
Joker: A Unified Interaction Model For Web
Customization

Kapaya Katongo
MIT CSAIL

Cambridge, MA, USA
kapaya@alum.mit.edu

Geoffrey Litt
MIT CSAIL

Cambridge, MA, USA
glitt@mit.edu

Kathryn Jin
MIT CSAIL

Cambridge, MA, USA
kjin@mit.edu

Daniel Jackson
MIT CSAIL

Cambridge, MA, USA
dnj@csail.mit.edu

ABSTRACT
Tools that enable end-users to customize websites typically
use a two-stage workflow: first, users extract data into a struc-
tured form; second, they use that extracted data to augment
the original website in some way. This two-stage workflow
poses a usability barrier because it requires users to make
upfront decisions about what data to extract, rather than
allowing them to incrementally extract data as they augment
it.

In this paper, we present a new, unified interaction model
for web customization that encompasses both extraction
and augmentation. The key idea is to provide users with
a spreadsheet-like formula language that can be used for
both data extraction and augmentation. We also provide a
programming-by-demonstration (PBD) interface that allows
users to create data extraction formulas by clicking on ele-
ments in the website. This model allows users to naturally
and iteratively move between extraction and augmentation.

To illustrate our unified interaction model, we have imple-
mented a tool called Joker which is an extension of Wildcard,
a prior web customization system. Through case studies, we
show that Joker can be used to customize many real-world
websites. We also present a formative user study with five
participants, which showed that people with a wide range
of technical backgrounds can use Joker to customize web-
sites, and also revealed some interesting limitations of our
approach.

1 INTRODUCTION
Many websites do not meet the exact needs of all of their
users, so millions of people use browser extensions and user-
scripts [4, 5] to customize them. However, these tools only
allow end-users to install customizations built by program-
mers. End-user web customization systems like Sifter [15],
Vegemite [18] and Wildcard [19] provide a more accessible

approach, allowing anyone to create bespoke customizations
without performing traditional programming.

These tools each provide different useful mechanisms for
end-user customization, but they share a common design
limitation: they have a rigid separation between the two
stages of the web customization process. First, in the ex-
traction or scraping phase, users get data from the website
into a structured, tabular format. Second, in the augmenta-
tion phase, users perform augmentations like adding new
columns derived from the data, or sorting the data. For exam-
ple, in Vegemite, a user can extract a list of addresses from a
housing catalog, and then augment the data by computing a
walkability score for each address.

This separation between extraction and augmentation
poses an important barrier to usability. A user study [18] of
Vegemite wrote that “it was confusing to use one technique
to create the initial table, and another technique to add in-
formation to a new column.” The creators of Sifter similarly
reported [15] that “the necessity for extracting data before
augmentation could take place was poorly understood, if
understood at all.” In Wildcard, end-users cannot augment
a website at all until a programmer has written and shared
extraction code for that website in Javascript [19]. These
tools all impose a sequential workflow in which users must
first extract all the data they need, and then perform all their
desired augmentations. This workflow exemplifies the more
general problem in interface design of forcing users to make
premature commitments to formal structure [8, 22].
In this paper, we present a new approach to web cus-

tomization that combines extraction and augmentation in
a unified interaction model. Our key idea is to develop a
domain specific language (DSL) that encompasses both ex-
traction and augmentation tasks, along with a programming-
by-demonstration (PBD) interface that makes it easy for
end-users to program in the language. This unified interac-
tion model allows end-users to move seamlessly between

extraction and augmentation, resulting in a more iterative
and free-form workflow for web customization.
To demonstrate and evaluate this model, we have built a

browser extension called Joker, an extension of the Wildcard
customization tool. The original Wildcard system [19] adds
a spreadsheet-like table to a website and establishes a bidi-
rectional synchronization between the website and the table.
This allows users to customize a website, by filtering and
sorting page elements, and adding user annotations, derived
values and calls to web services. Although Wildcard offers
a declarative formula language for augmenting the page,
a conventional imperative language (namely JavaScript) is
used for the extraction step, and the extraction code cannot
be modified during augmentation.

Joker makes two primary contributions:
A unified formula language for extraction & aug-

mentation: Wildcard’s formula language only supported
primitive values like strings and numbers aimed at augmen-
tation. Joker extends this language by introducing Document
Object Model (DOM) elements as a new type of value, and
adding a new set of formulas for performing operations on
them. This includes querying elements with Cascading Style
Sheets (CSS) selectors and traversing the DOM. With this
approach, a single formula language is used to express both
extraction and augmentation tasks, even within a single for-
mula expression.

A PBD interface for creating extraction formulas:
Directly writing extraction formulas can be challenging for
end-users, so Joker provides a PBD interface that synthesizes
formulas from user demonstrations. A key aspect of our de-
sign is that the program synthesized from the demonstration
is made visible as a spreadsheet formula that can be subse-
quently edited by the user, and is more easily understood
than imperative code due to its declarative form.

Section 2 describes a concrete scenario, showing how Joker
enables a user to complete a useful customization task. In
Section 3, we briefly describe the implementation of our for-
mula language and user interface, as well as the algorithms
used by our PBD interface.

We have performed two evaluations of our approach, pre-
sented in Section 4. First, we describe a suite of case studies
in which we used Joker to extract and augment a variety
of websites in order to characterize its capabilities and lim-
itations. Second, we describe a formative user study with
five participants, which showed that users were generally
able to use Joker to perform useful extraction and augmenta-
tion tasks, but which also uncovered limitations, particularly
for less experienced users trying to extract data from more
complex websites.

Joker relates to existing work not only in end-user web
customization, but also in end-user web scraping and pro-
gram synthesis, which we discuss in Section 5. Finally, we
discuss opportunities for future work in Section 6.

2 EXAMPLE USAGE SCENARIO
This section describes an example scenario, illustrated in
Figure 1, and demonstrated in the video accompanying this
paper. Jen is searching for a karaoke machine on eBay, a
shopping website. She wants to use Joker to sort products by
price within a page of search results, a feature not supported
by eBay. Because Joker supports interleaving extraction and
augmentation tasks on the fly, Jen is also able to extract the
URLs of products to determine whether they have been vis-
ited and use that to further sort the products. While we have
described only a single illustrative scenario in this example,
Joker is flexible enough to support a wide range of other
useful customizations and workflows on various websites,
described in more detail in Section 4.

3 SYSTEM IMPLEMENTATION
In this section, we briefly describe Joker’s formula language
and the wrapper induction [16] algorithm that Joker’s PBD
interface uses to synthesize the row element and column
selectors presented in formulas. Figure 2 illustrates the entire
process.

3.1 Extraction Formulas
TheWildcard customization tool includes a formula language
for augmentation, including operators for basic arithmetic
and string manipulation, as well as more advanced operators
that fetch data from web APIs. As in other tabular inter-
faces like SIEUFERD [7] and Airtable [5], formulas apply
to a whole column at a time rather than a single cell, and
can reference other columns by name. Joker extends this
base language with new constructs which enable it to ap-
ply to data extraction instead of just augmentation. More
information can be found in Appendix A.

By providing a single formula language to express extrac-
tions and augmentations, Joker enables a unified interaction
model that supports interleaving the two. Furthermore, the
formula language enables users to specify logic using pure,
stateless functions that reactively update in response to up-
stream changes. This functional reactive paradigm is easier
to reason about than traditional imperative programming,
as demonstrated by the use of formulas by millions of end
users in spreadsheet programs and end-user programming
environments [1–3, 5, 6, 9].

Figure 1: Scraping and customizing eBay by unified demonstration and formulas.

Figure 2: An overview of Joker’s interaction model and wrapper induction process.

3.2 Wrapper Induction
When users demonstrate a specific column value to extract,
Joker must synthesize a program that reflects the user’s gen-
eral intent. This is an instance of the wrapper induction prob-
lem of synthesizing a web data extraction query from exam-
ples. Prior work on this topic [13, 16] prioritizes accuracy and
robustness to future changes, which makes sense for a fully
automated system, but can lead to very complex queries. In
our work, we chose to prioritize the readability of queries by
less sophisticated users, so that users can more easily author
queries and repair them when they break. We implemented
a set of heuristics inspired by Vegemite [18] for wrapper
induction, outlined in Appendix B.

4 EVALUATION
We evaluate our interaction model and tool in terms of two
research questions:
RQ1: What kinds of websites can this model operate effec-

tively on? We evaluate this with a suite of case studies that
demonstrate its capabilities and limitations.

RQ2: How are users of different backgrounds able to use the
system? We evaluate this with a small formative user study.

4.1 Case Studies
Our first evaluation describes the results of our use of Joker
to extract data and perform customizations on popular web-
sites.

4.1.1 Successful Applications. Wehave used Joker to achieve
a variety of customizations across many websites.

Sorting search results by price on Amazon.We have found
Joker to be useful for sorting the contents of various websites.
One example of a useful sort achieved by Joker is sorting
search results by price within the Featured page on Ama-
zon. (Using Amazon’s sort by price feature often returns
irrelevant results.) In Amazon’s source code, the price is

split into three HTML elements: the dollar sign, the dollar
amount, and the cents amount. A user can extract by demon-
stration only the cents element into column A. Subsequently,
because the parent element of the cents element contains all
three of the price elements, the user can extract the full price
using the formula GetParent(A). Next, the user can write
the formula ExtractNumber(B) to convert the string into
a numeric value. Finally, the user can sort this column by
low-to-high prices. In a similar manner, we have used Joker
to extract and sort prices and ratings on the product listing
pages of Target and eBay.
Filtering titles of publications on Google Scholar.We have

also found Joker can be useful for filtering a website’s listings
based on the text content of an element in the listing. For ex-
ample, we have used Joker to filter the titles of a researcher’s
publications on their Google Scholar profile which is not
natively supported. First, a user can extract the titles into a
column (A) by demonstration. Then, the user can write the
formula Includes(A, "compiler") that returns whether
or not the title contains the keyword “compiler.” Finally, the
user can sort by this column to get all of the publications that
fit their constraint at the top of the page. We have also used
Joker to filter other text-based directory web pages such as
Google search results and the MIT course catalog, in similar
ways.

Retrieving information about links on Reddit. Additionally,
we have used Joker to augment web pages with external
information. For example, Joker can augment Reddit’s user
interface, which has a list of headlines with links to articles,
with the links’ read times and whether the link has already
been read. To achieve this customization, a user first extracts
the headline elements into column (A) by demonstration.
The user can then extract the link into the next column (B)
with the formula GetAttribute(A, "href"). Then, the user
can write the formula ReadTimeInSeconds(B) that calls an
API that returns the links’ read times. Similarly, the user

can write the formula Visited(B), which uses another API
that returns whether that link has been visited in the user’s
browser history. The user can also extract elements such as
the number of comments and the time of posting and sort
by these values. We have performed similar customizations
on websites such as ABC News and CNN.

4.1.2 Limitations. Joker is most effective on websites whose
data is presented as a collection of similarly-structuredHTML
elements. Certain websites, however, have designs that make
it difficult for Joker to extract data:

• Heterogeneous row elements. Some websites break their
content into rows, but the rows do not have a consis-
tent layout, and contain different types of child ele-
ments. For example, the page design of HackerNews
alternates between rows containing a title and rows
containing supplementary data (e.g. number of likes
and the time of posting). Because Joker only chooses
a single row selector, when extracting by demonstra-
tion, Joker will only select one of the types of rows,
and elements in the other types of rows will not be
extracted.

• Infinite scroll. Some websites have an “infinite scroll”
feature that adds new entries to the page when a user
scrolls to the bottom. Joker’s table will only contain
elements that were rendered when the table was first
created. Additionally, for websites that render a very
large number of DOM elements, the speed of the live
feedback provided by Joker’s PBD interface might sig-
nificantly decrease. This is because the wrapper in-
duction process used by the PBD interface queries the
DOM which takes longer as the size of the DOM in-
creases.

4.2 User Study
Our second evaluation reports a small, formative user study
we conducted to understand how users would interact with
Joker.

4.2.1 Participants. We recruited 5 participants with varying
backgrounds. 3 participants were familiar with spreadsheet
formulas. 3 participants had extensive web development
experience, 1 had a small amount of prior web development
experience, and 1 had no web development experience. 3
participants had previously extracted data from websites.

4.2.2 Protocol. The participants completed 7web customiza-
tion tasks across 2 websites. All participants attempted all
the tasks.

First, we asked participants to customize a website with a
relatively simple HTML structure: the MIT EECS course cata-
log website. All data extraction on this site can be performed
with demonstrations alone in Joker, although augmentation

still requires writing formulas. The specific tasks were the
following: 1a) Extract course titles, 1b) Extract course prereq-
uisites, 1c) Add a column that indicates whether a course has
a prerequisite & 1d) Add a column that indicates whether a
course has no prerequisites and is offered in the fall term.

Next, we asked participants to customize a website with a
more complex HTML structure: the search results page for
the eBay shopping website. Due to the website’s complexity,
demonstrations alone are not sufficient to extract data; users
must also directly edit extraction formulas. The specific tasks
were the following: 2a) Extract title from listings of Apple
iPhones for sale, 2b) Extract the listing price for the phone,
& 2c) Create a column that indicates whether a listing for a
phone is sponsored.
Because some of the tasks build on results of previous

tasks, we wanted to ensure all participants made enough
progress to gather useful feedback. Therefore, whenever a
participant got stuck for several minutes, we recorded why
they were stuck and then offered hints on how to proceed
(such as suggestions to read formula documentation or open
the browser dev tools). While all participants were able to
complete all tasks with hints, this obviously does not mean
they could have completed the task unassisted. Our goal was
not to simply measure whether users completed the task, but
rather to gain qualitative insight into the barriers they faced.

4.2.3 Results. We have categorized our results into the fol-
lowing four groups:
Unified interaction model.Most participants took advan-

tage of the unified interaction model to interleave extraction
and augmentation tasks, rather than performing all extrac-
tion up front. For example, on task 1, most participants ex-
tracted the prerequisites by demonstration, added one or
more columns to the table to perform some string opera-
tions on the prerequisites, and then continued on to extract
more information from the web page by demonstration. Fur-
thermore, we hypothesize that in a less controlled setting,
users would be even more likely to interleave extraction and
augmentation, since the task may be less well defined at the
beginning.
One usability issue with the unified model was that par-

ticipants sometimes got confused about how their demon-
strations would affect the contents of the table. For exam-
ple, multiple participants intended to add a new column by
demonstrating an extraction, but instead accidentally over-
wrote the contents of an existing column. This poses a design
challenge because the user’s demonstrations occur in the
website, so they cannot directly interact with the table while
demonstrating; this suggests that the interface needs to do a
better job indicating where the results of a demonstration
will be inserted.

Extracting simple data.On the relatively simpleMIT course
catalog website, all participants were able to extract the rele-
vant data from the page within seconds, simply performing
demonstrations with a few clicks. This suggests that when
Joker’s generalization algorithm works well, it can be an
effective tool for data extraction, even for users with limited
programming experience. P1 said: “you could hover and [the
data] was already selected. . . that was very nice”. P3, upon see-
ing the tutorial for extraction by demonstration, said “that’s
like black magic.”

Extracting complex data. On the more complex eBay web-
site where demonstration alone was not sufficient, results
were more varied. P1, who had no prior web development ex-
perience, struggled to complete the task, saying that “looking
at HTML is a bit much” ; this suggests that more work could
be done to make the experience usable for novices. However,
users with more web development experience were able to
use the tool to perform complex extractions, such as directly
writing CSS selectors into the formula bar. P2 and P3 both
reported that Joker’s live feedback loop was easier to use
and faster than other approaches to web extraction; P3 noted
that “[with any other approach], it would have been slower to
specify and slower to validate that I specified it correctly.”

It was challenging for some participants to switch between
using the browser’s developer tools and the Joker interface
when doing complex extraction tasks. While we chose not to
build HTML inspection into the Joker UI because the browser
already provides a very rich set of tools, users sometimes
were not able to tell how elements in the Joker table corre-
sponded to elements in the browser’s element inspector.
Writing formulas. In general, participants were able to

learn the formula language by using an autocomplete drop-
down with inline documentation, which we developed as
part of the Joker extension. In some cases, participants were
able to immediately construct correct formulas on the first
try; in other cases it took several attempts and some hints
from the moderator to try a relevant function. While better
documentation and error messages could help improve the
learnability of the formula language, we also did not find it
surprising that participants required some time to learn a
completely unfamiliar formula language.

5 RELATEDWORK
5.1 End-user Web Customization
Joker builds on web customization ideas implemented by
previous tools. Our contribution is a new interaction model
that allows for interleaving extraction and augmentation,
enabled by a unified formula language and a PBD interface.

Joker is an extension of theWildcard customization system
[19], and preserves its foundational idea of synchronizing
a table with a website. Wildcard only allows for extraction

logic to be written by programmers in Javascript; our work
has substantially extended the Wildcard formula language
and added an entire new system for dynamically creating
data extraction logic within the user interface. We also im-
proved the formula editing interface by adding an autocom-
plete dropdown and documentation popup, which proved
important in our testing for allowing end-users to reliably
edit and create formulas.

Vegemite [18] is a tool for end-user programming of web
mashups. Like Joker, it allows users to perform demonstra-
tions to extract data, but Vegemite only displays a table after
all the demonstrations have been provided, which rules out
interleaving extraction and augmentation. Vegemite does
allow users to directly view and edit some of the logic gen-
eralized from demonstrations, but it only allows for editing
augmentation logic, not extraction logic. The wrapper induc-
tion algorithm used in Joker is also very similar to Vegemite’s
algorithm.

Sifter [15] is a tool that augments websites with advanced
sorting and filtering functionality. It attempts to automati-
cally detect items and fields on the website with a variety of
heuristics. If these fail, it gives the user the option of demon-
strating to correct some parts of the result. In contrast, Joker
makes fewer assumptions about the structure of websites, by
giving control to the user from the beginning of the process
and displaying an editable synthesized program.

5.2 End-user Web Scraping and Program
Synthesis

Joker builds on insights from other tools that synthesize web
scraping (i.e. data extraction) code from user demonstrations,
and give users ways to inspect and modify the generated
code.
Rousillon [10] is a tool that enables end-users to extract

hierarchical web data across multiple linked web pages. It
presents the web extraction program generated from demon-
strations in an editable, high-level, block-based language
called Helena [3]. While both Rousillon and Joker create
an editable program, they have different focuses. Because
Rousillon allows users to extract data across multiple pages
(e.g., extracting details from each linked page in a list), it
uses an imperative language, with nested loops as a key con-
struct. In contrast, Joker can only extract within a single
page, and therefore can use a simpler declarative formula
language. Also, Rousillon only allows editing high-level con-
trol flow and treats some details of the extraction logic as
opaque; Joker offers finer-grained control over details like
CSS selectors.

Mayer et al propose a user interaction model called Pro-
gram Navigation [20] which aims to give users another mech-
anism beside examples for guiding the generalization pro-
cess of PBE tools like FlashExtract [17] and FlashFill [14].
This is important because demonstrations are an ambiguous
specification for program synthesis [21]: the set of synthe-
sized programs for a demonstration can be very large. Joker
shares the general idea of displaying synthesized programs,
but only presents the top-ranked program. More broadly,
Joker’s use of PBD to generate editable code embodies Ravi
Chugh’s notion of prodirect manipulation [11], implemented
in Sketch-N-Sketch [12], which aims to bridge the divide
between programmatic and direct manipulation.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented a unified interaction model for
web customization. Our key idea is a spreadsheet formula lan-
guage that encompasses both extraction and augmentation
tasks, along with a programming-by-demonstration (PBD)
interface that makes it easy for end-users to create formulas.
The main area of future work involves testing with more
users and making the formula language more accessible to
end-users not familiar with CSS selectors. Our ultimate goal
is to enable anyone that uses the web to customize websites
in the course of their daily use in an intuitive and flexible
way.

7 ACKNOWLEDGMENTS
Thank you to Joshua Pollock, the members of MIT’s Software
Design Group, the anonymous reviewers of LIVE 2021 and
the particpants of LIVE 2021 for providing valuable feedback
on this work. This research was supported in part by the
SaTC Program of the National Science Foundation.

REFERENCES
[1] [n.d.]. AppSheet: No-Code App Development | Google Cloud. https:

//cloud.google.com/appsheet
[2] [n.d.]. Build an App from a Google Sheet in Five Minutes, for Free • Glide.

https://www.glideapps.com/
[3] Coda | A new doc for teams. [n.d.]. Coda | A New Doc for Teams. Coda

| A new doc for teams. https://coda.io/welcome
[4] [n.d.]. Greasespot. https://www.greasespot.net/
[5] [n.d.]. Tampermonkey for Chrome. http://www.tampermonkey.net
[6] [n.d.]. What Is Microsoft Power Fx? https://powerapps.microsoft.com/

en-us/blog/what-is-microsoft-power-fx/
[7] Eirik Bakke and David R. Karger. [n.d.]. Expressive Query Construc-

tion through Direct Manipulation of Nested Relational Results. In
Proceedings of the 2016 International Conference on Management of
Data (San Francisco California USA, 2016-06-14). ACM, 1377–1392.
https://doi.org/10.1145/2882903.2915210

[8] A. F. Blackwell, C. Britton, A. Cox, T. R. G. Green, C. Gurr, G. Kadoda,
M. S. Kutar, M. Loomes, C. L. Nehaniv, M. Petre, C. Roast, C. Roe,
A. Wong, and R. M. Young. [n.d.]. Cognitive Dimensions of Nota-
tions: Design Tools for Cognitive Technology. In Cognitive Technol-
ogy: Instruments of Mind (Berlin, Heidelberg, 2001), Meurig Beynon,
Chrystopher L. Nehaniv, and Kerstin Dautenhahn (Eds.). Springer
Berlin Heidelberg, 325–341.

[9] Kerry Shih-Ping Chang and Brad A. Myers. [n.d.]. Creating Interactive
Web Data Applications with Spreadsheets. In Proceedings of the 27th
Annual ACM Symposium on User Interface Software and Technology
(Honolulu Hawaii USA, 2014-10-05). ACM, 87–96. https://doi.org/10.
1145/2642918.2647371

[10] Sarah E. Chasins, Maria Mueller, and Rastislav Bodik. [n.d.]. Rousillon:
Scraping Distributed Hierarchical Web Data. In The 31st Annual ACM
Symposium on User Interface Software and Technology - UIST ’18 (Berlin,
Germany, 2018). ACMPress, 963–975. https://doi.org/10.1145/3242587.
3242661

[11] Ravi Chugh. [n.d.]. Prodirect Manipulation: Bidirectional Program-
ming for the Masses. In Proceedings of the 38th International Conference
on Software Engineering Companion (Austin Texas, 2016-05-14). ACM,
781–784. https://doi.org/10.1145/2889160.2889210

[12] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. [n.d.].
Programmatic and Direct Manipulation, Together at Last. In Proceed-
ings of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation (Santa Barbara CA USA, 2016-06-02). ACM,
341–354. https://doi.org/10.1145/2908080.2908103

[13] Tim Furche, Jinsong Guo, Sebastian Maneth, and Christian Schallhart.
[n.d.]. Robust and Noise Resistant Wrapper Induction. In Proceedings
of the 2016 International Conference on Management of Data (New
York, NY, USA, 2016-06-14) (SIGMOD ’16). Association for Computing
Machinery, 773–784. https://doi.org/10.1145/2882903.2915214

[14] William R Harris and Sumit Gulwani. [n.d.]. Spreadsheet Table Trans-
formations from Examples. ([n. d.]), 12.

[15] David F. Huynh, Robert C. Miller, and David R. Karger. [n.d.]. Enabling
Web Browsers to Augment Web Sites’ Filtering and Sorting Function-
alities. In Proceedings of the 19th Annual ACM Symposium on User
Interface Software and Technology - UIST ’06 (Montreux, Switzerland,
2006). ACM Press, 125. https://doi.org/10.1145/1166253.1166274

[16] Nicholas Kushmerick. [n.d.]. Wrapper Induction: Efficiency and Ex-
pressiveness. 118, 1 ([n. d.]), 15–68. https://doi.org/10.1016/S0004-
3702(99)00100-9

[17] Vu Le and Sumit Gulwani. [n.d.]. FlashExtract: A Framework for
Data Extraction by Examples. In Proceedings of the 35th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (Edinburgh United Kingdom, 2014-06-09). ACM, 542–553. https:

//doi.org/10.1145/2594291.2594333
[18] James Lin, Jeffrey Wong, Jeffrey Nichols, Allen Cypher, and Tessa A.

Lau. [n.d.]. End-User Programming of Mashups with Vegemite. In
Proceedings of the 14th International Conference on Intelligent User Inter-
faces (New York, NY, USA, 2009-02-08) (IUI ’09). Association for Com-
puting Machinery, 97–106. https://doi.org/10.1145/1502650.1502667

[19] Geoffrey Litt, Daniel Jackson, Tyler Millis, and Jessica Quaye. [n.d.].
End-User Software Customization by Direct Manipulation of Tabular
Data. In Proceedings of the 2020 ACM SIGPLAN International Symposium
on New Ideas, New Paradigms, and Reflections on Programming and
Software (Virtual USA, 2020-11-18). ACM, 18–33. https://doi.org/10.
1145/3426428.3426914

[20] Mikaël Mayer, Gustavo Soares, Maxim Grechkin, Vu Le, Mark Marron,
Oleksandr Polozov, Rishabh Singh, Benjamin Zorn, and Sumit Gulwani.
[n.d.]. User Interaction Models for Disambiguation in Programming
by Example. In Proceedings of the 28th Annual ACM Symposium on
User Interface Software & Technology (Charlotte NC USA, 2015-11-05).
ACM, 291–301. https://doi.org/10.1145/2807442.2807459

[21] Hila Peleg, Sharon Shoham, and Eran Yahav. [n.d.]. Programming Not
Only by Example. In Proceedings of the 40th International Conference on
Software Engineering (Gothenburg Sweden, 2018-05-27). ACM, 1114–
1124. https://doi.org/10.1145/3180155.3180189

[22] Frank M. Shipman and Catherine C. Marshall. [n.d.]. Formality Con-
sidered Harmful: Experiences, Emerging Themes, and Directions on
the Use of Formal Representations in Interactive Systems. 8, 4 ([n. d.]),
333–352. https://doi.org/10.1023/A:1008716330212

https://cloud.google.com/appsheet
https://cloud.google.com/appsheet
https://www.glideapps.com/
https://coda.io/welcome
https://www.greasespot.net/
http://www.tampermonkey.net
https://powerapps.microsoft.com/en-us/blog/what-is-microsoft-power-fx/
https://powerapps.microsoft.com/en-us/blog/what-is-microsoft-power-fx/
https://doi.org/10.1145/2882903.2915210
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1145/2642918.2647371
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/3242587.3242661
https://doi.org/10.1145/2889160.2889210
https://doi.org/10.1145/2908080.2908103
https://doi.org/10.1145/2882903.2915214
https://doi.org/10.1145/1166253.1166274
https://doi.org/10.1016/S0004-3702(99)00100-9
https://doi.org/10.1016/S0004-3702(99)00100-9
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/1502650.1502667
https://doi.org/10.1145/3426428.3426914
https://doi.org/10.1145/3426428.3426914
https://doi.org/10.1145/2807442.2807459
https://doi.org/10.1145/3180155.3180189
https://doi.org/10.1023/A:1008716330212

APPENDIX
A: Extraction Formulas
Joker adds DOM elements as a data type to Wildcard’s for-
mula language, alongside strings, numbers, and booleans.
Because the language runs in a JavaScript interpreter, we sim-
ply use native JavaScript values to represent DOM elements
in the language. DOM elements are displayed visually by
showing their inner text contents. They can also be implicitly
typecast to strings for use in other formulas; for example, a
string manipulation formula like Substring can be called on
a DOM element value, and will operate on its text contents.
We also added several functions to the formula language

for traversing the DOM and performing extractions, summa-
rized below with their types:

• QuerySelector(el: Element, sel: string): Element.
Executes the CSS selector sel inside of element el, and
returns the first matching element.

• GetAttribute(el: Element, attribute: string):
string. Returns the value for an attribute on an ele-
ment.

• GetParent(el: Element): Element. Returns the
parent of a given element.

To extract data from a row, formulas need a way to refer-
ence the current row, so we added a construct to support this
use case. Every row in the table maps to one DOM element in
the page; we allow formulas to access this DOM element via
a special keyword, rowElement. In some sense, rowElement
can be seen as a hidden extra column of data in the table
containing DOM elements.

Whilemanymore functions could be added to exposemore
of the underlying DOM API, we found that in practice these
three functions provided ample power through composition.
For example, in Section 2 we showed how GetParent and
GetAttribute can be composed to traverse the DOM and
extract the URL associated with a product listing.

B: Wrapper Induction Algorithm
Joker’s wrapper induction algorithm implements a set of
heuristics inspired by Vegemite as described below:

Determining Row Elements. The user starts by demonstrating
an element 𝑣 , representing a value that should be in the table.
From that demonstration, we must find a set of row elements
that represent the rows of the table. We could naively assume
that 𝑝𝑎𝑟𝑒𝑛𝑡 (𝑣) is the row containing 𝑣 , but often 𝑣 is deeply
nested inside its containing row; we must determine which
ancestor of 𝑣 is likely to be the row.
Intuitively, we solve this problem by assuming that all

rows share some similar internal structure. In particular, we
expect most rows to contain a value for the demonstrated

column. (If there were no missing data, we’d expect all rows
to contain data for this column.)

Formally: assume a function 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑒𝑙, 𝑠) which runs a CSS
selector that returns the set of elements matching 𝑠 within
𝑒𝑙 . We generate a set of plausible candidates 𝑃 , consisting of
pairs of a row element and a CSS selector:
𝑃 = {(𝑟, 𝑠) | 𝑟 ∈ 𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠 (𝑣) ∧ 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑟, 𝑠) = {𝑣}}
For each candidate (𝑟, 𝑠) ∈ 𝑃 , we compute a weight func-

tion 𝑤 , which is based on the number of siblings of 𝑟 that
have “similar structure”, defined by checking whether run-
ning 𝑠 within the sibling also returns a unique element.
𝑤 (𝑟, 𝑠) = |{𝑟 ′ | 𝑟 ′ ∈ 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 (𝑟) ∧ |𝑠𝑒𝑙𝑒𝑐𝑡 (𝑟 ′, 𝑠) | = 1}|
We then choose the candidate with the highest weight. In

case of ties, the candidate closer to 𝑣 in the tree (i.e., lower
in the tree) wins. Given a winning candidate (𝑟, 𝑠), the full
set of row elements is {𝑟 } ∪ 𝑠𝑖𝑏𝑙𝑖𝑛𝑔𝑠 (𝑟).

Synthesizing CSS Selectors For Column Values. Once we have
determined the row elements, next we must choose a CSS
selector that will be used to identify the demonstrated value
within its row.

Given a demonstrated value 𝑣 within a row element 𝑟 , we
generate two kinds of plausible selectors:

• selectors using CSS classes, which are manual anno-
tations on DOM elements added by the website’s pro-
grammers, typically for styling purposes (e.g. "item__price")

• selectors using positional indexes within the tree, us-
ing the nth-child CSS selector (e.g. nth-child(2),
representing the second child of an element)

The minimum criteria for a plausible selector 𝑠 is that it
uniquely identifies the value within the row: 𝑠𝑒𝑙𝑒𝑐𝑡 (𝑟, 𝑠) =
{𝑣}. But there may be many plausible selectors, so we must
pick a best one.
We first prioritize selectors using classes, because they

tend to be more robust to changes on the website. A single
selector can combine multiple classes, but we prefer using
fewer classes when possible. If no plausible class-based selec-
tor can be generated (for example, if the relevant elements
don’t have any classes to query), we fall back to using a po-
sitional index selector. This kind of selector can always be
generated regardless of the contents of the page, but tends
to be less accurate and robust.

	Abstract
	1 Introduction
	2 Example Usage Scenario
	3 System Implementation
	3.1 Extraction Formulas
	3.2 Wrapper Induction

	4 Evaluation
	4.1 Case Studies
	4.2 User Study

	5 Related Work
	5.1 End-user Web Customization
	5.2 End-user Web Scraping and Program Synthesis

	6 Conclusion And Future Work
	7 Acknowledgments
	References

