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Abstract

We prove the wellposedness of a distributed-order space-fractional
diffusion equation with variably distribution and its support, which could
adequately model the challenging phenomena such as the anomalous diffu-
sion in multiscale heterogeneous porous media, and smoothing properties
of its solutions. We develop and analyze a collocation scheme for the pro-
posed model based on the proved smoothing properties of the solutions.
Furthermore, we approximately expand the stiffness matrix by a sum of
Toeplitz matrices multiplied by diagonal matrices, which can be employed
to develop the fast solver for the approximated system. We prove that
it suffices to apply O(logN) terms of expansion to retain the accuracy of
the numerical discretization of degree N , which reduces the storage of the
stiffness matrix from O(N2) to O(N logN), and the computational cost of
matrix-vector multiplication from O(N2) to O(N log2N). Numerical re-
sults are presented to verify the effectiveness and the efficiency of the fast
method.
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1. Introduction

Space-fractional diffusion equations (sFDEs) accurately describe the
superdiffusive transport characterized by highly skewed power-law decays,
observed in solute transport in heterogeneous porous materials and other
applications [3, 6, 29, 30]. However, sFDEs admit solutions with boundary
weak singularity [9, 10, 19, 37, 39, 41], because they were derived in the
free space as the diffusion limit of the continuous time random walk in
the phase plane [29, 30] and so do not properly model the transport near
the boundary. A two-scale sFDE, which consists of a fractional derivative
term and a second-order derivative term, was proposed in [6] to improve
the modeling near the boundary where the superdiffusive transport should
behave more like a Fickian diffusion due to the impact of the boundary
condition, while retaining the accurate description of the superdiffusive
transport away from the boundary.

As the order of sFDEs is determined by the fractal dimension of the
surrounding porous medium via the Hurst index [29], a constant-order
sFDE can hardly model the superdiffusive transport in highly heteroge-
neous porous media. Instead, the distributed-order fractional operators, in
which the constant-order fractional operators are integrated over a range of
the fractional order with respect to some density function ν(α) are proposed
in [2, 4, 5, 7, 9, 12, 13, 23, 24, 32],

Dν
xg :=

∫ 1

0
ν(α)

[
γIαx g

′′(x) + (1− γ)Îαx g
′′(x)

]
dα, 0 ≤ γ ≤ 1,

Iαx g :=
1

Γ(α)

∫ x

0

g(s)

(x− s)1−αds, Îαx g :=
1

Γ(α)

∫ 1

x

g(s)

(s− x)1−αds,

(1.1)

to account for the integrate impact of a family of fractional differential
operators and of uncertainties, e.g., due to the limited information and
noise in the data [8, 11, 15, 20, 21, 26, 27, 28, 31]. Furthermore, due to
the strong heterogeneity of the surrounding medium, the density function ν
and its support may be spatially dependent [33, 40, 42]. To date, there is no
rigorous mathematical and numerical analysis on variably distributed-order
sFDEs reported in the literature.

In this paper we consider a spatially-dependent distributed-order sFDE

−u′′(x)− d(x)Dω
xu(x) = f(x), x ∈ (0, 1), u(0) = u(1) = 0,

Dω
x g(x) :=

∫ 1

0
ω(α, x)

[
γIαx g

′′(x) + (1− γ)Îαx g
′′(x)

]
dα.

(1.2)

Here d ≥ 0 is a fractional diffusivity, γ and 1−γ with 0 ≤ γ ≤ 1 indicate the
relative weights of forward versus backward transition probability [29], f is
the source or sink term. The space-dependence of ω and its support further
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complicates the mathematical analysis of the problem. Computationally,
the distributed-order derivative (1.1) is often discretized as a finite sum
of constant-order fractional derivatives via a numerical quadrature on the
distributed-order integral [8, 31]. Then each of the fractional derivatives is
further discretized, yielding Toeplitz stiffness matrices [36]. Consequently,
discrete fast Fourier transform (FFT) based fast numerical methods with
linear storage and almost linear computational complexity were developed
[16, 25, 35]. However, due to the space-dependence of ω and its support,
the corresponding discretization of problem (1.2) loses the Toeplitz struc-
ture, and so the fast numerical methods developed for the distributed-order
sFDEs of form (1.1) no longer applies [15].

We analyze the well-posedness and smoothing properties of problem
(1.2). Base on the proved regularity of its solution, we develop an indirect
collocation method for the problem and prove its error estimates without
any artificial regularity assumption on the exact solution. Finally, we com-
bine the ideas in [16, 22, 36, 38] to utilize the power-law decaying property
of the matrix entries to develop a low-rank approximation, yielding a fast
solution method with almost linear memory requirement and computational
complexity. The rest of the paper is organized as follows. Section 2 goes
over preliminaries. In Section 3 we prove the well-posedness and smoothing
properties of problem (1.2). In Section 4 we develop a collocation scheme
and prove its error estimates. In Section 5 we develop and analyze a fast
approximation to the problem. In Section 6 we investigate the effectiveness
and efficiency of the fast approximation. Section 7 is Appendix.

2. Preliminaries

Let 0 < µ < 1, m,n ∈ N and X,Y be Banach spaces. Let Cm[0, 1] be
the space of continuous functions with continuous derivatives up to order
m on [0, 1]. Let Cm,µ[0, 1] ⊂ Cm[0, 1] consist of functions with the mth
order derivative being Hölder continuous with index µ. All the spaces are
equipped with the standard norms [1]. Furthermore, L(X,Y ) and K(X,Y )
refer to the spaces of bounded and compact linear mappings from X to Y ,
respectively. Throughout this paper we make the following assumption:

Assumption (A): For any x ∈ [0, 1], (i) ω(α, x) ≥ 0,
∫ 1

0 ω(α, x)dα =
1; (ii) there exist 0 < α̌ < α̂ ≤ 1 such that suppω(α, x) ⊂ [α(x), α(x)] ⊂
[α̌, α̂]; (iii) α, α ∈ C1[0, 1], ω(α, x) ∈ C([α̌, α̂], [0, 1]), and ωx(α, x) ∈ L1(α̌, α̂)
for x ∈ [0, 1] a.e.

Let v := u′′ and rewrite problem (1.2) as the Volterra integral equation

v(x) + d(x)

∫ α(x)

α(x)
ω(α, x)

(
γ Iαx + (1− γ) Îαx

)
v dα = −f(x). (2.1)
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Interchange the order of the iterated integrals to get

d(x)

∫ α(x)

α(x)
ω(α, x)

(
γ Iαx + (1− γ) Îαx

)
v(x) dα =

∫ 1

0
k(x, s)v(s)ds.

Here k(x, s) := l(x, s)/|x− s|1−α̌, 1A is the indicator function of set A, and

l(x, s) = d(x)
(
γ1{s<x}(s) + (1− γ)1{s>x}(s)

) ∫ α(x)

α(x)

ω(α, x)

Γ(α)|x− s|α̌−α
dα.

We use the identity operator I to formulate (2.1) and recover u from v by

(I +K)v = −f, Kv :=

∫ 1

0
k(x, s)v(s)ds, x ∈ [0, 1],

u(x) =

∫ x

0
(x− s)v(s)ds− x

∫ 1

0
(1− s)v(s)ds.

(2.2)

In the rest of the paper, we may omit the interval [0, 1] in spaces and
norms if no confusion occurs.

3. Wellposedness and smoothing properties

Theorem 3.1. Suppose Assumption (A) holds and d, f ∈ Cλ[0, 1]
with λ := min{α(0), α(1)} (λ < 1 by the assumptions on ω). If (2.1) with
f ≡ 0 has only the trivial solution, then equation (2.1) has a unique solution
v ∈ Cλ[0, 1] and there is a constant Q > 0 such that

‖v‖Cκ[0,1] ≤ Q‖f‖Cκ[0,1], 0 ≤ κ ≤ λ. (3.1)

P r o o f. l(x, s) is clearly bounded. To verify |lx(x, s)| ≤ Q/|x− s| for
all x 6= s, only consider s < x by symmetry,

lx(x, s) = γd(x)

∫ α(x)

α(x)

(x− s)α−α̌
(
ωx(α, x)(x− s) + ω(α, x)(α− α̌)

)
Γ(α)(x− s)

dα

+
γd(x)α′(x)ω(α(x), x)

Γ(α(x))(x− s)α̌−α(x)
− γd(x)α′(x)ω(α(x), x)

Γ(α(x))(x− s)α̌−α(x)

+

∫ α(x)

α(x)

γd′(x)ω(α, x)dα

Γ(α)(x− s)α̌−α
= I1 + I2 + I3 + I4.

We use Assumption (A) to conclude I2 + I3 + I4 is bounded and

|I1| ≤
Q

x− s

∫ α(x)

α(x)

∣∣∣∣ωx(α, x)(x− s) + ω(α, x)(α− α̌)

Γ(α)

∣∣∣∣dα ≤ Q

x− s
.

We use Lemma 7.1 to conclude that K ∈ K(C[0, 1], C[0, 1]) and hence (2.1)
has a unique solution v ∈ Cα̌[0, 1] from Lemma 7.2. Therefore, estimate
(3.1) holds for κ = α̌. Decompose the iterated integrals in (2.1) as follows:
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∫ α(x)

α(x)
ω(α, x)Iαx vdα = φl1v (x) + φl2v (x),∫ α(x)

α(x)
ω(α, x)Îαx vdα = φr1v (x) + φr2v (x),

φl2v (x) := v(0)

∫ α(x)

α(x)

ω(α, x)xαdα

Γ(α+ 1)
,

φr2v (x) := v(1)

∫ α(x)

α(x)

ω(α, x)(1− x)αdα

Γ(α+ 1)
,

φl1v (x) :=

∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0

v(s)− v(0)

(x− s)1−α dsdα,

φr1v (x) :=

∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ 1

x

v(s)− v(1)

(x− s)1−α dsdα.

We reformulate equation (2.1) as

v(x) = −d(x)
(
γφl1v + (1− γ)φr1v + γφl2v + (1− γ)φr2v

)
− f(x). (3.2)

By Lemma 7.5, γφl2v + (1 − γ)φr2v ∈ Cλ[0, 1]. Let M ∈ N+ be such that
Mα̌ < λ < (M + 1)α̌ (if λ is exactly a multiple of α̌, we could just slightly
reduce the value of α̌ to ensure the existence of such M). Use v ∈ Cα̌[0, 1]
to conclude φl1v , φ

r1
v ∈ C2α̌[0, 1] by (7.1) with the estimate

‖φl1v ‖C2α̌[0,1] + ‖φr1v ‖C2α̌[0,1] ≤ Q‖v‖Cα̌[0,1] ≤ Q‖f‖Cα̌[0,1].

The terms on the right-hand side of (3.2) are in C2α̌[0, 1], v ∈ C2α̌[0, 1] and

‖v‖C2α̌[0,1] ≤ Q
(
‖φl1v ‖C2α̌[0,1] + ‖φr1v ‖C2α̌[0,1] + |v(0)|+ |v(1)|

)
+ ‖f‖C2α̌[0,1]

≤ Q‖f‖C2α̌[0,1].

Repeat this process M−1 times to conclude v ∈ CMα̌[0, 1] with ‖v‖CMα̌[0,1]

≤ Q‖f‖CMα̌[0,1]. As λ < 1, we apply v ∈ CMα̌[0, 1] ⊂ Cλ−α̌[0, 1] and repeat

the procedure once more to deduce v ∈ Cλ[0, 1] with estimate (3.1). 2

Theorem 3.2. Under assumptions of Theorem 3.1, equation (1.2) has
a unique solution u ∈ C2,λ[0, 1] and there exists a constant Q > 0 such that

‖u‖C2,λ[0,1] ≤ Q‖f‖Cλ[0,1]. (3.3)

P r o o f. By Theorem 3.1, the equation (2.1) has a unique solution
v ∈ Cλ[0, 1], and then the function u defined in (2.2) belongs to C2,λ[0, 1]
and solves (1.2) with the estimate (3.3). If there exists another solution
ũ ∈ C2,λ[0, 1], then e := u− ũ satisfies the homogeneous analogue of (1.2),
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and v = e′′ satisfies the homogeneous analogue of (2.1). Then an application
of Theorem 3.1 yields v ≡ 0, which indicates e in a linear function. Then
the homogeneous boundary conditions in (1.2) ensures that e ≡ 0, which
shows the uniqueness of the solution to (1.2). 2

Theorem 3.3. Suppose Assumption (A) holds and d, f ∈ C1[0, 1]. If
for some constant 0 ≤ µ < 1, d satisfies

d(x) ≤ µ
(∫ α(x)

α(x)

ω(α, x)

Γ(α+ 1)
dα
)−1

, x ∈ [0, 1], (3.4)

then problem (2.2) has a unique solution v ∈ C1(0, 1) and

‖ρv′‖C[0,1] ≤ Q‖f‖C1[0,1], ρ(x) := x(1− x). (3.5)

If d, f ∈ C1,λ[0, 1] with λ given in Theorem 3.1, then ρv′ ∈ Cλ[0, 1] and

‖ρv′‖Cλ[0,1] ≤ Q‖f‖C1,λ[0,1]. (3.6)

P r o o f. Let v0 be the solution to the homogeneous analogue of (2.1),

|v0(x)| =
∣∣∣∣d(x)

∫ α(x)

α(x)

w(α, x)

Γ(α)

(∫ x

0

γv0(s)ds

(x− s)1−α +

∫ 1

x

(1− γ)v0(s)ds

(s− x)1−α

)
dα

∣∣∣∣
≤ ‖v0‖C[0,1]

(
d(x)

∫ α(x)

α(x)

ω(α, x)

Γ(α+ 1)

(
γxα + (1− γ)(1− x)α

)
dα

)
≤ ‖v0‖C[0,1]

(
d(x)

∫ α(x)

α(x)

ω(α, x)

Γ(α+ 1)
dα

)
= Z(x)‖v0‖C[0,1].

Under condition (3.4), Z(x) < 1. Hence, ‖v0‖C[0,1] = 0. Thus, the homoge-
neous analogue of problem (2.1) has only the trivial solution. By Theorem
3.1, problem (2.1) has a unique solution v with the estimate (3.1).

We use relation ρ(x) = ρ(s) + (x− s)(1− x− s) to split ρ(x)v(s) as

ρ(x)v(s) = ρ(s)v(s) + (x− s)(1− x− s)v(s). (3.7)

We multiply (2.1) by ρ(x), use (3.7) and (ρv)(0) = (ρv)(1) = 0 to get

ρ(x)v(x) = −ρ(x)f(x)

− γd(x)

∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0

ρ(s)v(s) + (x− s)(1− x− s)v(s)

(x− s)1−α dsdα

− (1− γ)d(x)

∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ 1

x

ρ(s)v(s) + (x− s)(1− x− s)v(s)

(s− x)1−α dsdα

= −ρ(x)f(x)− d(x)
(
γφl1ρv + (1− γ)φr1ρv

)
− d(x)

(
γG1 − (1− γ)G2

)
, (3.8)

where
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G1 :=

∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0
(1− x− s)(x− s)αv(s)dsdα

G2 :=

∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ 1

x
(1− x− s)(s− x)αv(s)dsdα.

Since G1 and G2 have continuous kernels and so in C1[0, 1],

G′1(x) =
α′(x)ω(α(x), x)

Γ(ᾱ(x))

∫ x

0
(1− x− s)(x− s)α(x)v(s)ds

−α
′(x)ω(α(x), x)

Γ(α(x))

∫ x

0
(1− x− s)(x− s)α(x)v(s)ds

+

∫ α(x)

α(x)

ωx(α, x)

Γ(α)

∫ x

0
(1− x− s)(x− s)αv(s)dsdα

+

∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0

α− (1 + α)x+ (1− α)s

(x− s)1−α v(s)dsdα.

(3.9)

Thus, we bound G1 (and similarly G2) by

‖G1‖C1[0,1] ≤ Q‖v‖C[0,1]

∥∥∥∫ ᾱ(x)

α(x)

|ω(α, x)|+ |ωx(α, x)|
Γ(α)

×
∫ x

0

ds

(x− s)1−αdα
∥∥∥
C[0,1]

≤ Q‖v‖C[0,1].

Since ρv ∈ Cλ[0, 1], a similar lifting argument to Theorem 3.1 concludes
ρv ∈ C1[0, 1] ( if Mα̌ > 1, we apply estimate (7.2) in Lemma 7.6 instead).
As ρ−1 ∈ C(0, 1), we deduce that v ∈ C1(0, 1) and

‖ρv‖C1[0,1] ≤ Q‖f‖C1[0,1].

We apply ρv′ = (ρv)′ − ρ′v = (ρv)′ − (1− 2x)v and Theorem 3.1 to get the
estimate of ρv′ as

‖ρv′‖ ≤ ‖ρv‖C1[0,1] + ‖v‖C[0,1] ≤ Q‖f‖C1[0,1].

We integrate φl1ρv by parts to get

φl1ρv = −
∫ α(x)

α(x)

ω(α, x)

Γ(α+ 1)

(∫ x

0
ρ(s)v(s)d(x− s)α

)
dα

=

∫ α(x)

α(x)

ω(α, x)

Γ(α+ 1)

(∫ x

0
(x− s)α(ρv)′(s)ds

)
dα.

Differentiate the equation to get
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(φl1ρv)
′ =

α′(x)ω(α(x), x)

Γ(α(x) + 1)

∫ x

0
(x− s)α(x)(ρv)′(s)ds

−α
′(x)ω(α(x), x)

Γ(α(x) + 1)

∫ x

0
(x− s)α(x)(ρv)′(s)ds

+

∫ α(x)

α(x)

[ ωx(α, x)

Γ(α+ 1)

∫ x

0
(x− s)α(ρv)′(s)ds+

ω(α, x)

Γ(α)

∫ x

0

(ρv)′(s)ds

(x− s)1−α

]
dα.

The last term on the right-hand side can be decomposed as∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0

(ρv)′(s)dsdα

(x− s)1−α = φl1(ρv)′ + (ρv)′(0)

∫ α(x)

α(x)

ω(α, x)xαdα

Γ(α+ 1)
.

The same holds for φr1ρv by symmetry. Differentiate (3.8) to obtain

(ρv)′ = −d′
(
γφl1ρv + (1− γ)φr1ρv + γG1 − (1− γ)G2

)
− (ρf)′

−d
(
γ(φl1ρv)

′ + (1− γ)(φr1ρv)
′)− d(γG′1 − (1− γ)G′2

)
= −γd(x)(φl1ρv)

′ − (1− γ)d(x)(φr1ρv)
′ − d

(
γG′1 − (1− γ)G′2

)
+ P1,

where P1 = −d′
(
γφl1ρv + (1− γ)φr1ρv + γG1 − (1− γ)G2

)
− (ρf)′ ∈ Cλ[0, 1].

We combine the preceding three equations to get

(ρv)′ + γd(x)φl1(ρv)′ + (1− γ)d(x)φr1(ρv)′

= −d
∫ α(x)

α(x)

ω(α, x)
(
γ(ρv)′(0)xα+(1− γ)(ρv)′(1)(1− x)α

)
Γ(α+ 1)

dα+P2,
(3.10)

P2 = −d
(
γG′1 − (1− γ)G′2

)
+ P1

−d
[
α′ω(α, x)

Γ(ᾱ(x) + 1)

(
γ

∫ x

0
(x− s)α(x)(ρv)′ds− (1− γ)

∫ 1

x
(s− x)α(x)(ρv)′ds

)
−α
′ω(α, x)

Γ(α+ 1)

(
γ

∫ x

0
(x− s)α(x)(ρv)′ds− (1− γ)

∫ 1

x
(s− x)α(x)(ρv)′ds

)
+

∫ α(x)

α(x)

ωx(α, x)

Γ(α+ 1)

(
γ

∫ x

0
(x− s)α(ρv)′ds− (1− γ)

∫ 1

x
(s− x)α(ρv)′ds

)
dα

]
.

As is proved in Lemma 7.5, the first term on the right-hand side of (3.10)
is in Cλ[0, 1]. The last three terms of P2 have continuous kernels, and so
belong to C1[0, 1]. We bound the most singular term of G′1 in (3.9) by∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0

v(s)

(x− s)1−αdsdα = φl1v (x) + v(0)

∫ α(x)

α(x)

ω(α, x)xα

Γ(α+ 1)
dα.
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By Lemmas 7.4-7.5, we conclude G′1 ∈ Cλ[0, 1] with the bound

‖G′1‖Cλ[0,1] ≤ Q
(
‖φl1v ‖Cλ[0,1] + |v(0)|

)
≤ Q‖v‖Cλ[0,1] ≤ Q‖f‖Cλ[0,1].

The same holds for G′2. Thus, all the terms on the right-hand side of (3.10)
belong to Cλ[0, 1] with its Cλ norm bounded by ‖f‖C1,λ[0,1]. A similar

lifting argument to Theorem 3.1 applied to (3.10) concludes ρv′ ∈ Cλ[0, 1]
with estimate (3.6). 2

Theorem 3.4. If Assumption (A) and (3.4) hold, d, f ∈ C2[0, 1], then

‖ρ2v′′‖C[0,1] ≤ Q‖f‖C2[0,1]. (3.11)

In addition, if d, f ∈ C2,λ[0, 1] with λ given in Theorem 3.1, then

‖ρ2v′′‖Cλ[0,1] ≤ Q‖f‖C2,λ[0,1]. (3.12)

Consequently, v ∈ Cm(0, 1) can be bounded by∣∣v(m)(x)
∣∣ ≤ Qmax{xλ−m, (1− x)λ−m}‖f‖Cm,λ[0,1], m = 1, 2. (3.13)

P r o o f. We multiply (3.10) by ρ(x) to get

ρ(ρv)′(x) + γd(x)ρ(x)φl1(ρv)′ + (1− γ)d(x)ρ(x)φr1(ρv)′

= −γ(ρv)′(0)d(x)ρ(x)

∫ α(x)

α(x)

ω(α, x)xα

Γ(α+ 1)
dα

−(1− γ)(ρv)′(1)d(x)ρ(x)

∫ α(x)

α(x)

ω(α, x)(1− x)α

Γ(α+ 1)
dα+ ρ(x)P2.

(3.14)

Set z = ρ(ρv)′, use the fact that ρ(0) = 0, and apply the splitting (3.7) to
rewrite the second term on the left-hand side of (3.14) as

ρ(x)φl1(ρv)′(x) = φl1z +

∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0
(x− s)α(1− x− s)(ρv)′(s)dsdα

−(ρv)′(0)ρ(x)

∫ α(x)

α(x)

ω(α, x)xα

Γ(α+ 1)
dα.

We similarly decompose ρφr1(ρv)′ and reformulate (3.14) as

z + γd(x)φl1z + (1− γ)d(x)φr1z

= ρ(x)P2 − γd(x)

∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0
(x− s)α(1− x− s)(ρv)′(s)dsdα

+ (1− γ)d(x)

∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ 1

x
(s− x)α(1− s− x)(ρv)′(s)dsdα. (3.15)

We use (3.9) to bound the most singular terms ρG′1 and ρG′2 in ρP2 by
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ρ(x)

∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0

v(s)ds

(x− s)1−αdα

=

∫ α(x)

α(x)

ω(α, x)

Γ(α)

[ ∫ x

0

(ρv)(s)ds

(x− s)1−α +

∫ x

0
(x− s)α(1− x− s)v(s)ds

]
dα

=

∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0

( 1

α
(x− s)α(ρv)′ + (x− s)α(1− x− s)v(s)

)
dsdα.

The right-hand side has continuous integrand, so ρG′1 ∈ C1[0, 1]. We drop
the smooth coefficient d and decompose the most singular term in (ρG′1)′

by[ ∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0
(x− s)α(ρv)′dsdα

]′
=

∫ x

0

(α′ω(α(x), x)

Γ(α(x))

∫ x

0
(x− s)α(x) − α′ω(α(x), x)

Γ(α(x))
(x− s)α(x)

)
(ρv)′ds

+

∫ α(x)

α(x)

∫ x

0

(ωx(α, x)

Γ(α)
(x− s)α +

αω(α, x)

Γ(α)(x− s)1−α

)
(ρv)(s)′dsdα.

We split the (more singular) last term on the right-hand side by∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0

(ρv)′(s)dsdα

(x− s)1−α = φl1(ρv)′+(ρv)′(0)

∫ α(x)

α(x)

ω(α, x)xαdα

Γ(α+ 1)
. (3.16)

By Theorem 3.3, (ρv)′ ∈ Cλ[0, 1] and the left-hand side belongs to Cλ[0, 1].
We conclude ρG′1 ∈ C1,λ[0, 1] with estimate ‖ρG′1‖C1,λ[0,1] ≤ Q‖f‖C1,λ[0,1].

Similarly, the remaining terms in P2 are in C1,λ[0, 1] with the same bound.
We bound the rest on the right-hand side of (3.15), which belong to

C1[0, 1] since they have continuous integrands. For the sake of clarity, we
just bound the derivative of the second term that is representative(∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0
(x− s)α(1− x− s)(ρv)′(s)dsdα

)′
=
α′(x)ω(α(x), x)

Γ(α(x))

∫ x

0
(x− s)α(x)(1− x− s)(ρv)′(s)ds

−α
′(x)ω(α(x), x)

Γ(α(x))

∫ x

0
(x− s)α(x)(1− x− s)(ρv)′(s)ds

+

∫ α(x)

α(x)

ωx(α, x)

Γ(α)

∫ x

0
(x− s)α(1− x− s)(ρv)′(s)dsdα

+

∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0

α− (1 + α)x+ (1− α)s

(x− s)1−α (ρv)′(s)dsdα.

(3.17)
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The (most singular) last term in (3.17) is bounded similar to (3.16).
Thus the second term on the right-hand side of (3.15) is bounded by∥∥∥γd∫ α(x)

α(x)

ω(α, x)

Γ(α)

∫ x

0
(x−s)α(1−s−x)(ρv)′(s)dsdα

∥∥∥
C1[0,1]

≤ Q‖f‖C1,λ[0,1].

We similarly prove that the third term, and so all the terms on the right-
hand side of (3.15) belong to C1,λ[0, 1]. We then apply a similar lifting as
in Theorem 3.1 to (3.15) to deduce that z ∈ C1[0, 1] with the estimate

‖z‖C1[0,1] ≤ Q‖(ρv)′‖C1[0,1] ≤ Q‖f‖C2[0,1].

We finally lift the regularity of z from C1[0, 1] to C1,λ[0, 1]. Using z(s) −
z(0) =

∫ s
0 z
′(θ)dθ and interchanging the order of the integrations to get

φl1z =

∫ α(x)

α(x)

ω(α, x)

Γ(α+ 1)

∫ x

0
(x− s)αz′(s)dsdα.

We consequently split the derivative (φl1z )′ by

(φl1z )′ =

∫ x

0

(α′ω(α(x), x)

Γ(α(x))

x

(x− s)α(x) − α′ω(α(x), x)

Γ(α(x))
(x− s)α(x)

)
z′(s)ds

+

∫ α(x)

α(x)

ωx(α, x)

Γ(α+ 1)

∫ x

0
(x− s)αz′dsdα+ φl1z′ +z

′(0)

∫ α(x)

α(x)

ω(α, x)xαdα

Γ(α+ 1)
.

We differentiate (3.15) to get

z′ + γd(x)φl1z′ + (1− γ)d(x)φr1z′

= −d
[ ∫ α(x)

α(x)

ω(α, x)
(
γz′(0)xα + (1− γ)z′(1)(1− x)α

)
Γ(α+ 1)

dα

+
α′ω(α(x), x)

Γ(α(x))

(
γ

∫ x

0
(x− s)α(x)z′(s)ds− (1− γ)

∫ 1

x
(s− x)α(x)z′(s)ds

)
−α
′ω(α(x), x)

Γ(α(x))

(
γ

∫ x

0
(x− s)α(x)z′(s)ds− (1− γ)

∫ 1

x
(s− x)α(x)z′(s)ds

)
+

∫ α(x)

α(x)

ωx(α, x)

Γ(α+ 1)

(
γ

∫ x

0
(x− s)αz′(s)ds

−(1− γ)

∫ 1

x
(s− x)αz′(s)ds

)
dα
]
− d′(x)

(
γφl1z + (1− γ)φr1z

)
+ P ′3.

Here P3 ∈ C1,λ[0, 1] represent all the terms on the right-hand side of (3.15).
Thus, all the right-hand side terms belong to Cλ[0, 1]. Apply the similar
lifting to Theorem 3.1 to conclude that z ∈ C1,λ[0, 1] with the estimate

‖z‖C1,λ[0,1] ≤ Q‖f‖C2,λ[0,1].

We use ρ2v′′ = (ρ(ρv)′)′ − (ρ′)2v − ρρ′′v − 3ρρ′v′ to arrive at estimate
(3.12). We use estimates (3.5) and (3.11) for m = 1, 2 to obtain
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|ρ(x)mv(x)m − 0| ≤ Q‖ρmvm‖Cλ[0,1]x
λ ≤ Q‖f‖Cm,λ[0,1]x

λ,

which leads to estimate (3.13). 2

Theorem 3.5. If Assumption (A) and (3.4) hold, d, f ∈ C2[0, 1], then

‖ρ2u(4)‖C[0,1] ≤ Q‖f‖C2[0,1].

Furthermore, if d, f ∈ C2,λ[0, 1], then

‖ρ2u(4)‖Cλ[0,1] ≤ Q‖f‖C2,λ[0,1].

4. A collocation method and its error analysis

Let xn := (n − 1)h for n = 1, . . . , N + 2 with h := 1/(N + 1) be a
partition of [0, 1]. Let Sh be the space of continuous and piecewise linear

functions with the partition. Let {φn(x)}N+2
n=1 be the piecewise linear basis

functions with φn(xn) = 1 and φn(xk) = 0 for k 6= n. Then each function

vh(x) ∈ Sh can be represented by vh(x) =
∑N+2

n=1 vnφn(x) with vn = vh(xn).

A collocation method is formulated as follows:

• Find vh ∈ Sh such that for n = 1, 2, . . . , N + 2,[
(I +K)vh

]
(xn) = −f(xn), n = 1, 2, . . . , N + 2,

(Kvh)(xn) = d(xn)

∫ α(xn)

α(xn)

ω(α, xn)

Γ(α)

(
γ

∫ xn

0

vh(s)ds

(xn − s)1−α

+(1− γ)

∫ 1

xn

vh(s)ds

(s− xn)1−α

)
dα.

(4.1)

• Postprocess uh by

uh(x) :=

∫ x

0
(x− s)vh(s)ds− x

∫ 1

0
(1− s)vh(s)ds, x ∈ [0, 1]. (4.2)

The diagonal, lower triangular, and upper triangular entries of the stiffness

matrix A =
(
an,i
)N+2

n,i=1
are given by (4.3)–(4.5), respectively

an,n =



1 + (1− γ)d(x1)

∫ α(x1)

α(x1)

ω(α, x1)

h

α

Γ(α+ 2)dα, n = 1,

1 + d(xn)

∫ α(xn)

α(xn)

ω(α, xn)hα

Γ(α+ 2)
dα, 2 ≤ n ≤ N + 1,

1 + γd(xN+2)

∫ α(xn)

α(xn)

ω(α, xn)hα

Γ(α+ 2)
dα, n = N + 2;

(4.3)
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an,i =



γd(xn)

∫ α(xn)

α(xn)

ω(α, xn)hα

Γ(α+ 2)

(
(n− i+ 1)α+1 − 2(n− i)α+1

+(n− i− 1)α+1
)
dα, 3 ≤ n ≤ N + 2, 2 ≤ i ≤ n− 1,

γd(xn)

∫ α(xn)

α(xn)

ω(α, xn)hα

Γ(α+ 1)

[
(n− i)α − (n− i)α+1

α+ 1

+
(n− i− 1)α+1

α+ 1

]
dα, 2 ≤ n ≤ N + 2, i = 1;

(4.4)

an,i =



(1− γ)d(xn)

∫ α(xn)

α(xn)

ω(α, xn)hα

Γ(α+ 2)

(
(i− n− 1)α+1 − 2(i− n)α+1

+(i− n+ 1)α+1
)
dα, 1 ≤ n ≤ N, n+ 1 ≤ i ≤ N + 1,

(1− γ)d(xn)

∫ α(xn)

α(xn)

ω(α, xn)hα

Γ(α+ 1)

[
(i− n)α − (i− n)α+1

α+ 1

+
(i− n− 1)α+1

α+ 1

]
dα, 1 ≤ n ≤ N + 1, i = N + 2.

(4.5)
Let v := [vh(x1), vh(x2), · · · , vh(xN+2)]>, f := [f(x1), f(x2), · · · , f(xN+2)]>.
Scheme (4.1) can be formulated as a matrix form

Av = −f . (4.6)

Theorem 4.1. If Assumption (A) and condition (3.4) hold, then A is
strictly diagonally dominant, so scheme (4.1) has a unique solution vh ∈ Sh.

P r o o f. By (4.3)-(4.5), we have

a1,1 −
N+2∑
i=2

|a1,i| = 1− (1− γ)d(x1)

∫ α(x1)

α(x1)

ω(α, x1)

Γ(α+ 1)
dα ≥ 1− µ > 0,

and for 2 ≤ n ≤ N + 1,

an,n −
∑
i 6=n
|an,i| = 1− d(xn)

∫ α(xn)

α(xn)

ω(α, xn)hα

Γ(α+ 2)

[
γ(n− 1)α

+(1− γ)(N + 2− n)α
]
dα+ 2d(xn)

∫ α(xn)

α(xn)

ω(α, xn)hα

Γ(α+ 2)
dα

> 1− d(xn)

∫ α(xn)

α(xn)

ω(α, xn)

Γ(α+ 1)
dα+ 2d(xn)

∫ α(xn)

α(xn)

ω(α, xn)hα

Γ(α+ 2)
dα

≥ 1− µ > 0.

Similarly, we have aN+2,N+2 −
N+1∑
i=1

|aN+2,i| ≥ 1− µ. 2
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Theorem 4.2. Suppose Assumption (A) and (3.4) hold. If d, f ∈
C2,λ[0, 1] with λ given in Theorem 3.1, the error estimates hold for h suffi-
ciently small

‖v − vh‖L̂∞ ≤ Q‖f‖C2,λ[0,1]h
2λ, ‖u− uh‖L̂∞ ≤ Q‖f‖C2,λ[0,1]h

2λ.

Furthermore, if v ∈ C2[0, 1], the optimal-order error estimates hold

‖v − vh‖L̂∞ ≤ Q‖v‖C2[0,1]h
2, ‖u− uh‖L̂∞ ≤ Q‖v‖C2[0,1]h

2.

Here the discrete norm ‖·‖L̂∞ is defined by ‖g‖L̂∞ := max1≤n≤N+2

∣∣g(xn)
∣∣.

P r o o f. By the proof of Theorem 3.1, K ∈ L(C[0, 1], C[0, 1]) is com-
pact. By setting X = C[0, 1] in Lemma 7.2, we conclude that (I +K)−1 ∈
L(C[0, 1], C[0, 1]). Let Πh : C[0, 1] → Sh be the piecewise linear interpo-
lation operator. We subtract the interpolation of (2.2) Πhv + Πh(Kv) =
−Πhf from (4.1) to get Πhv − vh = −ΠhK(v − vh), which implies

(I + ΠhK)(Πhv − vh) = −ΠhK(v −Πhv).

We use Lemma 7.3 to get

‖(I + ΠhK)−1‖L(C[0,1],C[0,1]) ≤ Q‖(I +K)−1‖L(C[0,1],C[0,1]),

which implies that

‖Πhv − vh‖C[0,1] ≤ Q‖ΠhK(v − vh)‖C[0,1].

As ‖ · ‖C[0,1] and ‖ · ‖L̂∞ are equivalent for functions in Sh, we obtain

‖Πhv − vh‖L̂∞ ≤ Q‖ΠhK(v −Πhv)‖L̂∞ := Q‖R‖L̂∞ ,
Then we remain to estimate ‖R‖L̂∞ according to Theorem 3.4. We

begin with the case d, f ∈ C2,λ[0, 1]. Let η := v −Πhv, we have

R(xn) = −(Kη)(xn) = −
∫ α(xn)

α(xn)

ω(α, xn)

Γ(α)

(
γIαxnη + (1− γ)Îαxnη

)
dα, (4.7)

it suffices to estimate the first right-hand side term of (4.7) by symmetry

RLn =

∫ α(xn)

α(xn)
ω(α, xn)Iαxnηdα =

∫ α(xn)

α(xn)

ω(α, xn)

Γ(α)

n∑
i=2

∫ xi

xi−1

η(s)ds

(xn − s)1−αdα

(4.8)
for n ≥ 2. We start with 2 ≤ n ≤ bN/2c + 1. For i = 2, we apply the
integral type residue of the interpolation (cf. [42, Equation 5.12]) to bound
the integral on [0, x2] in (4.8) by

Q

∫ x2

0

∫ x2

0 |v
′(y)|dy

(xn − s)1−α ds ≤ Q‖f‖C1,λ

∫ x2

0

∫ x2

0 yλ−1dy

(xn − s)1−αds ≤ Q‖f‖C1,λ[0,1]h
2λ,

here we use the fact that for α ∈
[
α(xn), α(xn)

]
,
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∫ x2

0
(xn − s)α−1ds ≤ Q

∫ x2

0
(xn − s)α(s)−1ds ≤ Q

∫ x2

0
(x2 − s)α(s)−1ds

≤ Q
∫ x2

0
(x2 − s)α(x2)−1ds ≤ Qxα(x2)

2 ≤ Qhλ.

For 3 ≤ i ≤ n, we have∣∣∣ ∫ xi

xi−1

η(s)

(xn − s)1−αds
∣∣∣ ≤ Qh‖f‖C2,λ[0,1]

∫ xi

xi−1

∫ xi
xi−1

yλ−2dy

(xn − s)1−α ds

≤ Q‖f‖C2,λ[0,1]h
2xλ−2
i−1

[
(xn − xi−1)α − (xn − xi)α

]
.

By the mean value theorem, we have∣∣∣ ∫ xbn/2c

x2

η(s)ds

(xn − s)1−α

∣∣∣ ≤ Q‖f‖C2,λ[0,1]h
3

bn/2c∑
i=2

xλ−2
i−1 (xn − xi)α−1

≤ Q‖f‖C2,λh3xα−1
bn/2c

bn/2c∑
i=2

xλ−2
i−1 ≤ Q‖f‖C2,λhλ+1xα(xn)−1

n

bn/2c∑
i=2

(i− 1)λ−2

≤ Q‖f‖C2,λhλ+1xα(0)−1
n ≤ Q‖f‖C2,λh2λ,

and

∣∣∣ ∫ xn

xbn/2c+1

η(s)ds

(xn − s)1−α

∣∣∣
≤ Q‖f‖C2,λ[0,1]h

2xλ−2
bn/2c

n∑
i=bn/2c+1

[
(xn − xi−1)α − (xn − xi)α

]
≤ Q‖f‖C2,λ[0,1]h

2xλ−2
n (xn − xbn/2c)α ≤ Q‖f‖C2,λ[0,1]h

2xλ+α(xn)−2
n

≤ Q‖f‖C2,λ[0,1]h
2xλ+α(0)−2
n ≤ Q‖f‖C2,λ[0,1]h

2λ.

Therefore, we have the following estimate for 2 ≤ n ≤ bN/2c+ 1:

|RLn | ≤ Q‖f‖C2,λ[0,1]h
2λ. (4.9)

Next, we prove the estimate of R1
n for bN/2c+ 2 ≤ n ≤ N + 1. By the

previous estimates, we immediately obtain

∣∣∣ bN/2c+1∑
i=2

∫ xi

xi−1

η(s)ds

(xn − s)1−αds
∣∣∣ ≤ Q‖f‖C2,λ[0,1]h

2λ.
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For bN/2c+ 2 ≤ i ≤ n− 1, the integral on [xi−1, xi] can be bounded by∣∣∣ ∫ xi

xi−1

η(s)ds

(xn − s)1−α

∣∣∣ ≤ h∫ xi

xi−1

∫ xi
xi−1
|v′′(y)|dy

(xn − s)1−α ds

≤ Qh‖f‖C2,λ[0,1]

∫ xi

xi−1

∫ xi
xi−1

(1− y)λ−2dy

(xn − s)1−α ds

≤ Qh2‖f‖C2,λ[0,1](1− xi)λ−2

∫ xi

xi−1

(xn − s)α(xn)−1ds

≤ Q‖f‖C2,λ[0,1]h
2(1− xi)λ−2

[
(xn − xi−1)α(xn) − (xn − xi)α(xn)

]
.

If bN/2c+ 2 ≤ i ≤ 2n− (N + 2) (which implies 1− xn ≤ xn − xi) we have∣∣∣ 2n−(N+2)∑
i=bN/2c+2

∫ xi

xi−1

η(s)ds

(xn − s)1−α

∣∣∣
≤ Q‖f‖C2,λ[0,1]h

2

2n−(N+2)∑
i=bN/2c+2

(1− xi)λ−2
[
(xn − xi−1)α(xn) − (xn − xi)α(xn)

]
≤ Q‖f‖C2,λ[0,1]h

3

2n−(N+2)∑
i=bN/2c+2

(1− xi)λ−2(xn − xi)α(xn)−1

≤ Q‖f‖C2,λ[0,1]h
3(1− xn)α(xn)−1

2n−(N+2)∑
i=bN/2c+2

(1− xi)λ−2

≤ Q‖f‖C2,λ[0,1]h
2λ

2n−(N+2)∑
i=bN/2c+2

(N − i+ 2)λ−2 ≤ Q‖f‖C2,λ[0,1]h
2λ,

where we used the fact that α ∈ C1[0, 1] and

(1− xn)α(xn)−1 = (xN+2 − xn)α(xN+2)−1(xN+2 − xn)α(xn)−α(xN+2)

≤ Qhλ−1.

Otherwise, for 2n−N − 1 ≤ i ≤ n we have∣∣∣ n∑
i=2n−N−1

∫ xi

xi−1

η(s)ds

(xn − s)1−α

∣∣∣
≤ Q‖f‖C2,λ[0,1]h

2
n−1∑

i=2n−N−1

(1− xi)λ−2
[
(xn − xi−1)α(xn) − (xn − xi)α(xn)

]
≤ Q‖f‖C2,λ[0,1]h

2(1− xn)λ−2(xn − x2n−N−1)α(xn)

≤ Q‖f‖C2,λ[0,1]h
2(1− xn)λ+α(xn)−2 ≤ Q‖f‖C2,λ[0,1]h

2λ.
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Therefore, (4.9) holds for bN/2c+ 2 ≤ n ≤ N + 1.

Finally, if n = N + 2, it follows directly from previous estimates that∣∣∣N+1∑
i=2

∫ xi

xi−1

η(s)ds

(xN+2 − s)1−α

∣∣∣ ≤ Q‖f‖C2,λ[0,1]h
2λ

and∣∣∣ ∫ xN+2

xN+1

η(s)ds

(xN+2 − s)1−α

∣∣∣ ≤ ∫ xN+2

xN+1

∫ xN+2

xN+1
|v′(y)|dy

(xN+2 − s)1−α ds

≤ Qhλ
∫ xN+2

xN+1

(xN+2 − s)α−1ds ≤ Qhλ(1− xN+1)α ≤ Q‖f‖C1,λ[0,1]h
2λ,

where we used the fact that α ≥ α(xN+2) = α(1) ≥ λ(:= min{α(0), α(1)}).
That is, (4.9) holds for n = N + 2 and thus we complete the proof of RLn
for n ≥ 2 and thus the estimate of ‖R‖L̂∞ .

In particular, if v ∈ C2[0, 1], which implies ‖v−Πhv‖L̂∞ ≤ Q‖v‖C2[0,1]h
2,

then R(xn) can be bounded by

|R(xn)| ≤ Q‖v‖C2[0,1]h
2

∫ α(xn)

α(xn)

ω(α, xn)

Γ(α+ 1)
dα ≤ Q‖f‖C2[0,1]h

2,

which finishes the proof of the estimates of v. Finally we subtract the
expression of u in (2.2) from (4.2) to obtain

u− uh =

∫ x

0
(x− s)(v(s)− vh(s))ds− x

∫ 1

0
(1− s)(v(s)− vh(s))ds.

Plugging the estimates of v in the statement of this theorem into this equa-
tion leads to the estimate of u− uh. 2

5. A fast solution method and its error estimate

In the previous section, we prove error estimates of the proposed nu-
merical scheme, e.g., the O(h2λ) accuracy of the error under the L̂∞ norm,
based only on the regularity assumptions on the data. For implementation,
a straightforward idea is to discretize the distributed-order integral by the
composite trapezoidal quadrature. If we apply this quadrature on the fixed
interval [α̌, α̂], which always contains the range of α for any x ∈ [0, 1], the
integrand may be discontinuous if ω 6= 0 on end points of the support of
α. In this case, the accuracy of the quadrature may be reduced. If we
alternatively discretize the distributed-order integral exactly on the sup-
port of α for each spatial node, the resulting stiffness matrix may lose its
Toeplitz structure due to the varying of the range of the fractional order at
different spatial nodes. In order to retain the O(h2λ) accuracy of the nu-
merical scheme, we set the mesh size of the distributed-order integral σ as
σ = O(hλ), which leads to O(Nλ) terms in the discretization and thus the
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O(N2+λ) operations to generate the stiffness matrix and O(N2) memory for
storage. To solve the linear system, Gaussian elimination requires O(N3)
operations while the Krylov subspace method requires O(N2) operations
for each iteration, which is expensive for large N .

In this section we propose and analyze a fast method to reduce the
storage and computations. The key is to approximately expand the stiff-
ness matrix by a sum of O(logN) Toeplitz matrices multiplied by diagonal
matrices, which can be employed to develop the fast solver for the approx-
imated system without affecting the accuracy of the numerical discretiza-
tion.

5.1. An approximated scheme and error estimate. Let α̃ = (α̌ +
α̂)/2, 3 ≤ ν ∈ N+ (the value of ν will be determined later), and i ≤ n−ν−1.
By the Taylor expansion we have

(n− i+ 1)α+1 − 2(n− i)α+1 + (n− i− 1)α+1

=
s∑

k=0

(α− α̃)k

k!

(
(n− i+ 1)α̃+1 lnk(n− i+ 1)− 2(n− i)α̃+1 lnk(n− i)

+(n− i− 1)α̃+1 lnk(n− i− 1)
)

+ T s,ln,i,

where T s,ln,i is the local truncation error given by

T s,ln,i =
(α− α̃)s+1

(s+ 1)!

(
(n− i+ 1)θ+1 lns+1(n− i+ 1)

−2(n− i)θ+1 lns+1(n− i) + (n− i− 1)θ+1 lns+1(n− i− 1)
)

with θ lying between α and α̃. We apply this expansion to approximate
an,i defined in (4.4) by ān,i

ān,i = γd(xn)
s∑

k=0

cn,k

(
(n− i+ 1)1+α̃ lnk(n− i+ 1)

−2(n− i)1+α̃ lnk(n− i) + (n− i− 1)1+α̃ lnk(n− i− 1)
)
,

(5.1)

where

cn,k =

∫ α(xn)

α(xn)

ω(α, xn)(α− α̃)k

k!Γ(α+ 2)
dα.

By symmetry, an,i for i ≥ n+ν+1 can be approximated in a similar manner
with corresponding local truncation error T s,rn,i defined for i ≥ n + ν + 1.

Therefore, the matrix A can be approximated by Ā = (ān,i
)N+2

n,i=1
with

ān,i = an,i for |i− n| ≤ ν or n, i = 1, N + 2,
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ān,i = γ

s∑
k=0

cn,k

(
(n− i+ 1)α̃+1 lnk(n− i+ 1)− 2(n− i)α̃+1 lnk(n− i)

+(n− i− 1)α̃+1 lnk(n− i− 1)
)
, 2 ≤ i ≤ n− ν − 1,

and for n+ ν + 1 ≤ i ≤ N + 1,

ān,i = (1− γ)

s∑
k=0

cn,k

(
(i− n+ 1)α̃+1 lnk(i− n+ 1)

−2(i− n)α̃+1 lnk(i− n) + (i− n− 1)α̃+1 lnk(i− n− 1)
)
.

The local truncation error is given by

T sn = d(xn)

∫ α(xn)

α(xn)

ω(α, xn)hα

Γ(α+ 2)

(
γ

n−ν−1∑
i=2

T s,ln,i + (1− γ)

N+1∑
i=n+ν+1

T s,rn,i

)
dα.

(5.2)
Then the approximated linear system can be written as

Āv̄ = −f , v̄ := [v̄h(x1), · · · , v̄h(xN+2)]> (5.3)

for some v̄h ∈ Sh. The corresponding approximation ūh of u is defined by
the second equation of (2.2) with v replaced by v̄h.

Theorem 5.1. By setting s ≥
⌊(1 + α̂+ 2λ) log(N + 1)

log 2− log(α̂− α̌)

⌋
+ 1, the

local truncation error T sn can be bounded by

|T sn| ≤ Qh2λ, 1 ≤ n ≤ N + 2.

P r o o f. By Theorem 5 in [17, 18], T s,ln,i and T s,rn,i with suitable indexes
n and i can be bounded by

|T s,ln,i| ≤ Q
(α̂− α̌)s(n− i+ 1)α̂

2s
√
s

, |T s,rn,i | ≤ Q
(α̂− α̌)s(i− n+ 1)α̂

2s
√
s

.

Therefore, T sn defined in (5.2) can be bounded by

|T sn| ≤ Q
(α̂− α̌)s

2s
√
shα̂+1

,

By setting s =
⌊(1 + α̂+ 2λ) log(N + 1)

log 2− log(α̂− α̌)

⌋
+ 1, we get

(
(α̂ − α̌)/2

)s ≤
h1+α̂+2λ, which completes the proof. 2
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Theorem 5.2. Suppose the Assumption (A) and (3.4) hold, d, f ∈

C2,λ[0, 1] and s ≥
⌊(1 + α̂+ 2λ) log(N + 1)

log 2− log(α̂− α̌)

⌋
+ 1, then the following esti-

mates hold

‖v − v̄h‖L̂∞ ≤ Q‖f‖C2,λ[0,1]h
2λ, ‖u− ūh‖L̂∞ ≤ Q‖f‖C2,λ[0,1]h

2λ.

Here ūh is defined by the second equation of (2.2) with v replaced by v̄h.

P r o o f. By Theorem 5.1 we get ‖A − Ā‖∞ ≤ Qh2λ, where ‖ · ‖∞
denote the l∞ norm of a vector or a matrix. Combining this with Theorem
4.1, we obtain ‖A−1‖∞ ≤ 1/(1− µ) [34] and thus

‖A−1‖∞‖A− Ā‖∞ ≤ Qh2λ/(1− µ).

We subtract (5.3) from (4.6) to get

v − v̄ = A−1(A− Ā)(v − v̄)−A−1(A− Ā)v,

which yields

‖v − v̄‖∞ ≤ ‖A−1‖∞‖A− Ā‖∞(‖v − v̄‖∞ + ‖v‖∞).

For h sufficiently small we have ‖A−1‖∞‖A− Ā‖∞ ≤ 1/2, which leads to

‖v − v̄‖∞
‖v‖∞

≤ 2‖A−1‖∞‖A− Ā‖∞ ≤ Qh2λ. (5.4)

We combine Theorem 3.1 and Theorem 4.2 to bound v by

‖v‖L̂∞ ≤ ‖v‖L̂∞ + ‖v − v̄‖L̂∞ ≤ Q‖f‖C[0,1] +Q‖f‖C2,λh2λ ≤ Q‖f‖C2,λ ,

which, together with (5.4), yields ‖v − v̄‖∞ ≤ Q‖f‖C2,λh2λ. Combining
this with the estimate of e = v − vh proved in Theorem 4.2 we obtain the
estimate of v − v̄h and apply this to find that of u− ūh. 2

5.2. Matrix structure and fast method. We observe from Theorem
5.2 that we may solve the approximated linear system (5.3) instead of
(4.1) without loss of accuracy. Then we remain to reduce the memory
requirement and computational cost of solving (5.3), or more specifically,
performing the matrix-vector multiplication Āw for w ∈ RN+2. We divide
the approximated matrix Ā into the following block form

Ā =

 a1,1 A1,c a1,N+2

Ac,1 Āc Ac,N+2

aN+2,1 AN+2,c aN+2,N+2

 . (5.5)

For any vector w = [w1, w2, · · · , wN+2]T = [w1,wc, wN+2]T ∈ RN+2, direct
calculations yield
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Āw =

 a11w1 + A1,cwc + a1,N+2wN+2

w1Ac,1 + Ācwc + wN+2Ac,N+2

aN+2,1w1 + AN+2,cwc + aN+2,N+2wN+2

 . (5.6)

It suffices to study the fast implementation of Ācwc as the rest of the entries
in (5.6) can be evaluated in O(N) operations. By (5.1), matrix Āc can be
decomposed by

Āc = Bν + diag(D)

s∑
k=0

diag(Ck)
(
γT(k) + (1− γ)(T(k))>

)
. (5.7)

Here Bν =
(
bn,i
)N
n,i=1

is a band matrix defined by bn,i = an,i for |n− i| ≤ ν
and zeros otherwise. The vectors Ck := (cn+1,k)

N
n=1 for 0 ≤ k ≤ s and

D := diag
(
{d(xn)}N+2

i=1

)
. The Toeplitz matrices T(k) for 0 ≤ k ≤ s are

generated with tk and 0 being the first columns and rows where tk = (tki )
N
i=1

are given by tki = 0 for 1 ≤ i ≤ ν and

tki = (i− 2)1+α̃ lnk(i− 2)− 2(i− 1)1+α̃ lnk(i− 1) + i1+α̃ lnk i

for ν + 1 ≤ i ≤ N .

Theorem 5.3. Let ν = s = O(logN). Then Āc can be stored
in O(N logN) memory and the matrix-vector multiplication of Ācwc for
wc ∈ RN requires O(N log2N) operations. Furthermore, O(N1+λ logN)
operations are needed to generate components D,Ck and Tk for 0 ≤ k ≤ s
in Ā in order to keep the O(h2λ) accuracy.

P r o o f. We observe from (5.7) that we require O(νN) storage for Bν

and O(νN) computations for evaluating Bνwc. To keep the order of mag-
nitude of computations, we set ν = s in this paper. Composite trapezoidal
formula with Nλ points can be applied to evaluate the integrals in Ck for
0 ≤ k ≤ s with the local truncation error O(h2λ), and the total computation

is O(N1+λ logN). The matrix Ā
(k)
c = γT(k) + (1− γ)(T(k))> is a Toeplitz

matrix, which requires O(N) storage and O(N logN) operations for evalu-

ating Ā
(k)
c w via the fast Fourier transform (FFT). These observations lead

to the conclusions of this theorem. 2

6. Numerical experiments

We investigate the performances of the approximated fast conjugate
gradient squared (FCGS) method for solving model (1.2), which employs
the standard CGS incorporated with the FFT to solve the approximated
linear system (5.3), by comparing it with the traditional Gaussian elimina-
tion (Gauss) method and the CGS. All these methods are implemented on
Matlab 2016b on a computer with Intel(R) Corel i7-9700 and Ram 16GB.
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Figure 1. CPU of Gauss and FCGS for Experiment 1 (left)
and Experiment 2 (right)

The symbol ‘-’ in tables implies that the running time of the program ex-
ceeds one day. We measure the CPU times (CPU) of generating coefficients
and solving the linear systems and the relative errors in the norm ‖ · ‖L̃∞
defined by, e.g., ‖v − vh‖L̃∞ := ‖v − vh‖L̂∞/‖v‖L̂∞ , as well as the corre-
sponding convergence rates (CR).

6.1. Experiment 1: Smooth solutions. We test the aforementioned
methods for (1.2) with d(x) = 1, ω = 2, α(x) = 1/8+x/4, α(x) = 5/8+x/4,
u(x) = 16x2(1 − x)2 and f(x) is evaluated accordingly. As u is smooth,
we expect O(h2) accuracy of the numerical scheme, which requires the N -
points composite trapezoidal formula to distcretize the distributed-order
integral in order to keep the accuracy. Thus it takes O(N3) operations to
compute the matrix entries and to solve the linear system for in traditional
methods, while in the FCGS, only O(sN2) = O(N2 logN) operations are
needed to evaluate the integrals in Ck and O(N log2N) operations are
required in each iteration to solve the approximated linear system. Numer-
ical results are presented in the left figure of Figure 1 and Table 1, which
coincide with the theoretical analysis.

6.2. Experiment 2: Non-smooth solutions. Let γ = 0.5, f(x) = 1,
d(x) = (1 + x), α(x) = 1/4 + x/10, α(x) = 3/4 + x/10 and ω(α, x) =
20α/(5 + x). As the exact solution is not available, we use the numerical
solution of FCGS with N = 216 as the reference solution. In this case
λ = 0.25 and we thus use the composite trapezoidal formula of N

1
4 points,

which leads to the O(N1/4+2) computational cost of generating the entries
of A and O(N3) operations of solving the linear system in the traditional

method. Instead, the FCGS only takes O(N5/4 logN +N log2N) for com-
puting the components of Ā and O(N log2N) for solving the approximated
linear system in each iteration, respectively. Numerical result are presented
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Table 1. Errors and CPU times (seconds) of Experiment 1

N ‖v − vh‖L̃∞ CRv ‖u− uh‖L̃∞ CRu CPU
25 4.1818e-4 − 2.5084e-3 − 0.49
26 1.0310e-4 2.02 5.9940e-4 2.07 4.01

Gauss 27 2.5741e-5 2.00 1.4599e-4 2.04 32
28 6.4604e-6 1.99 3.5923e-5 2.02 217
29 1.6245e-6 1.99 8.8902e-6 2.01 2096
210 4.0862e-7 1.99 2.2075e-6 2.01 16704
211 − − − − > 1 day
25 4.1818e-4 − 2.5084e-3 − 0.50
26 1.0310e-4 2.02 5.9940e-4 2.07 4.00
27 2.5741e-5 2.00 1.4599e-4 2.04 32

CGS 28 6.4604e-6 1.99 3.5923e-5 2.02 260
29 1.6245e-6 1.99 8.8902e-6 2.01 2092
210 4.0862e-7 1.99 2.2075e-6 2.01 16813
211 − − − − > 1 day
25 4.1818e-4 − 2.5084e-3 − 0.47
26 1.0310e-4 2.02 5.9940e-4 2.07 2.44
27 2.5741e-5 2.00 1.4599e-4 2.04 11.4

FCGS 28 6.4604e-6 1.99 3.5923e-5 2.02 52
29 1.6245e-6 1.99 8.8902e-6 2.01 235
210 4.0862e-7 1.99 2.2075e-6 2.01 1042
211 1.0275e-7 1.99 5.4924e-7 2.00 4642
212 2.5826e-8 1.99 1.3683e-7 2.00 20210

in the right figure of Figure 1 and Tables 2-3, which show that the conver-
gence rates of v are consistent with the theoretical results while that of u
are higher than the expectations that needs further investigation.

7. Appendix

We refer several lemmas from [14] to support the preceding estimates.

Lemma 7.1. If k in (2.2) satisfies |l(x, s)| ≤ Q and |l′x(x, s)| ≤ Q/|x−s|
for s 6= x, then K ∈ L(C[0, 1], Cα̌[0, 1]). K ∈ L(C[0, 1], Cβ[0, 1]) for 0 <
β < 1 belongs to K(Cµ[0, 1], Cµ[0, 1]) for 0 ≤ µ ≤ β.

Lemma 7.2. If the homogeneous integral equation (I + K)v = 0 has
only the trivial solution for K ∈ K(X,X), then (I + K)−1 ∈ L(X,X)
and equation (2.2) has a unique solution for each −f ∈ X given by v =
−(I +K)−1f ∈ X.



24 J. Jia, X. Zheng, H. Wang

Table 2. Errors and convergence rates of Experiment 2

N ‖v − vh‖L̃∞ CRv ‖u− uh‖L̃∞ CRu
25 5.7179e-2 − 1.0398e-1 −
26 4.4607e-2 0.36 5.5503e-2 0.91
27 3.3856e-2 0.40 2.8673e-2 0.95

Gauss 28 2.5095e-2 0.42 1.4539e-2 0.98
29 1.8442e-2 0.44 7.3034e-3 0.99
210 1.3434e-2 0.46 3.6387e-3 1.01
211 9.7176e-3 0.47 1.7944e-3 1.02
212 6.9687e-2 0.48 8.6924e-4 1.05
25 5.7179e-2 − 1.0398e-1 −
26 4.4607e-2 0.36 5.5503e-2 0.91
27 3.3856e-2 0.40 2.8973e-2 0.95

FCGS 28 2.5095e-2 0.43 1.4539e-2 0.98
29 1.8442e-2 0.44 7.3034e-3 0.99
210 1.3434e-2 0.46 3.6387e-3 1.01
211 9.7176e-3 0.47 1.7944e-3 1.02
212 6.9687e-3 0.48 8.6924e-4 1.05

Table 3. CPU times (seconds) for Experiment 2

N 28 29 210 211 212 213 214 215 216

Gauss 5.2 26 130 670 3533 54392 − − −
CGS 4.1 20 98 455 2083 10388 − − −
FCGS 1.1 3.0 7.9 21 51 140 361 894 6546

Lemma 7.3. If K ∈ K(X,X), then ΠhK converges to K in L(X,X)
as h → 0. In particular, if (I + K)−1 ∈ L(X,X), then for h sufficiently
small

‖(I + ΠhK)−1‖L(X,X) ≤ Q‖(I +K)−1‖L(X,X).

Lemma 7.4. Suppose Assumption (A) holds, then p(x) ∈ Cα(0)[0, 1],

q(x) ∈ Cα(1)[0, 1], here

p(x) =

∫ α(x)

α(x)
ω(α, x)xαdα, q(x) =

∫ α(x)

α(x)
ω(α, x)(1− x)αdα.

P r o o f. By symmetry, it suffices to analyze p. For 0 ≤ x1 < x2 ≤ 1
we decompose p(x2)− p(x1) by



ANALYSIS AND FAST APPROXIMATION OF . . . 25

p(x2)− p(x1) =
(∫ α(x2)

α(x2)
ω(α, x2)xα2dα−

∫ α(x1)

α(x1)
ω(α, x2)xα2dα

)
+
(∫ α(x1)

α(x1)
ω(α, x2)xα2dα−

∫ α(x1)

α(x1)
ω(α, x1)xα2dα

)
+
(∫ α(x1)

α(x1)
ω(α, x1)xα2dα−

∫ α(x1)

α(x1)
ω(α, x1)xα1dα

)
= J1 + J2 + J3.

By Assumption (A), J1 and J2 can be simply bounded by Q(x2 − x1) and
we remain to bound J3. If x2 − x1 ≥ x1, we apply xα2 − xα1 ≤ (x2 − x1)α

and α ∈ [α(x1), α(x1)] to obtain

(x1 − x1)α ≤ (x2 − x1)α(x1) ≤ (x2 − x1)α(0)(x2 − x1)α(x1)−α(0)

≤ (x2 − x1)α(x0)x
−‖α‖C1[0,1](x1−0)

1 ≤ Q(x2 − x1)α(0).

Otherwise we have

xα2 − xα1 = αξα−1(x2 − x1) ≤ αxα−1
1 (x2 − x1)

= αx
α(0)−1
1 x

α(x1)−α(0)
1 (x2 − x1) ≤ Q(x2 − x1)α(0).

Thus we bound |J3| by Q(x2 − x1)α(0) and thus complete the proof. 2

Lemma 7.5. If Assumption (A) holds, g ∈ Cβ[0, 1] for β ≥ 0 and 0 <

α̌+ β < 1, then φl2g ∈ Cα(0)[0, 1], φr2g ∈ Cα(1)[0, 1], and φl1g , φ
r1
g ∈ Cα̌+β[0, 1]

with
‖φl1g ‖Cα̌+β [0,1] ≤ Q‖g‖Cβ [0,1], ‖φr1g ‖Cα̌+β [0,1] ≤ Q‖g‖Cβ [0,1]. (7.1)

P r o o f. By Lemma 7.4 we have φr2g ∈ Cα(0)[0, 1] and φr2g ∈ Cα(1)[0, 1]

and we remain to estimate φl1g by symmetry. For 0 ≤ x1 < x2 ≤ 1 we
decompose

φl1g (x2)− φl1g (x1) = J4 + J5 + J6

:=
(∫ α(x2)

α(x2)
ω(α, x2)ψ(α, x2)dα−

∫ α(x1)

α(x1)
ω(α, x2)ψ(α, x2)dα

)
+
(∫ α(x1)

α(x1)
ω(α, x2)ψ(α, x2)dα−

∫ α(x1)

α(x1)
ω(α, x1)ψ(α, x2)dα

)
+
(∫ α(x1)

α(x1)
ω(α, x1)ψ(α, x2)dα−

∫ α(x1)

α(x1)
ω(α, x1)ψ(α, x1)dα

)
.

J4 and J5 can be simply bounded by Q‖ψ‖C[0,1]|x2 − x1|. To estimate J6,

we define a function ψ(x) =
1

Γ(α)

∫ x

0

g(s)− g(0)

(x− s)1−α ds. As is proved in [40],
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if α + β < 1 and g ∈ Cβ[0, 1], then ψ(x) ∈ Cα+β[0, 1] ⊂ Cα̌+β[0, 1] with
the estimate ‖ψ‖Cα̌+β ≤ Q‖g‖Cβ [0,1]. If α + β = 1, we may slightly reduce

β to ensure the above conclusion. If α + β > 1, by Theorem 3.3 in [40],
we have ‖ψ‖Cα̌+β ≤ Q‖ψ‖C1 ≤ Q‖ψ‖Cβ . We conclude from these estimates
that |J6| can be bounded by Q|x2 − x1|α̌+β, which completes the proof. 2

Lemma 7.6. Suppose that g ∈ Cβ[0, 1] for β > 0 and α̌ + β > 1 and
Assumption (A) holds, then φl1g , φ

r1
g ∈ C1[0, 1] and

‖φl1g ‖C1[0,1] ≤ Q‖g‖Cβ [0,1], ‖φr1g ‖C1[0,1] ≤ Q‖g‖Cβ [0,1]. (7.2)

P r o o f. The proof can be performed in parallel with that of Theorem
3.3 in [40] and thus be omitted. 2
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distributed order time-fractional diffusion-wave equation as probability
density. Fract. Calc. Appl. Anal. 16, No 2 (2013), 297–316;
DOI: 10.2478/s13540-013-0019-6;
https://www.degruyter.com/journal/key/fca/16/2/html.

[14] W. Hackbusch, Integral Equations: Theory and Numerical Treatment.
Birkhauser Verlag (1995).

[15] J. Jia and H. Wang, A fast finite difference method for distributed-
order space-fractional partial differential equations on convex domains.
Comput. Math. Appl. 75, No 6 (2018), 2031–2043;
DOI: 10.1016/j.camwa.2017.09.003.

[16] J. Jia and H. Wang, A fast finite volume method for conservative
space-time fractional diffusion equations discretized on space-time locally
refined meshes. Comput. Math. Appl. 78, No 1 (2019), 1345–1356;
DOI: 10.1016/j.camwa.2019.04.003.

[17] J. Jia, H. Wang and X. Zheng, A fast collocation approximation to a
two-sided variable-order space-fractional diffusion equation and its anal-
ysis. J. Comput. Appl. Math. 388 (2021), Art. 113234;
DOI: 10.1016/j.cam.2020.113234.

[18] J. Jia, X. Zheng, H. Fu, P. Dai and H. Wang, A fast method for
variable-order space-fractional diffusion equations. Numer. Algor. 85
(2020), 1519–1540; DOI: 10.1007/s11075-020-00875-z.

https://www.degruyter.com/journal/key/fca/16/2/html


28 J. Jia, X. Zheng, H. Wang

[19] B. Jin, R. Lazarov, J. Pasciak and W. Rundell, Variational formulation
of problems involving fractional order differential operators. Math. Comp.
84, No 296 (2015), 2665–2700; DOI: 10.1090/mcom/2960.

[20] B. Jin, R. Lazarov, D. Sheen and Z. Zhou, Error estimates for approx-
imations of distributed-order time fractional diffusion with nonsmooth
data. Fract. Calc. Appl. Anal. 19, No 1 (2016), 69–93; DOI: 10.1515/fca-
2016-0005; https://www.degruyter.com/journal/key/fca/19/1/html.

[21] J. Li, F. Liu, L. Feng, I. Turner, A novel finite volume method for the
Riesz space distributed-order diffusion equation. Comput. Math. Appl.
74, No 4 (2017), 772–783; DOI: 10.1016/j.camwa.2017.05.017.

[22] X. Li, Z. Mao, N. Wang, F. Song, H. Wang, and G.E. Karniadakis, A
fast solver for spectral elements applied to fractional differential equations
using hierarchical matrix approximation. Comput. Methods Appl. Mech.
Engrg. 366 (2020), Art. 113053; DOI: 10.1016/j.cma.2020.113053.

[23] Z. Li, Y. Luchko, M. Yamamoto, Asymptotic estimates of solutions
to initial-boundary-value problems for distributed order time-fractional
diffusion equations. Fract. Calc. Appl. Anal. 17, No 4 (2014), 1114–1136;
DOI: 10.2478/s13540-014-0217-x;
https://www.degruyter.com/journal/key/fca/17/4/html.

[24] Z. Li, Y. Luchko, M. Yamamoto, Analyticity of solutions to a dis-
tributed order time-fractional diffusion equation and its application to
an inverse problem. Comput. & Math. Appl. 73, No 6 (2017), 1041–1052;
DOI: 10.1016/j.camwa.2016.06.030.

[25] X. Lin, M. Ng, and H. Sun, A splitting preconditioner for Toeplitz-like
linear systems arising from fractional diffusion equations. SIAM J. Matrix
Anal. Appl. 38, No 4 (2017), 1580–1614; DOI: 10.1137/17M1115447.

[26] C. Lorenzo and T. Hartley, Variable order and distributed order frac-
tional operators. Nonlinear Dyn. 29, No 1 (2002), 57–98;
DOI: 10.1023/A:1016586905654.

[27] Y. Luchko, Boundary value problems for the generalized time-
fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal.
12, No 4 (2009), 409–422.

[28] F. Mainardi, G. Pagnini, and R. Gorenflo, Some aspects of fractional
diffusion equations of single and distributed order. Appl. Math. Comput.
187, No 1 (2007), 295–305; DOI: 10.1016/j.amc.2006.08.126.

[29] M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Cal-
culus. De Gruyter (2012).

[30] R. Metzler and J. Klafter, The random walk’s guide to anomalous
diffusion: a frational dynamics approach. Phys. Rep. 339, No 1 (2000),
1–77; DOI: 10.1016/S0370-1573(00)00070-3.

https://www.degruyter.com/journal/key/fca/19/1/html
https://www.degruyter.com/journal/key/fca/17/4/html


ANALYSIS AND FAST APPROXIMATION OF . . . 29

[31] M. Morgado and M. Rebelo, Numerical approximation of distributed
order reaction-diffusion equations. J. Comput. Appl. Math. 275 (2015),
216–227; DOI: 10.1016/j.cam.2014.07.029.

[32] I. Podlubny, Fractional Differential Equations. Academic Press (1999).
[33] H. Sun, W. Chen, H. Wei and Y. Chen, A comparative study of

constant-order and variable-order fractional models in characterizing
memory property of systems. Eur. Phys. J. Spec. Top. 193, No 1 (2011),
185–192; DOI: 10.1140/epjst/e2011-01390-6.

[34] J. Varah, A lower bound for the smallest singular value of a matrix.
Linear Algebra Appl. 11, No 1 (1975), 3–5;
DOI: 10.1016/0024-3795(75)90112-3.

[35] H. Wang and T.S. Basu, A fast finite difference method for two-
dimensional space-fractional diffusion equations. SIAM J. Sci. Comput.
34 (2012), A2444–A2458; DOI: 10.1137/12086491X.

[36] H. Wang, K. Wang, and T. Sircar, A direct O(N log2N) finite differ-
ence method for fractional diffusion equations. J. Comput. Phys. 229,
No 21 (2010), 8095–8104; DOI: 10.1016/j.jcp.2010.07.011.

[37] H. Wang, D. Yang, S. Zhu, Inhomogeneous Dirichlet boundary-value
problems of space-fractional diffusion equations and their finite element
approximations. SIAM J. Numer. Anal. 52 (2014), 1292-1310;
DOI: 10.1137/130932776.

[38] X. Zhao, X. Hu, W. Cai, and G.E. Karniadakis, Adaptive finite ele-
ment method for fractional differential equations using hierarchical ma-
trices. Comput. Methods Appl. Mech. Engrg. 325 (2017), 56–76; DOI:
10.1016/j.cma.2017.06.017.

[39] X. Zheng, V.J. Ervin, H. Wang, Optimal Petrov-Galerkin spectral ap-
proximation method for the fractional diffusion, advection, reaction equa-
tion on a bounded interval. J. Sci. Comput. 86 (2021), Art. 29;
DOI: 10.1007/s10915-020-01366-y.

[40] X. Zheng and H. Wang, Variable-order space-fractional diffusion equa-
tions and a variable-order modification of constant-order fractional prob-
lems. Appl. Anal. (2020); DOI: 10.1080/00036811.2020.1789596.

[41] X. Zheng, H. Liu, H. Wang, H. Fu, Optimal-order finite element ap-
proximations to variable-coefficient two-sided space-fractional advection-
reaction-diffusion equation in three space dimensions. Appl. Numer.
Math. 161, No 2 (2021), 1–12; DOI: 10.1016/j.apnum.2020.10.022.

[42] X. Zheng and H. Wang, An optimal-order numerical approximation to
variable-order space-fractional diffusion equations on uniform or graded
meshes. SIAM J. Numer. Anal. 58, No 1 (2020), 330–352;
DOI: 10.1137/19M1245621.



30 J. Jia, X. Zheng, H. Wang

1 School of Mathematics and Statistics
Shandong Normal University
Jinan, Shandong Province 250358, CHINA
e-mail: jhjia@sdnu.edu.cn

2 School of Mathematical Sciences
Peking University
Beijing 100871, CHINA
e-mail: zhengxch@math.pku.edu.cn

3 Department of Mathematics
University of South Carolina
Columbia, South Carolina 29208, USA
e-mail: hwang@math.sc.edu (Corresponding author)

Received: December 20, 2020 , Revised: August 29, 2021

Please cite to this paper as published in:
Fract. Calc. Appl. Anal., Vol. 24, No ?? (2021), pp. xxxx–xxxx,
DOI: 10.1515/fca-2021-yyyy


	1. Introduction
	2. Preliminaries
	3. Wellposedness and smoothing properties
	4. A collocation method and its error analysis
	5. A fast solution method and its error estimate
	5.1. An approximated scheme and error estimate
	5.2. Matrix structure and fast method

	6. Numerical experiments
	6.1. Experiment 1: Smooth solutions
	6.2. Experiment 2: Non-smooth solutions

	7. Appendix
	Acknowledgements
	References

