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Abstract

We prove the wellposedness of a distributed-order space-fractional
diffusion equation with variably distribution and its support, which could
adequately model the challenging phenomena such as the anomalous diffu-
sion in multiscale heterogeneous porous media, and smoothing properties
of its solutions. We develop and analyze a collocation scheme for the pro-
posed model based on the proved smoothing properties of the solutions.
Furthermore, we approximately expand the stiffness matrix by a sum of
Toeplitz matrices multiplied by diagonal matrices, which can be employed
to develop the fast solver for the approximated system. We prove that
it suffices to apply O(log N) terms of expansion to retain the accuracy of
the numerical discretization of degree IV, which reduces the storage of the
stiffness matrix from O(N?) to O(Nlog N), and the computational cost of
matrix-vector multiplication from O(N?) to O(N log? N). Numerical re-
sults are presented to verify the effectiveness and the efficiency of the fast
method.
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1. Introduction

Space-fractional diffusion equations (sFDEs) accurately describe the
superdiffusive transport characterized by highly skewed power-law decays,
observed in solute transport in heterogeneous porous materials and other
applications [3], [6, 29] 30]. However, sSFDEs admit solutions with boundary
weak singularity [9, 10, 19, 387, B9, 41], because they were derived in the
free space as the diffusion limit of the continuous time random walk in
the phase plane [29] [30] and so do not properly model the transport near
the boundary. A two-scale sFDE, which consists of a fractional derivative
term and a second-order derivative term, was proposed in [6] to improve
the modeling near the boundary where the superdiffusive transport should
behave more like a Fickian diffusion due to the impact of the boundary
condition, while retaining the accurate description of the superdiffusive
transport away from the boundary.

As the order of sFDEs is determined by the fractal dimension of the
surrounding porous medium via the Hurst index [29], a constant-order
sFDE can hardly model the superdiffusive transport in highly heteroge-
neous porous media. Instead, the distributed-order fractional operators, in
which the constant-order fractional operators are integrated over a range of
the fractional order with respect to some density function v(«) are proposed
in [2, @, [, 7, 0] 12, 13, 23, 24, 32],

1
DYy = / v(0) [YICg" (x) + (1 — ) I%"(2)]da, 0<~ <1,
0
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to account for the integrate impact of a family of fractional differential
operators and of uncertainties, e.g., due to the limited information and
noise in the data [8 11} 15, 20, 21, 26l 27, 28| BI]. Furthermore, due to
the strong heterogeneity of the surrounding medium, the density function v
and its support may be spatially dependent [33] 40, [42]. To date, there is no
rigorous mathematical and numerical analysis on variably distributed-order
sFDEs reported in the literature.

(1.1)

In this paper we consider a spatially-dependent distributed-order sFDE
—u"(x) — d(z)Diu(z) = f(z), © € (0,1), u(0) = u(1) =0,

1 A
D¥g(z) == /0 w(anz) 124" (&) + (1 — 7) 12" (z)] da.

Here d > 0 is a fractional diffusivity, v and 1—+ with 0 < v < 1 indicate the
relative weights of forward versus backward transition probability [29], f is
the source or sink term. The space-dependence of w and its support further

(1.2)
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complicates the mathematical analysis of the problem. Computationally,
the distributed-order derivative is often discretized as a finite sum
of constant-order fractional derivatives via a numerical quadrature on the
distributed-order integral [8] [3T]. Then each of the fractional derivatives is
further discretized, yielding Toeplitz stiffness matrices [36]. Consequently,
discrete fast Fourier transform (FFT) based fast numerical methods with
linear storage and almost linear computational complexity were developed
[16, 25], [35]. However, due to the space-dependence of w and its support,
the corresponding discretization of problem loses the Toeplitz struc-
ture, and so the fast numerical methods developed for the distributed-order
sFDEs of form no longer applies [15].

We analyze the well-posedness and smoothing properties of problem
(1.2). Base on the proved regularity of its solution, we develop an indirect
collocation method for the problem and prove its error estimates without
any artificial regularity assumption on the exact solution. Finally, we com-
bine the ideas in [16] 22, [36], 38] to utilize the power-law decaying property
of the matrix entries to develop a low-rank approximation, yielding a fast
solution method with almost linear memory requirement and computational
complexity. The rest of the paper is organized as follows. Section [2| goes
over preliminaries. In Section [3]we prove the well-posedness and smoothing
properties of problem . In Section [4| we develop a collocation scheme
and prove its error estimates. In Section [5| we develop and analyze a fast
approximation to the problem. In Section [6] we investigate the effectiveness
and efficiency of the fast approximation. Section [7]is Appendix.

2. Preliminaries

Let 0 < <1, myn € N and X,Y be Banach spaces. Let C"][0,1] be
the space of continuous functions with continuous derivatives up to order
m on [0,1]. Let C™*#[0,1] C C™[0,1] consist of functions with the mth
order derivative being Holder continuous with index p. All the spaces are
equipped with the standard norms [I]. Furthermore, £(X,Y) and £(X,Y)
refer to the spaces of bounded and compact linear mappings from X to Y,
respectively. Throughout this paper we make the following assumption:

Assumption (A): For any z € [0,1], (i) w(a,z) > 0, folw(a,a:)doz =
1; (ii) there exist 0 < & < & < 1 such that suppw(a,x) C [a(x),a(z)] C
&, &]; (iii) a, @ € C0,1], w(e, z) € O([&, 6], [0,1]), and wy (v, z) € LY(c, &)
for x € [0,1] a.e.
Let v := «” and rewrite problem as the Volterra integral equation
a(x) .
va) +do) [ wlan)( 12+ =) vda = —f(@). (@21)

a(z)
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Interchange the order of the iterated integrals to get
a(z) R 1
d(x) / wle, ) (VIS + (1= 7) I2)v(z) da = / k(z, s)v(s)ds.
a(z) 0
Here k(z, s) := I(x,5)/|x — s|'~%, 14 is the indicator function of set A, and
a(z) w(a, x)
l =d 1 1—9)1 —_
(.I', 8) (.%') (7 {S<z}(s) + ( 7) {S>I}($)) /a(x) P(Oé)|$ o S‘a_a

We use the identity operator I to formulate (2.1)) and recover u from v by
1

(I+K)v=—f, Kv := /0 k(z,s)v(s)ds, x€0,1],

u(z) = /Ox(x _ s)o(s)ds — x/olu _ $)u(s)ds.

In the rest of the paper, we may omit the interval [0, 1] in spaces and
norms if no confusion occurs.

do.

(2.2)

3. Wellposedness and smoothing properties

THEOREM 3.1. Suppose Assumption (A) holds and d, f € C*|0,1]
with A :== min{a(0),a(1)} (A < 1 by the assumptions on w). If with
f = 0 has only the trivial solution, then equation has a unique solution
v € C*[0,1] and there is a constant ) > 0 such that

[vllero,) < QU fllerp,, 0 <k <A (3.1)
Proof. I(x,s) is clearly bounded. To verify |l,(z,s)| < Q/|z — s]| for
all x # s, only consider s < x by symmetry,
@) (2 — 5) % (wg(a, z) (2 — 5) + w(a,z)(a — &))
o) =) [ Do) —5)
LG ()(();) vd(x)d (z)w(a(z), z)
I'(@(z))(z — s)a-5) ( (2)) (2 — s)3—el)

@) Nd (@) w (o, z)da
+/a(m> Ma)(e — )7

da

=L+ 1+ Is+ Iy

We use Assumption (A) to conclude Iy + I3 + Iy is bounded and
Q [*@ Q

x—s x—8

we (o, ) (x — 5) + w(o, ) (o — &)
a(x) F(a)
We use Lemma7.1]to conclude that K € K(C|0, 1%[0, 1]) and hence

has a unique solution v € C%[0,1] from Lemma Therefore, estimate
(3.1) holds for k = . Decompose the iterated integrals in (2.1) as follows:

|| < da <
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()

/ w(a, z)[Svda = gbi} (x) + gﬁif (x),

a(z)

a(x) .
/ w(a, z)Ivda = 871 () + 672 (2),

a(z)

@) (a, 2)x%do
la () := v(O)/ M7

v Yo Tlat1)
@2 (x) == U(lj/)a;)) w(a,;cz((;—l)) da

b (@) = /a(( ) )w&j) /01 ?f)_sfi(“j dsda,
W= [ Tar | G

We reformulate equation (2.1)) as

v(z) = —d(x) (v + (1 =)} +79F + (1= 7e2) — f(x).  (3:2)

By Lemma Y2 + (1 — y)¢rz € CM0,1]. Let M € N* be such that

Mda < X< (M+1)a (if A is exactly a multiple of &, we could just slightly

reduce the value of & to ensure the existence of such M). Use v € C%[0, 1]
to conclude ¢l!, ¢t € C24[0,1] by (7.1) with the estimate

168 | czafo) + 165 | czago. < Qllvllca) < QI fllcapo.-
The terms on the right-hand side of (3.2)) are in C?%[0, 1], v € C?%[0, 1] and
lollcaaor) < QIS llcaso ) + 165 lczapo ) + [0(0)] + [o(L)]) + | fllc2apo
< Qllfllc2apo,1-
Repeat this process M — 1 times to conclude v € CM[0, 1] with vl enmag 1)

< Q| fllemay- As A <1, we apply v € cMao,1] ¢ C*=%[0,1] and repeat
the procedure once more to deduce v € C*[0, 1] with estimate (3.1)). 0

THEOREM 3.2. Under assumptions of Theorem equation has
a unique solution u € C>*|0, 1] and there exists a constant > 0 such that

[ullczapo,1) < QU fllexio,- (3.3)

P r oo f By Theorem the equation (2.1) has a unique solution
v € C*0,1], and then the function u defined in (2.2)) belongs to C?*[0, 1]

and solves (|1.2) with the estimate (3.3]). If there exists another solution
@ € G220, 1], then e := u — @ satisfies the homogeneous analogue of (|1.2)),
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and v = ¢’ satisfies the homogeneous analogue of . Then an application
of Theorem yields v = 0, which indicates e in a linear function. Then
the homogeneous boundary conditions in (|1.2]) ensures that e = 0, which
shows the uniqueness of the solution to O

THEOREM 3.3. Suppose Assumption (A) holds and d, f € C1[0,1]. If
for some constant 0 < p < 1, d satisfies

d(z) < ,u(/a(:;t) Mda>_l, x € [0,1], (3.4)
then problem has a unique solution v € C1(0,1) and
lpv'llepa < QU llerp,y,  ple) =21 — ). (3.5)
Ifd, f € C**[0,1] with \ given in Theorem then pv' € C*[0,1] and
oV lloago,ny < QUf llorago,- (3.6)

P r oo f. Let vy be the solution to the homogeneous analogue of (2.1J),

o) = |da) [ ;) “’F(?af) ( /0 ol [Py,
< [lvollcpo <d o O:Ul)) (7$a+ (1-(1 —x)a>da>

A w(a, )
< [lvollefo,) <d(l’) /a(x) F(a_i_l)da> = Z(z)|lvollcpo,11-

Under condition (3.4), Z(z) < 1. Hence, ||vol/¢jo,1) = 0. Thus, the homoge-
neous analogue of problem (2.1 has only the trivial solution. By Theorem

problem (12.1)) has a unique solution v with the estimate (3.1).
We use relation p(x) = p(s) + (z — s)(1 — z — s) to split p(z)v(s) as

plx)v(s) = p(s)v(s) + (z = 5)(1 =z = s)u(s). (3.7)
We multiply (2.1) by p(z), use and (pv)(0) = (pv)(1) = 0 to get
plx)v(r) = —p(z)f(z)

gty [ wlenm) [T p(s)u(s) + (@ = )Lz —s)o(s)
vd( )/a /0 T dsd

a@ L() (z — )t
@) (a, z L p(s)u(s z—38)(1—z—s)v(s
—(1—v)d(m)/a(m) é(o’é))/z pls)o )+((S_x))(11_a 1) e

= —p(x)f(z) — d(x) (v¢p, + (1 = 1)}) —d(2)(7G1 — (L = 7)G2), (3.8)

where
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= a(x)w(a’x) : —z— — 8)*(s)dsda
Gl._/a(x) o /0(1 = 5)(x — $)*u(s)dsd

= T wlaa) [1 —x—5)(s — x)%(s)dsda
GQ._/ o /x(l © — 5)(s — 2)*0(s)dsda

o(z)
Since G and G have continuous kernels and so in C1[0, 1],

o (z)w(a(x),x)

") = ' —z — s)(z — )7 @y(s)ds
e
_o(z)wla(r), v ) — )@ () ds
Pt J, (17~ e = e

(3.9)

a(z) wx(a,:zj) T N
+/ T(a) /0 (I -2 —s)(x—s)%(s)dsda

a(z)

A wla,z) [Ta—1+a)z+(1-a)s
+/Mz> (o) /0 @50 v(s)dsda.

Thus, we bound G; (and similarly G3) by

/a("’”) w(a, )| + |we (o, )|
a(z) I(a)

v ds
_— < .
< | e gy < @l

Since pv € C*0, 1], a similar lifting argument to Theorem [3.1| concludes
pv € CY0,1] (if Mé& > 1, we apply estimate (7.2) in Lemma [7.6] instead).
As p~1 € C(0,1), we deduce that v € C1(0,1) and

1Gillro. < Qllvllop.|

Ipvllcron < QU flleroa-
We apply pv’ = (pv)’ — p'v = (pv)’ — (1 — 22)v and Theorem [3.1|to get the
estimate of pv’ as

1ov'll < llpvllerpa) + lvllcpa) < QU llero-

We integrate lplv by parts to get

@) w(a,z x N
b= /a " F(le))( /0 p(s)v(s)d(z — s) )da

@) o(a, x o
:/Oé(w) F((oH—l))(/o (x — s5)%(pv) (s)ds)da.

Differentiate the equation to get
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(2 — ) (pu) (s)ds

@) rwg(a,a) [° o wla,z) [T (pv)(s)ds
- N (2108 [ ooy ass Zot) [ g,

The last term on the right-hand side can be decomposed as

@) o, x) [T (pv)(s)dsda o Y @) (o, z)z*da
/a(:w T(a) /0 @—sie oo T N0 /Oé(:r) Lla+1)

The same holds for ¢7}, by symmetry. Differentiate (3.8)) to obtain

(pv)' = —=d (74 + (L =)y +7G1 — (1 =7)G2) — (pf)
—d(v(dp) + (L =)(@})) —d(vG) — (1 =7)Gy)
= —yd(2)(¢p,) = (1= d(@)(ép) = d(vG1 = (1= 7)G5) + Py,
where P1 = —d'(y¢l}, + (1 = 7)¢7, +7G1 — (1 = 7)Ga) — (pf) € C*[0,1].
We combine the preceding three equations to get

(po)' + 7d(@)¢(l,, + (1= 7)d(w)

(pv)’
g [P, m) (3(p) (0)a + (1 = 1) (pr) (1) (1~ 2)°) (8.10)
= _d/a(x) T(a+1) dat Py,

Py =—d(vGy — (1—7)G5) + P

~af S (o [ s~ (=) [ 6 -2 as)
1

_m@ /O””(m — 5)2@) (pv)'ds — (1 — fy)/x (s — x)g(z)(pv),d8>

v/ (()) A0S (o [ ouras— - [ (s - 2)2(pu)ds) da].

As is proved in Lemma the first term on the right-hand side of (3.10))
is in C*[0,1]. The last three terms of P, have continuous kernels, and so

belong to C*[0,1]. We bound the most singular term of G/ in (3.9) by

a(z) wla,z) [ wv(s) L a(z) w(a, z)z®
/a(x) I'a) /0 s dsda = ¢, (z) + v(0) /a(x) Tat1) dor.
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By Lemmas we conclude G € C*[0, 1] with the bound

HGllHC’\[O,l] < Q(Hqﬁf}”m[o,l} + ‘U(O)D < QHUHC'\[OJ] < QHfHC/\[O,l]'
The same holds for GY. Thus, all the terms on the right-hand side of (3.10))
belong to C*[0,1] with its C* norm bounded by [ fllcrap)- A similar

lifting argument to Theorem applied to (3.10) concludes pv’ € C*0,1]
with estimate (|3.6)). O

THEOREM 3.4. If Assumption (A) and hold, d, f € C?[0,1], then

10%0" |01y < QUIfllc2(o.1- (3.11)
In addition, if d, f € C**[0,1] with X given in Theorem then
10°" lerp,) < QU oz (3.12)

Consequently, v € C™(0,1) can be bounded by

[0 (2)] < Qmax{z*™™, (1L =2) " }|flemarpy, m=12 (3.13)

P r oo f. We multiply (3.10) by p(x) to get
p(pv) (@) +7d(2)p(2) (L + (1= 7)d(@)p(),

, @) w(a, )™
= o O)p() [ o (514)
, @) o, z)(1 — z)*
= et [ GRS ot pt)Py

Set z = p(pv)’, use the fact that p(0) = 0, and apply the splitting (3.7)) to
rewrite the second term on the left-hand side of (3.14)) as
p6lpuyr) =i+ [ R [ 02012 = o) )
) (e, )T
o Ople) [ A

alz) F(Ox + 1)
We similarly decompose pqﬁzflw), and reformulate l) as

2+ yd(z) gl + (1 —v)d(z) ey

) y(a, x
— p(2) Py — vd() /( | é((;))

@) e, x) [T
L —’y)d(x)/( | é(;))/ (s — 2)°(1 — 5 — 2)(pv) (s)dsda. (3.15)

We use (3.9) to bound the most singular terms pG} and pGY in pPs by

a(z)

do.

/Om(a; —5)*(1 —x — 5)(pv)(s)dsda
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o [ | e
= /O:j) wé?(j) [/Ow ((;ML)S)KZ + /Om(x —5)*(1—x — S)U(S)ds] da

— /;(z) WIE(E:;)E) /01 (l(l‘ —8)*pv) + (z—s)*(1—z — S)U(S)>dsda,

a(z) @

The right-hand side has continuous integrand, so pG € C'[0,1]. We drop
the smooth coefficient d and decompose the most singular term in (pG})’
by

Lo “’(?;;’f) o]

/ () wm a, ) o4 F(;;Z‘;(Oi’ j))l_a>(py)(s)'dsdoz.

We split the (more smgular) last term on the right-hand side by

a(z) w(a, x) (pv)'(s)dsdo o ) a(z) M
/a(x) () /0 @osyia Py TN O /a W Ta+D) (3.16)

By Theorem (pv)’ € C*0,1] and the left-hand side belongs to C*[0, 1].
We conclude pGy € C1*[0, 1] with estimate 0G0,y < QUFlerapo -
Similarly, the remaining terms in P are in C**[0, 1] with the same bound.

We bound the rest on the right-hand side of , which belong to
C1[0, 1] since they have continuous integrands. For the sake of clarity, we
just bound the derivative of the second term that is representative

(/c::) WIEC(XQZ)E) /Ox($ — ) (l-w - 8)(pv)’(s)dsda)/

O/(x)w(a(x)?x) ’ r—s a(@)( — x — s)(pv)'(s)ds
I(a(z)) /o ( ) (@ Joere)d
a,(l‘)w(g(Sﬂ),Cﬂ) ¢ r—g a(z)(1 _ x — 3)(pv)(s)ds
I'(a(z)) /0 ( e ooy 10

a(x) wx(a’ .%') x N ,
+/a(m) T'(a) /0 (x —9)*(1 —x —s)(pv)'(s)dsda

" uer) (o (o (ak
+/Oé(1’) I'(a) /0 (z—s)la (pv)'(s)dsdor.

(z = $)2)) (v ds
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The (most singular) last term in (3.17)) is bounded similar to (3.16]).
Thus the second term on the right-hand side of (3.15]) is bounded by

b [0 oi]

We similarly prove that the third term, and so all the terms on the right-
hand side of (3.15)) belong to C**[0,1]. We then apply a similar lifting as
in Theorem [3.1]to (3.15)) to deduce that z € C1[0,1] with the estimate

Izllcro,y < QI(v) o, < QU llezpo,y-

We finally lift the regularity of z from C'[0,1] to C**[0,1]. Using z(s) —
z(0) = [y #/(9)d0 and interchanging the order of the integrations to get

a(z) T
ho_ w(a, ) _ ay
o} = /a(x) Tlat 1)/0 (x — 8)*2'(s)dsda.

We consequently split the derivative (¢4) by

hy T a/w(a(x)jx)xx_sa(x) aw(a(w),l’) x_sg(x) J(s)ds
@y = | (e @ - e e ) ) (5)d

+ /aa;) W(x(iigi)) / (z — 8)%2 dsdo + ¢ +2/( /a el jda.
We differentiate ) to get
7+ yd(z) ¢} +(1 —)d(x)dl
- [ 0 wla,2) (027 + (1= )2 (1)(1 —2)7)

cijo] < Qlfllerap,-

da

() M(a+1)
— —_ €T 1
T (3 [ a0t = (1) [ (5= 2 5)as)
, 1
A () [ o2 s (1 =) [ (5 - )2 5)s)

+/a((x) M(v /Oz(g; — 5)°2(s)ds

1
~(1=) [ (= 2) (5)ds) da] (@) (101 + (1= 7)6%) + B
Here P; € CY0, 1] represent all the terms on the right-hand side of (3.15)).

Thus, all the right-hand side terms belong to C*[0,1]. Apply the similar
lifting to Theorem to conclude that z € C1*[0, 1] with the estimate

Izllcrap,a) < QIS ez,

We use p?v” = (p(pv)) — (p')?v — pp"v — 3pp'v’ to arrive at estimate
(3.12)). We use estimates (3.5) and (3.11]) for m = 1,2 to obtain
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[p(x)™v(@)™ = 0 < Qlp™v™ [ cap ™ < Qllfllem o™,

which leads to estimate (3.13)). O

THEOREM 3.5. If Assumption (A) and hold, d, f € C?(0,1], then

1p%uW |01y < QU fllez(o.1;-
Furthermore, if d, f € C?*[0,1], then

126D oo < QU ez

4. A collocation method and its error analysis

Let , := (n — 1)h forn = 1,...,N + 2 with h := 1/(N + 1) be a
partition of [0,1]. Let Sy be the space of continuous and piecewise linear
functions with the partition. Let {¢,(z)}) 72 be the piecewise linear basis
functions with ¢, (z,) = 1 and ¢,(xx) = 0 for k # n. Then each function
vp(z) € Sy, can be represented by vy (x) = Zgjﬁ Un@n () with v, = vp(xy,).

A collocation method is formulated as follows:

e Find vy € Sy such that forn=1,2,..., N + 2,

(I 4+ K)vp](zn) = —f(zn), n=1,2,...,N +2,

(Kvp)(zn) = d(zn) /a(xn) M(’Y /Ox" (xvh(S)dS

a(@,) (@) L5l (41)
! Vp\S)as
+(1 - ’Y)/ (S_h(xigil_a>da.

e Postprocess uyp by

T 1
up(z) = / (x — s)vp(s)ds — a?/ (1 —s)op(s)ds, =z=e€l0,1]. (4.2
0 0
The diagonal, lower triangular, and ui i er triangular entries of the stiffness

i:{ifl 4.37, respectively
az) (A)(Oé, xl)a

h

matrix A = (anﬂ-) are given by (|

1+ (11— ’y)d(:cl)/ Na+2)da, n=1,

a(w1)

a(@n) w(a, xp )R
Ay = 1—|—dxn/ 2 do, 2<n<N+1, 4.3
(zn) oy T@t2) (4.3)

 falen) w(a, z,)h®
1+ vd(zn2) / g

da, n=N+2;

\



ANALYSIS AND FAST APPROXIMATION OF ... 13

len) w(a,azn)h“ . a+1 a1

+(n—i—1)*MN)da, 3<n<N+2, 2<i<n-1,

Qn,i = a(zy) w(a7 l‘n)ha o (TL _ i)a+1 (4.4)
iten) [ T [<n— - 29T

_'_1a+1
("Zﬂ)]da, 2<n<N+2 i=1;
L «o

(1 - ~)d(z) / o T

+(i—n+1)*MNda, 1<n< N, n+1<i<N+1,

((6 —n— 1>+t —2(i — n)>*!

An g5 = a(xn) w(a z )ha (Z _ n)aJrl
1 —~)d(z, b St Rk CYASER - P S S A
(i) [ S e -
;o _ a+1
u]da, 1<n<N+1, i=N+2.
\ a+1
(4.5
Let v := [vp(21),vn(w2), -+, on(@ng2)] T F o= [f(21), f(@2), -, f(wns2)] T
Scheme (4.1)) can be formulated as a matrix form
Av = —f. (4.6)

THEOREM 4.1. If Assumption (A) and condition (3.4) hold, then A is
strictly diagonally dominant, so scheme (4.1)) has a unique solution vy, € Sp,.

P roof By (4.3)-(4.5), we have
N+2

@) (e, 1
= 3o =10y [ a2 10
i=2 alr

and for 2<n < N+1,

a(zn) o, Tp)h® N
o =3 fanal =1~ dz) | o foty [
i1#£n AT

o an) W(O‘al‘n)ha
a@n) (e, xp) o) w(a, xn)h®
>1—d(xy, —2" 2d(xy, / ik Rk LU/
. )/am) Do+ 1) 20 oz T@+2)
>1—p>0.
N+1

Similarly, we have ani2 n+2 — Z lant24] > 1 — p. O
i=1
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THEOREM 4.2. Suppose Assumption (A) and (3.4) hold. If d, f €
C?[0,1] with A given in Theorem the error estimates hold for h suffi-
ciently small

A A
[0 = vnlljoe < QUfllczaph®  llu—unlljo < Qlfllczapyh™
Furthermore, if v € C2[0,1], the optimal-order error estimates hold
lv = vall oo < Qllvllezo b, llu = unlljoe < Qllollczo .

Here the discrete norm || -||;  is defined by [|g||; s := maxXi<n<ny2 ‘g(mn){

P r o o f. By the proof of Theorem K e £(Cl0,1],C]0,1]) is com-
pact. By setting X = CJ0,1] in Lemma we conclude that (I + K)™! €
L£(C0,1],C10,1]). Let II; : C[0,1] — S}, be the piecewise linear interpo-
lation operator. We subtract the interpolation of Mo + p(Kv) =
—II;, f from to get v — v, = =11, K (v — vp,), which implies

(I + HhK)(HhU — ’l)h) = —HhK<1) — Hh'U).

We use Lemma [7.3] to get

(I + T, K) "l zcponcpan < QUT + K)Hlizcro,.cpo1):
which implies that
[TThv — vnllcpo,) < QUK (v — va)llcpo,1-
As || - [[¢jo,) and || - [| ;o are equivalent for functions in Sy, we obtain
M0 — vl oo < QITIAK (0 — Tyo)| e i = QIR e

Then we remain to estimate [|R||;. according to Theorem We
begin with the case d, f € C?*[0,1]. Let n := v — IIv, we have

alzn) (e, 2,
R = ~(n) (e = [ T E )

it suffices to estimate the first right-hand side term of (4.7) by symmetry
a(Tn) a(xn) n T; d
Ry = / w(a,zn) I nda = / w(o, 2n) Z/ [ n(sds
zim1 L

a(zn) a(zn) F(a) i—2 n — 3)1_a
(4.8)
for n > 2. We start with 2 < n < |[N/2| + 1. For i = 2, we apply the
integral type residue of the interpolation (cf. [42, Equation 5.12]) to bound
the integral on [0, x2] in by

(Vg + =I5 n)da, (47)

2 [ o' (y)|dy 72 [ A dy
L —ds < Q|f|l m/ =02 " ds < Q|| fllcrajo.h*s
o (2, —s)i-e c o (zn — )l C1:A0,1]

here we use the fact that for a € [a(zy), @(zy)],
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T2
/(n— O‘lds<Q/ 1ds<Q/ (w2 — 5)2) 7 ds
0

< Q/ (IZ _ S)Q(I2 —lds < Ql’% x2) < Qh)\
0

For 3 <i < n, we have
) ) T A—2
T p(s) ‘ / v [0y TRy
————ds| < Qh ——d
| e < Qulfloaspy | o s

< Q”f“cw[o,l]h%?:f[(fvn — 1) — (zn — )%

By the mean value theorem, we have

Ln/2]
Tln/2) ds -
/ (x(—)) QHfHC“()l]h Z CL‘z "2y, — )
2 n
[n/2] 1n/2]
< Qlflle2ah? wLn/QJ Z 2} < QIS llgeah ol Z i—1)*
=2
< QU ez ka0t < Q| fll2ah®,

and

/”” n(s)ds
Zinjzr (n = 8)17°
n

< Q| fllczap b 95[\”/2% Z (2 — 2i1)® — (zn — 3)°]
i=|n/2]+1
< QI fllcenp b ey (@n — Tjnj))* < Q”f|\c2vk[0,1]h2$2+g(:ﬁ")_2

< QHf‘|02,*[0,1}h2$2+g(0)72 < QHfHCM[o,l]hz)‘
Therefore, we have the following estimate for 2 <n < |N/2| + 1:
1By | < Qfllcoaph™ (4.9)

Next, we prove the estimate of R. for | N/2] +2 <n < N + 1. By the
previous estimates, we immediately obtain

[N/2]+1

S [ ] < Qoo™



16 J. Jia, X. Zheng, H. Wang
For |[N/2| +2 < i <mn —1, the integral on [z;_1, z;] can be bounded by
i n(s)ds i fx 0" (y)|dy
G —gyia| =P —mds
Ti_1 (.’L'n - S) Ti_1 (.’I,'n - 8)

S (L= y)2dy
< QMoo [

§QWW%MWM—M)4/ (2, — 5)2e) 14
Ti—1

< Qlfllezapah® (1 = 22 [(2n = 2ic) ) = (2 — )2
If [IN/2|+2<i<2n— (N +2) (which implies 1 — z,, < x,, — x;) we have

Qn (N+2)
i= LN/2J+2/’“ 1 \En (20 = 8)1=
2n—(N+2)
<Qlflceapyh® Y. (1= 2) 2 (w0 — wi1)®) = (@, — 2;) )]
i=|N/2)+2
2n—(N+2)
<QUflcerpyh® Y. (=) (g — a2
i=|N/2)+2
2n—(N+2)
< Qlflcenpyh® (1 = 2=t " (1 — )22
i=|NJ2)+2
2n—(N+2)
< Qll fllezao,yh™ Z (N —i+2)"2 < Q| fllezrj01h™
i=|N/2)+2

where we used the fact that o € C1[0, 1] and
(1—z )a(xn) L= (eyjo—= )a(xN+2)—1(g:N+2 — xn)g(xn)—g(xmz)
< QhA 1.
Otherwise for 2n — N — 1 < ¢ < n we have

/ a‘
Ti—1

z 2n—N—1
n—1
< Q| fllezao,1? Z (1= @) [(@n — 2i1)20) = (@, — 2;)20)]
i=2n—N—1

< Qlf ez h? (L = @) 2 (@0 — 22n-n—1)*)

< Qlfllczapyh*(l —= D) ATE T2 < Q| £l Ap, P
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Therefore, (4.9) holds for |[N/2] +2<n <N +1.

Finally, if n = N + 2, it follows directly from previous estimates that
N+1

!z/x e

\ / e (s)ds / v [E55 /()| dy
1 « ‘ — 11—« dS
€T €T )

N1 (TN42 — 5) N+1 (mN‘*‘Q -

< QI flc2ap.h™

TN+2
< Qh/\/ (n42 —5)*'ds < QPN(1 —2n 1) < QI fllorap,yh™
TN+1

where we used the fact that o > a(zn+2) = (1) > A(:= min{«a(0), a(1)}).
That is, (4.9) holds for n = N + 2 and thus we complete the proof of R
for n > 2 and thus the estimate of || R -

In particular, if v € C?[0, 1], which implies [[v—IT,v||; o < Q||vHCz[O,1]h2,
then R(z,) can be bounded by

w(a, Ty
R < @l [ FE do < QU oo

which finishes the proof of the estimates of v. Finally we subtract the
expression of v in (2.2) from (4.2) to obtain

u—up = /Ox(m — s)(v(s) — vp(s))ds — x/o (1 —s)(v(s) —vp(s))ds.

Plugging the estimates of v in the statement of this theorem into this equa-
tion leads to the estimate of u — uy,. O

a(zn)

5. A fast solution method and its error estimate

In the previous section, we prove error estimates of the proposed nu-
merical scheme, e.g., the O(h2/\) accuracy of the error under the L™ norm,
based only on the regularity assumptions on the data. For implementation,
a straightforward idea is to discretize the distributed-order integral by the
composite trapezoidal quadrature. If we apply this quadrature on the fixed
interval [&, &], which always contains the range of « for any = € [0,1], the
integrand may be discontinuous if w # 0 on end points of the support of
«. In this case, the accuracy of the quadrature may be reduced. If we
alternatively discretize the distributed-order integral exactly on the sup-
port of « for each spatial node, the resulting stiffness matrix may lose its
Toeplitz structure due to the varying of the range of the fractional order at
different spatial nodes. In order to retain the O(h?}) accuracy of the nu-
merical scheme, we set the mesh size of the distributed-order integral o as
o = O(h*), which leads to O(N*) terms in the discretization and thus the
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O(N?*2) operations to generate the stiffness matrix and O(N?) memory for
storage. To solve the linear system, Gaussian elimination requires O(N?)
operations while the Krylov subspace method requires O(N?) operations
for each iteration, which is expensive for large .

In this section we propose and analyze a fast method to reduce the
storage and computations. The key is to approximately expand the stiff-
ness matrix by a sum of O(log N') Toeplitz matrices multiplied by diagonal
matrices, which can be employed to develop the fast solver for the approx-
imated system without affecting the accuracy of the numerical discretiza-
tion.

5.1. An approximated scheme and error estimate. Let @ = (& +
&)/2,3 < v e NT (the value of v will be determined later), and i < n—v—1.
By the Taylor expansion we have

(n—i+ 1) —2(n -t 4+ (n—i—1)*H
zji“”;mk«n—i+n@“mwn—p+n—2m—n&“m%n—w
k=0 '

-Hn—i—n@Hm%n—i—n)+T”

n,t?

where Tii is the local truncation error given by
s,{ _ (a - d)S—H
™t (s+1)!

=2(n— ) (=) + (0 — i = )P (- i - 1))

Qn—i+m%ﬂmﬁwn—i+n

with 0 lying between o and &. We apply this expansion to approximate
an,; defined in (4.4)) by @y, ;

S

i = 7d(@n) Y e =i+ 1) k(0 — i +1)
k=0 (5.1)
—Xn—@HdMWn—D+{n—i—DHdMWn—i—D»

where

a(zn) w(a, z,) (o — @)k
Cnk = /a(wn) (o +2) da.

By symmetry, a, ; for ¢ > n+v+1 can be approximated in a similar manner
with corresponding local truncation error 7, defined for i > n + v + 1.

Therefore, the matrix A can be approximated by A = (Ciani)N+2 with

n,i=1
an; = G for |i—n|<vormn,i=1N+2,
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S
Gni =7 cnn ((n i 1) Ik — i 4 1) — 2(n — )3 Ink(n —4)
k=0
+(n—¢—1)@+1ln’“(n—¢—1)), 2<i<n—v—1,

and forn4+v+1<i<N+1,

dni = (1= cnp ((i —n+ 1) R —n 4 1)
k=0
—2(i —n)* M In* (i —n)+ (i —n— 1) PG —n - 1))

The local truncation error is given by

a(xn) w o, n—v—1 N+1
yg:dum/” Aol §:1ﬂk+1-) S 17)da
a(zn) (a+2) i=nto+l
(5.2)
Then the approximated linear system can be written as
AV = —f, v :=[on(z1), -+, On(wn42)] (5.3)

for some vy, € S;,. The corresponding approximation 4y of u is defined by
the second equation of (2.2)) with v replaced by vp,.

1+a&+2))log(N +1)

log2 — log(& — &)
local truncation error T can be bounded by

THEOREM 5.1. By setting s > L( J + 1, the

T3 <Qh*, 1<n< N+2.

P 1o o f. By Theorem 5 in [17, 18], 7, and T, with suitable indexes
n and ¢ can be bounded by

<\s s 1 & S\S(; _ 1 &
’T8l|_ ( Oé) (TL v+ ) 7 |Tsr|_ ( OL) (,L n+ ) ]
25./s 25./s
Therefore, T} defined in (5.2)) can be bounded by
(@ — &)
TS
‘ ‘ stfha—i—l’

1+ a4+ 2\ log(N +1) o )
log2 — log(& — &) J +1, we get ((O‘ 0‘)/2) <

, which completes the proof. O

By setting s = {(
hl+d+2)\
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THEOREM 5.2. Suppose the Assumption (A) and hold, d, f €

14+ a&+2\)log(N +1

C?2[0,1] and s > [( +a+2) Oig( v+ )
log2 — log(& — &)

J + 1, then the following esti-
mates hold
[ = Bl 7o < QUflczap ™ llu—tnllzee < Qfllczaph™.

Here uy, is defined by the second equation of with v replaced by vy,.

P roof By Theorem we get |A — Al < Qh?, where || - |00
denote the [*° norm of a vector or a matrix. Combining this with Theorem
we obtain ||A7Y|s < 1/(1 — ) [34] and thus

1A ool A = Alloe < QR*/(1 — p).
We subtract from to get
v-v=A1YA-A)(v-v)-A YA - A)v,
which yields
IV =¥l < 1A ollA = Allos([v = Flloo + V]lo0)-
For h sufficiently small we have ||A™!|oo]|A — Alloo < 1/2, which leads to
[V = Vlloo

<20 Al A - Al < QR (5.4)

[[Vloo

We combine Theorem and Theorem [4.2) to bound v by
i S Qllfllcio + Qlflczah®™ < Qll fll g2
which, together with (5.4), yields ||[v — V|| < Q| f]lc22h?*. Combining

this with the estimate of e = v — v, proved in Theorem [£.2] we obtain the
estimate of v — v5, and apply this to find that of u — uy,. O

[Vllzee < MVllzee + v =¥

5.2. Matrix structure and fast method. We observe from Theorem
that we may solve the approximated linear system instead of
(4.1) without loss of accuracy. Then we remain to reduce the memory
requirement and computational cost of solving , or more specifically,
performing the matrix-vector multiplication Aw for w € RVN+2. We divide
the approximated matrix A into the following block form

~ ai,1 A a1,N+2

A= Acq A, AcNi2 . (5.5)

ant2,1 ANi2c ANi2 N2

For any vector w = [w1,ws, -+ ,wnia]? = [w1, We, wn o]’ € RV*2, direct
calculations yield
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anwy + A1 cWe + a1 N42WN 2
Aw = w1A071 + A.w, + wN+2Ac,N+2 . (5.6)
an42,1W1 + ANy2,We + N2 N42WN 42

It suffices to study the fast implementation of A.w,, as the rest of the entries
in (5.6) can be evaluated in O(N) operations. By (5.1), matrix A, can be
decomposed by

A, =B +diag(D) Y diag(C*)(yT™®) + (1 —4)(T™)T). (5.7)

k=0
Here BY = (bn,i)fji:l is a band matrix defined by b, ; = a,; for |n —i| <wv
and zeros otherwise. The vectors CF := (cn+17k),]:7:1 for 0 < k < s and

D = diag({d(mn)}fiﬁ). The Toeplitz matrices T*) for 0 < k < s are
generated with t¥ and 0 being the first columns and rows where t¥ = (t¥)¥
are given by tf =0for1<i<wand

th=(—-2)" Wk —2) —2(i — 1) Wi — 1) + T Invi
forv+1<¢<N.

THEOREM 5.3. Let v = s = O(logN). Then A. can be stored
in O(Nlog N) memory and the matrix-vector multiplication of A w, for
w. € RN requires O(N log® N) operations. Furthermore, O(N'**log N)
operations are needed to generate components D, C* and T* for 0 < k < s
in A in order to keep the O(h?") accuracy.

P roof We observe from that we require O(vN) storage for B¥
and O(vN) computations for evaluating B"w,.. To keep the order of mag-
nitude of computations, we set ¥ = s in this paper. Composite trapezoidal
formula with N* points can be applied to evaluate the integrals in C* for
0 < k < s with the local truncation error O(h?*), and the total computation
is O(N'**1og N). The matrix AW = AT®) 4 (1 = 4)(T®)T is a Toeplitz
matrix, which requires O(N) storage and O(N log N) operations for evalu-
ating Aﬁk)w via the fast Fourier transform (FFT). These observations lead
to the conclusions of this theorem. O

6. Numerical experiments

We investigate the performances of the approximated fast conjugate
gradient squared (FCGS) method for solving model , which employs
the standard CGS incorporated with the FFT to solve the approximated
linear system , by comparing it with the traditional Gaussian elimina-
tion (Gauss) method and the CGS. All these methods are implemented on
Matlab 2016b on a computer with Intel(R) Corel i7-9700 and Ram 16GB.
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CPU
=)
CPU

1
—e—Fcas 10 —e—Fcas
——Gauss ——Gauss
0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 1 2 3 4 5 6 7
N N x10*

FIGURE 1. CPU of Gauss and FCGS for Experiment 1 (left)
and Experiment 2 (right)

The symbol ‘-’ in tables implies that the running time of the program ex-
ceeds one day. We measure the CPU times (CPU) of generating coefficients
and solving the linear systems and the relative errors in the norm || - ||
defined by, e.g., [|[v — vallfeo := [[v = Vp|lj o /l|V||j o, as well as the corre-
sponding convergence rates (CR).

6.1. Experiment 1: Smooth solutions. We test the aforementioned
methods for withd(z) =1,w =2, a(x) = 1/8+x/4, a(x) = 5/8+x /4,
u(z) = 162%(1 — x)? and f(z) is evaluated accordingly. As u is smooth,
we expect O(h?) accuracy of the numerical scheme, which requires the N-
points composite trapezoidal formula to distcretize the distributed-order
integral in order to keep the accuracy. Thus it takes O(N?) operations to
compute the matrix entries and to solve the linear system for in traditional
methods, while in the FCGS, only O(sN?) = O(N?%log N) operations are
needed to evaluate the integrals in C* and O(Nlog? N) operations are
required in each iteration to solve the approximated linear system. Numer-
ical results are presented in the left figure of Figure 1 and Table 1, which
coincide with the theoretical analysis.

6.2. Experiment 2: Non-smooth solutions. Let v = 0.5, f(z) = 1,
dlz) = (14 x), a(z) = 1/4 + z/10, a(z) = 3/4 + /10 and w(a,z) =
20a/(5 + x). As the exact solution is not available, we use the numerical
solution of FCGS with N = 2!6 as the reference solution. In this case
A = 0.25 and we thus use the composite trapezoidal formula of N i points,
which leads to the O(N 1/ 4+2) computational cost of generating the entries
of A and O(N3) operations of solving the linear system in the traditional
method. Instead, the FCGS only takes O(N*/*1log N + N log? N) for com-
puting the components of A and O(N log? N ) for solving the approximated
linear system in each iteration, respectively. Numerical result are presented
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Table 1. Errors and CPU times (seconds) of Experiment 1

N |v=—wlj CR, JJu—upljee CR, CPU
25 4.1818e-4 — 2.5084e-3 — 0.49
26 1.0310e-4 2.02 5.9940e-4 2.07 4.01
Gauss 27 2.5741e-5 2.00 1.4599e-4 2.04 32
28 6.4604e-6 1.99 3.5923e-5 2.02 217
29 1.6245e-6 1.99 8.8902e-6 2.01 2096
210 4.0862e-7 1.99 2.2075e-6 2.01 16704
21 — — — > 1 day
25 4.1818¢-4 — 2.5084¢-3 — 0.50
26 1.0310e-4 2.02  5.9940e-4 2.07 4.00
27 2.5741e-5 2.00  1.4599e-4 2.04 32
cGs 28 6.4604e-6 1.99 3.5923e-5 2.02 260
29 1.6245¢-6 1.99 8.8902e-6 2.01 2092
210 4.0862¢-7 1.99 2.2075e-6 2.01 16813
21 — — — — > 1 day
25 4.1818e-4 — 2.5084e-3 — 0.47
20 1.0310e-4  2.02 5.9940e-4 2.07 2.44
27 2.5741e-5  2.00 1.4599e-4 2.04 114
FCGS 28 6.4604e-6  1.99 3.5923e-5 2.02 52
29 1.6245¢-6  1.99 8.8902¢-6 2.01 235
210 4.0862e-7  1.99 2.2075e-6 2.01 1042
211 1.0275e-7  1.99 5.4924e-7 2.00 4642
212 2.5826e-8  1.99 1.3683e-7 2.00 20210

in the right figure of Figure 1 and Tables 2-3, which show that the conver-
gence rates of v are consistent with the theoretical results while that of u
are higher than the expectations that needs further investigation.

7. Appendix

We refer several lemmas from [I4] to support the preceding estimates.

LEmMMA 7.1. Ifkin satisfies |l(x, s)| < Q and |l.(z,s)| < Q/|z—s|
for s # x, then K € L£L(C[0,1],C%[0,1]). K € £(C0,1],C?[0,1]) for 0 <
B < 1 belongs to K(C*[0, 1], C*[0,1]) for 0 < pu < B.

LEMMA 7.2. If the homogeneous integral equation (I + K)v = 0 has
only the trivial solution for K € K(X,X), then (I + K)™' € L£(X, X)
and equation has a unique solution for each —f € X given by v =
~(I+K)"'feX.
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Table 2. Errors and convergence rates of Experiment 2
N Jv—wlje CR, |u—up|jee CRy
25 5.7179e-2 — 1.0398e-1 —
26 4.4607e-2 0.36 5.5503e-2 0.91
27 3.3856¢-2 0.40 2.8673¢-2 0.95
Gauss 28 2.5095e-2 0.42 1.4539e-2 0.98
29 1.8442¢-2 0.44 7.3034¢-3 0.99
210 1.3434e-2 0.46 3.6387¢-3 1.01
211 9.7176e-3 0.47 1.7944¢-3 1.02
212 6.9687¢-2 0.48 8.6924e-4 1.05
2° 5.7179e-2 — 1.0398e-1 —
26 4.4607e-2 0.36 5.5503e-2 0.91
27 3.3856e-2 0.40 2.8973e-2 0.95
FCGS 28 2.5095¢-2 0.43 1.4539¢-2 0.98
29 1.8442¢-2  0.44 7.3034e-3 0.99
210 1.3434¢-2 0.46 3.6387e-3 1.01
2L 9.7176e-3 0.47 1.7944e-3 1.02
212 6.9687e-3 0.48 8.6924e-4 1.05

Table 3. CPU times (seconds) for Experiment 2
N 28 29 210 211 212 213 214 215 216
Gauss 5.2 26 130 670 3533 54392 — — —
CGS 41 20 98 455 2083 10388 — - -
FCGS 11 30 79 21 51 140 361 894 6546

LEmMA 7.3. If K € K(X,X), then I, K converges to K in L(X, X)
as h — 0. In particular, if (I + K)~!' € L(X, X), then for h sufficiently
small

1T +T0,K) Yl 2ox,x) < QI+ K) ™ Hlgx x0-

LEMMA 7.4. Suppose Assumption (A) holds, then p(z) € C20)[0, 1],
q(z) € c2M|0,1], here

a(x) a(z)
p(x) = / w(a, x)xda, q(z) = / w(a, z)(1 — x)%da.

a(z) a(z)

P r o o f. By symmetry, it suffices to analyze p. For 0 < z1 < 29 <1
we decompose p(x3) — p(z1) by
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a(mz)

ple2) —pten) = ([

a(z2)

a(ml)
w(a, :UQ)deoz)

w(a, xo)zsda — /
a(z1)

a(z1) a(z1)
—i—(/ w(a,xg)xg‘da—/ w(a,xl)azg‘da)

a(z1) a(z)

(z1) a(z1)
+</ w(a, z1)xsdo — / w(a,xﬁx?da) =J1+ Jo + J3.

(z1) a(z1)

By Assumption (A), J; and J3 can be simply bounded by Q(x — 1) and
we remain to bound Js. If xo —x; > x1, we apply z§ — 2§ < (2 — x1)®
and a € [a(z1),@(z1)] to obtain

(21— 21)* < (22 — xl)g(m) < (z9 — xl)g(o) (9 — xl)a(m)—g(o)

”9”01[0,1] (-TI_O)

< (29 — mp)2@0)g T < Q(ag — 1)),

Otherwise we have
2§ — 2§ = af® (g — 11) < ax{ H(zg — 21)
— ax%(o)fla:%(m)*g(o) (xa —x1) < Q(z2 — xl)g(o).
Thus we bound |J3| by Q(z3 — 21)*® and thus complete the proof. O

LEMMA 7.5. If Assumption (A) holds, g € C”[0,1] for > 0 and 0 <
a+ B <1, then ¢z € C400,1],¢72 € C2M[0,1], and ¢, g7 € CH+A[0, 1]
with l

9 learspy < Qllgllesp,y: 195 loarspy < Qllgllcsio, - (7.1)

Proof. By Lemmawe have ¢}2 € c20)[0,1] and dy? € ceM]o, 1]

and we remain to estimate gbﬁ} by symmetry. For 0 < z1 < z90 < 1 we
decompose

M) — ¢l (x1) = Ju+ J5 + Js

a(xz)
= (/ w(a, z2)(a, z2)d / (v, x2)) (a,xg)da)
a(z2) a(z1)

(1) a(r1)
—|—</ w(a, x2)Y (o, x2)d / (o, 1) (a,azg)da)
( a(z1

a(z1)

+<Aa(ml)w(a,x1)¢(a,x2)da - /a(ml)w(a’ml)w(a’xl)da)'

a(rr) a(r1)

Jy and J5 can be simply bounded by Q||¢||c(o,1|72 — #1|. To estimate Jg,

1 r —
we define a function ¢ (z) = o) / g(]g(CS)_ 8>gl(—0a) ds. As is proved in [40],
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if o+ 8 <1andge CP0,1], then ¥(z) € C*P[0,1] ¢ C**P[0, 1] with
the estimate [|¢|cats < Qllgllcsp,1)- If @+ 8 =1, we may slightly reduce
B to ensure the above conclusion. If « + 8 > 1, by Theorem 3.3 in [40],
we have |[¢]|cats < QY| < Q|Y|lcs. We conclude from these estimates
that |Js| can be bounded by Q|xa — 21]/%*?, which completes the proof. O

LEMMA 7.6. Suppose that g € C?[0,1] for f > 0 and & + 8 > 1 and
Assumption (A) holds, then ¢}, ¢} € C*[0,1] and

\|¢§1Hcl[0,1] < Qllgllespys oG e,y < Qllgllespoa- (7.2)

P r o0 o f. The proof can be performed in parallel with that of Theorem

3.3 in [40] and thus be omitted. O
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