 7 and Lemma 5 to Theorem 8. O

V. APPLICATIONS

Mixture distributions are ubiquitous, and their entropy is a
fundamental quantity. In this section we will demonstrate some
applications of our results. First we give special attention to
how the ideas of Section IV can be sharpened in the case that
W is a Gaussian.

Proposition 7: When X and Z satisfy the assumptions
of Section IV, for 7, M, A\, T;; and W ~ ¢p(w) =
e~ lal*/20% /(2mo?)/?, then

H(X|Z) < (M = 1D)P(W| < 7A) + Ja(@)P(W] > A)

with

272do\ ¢
Ja(p) = log 6()\/0)2+M(T€)dM (1 + 274272 + T/\ J>
3v2 !
1+ < /\wa) wd_l ]

(67)

2 2 2
Ji() = log [ e/ +M+22 pr (1 +27 4277 + T/\zg )

I o
<1+ H)},
when d = 1.

The proof of the case d > 2 is given below, a similar
argument in the d = 1 case is given in the appendix as
Proposition 11.

Proof: As in the proof of Theorem 8,

for d > 2 and

H(X|Z) =

S [ etw)

1Og< Empﬂp( i(w)) det (T5; (w )))dw

pip(w )

»» det (T
S/Csﬁ(w)log<1+Z P 2izi ¥ (<P(U(1) w)) det (T, (w ))> dw
+/B p(w) log(H-E iP5 iy ¢ (go(u(J) w)) et (T (w ))> dw.
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We use the general bound from the proof of Theorem 8§ for

[ st (1 Ert2 B 2Ta) T )

DP([W]| < A1) + MP([W] > A).
(68)

< (M-

Splitting the integral,

/Cw(w) log( 2 Pi iy P (Z;(;E;v))det(T’( )))dw

by

e

dw

w) log ij ZSD i

- [ etwospw)de,

w)) det (T (w))

Integrating the pointwise inequality,

log Zp] ZSD i

w)) det(Tj;(w)) | <

272w|>d (moo + G)d“’d 1) ]

obtained from Corollary 5 against 15¢(w), and then apply-
ing Jensen’s inequality we have

/ w)log Zp]Zso i

<[ elwos [rdM (nsanoo + (%)dwf) ]dw (70)

272 |w| ¢
+ / e(w)log (1 +27+ X ) dw.
A

Note, (70) is exactly

3 d
P(|W| > A)log [TdM <||s0||oo + (X) w(f) ] (72)

while applying Jensen’s inequality to (71), allows an upper
bound of

log [TdM (1 + 27+

w)) det(Tj;(w)) | dw (69)

(71)

272 [ 1oy p(w)wldw®
P(|(W| > X)log [1+42

(1> ytog L+ 2+ S A

272(\ + do) "

P(|W| > A)log [1+27+#] ,

(73)

where the inequality is an application of Proposition 9,

Jge p(w)wldw < (A + do)P(|[W| > ).
hen applying Proposition 8§,

- [ twog ptu)du

b
d
< (—210g ome?o” + )\2/02) P(W|>X) (74

Combining (72), (73), and (74) gives the result. O
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For example, when X takes values {z;} € R such that
|z; — x;| > 2X and Y is given by X + W where W is
independent Gaussian noise with variance o2, then Y has
density }_, pifi(y) with fi(y) = @o(y — x:). Let Ti(y) =
y — x;. Thus Tij(B)\) = By — Tj + X, SO that {Tkj(B)\)}k
are disjoint and we can take M = 1 and 7 = 1. Applying
Proposition 7, we have

H(X|Y)=H(X|X+W)
< Ji(@)P(IW] > A)
= J1(@)P(|Z] > A o),

where Z is a standard Gaussian vector, and

Ji(¢) = log l62a2+2 <5+2A—z> <1+\/§‘;>1 .

We collect this observation in the following Corollary.

Corollary 9: When X is a discrete R valued random vari-
able taking values {x;} such that |x; — x;| > 2\ for i # j
and W is an independent Gaussian variable with variance o2,
then

A2 2 91 o
< 207 12 — ——
H(X|X—|—W)log[e <5+2/\2> <1+ 2/\)]

P(Z] > \o).

A. Fano’s Inequality

A multiple hypothesis testing problem is described in the
following, an index ¢ € X is drawn according to a variable X
and then subsequently samples are drawn from the distribution
fi,» with a goal of determining the value . If Z denotes
a random variable with P(Z € A|X = i) = [, fi(2)dz
then by the commutativity of mutual information proven in
Proposition 3, H(X|Z) = h(Z|X) — h(Z) + H(X). Thus
bounds on the mixture distribution are equivalent to bounds
on H(X|Z). For X = g(Z), Fano’s inequality provides the
following bound

H(X|Z) < H(e) + B(e)log(#X 1)  (75)

where e = {X # X} is the occurrence of an error. Fano
and Fano-like inequalities are important in multiple hypothesis
testing, as they can be leveraged to deliver bounds on the
Bayes risk (and hence min/max risk); we direct the reader
o [7], [31], [89] for more background. Fano’s inequality gives
a lower bound on the entropy of a mixture distribution, that
can also give a non-trivial improvement on the concavity of
entropy through the equality H(X|Z) = H(X) + h(Z|X) —
h(Z). Combined with (75),

h(Zmﬁ) — th(ﬁ)
> H(p) — (H(e) + P(e) log(|X| — 1))

In concert with Theorem 1 we have the following corollary.

Corollary 10: For X distributed on indices ¢ € X, and Z
such that Z|{X = ¢} is distributed according to f;, then given
an estimator X = f(Z), with e = {X # X}

(1 - T))H(X) < H(e) + P(e) log(|X| - 1),

(76)
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Proof: By Fano’s inequality H(e) + P(e)log(N — 1) >
H(X|Z). Recalling that H(X|Z) = H(X) — (h (lezfz)
> pih(f;)) and by Theorem 1

- h(Zpifi) - sz'h(fi)) > H(X) - TH(X),

gives our result. O

Heuristically, this demonstrates that “good estimators” are
only possible for hypothesis distributions discernible in total
variation distance. For example in the simplest case of binary
hypothesis testing where n = 2, the inequality is (1 — || f1 —
fallrv)H(X) < H(e), demonstrating how the quality of an
estimator of X is limited explicitly by the total variation
distance of the two densities.

We note that the pursuit of good estimators X is a
non-trivial problem in most interesting cases, so much so that
Fano’s inequality is often used to provide a lower bound on the
potential performance of a general estimator by the ostensibly
simpler quantity H(X|Z), as determining an optimal value
for P(e) is often intractable. A virtue of Theorem 8 is that it
provides upper bounds on H(X|Z), in terms of tail bounds
of a single log-concave variable |W|. Thus, Theorem 8 asserts
that for a large class of models, H(X|Z) can be controlled
by a single easily computable quantity, which in the case that
M = 1, decays sub-exponentially in \ to 0. However, the
example delineated below, demonstrates that even in simple
cases where an optimal estimator of X admits explicit com-
putation, the bounds derived from Theorem 8 may outperform
the best possible bounds based on Fano’s inequality.

Suppose that X is uniformly distributed on {1,2,..., N}
and that W is an independent, symmetric log-concave variable
with density ga, and Z = X + W, then Z has density

Zfl with fi(z) =

estimator of X is given by O(z) = argmax;{fi(z)
i € {1,2,...,N}}, which by the assumption of symmetric
log-concavity can be expressed explicitly as:

©(z—1). The optimal (Bayes)

N-1

O(2) =L(_o0 3y + Y il

=2

L) FNL (v o0)-

Thus, P(O # X) can be written explicitly as well. Indeed,
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Thus writing P(e) = P(X # ©), we have

D04
=P(|W|>1/2) (1 — %) )

Thus the optimal bounds achievable through Fano’s inequality
are described by,

P(e) = 2P(W >

H(X|X+W)<H(e)+ P(e)log(N — 1) (77)

with P(e) = P(|W| > 1/2) (1 — +). Note that with N —
00, the bounds attainable through Fano’s inequality become
meaningless since limy .o, H(e)+ P(e)log(N —1) = oo for
any W with support not contained in [—1/2, 1/2]. For example
in the Gaussian case, Corollary 9 gives the following bound,
with A = 1.
HX|X+W)<

log [+ (5 4+ 80%) (14 V870 )| P(IW] = 1/2),

(78)

independent of V.

Comparing (77) and (78) to understand at what scale the
bounds derived here should be used, we write p = P(|W] >
1/2)and N =1 — %, to compute,

H(e) + P(e)log(N — 1)
—pNlog(pN) — (1 — pN)log(1—pN) + pN log(N — 1)
—pN log(pN) + (1 — pN)pN + pN log(N — 1)

> pN (—logN—l— (1 —N) +log(N — 1))

o (o)

> (.98) log(N — 1)P(|W| > 1/2).

V

Where the inequalities follow from —xlogx > —z, the
equation being decreasing in p, and the last through calculus
or numerical verification.

Thus, it follows that the optimal bounds derived from
Fano’s inequality are outperformed by equation (78) for N >
log {esﬁﬂm (5 + 802) (1 + \/18—7ra)} + 1. A depiction of
such IV is given below.

B. Channel Capacity

In the case of a channel that admits discrete inputs (and pos-
sibly continuous inputs as well) with output density f;(z) =
p(z|i) when conditioned on an input i. Suppose the input X
takes value ¢ with probability p; then the output Z distribution
will have a density function ), p; f;. Thus

I(Z;X) =h(Z) — h(Z|X)
= H(X)—H(X|Z)
= h(Zpifo — th(fi).

Thus, any choice of input X gives a lower bound on the
capacity of the channel. In the context of additive white
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Fano Inequality Comparison

5.0
45
40
=
2 3s
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25 1
m— |0g1afir)
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o - standard deviation
Fig. 1. For N > f(o) = log |e8o 57 1102 (5 +802) (1-‘,— 7TO'):| +

1, the bounds derived from Theorem 2 out perform the optimal bounds
achievable through Fano’s inequality.

Gaussian noise channel [65] gave rigorous bounds to the
findings of [80], that finite input can nearly achieve capacity.

Ozarow and Wyner gave the following bounds, analytically
confirming an observation of Ongerboeck, in his celebrated
paper [80].

Theorem 10 (Ozarow-Wyner [65]): Suppose X is
uniformly distributed on N evenly spaced points,
{2)\,4),...,2N A} and its variance 0? = EX? — E2X =
A2 Nz LY. If Z = X + W, where W is Gaussian with
variance one and independent of X. Then

D
[(Z:X) > (1 - (xK) "2 ¥)H(X)
— H((zK)"Y2e7 %) (79)
where
K = i(1 —e7%9)
202
a=Ne ©
1 NZ -1
=—log (14 )2 .
C 5 og ( +A 3 )
2)
1 me 1 14+ a?
I1(Z: X — —log — — =1 .
(Z;X) 2 C = Jlog— — 5log ——
In the notation of this paper K = )‘72 (1 - —) Defining,
e_é(l_ﬁ)
Po = v Y
= (1-52)
we can re-write (79) as
I(Z;X)ZH(X)_(poH(X)“‘H(po))' (80)

143(a/
Note that N2~ N__ +1§r/) so that o &2 v/3/\

= V1tg
for o large. Thus (79) gives a bound with sub-Gaussian-like
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Lower Bounds on NZ; X)
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Fig. 2. AWGN channel with average power restraint on input X, corre-

sponding to N = 100 uniform input and A-spacing.

convergence in A to H(X) for fixed N, but gives worse than
trivial bounds for fixed A and N — oo. In contrast, if we take
for example W to be Gaussian with variance 1 by Corollary 9,

9
2)\2

Comparing the bound on the gap between /(X |Z) and H(X)
provided by (80) and Corollary 9, we see that Corollary 9
outperforms Theorem 10 for large A. Indeed, one can easily
find an explicit rational function ¢ such that

PoH (X) + h(po)

log {3€>‘2+3 (1 + \/%%)} P(|1Z] > A) -

Additionally, (81) gives a universal bound, independent of N.

These results have been of recent interest, see for exam-
ple [21], [22], where the results improving and generalizing
(2) have been studied in a form

H(X) - gap* < 1(Z; X) < H(X),

I(Z;X)> H(X) —log [3&2*3 <1+ P(Z|>N.

(81)

2

>

q(A)ez

2

with an emphasis on achieving gap™ bounds that are indepen-
dent of N, and viable for more general noise models. The
significance of the results of Theorem 8 in this context is that
the gap™ bounds provided converge exponentially fast to zero
in A, independent of H(X), while for example in [22], the
gap* satisfies

Additionally, the tools developed can be extended to perturba-
tions of the Y and signal dependent noise through Theorem 8.

A related investigation of recent interest is the relationship
between finite input approximations of capacity achieving dis-
tributions, particularly the number of “constellations” needed
to approach capacity. For example [86], [87] the rate of con-
vergence in n of the capacity of an n input power constrained
additive white Gaussian noise channel to the usual additive
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white noise Gaussian channel is obtained. In many practical
situations, although a Gaussian input is capacity achieving,
discrete inputs are used. We direct the reader to [88] for
background on the role this practice plays in Multiple Input-
Multiple Output channels pivotal in the development of 5G
technology.

Additionally in the amplitude constrained discrete time
additive white Gaussian noise channel, the capacity achieving
distribution 1is itself discrete [74]. In fact, many important
channels achieve capacity for discrete distributions, see for
example [2], [16], [35], [73], [81]. Thus in the case that the
noise model is independent of input, the capacity achieving
output will be a mixture distribution, and the capacity of the
channel is given by calculating the entropy of said mixture.

Theorem 8 shows that for sparse input, relative to the
strength of the noise, the mutual information of the input
and output distributions is sub-exponentially close to the
entropy of the input in the case of log-concave noise, and
sub-Gaussian from the entropy of the input in the case of
strongly log-concave noise, which includes Gaussian noise as
a special case. In contrast Theorem 1 gives a reverse inequality,
demonstrating that when the mixture distributions are close
to one another in the sense that their total variation distance
from the mixture “with themselves removed” is small, then
the mutual information is quantifiably lessened.

C. Energetics of Non-Equillibrium Thermodynamics

For a process z; satisfying the overdamped Langevin sto-
chastic differential equation, dz; = —Wdt + \/@d{t,
where U : R? xR — R is a time varying potential, and (; is a
Brownian motion with D = kgT'/~, where ~ is the viscosity
constant, kp is Boltzman’s constant, and 7' is temperature,
one can define natural thermodynamic quantities. In particular,
trajectory dependent notions of work done W on the system
(see [36]) and heat dissipated Q, respectively,

ty
W = 8tU(l‘t, t)dt
0
and

ty

Q= — V.U (x4, t) o day,

0
where the above is a Stratonovich stochastic integral. Recall
that Stratonovich integrals satisfy a chain rule dU(z¢,t) =
Vo U(xt,t) o dxy + %—Itj(xt, t)dt so that we immediately have
a first law of thermodynamics

AU = U(ty,2(t;)) — U(0,2(0))
tf Ly
= 8tU($t, t)dt + / va(J)t, t) o d.l?t
0 0

=WwW-0.

Further, if p; denotes the distribution of x; at time ¢, satisfying
the Fokker-Planck equation then it can be shown [4] (see
also [17], [52], [72]),

EQ = kpT (h(po) — h(pi,)) + /Otf Elv(t, z¢)|?dt,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 4, APRIL 2022

where v is mean local velocity (see [4] or as the current veloc-
ity in [59]). In the quasistatic limit where the non-negative
term [37 (|v(t, z;)|?)dt goes to 0, one has a fundamental lower
bound on the efficiency of a process’s evolution, the average
heat dissipated in a transfer from configuration pg to py, is
bounded below by the change in entropy.

EQ > kgT (h(po) — hlp:,)) - (82)

A celebrated example of this inequality is Landauer’s princi-
ple [38], which proposes fundamental thermodynamic limits
to the efficiency of a computer utilizing logically irreversable
computations (see also [6]). More explicitly (82) suggests that
the average heat dissipated in the erasure of a bit, that is, the
act of transforming a random bit to a deterministic O is at least
kpT log 2. This can be reasoned to in the above, by presuming
the entropy of a random bit should satisfy h(pg) = log2 and
that the reset bit should satisty h(p;,) = 0.

In the context of nanoscale investigations, (like protein
pulling or the intracellular transport of cargo by molecular
motors) it is often the case that phenomena take one of finitely
many configurations with an empirically derived probability.
However at this scale, thermal fluctuations can make discrete
modeling of the phenomena unreasonable, and hence the
distributions po and p;, in such problems are more accurately
modeled as a discrete distribution disrupted by thermal noise,
and are thus, mixture distributions. Consequently, bounds on
the entropy of mixture distributions translate directly to bounds
on the energetics of nanoscale phenomena [56], [76]. For
example, in the context of Landauer’s bound, the distribution
of the position of a physical bit is typically modeled by a
Gaussian bistable well, explicitly by the density

o—(@—a)?/20 o~ (w+a)?/20

V2ro? V2ro?

The variable p connotes the probability that the bit takes the
value 1, and (1 — p) the probability the bit takes the value 0.
This can be modeled by X,, a Bernoulli variable taking values
+a and Z,, = X, +0Z where Z is a standard normal, so that
Z, has distribution f,,.

Corollary 11: The average heat dissipated Qg in an opti-
mal erasure protocol, resetting a random bit to zero in the
framework of (83) can be bounded above and below,

fo(z)=p +(1-p) (83)

Cr P(|Z] > ajo) <EQy — kpTlog?2

< Cy P(|Z| > a/o) (84)
where
~ a2 2
Cr = —kgT <1og [62«:2+2 (5 + 20_2) <1 F oy /%E)])
a 2 a
and

~ o2 2
a V 2a

More generally, in the case that the erasure is imperfect,
so that the probability of failure is non-negligible we have the
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following bound,
CLP(Z| > a/o) <EQo— kpT (H(po) —
< Cy P(|2] > a/o)

H(p1)) (85)

(36)
where

Cr =Cr+kpTH(X,,)

Cy = Cy — kpTH(X,,).

Proof:  First let us note that we understand a random
bit to be the case that py = 5 while an erasured bit is
to be understood as a determlmstlc X with p; = 0. Thus,
(84) follows immediately from (85) If we let pg = f,, and
pt; = [p» and let Z,, = X, + 0Z denote a variable then
(82) gives

EQO = kBT (h(fpo) - h(fpl))
=kpT (I(Zpo; Xpo) - I(Zpl ; X;Dl)) ’
where the second equality follows from the fact that both

Z,, variables are conditionally Gaussian of the same variance.
Using the Corollary 9,

(87)
(88)

I(Zp,;; Xp,) — H(Xp,) >
—log ez t? 5—}—20—2 1—|—1/9—7Tg P(|Z| > a/o)
a? 2 a ’
while Theorem 1 applied as in (4) as
= H(Xp,) —P(|Z| > a/0)H(X,,),

since Ty =1 —P(|Z| > a/c). Combining these results gives
I(ZPO;XPO) - I(Zpl;X;Dl) - H(X;Do) + H(Xpl) <

2
o322 <5+2”—2) <1+ \/9—7@)]
a 2 a

—P(|Z] > a/o)H(X,,)

P(|Z] > a/o)log

and

I(ZPO;XPO) - I(Zpl;X;Dl) - H(Xpo) + H(X;Dl) >

i_ﬁrg 0'2 97T
—P(|Z] > a/o)log [6202 5+2a_2 1+ >

+P(2] > a/o)H(Xp, ).

Inserting these equations into (88) completes the proof.  [J

D. Functional Inequalities

Mixture distributions arise naturally in mathematical con-
texts as well. For example in [11] Bobkov and Marsiglietti
found interesting application of h(X + Z) < H(X) + h(Z)
for X discrete and Z independent and continuous in the
investigation of entropic Central Limit Theorem for discrete
random variables under smoothing.

In the study of stability in the Gaussian log-Sobolev inequal-
ities, Eldan et al. [23], it is proven as Proposition 5 that the
deficit in the Gaussian log-Sobolev inequality, defined as

) = ") D

2141

for a measure p and v the standard d-dimensional Gaussian
measure, and [ is relative Fisher information,

d
I(plly) = /Rd log (ﬁ) dv,

is small for Gaussian mixtures. More explicitly for p; non-
negative numbers summing to 1,

J <ZP1‘%‘> < H(p)

In the language of Theorem 1 a sharper bound can be achieved.
Corollary 12: When ~,; are translates of the standard
Gaussian measure then

5 <me> < T;H(p),

where 7} is defined as in Theorem 1.

Proof: By the convexity of the relative Fisher information,
the equality D(3_; pivil[v) = >, piD(vil[7)
— (5 pii) + 5 pih(ye), SIB — DGyl = 0, and the
application of Theorem 1 we have

<me> = M mellv

<Y ( illv) _ mnv))
+ h( me) - Zpih(%')

= h(z Pivi) — Zpih(%‘)

< Ty H(p).

VI. CONCLUSION

The entropy of mixtures of discrete probability distributions
has been explored in depth for decades, and many useful
bounds have been developed, including some quite recently
(see, e.g., [3], which actually treats the quantum setting but
includes discrete mixtures as a special case). In the special case
of convolutions of discrete probability distributions (which are
mixtures of translations of a fixed distribution), even more
is known (see, e.g., [47], [50], [51] and references therein).
In a different direction, the behavior of differential entropy
of infinite (continuous) mixtures of absolutely continuous
distributions have also been explored, mainly in the context of
convolutions of absolutely continuous distributions (i.e, sums
of independent random vectors)— see, e.g., [45], [46], [49] and
references therein.

In this article, we focused instead on the differential entropy
of mixtures of absolutely continuous distributions, which has
received some but comparatively much less attention, and
provided tight upper and lower bounds for the same under
natural conditions. The efficacy of the bounds is demon-
strated, for example, by demonstrating that existing bounds
on the conditional entropy H(X|Z) of a random variable
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X taking values in a countable set X conditioned on a
continuous random variable Z, become meaningless as the
cardinality of the set X' increases while the bounds obtained
here remain relevant. Significantly enhanced upper bounds on
mutual information of channels that admit discrete input with
continuous output are obtained based on the bounds on the
entropy of mixture distributions. The technical methodology
developed is of interest in its own right whereby connections to
existing results either can be derived as corollaries of our more
general theorems or are improved upon by our results. These
include the reverse Pinsker inequality, bounds on Jensen-
Shannon divergence, and bounds that are obtainable via Fano’s
inequality.

APPENDIX

Proof of Proposition 4: There is nothing to prove in (1),
this is exactly the definition of the usual relative entropy from
wto tp+ (1 —1t)v. For (2), by (1) S¢(p||v) = 0 iff D(p|ltp+
(1 = t)v) = 0 which is true iff p = tu + (1 — t)v which
happens iff ¢ = 1 or p = v. To prove (3), observe that for a
Borel set A

H—Ir—\

p(A) < < (tp+ (1 =) (A).

This gives the following inequality, from which absolute con-

tinuity, and the existence of m follow immediately,

—_

dp
d(tp+ (1 —t)v) =3 (89)

Taking logarithms and integrating (89) against p gives,

Se(ullv) <

To prove (4), notice that for fixed p and v, the map ¢, =
tp+ (1 —t)v is affine, and since the relative entropy is jointly
convex [19], convexity in ¢ follows from the computation
below.

—logt.

= D(M||‘I’(1—>\)t1+>\t2)

= D(p[|(1L = X)®y, + APy,)

< (L =N)D(ul|®s,) + AD(pl[®r,)
= (L= XS, (pl[v) + ASt, (ul[v).

Since t — Sy(u||v) is a non-negative convex function on
(0, 1] with Sy (p||v) = 0 it is necessarily non-increasing. When
w# v, u# tu+(1—t)v so that Sg(u||lv) > 0 fort < 1, so that
as a function of ¢ the skew divergence is strictly decreasing.
To prove that S; is an f-divergence recall Definition 1. It is
straight forward that S; can be expressed in form (29) with
f(z) = xlog(x/(tx 4+ (1 — t)). Convexity of f follows from
the second derivative computation,

(t—1)°
z(te + (1 —1))?

Since f(1) = 0 the proof is complete. O

In this section we consider W ~ ¢, with ¢,(w) =
e"w‘2/2"/(27r02)%, and use ¢ to denote 7 and use Z in
place of W in this case.

Sty +a (1)

> 0.

f(w) =

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 4, APRIL 2022

Proposition 8: For d > 2
—/ Yo (w) log v, (w)dw
A

d 5 5 A2
< | =2log2meo” + — | P(IW] > A) (90)
o

Proof: We first show the result for general o follows from
the case that o = 1. Indeed, assuming (90), the substitution
u=w/o gives

~ [ alw)log polw)du

=P(|Z| > A\ o) dlogo —/ o(u)log p(u)du

c

Xo
d 9 o A2
< |-2log2me“c” + o P(|Z| > A/o),
where we have applied (90) to achieve the inequality. Since W

has the same distribution as o Z, the reduction holds. By direct
computation,

- [ ewogpwd

A

:/ o(w)— 210g27rdw+/
¢

(2 77) d/2wdffo7“d+le”’2/2dr
(27r)—d/2wdf;O rd=le=r2/2qy

Ade—A?/2 + df;o pd—1g—r°/2
[ rd=te=r* /24y

Ade—A?/2
foo d—1c—12/2p
Using rd=1 > p\4=2 for > X\ when d > 2,

o0 5 o0

/ rd=le=m2qp > )\d_Q/ re
A A
Thus,

—/ o(w)log p(w)dw < P(|Z| > ) (C—l21og ome? + )\2> .

A

d
=P(|Z| > \) <—210g27r+

d
=P(|Z| > \) <—210g27r+

d
=P(|Z| > \) < 2log 2me? +

—rz/QdT _ Ad—Qe—rz/Q.

O
Proposition 9: For d > 2,

/C o(w)wldw < A+ do)P(W] > ). O1)

Proof: Again we reduce to the case that 0 = 1. Substi-
tuting u = w/o gives

|, otwlutde =o [ ol

o
< (2 +d> oP(|Z| > /o)
= (A4 do)P(|W] > N),

where we have used (91) for the inequality and oZ being
equidistributed with W for the last equality. We now proceed
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in the reduced case. By change of coordinates and integration
by parts,

ch w)|w|dw f;o rd

e~ 24y
P(Z]>X) [ riler*/2dr
|:_,rd—le—r2/2}oo

(d—].)foo d—2 77" /er
[ rd=te=r*/2dr [ rd=te=r*/2dr

> A for d > 2, [Zrile A >
/2y = \d=2e—N /2, so that,

[_rdqefﬁ/z}
I rd—le—’"z/Qc)l\r' <A
Thus, the result will follow if we prove
AN :zd/oord_le_’"2/2dr—(d —1) /00 rd=2¢=7*/2gp > .
A A )

obviously true. When
gives A(0) =
When d > 4,

Using r
242 f;o

When A > 1, the result is
A = 0, a change of variables
= (d r(4)—27% (d— 1)1‘(%)).
I'(d/2) > T((d — 1)/2), which follows by induction
using T'(z + 1) = 2I(2) and T'(5/2) = 3y7/4 >
1 = T2 > I'(3/2) V7/2. That A0) > 0 in
the cases d = 2 and d = 3 can be checked directly,
using I'(3/2) = /7/2 and I'(1/2) = /. Finally since
AN\ = )\d_Qe_/\z/Q(d — 1)—dX\), A is increasing on
(0,(d — 1)/d) and decreasing on ((d — 1)/d,o0). Thus,

A(X) > 0, and hence,

fB° w)|w|dw
< \A+d.
P(|Z] > )
O
P2rop02siti0n 10: When d = 1, so that W ~ ¢, (w) =
e /20 /V2mwo?, we have the following bounds for A > 0,
o0
o%0s(\) = / we (w)dw
)\oo 0.2
< / o (w)dw ()\ + —) (93)
N A
_/)\ @U(w) IOg @U(w) dw
A2 o
(1 + 252 + log(V 2770)) / Yo (w) dw.
A
%94

Proof: The inequality (93) is standard. The inequality
can be reduced to the ¢ = 1 by applying (93) after change
of variables uw = w/o. The proof then follows from the o =
1 case. Recall ¢’ (w) = —wp(w) and observe that the function

oS] )\2
A) = dw — ———@(A
o) = | el = el
satisfies ¢(0) > 0, limy_,c g(A) = 0, and has derivative

orr o <
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so that g(\) > 0 which is equivalent to (93). To prove (94),
we again reduce to the ¢ = 1 case by the substitution u =
w/o. Then compute directly using integration by parts,

- /:O p(w) log p(w)dw
= [ o VERpw)tn + 5 [ utelwidu
log\/_/ w)dw + = ()\go()\) + /:O so(w)dw)

< (1 + % + log x/%) /:o o(w)dw.

The inequality is an application of (93). O
Proposition 11: When X and Z satisfy the conditions of
section IV for the one dimensional Gaussian W ~ ¢, (w) =

e~ w?/20° /W,

H(X|Z) < (M = 1P(W[ < 7A) + Ji(@)P(IW] = A)

2 2
2 2
. 9 50 3 270

Proof: As in the proof of Theorem 8,

Ji(p) = <A—2 +M + 1) logy(¢),

H(X|Z)

72}%/ pip(w)

< [ oty BB D) T )

[ otorions st o) AT ),

p(w)
with

/ (
B
S

Z];ézpjso(

10g<1+ i(w)) det (77, (w )))dw

2505 2y PTG

() det (T (w))

) )dw

DP([W| < Ar) + MB(W| > A).
(95)

(M —

Splitting the integral,

i D iy P(Tji(w de T’
/uwu)log( L En Ty (90(@5))) t <>>)dw
- /B w)log Zp]Zso i (w)) det (T (w) | du
- / () log ()

A
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Using Corollary 5, Jensen’s inequality, and (93), while
1 3
Vare 12X

writing 5 = 7M (

w)) det(T7;(w)) | dw

/ w)log ZmZ@ i

el o)

el )

A
272 22) 1
14274+ ——=

IA

P(W[> A)log |5 (96)

Then applying (94),

- [ ew o p(wdu

X
/\2
< <1 + 505 +log \/2m2> P(W|>X). (97

Combining (95), (96), and (97) we have

H(X|Z) < (M ~ DB(W| < A7) + L()B(W] > A).
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