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TEMPORAL SECOND-ORDER FINITE DIFFERENCE SCHEMES
FOR VARIABLE-ORDER TIME-FRACTIONAL WAVE EQUATIONS*
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Abstract. We develop a temporal second-order finite difference scheme for a variable-order
time-fractional wave partial differential equation in multiple space dimensions via the order reduction.
We base on this scheme to develop an alternating direction implicit (ADI) finite difference scheme
and a compact ADI finite difference scheme. We prove that all the schemes are unconditionally
stable, and that the finite difference scheme and the ADI scheme have second-order convergence
rates in space and time while the compact ADI scheme, which has the same stencil as the other two
schemes, has a fourth-order convergence rate in space and second-order convergence rate in time.
Numerical experiments are presented to substantiate the theoretical analysis and to demonstrate the
computational efficiency of the schemes.
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1. Introduction. Fractional partial differential equations (FPDEs) have been
shown to provide a competitive means to accurately describe phenomena with nonlo-
cal hereditary and memory properties in the real world [8], and have been successfully
applied to model a wide variety of applications, such as dispersive anomalous diffusion
[42], Pipkin’s viscoelasticity [22], biological systems [18], finance [19], and quantum
mechanics [10]. Recent studies showed that in many dynamic processes the proper-
ties of the materials or systems are not only anomalous but may also evolve with
time [17], which makes variable-order FPDEs a natural choice and a feasible model
tool to describe complex dynamic phenomena in these applications [24, 25, 26]. Since
then, variable-order FPDEs have attracted an increasing number of research activi-
ties, ranging from their mathematical analysis and numerical approximations to their
applications to more and more disciplines [3, 28, 29, 32, 41].

The complexities of variable-order FPDEs make it virtually impossible to find
their analytical solutions in a closed form [4]. Therefore, the development of accurate
and efficient numerical methods for variable-order FPDEs gain increasing attention.
Variable-order fractional differential operators are nonlocal and weakly singular as
their constant-order analogues do, but lose the convolution structures of constant-
order fractional differential operators that played a crucial rule in the mathematical
and numerical analysis as well as the numerical approximations to constant-order
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FPDEs. Consequently, variable-order FPDEs impose significant challenges. Zhuang
et al. [46] and Chen et al. [2] developed and analyzed a numerical approximation to
variable-order fractional advection-diffusion equations via Fourier analysis and proved
a first-order temporal convergence rate. Zeng, Mao, and Karniadakis [43] developed
a spectral collocation method for variable-order fractional diffusion PDEs. Shekari,
Tayebi, and Heydari [27] and Tayebi, Shekari, and Heydari [37] developed a meshless
method based on the moving least squares approximation and the finite difference
scheme to solve variable-order time-fractional advection-diffusion and diffusion-wave
equations in two space dimensions. Haq, Ghafoor, and Hussain [9] proposed a numer-
ical scheme based on Haar wavelets coupled with the finite difference method to in-
vestigate variable-order time FPDEs. They proved the convergence of the scheme via
asymptotic expansion. Several numerical schemes were proposed for solving variable-
order time-fractional diffusion-wave PDEs [6, 11, 45]. Nevertheless, most of the nu-
merical methods for variable-order FPDEs are first-order accurate in time.

In this paper we develop and analyze temporal second-order finite difference
schemes for variable-order time-fractional wave equations

d
(11) u(xt) + §D/Du(x,t) = 3" Poyu(x,t) + f(x,1), xe€Q, te(0,T],
k=1

which is subject to the initial boundary value conditions
(1.2) w(x,0) = ¢(x), ut(x,0) =v(x), x€Q; wulx,t)=0, xe€d, te]|0,T].

Here Q C R? is a simply connected bounded, convex domain with the piecewise
smooth boundary 99, x = (¢, 2@ ... 2(D) and f(x,t), #(x), and 1)(x) represent
the external loading, the initial displacement, and the initial velocity, respectively,
which are assumed to be sufficiently smooth. The variable-order Caputo fractional
differential operator ng(t) of order 1 < B(t) < B, < 2 is defined as [2, 32]

Crp®ep . L [ B0 (6 ds
CDPIg(t) - r(z—ﬁ(t))/o(t )P0 (5)ds.

Note that (1.1) without the fractional derivative term reduces to the standard
second-order hyperbolic PDE [21] that models the undamped motion of the perfectly
elastic material. In this case, the u; term presents the inertial force of elastic ma-
terial of the unit density, the Laplacian term accounts for the impact of the internal
force, while f represents the external loading. Furthermore, the medium where the
vibrations are taking place (e.g., when the elastic material is immersed in water) may
impede the motion. A law of friction must be provided (often determined empir-
ically). A linear law of friction is often assumed for the damped vibration of the
perfectly elastic material, introducing a cu; term on the left-hand side of (1.1).

Many experiments reported in the literature showed viscoelastic behavior of mate-
rials. That is, the materials do not behave purely elastically but also demonstrate cer-
tain internal dissipation mechanisms, and so exhibit both stored and dissipative energy
components with nonlocal memory effect. Hence, the conventional model given by the
u; term does not properly describe the damping effect in the current context. Instead,
a fractional time derivative term was adopted to improve the mathematical model [30].

Furthermore, as they undergo vibrations due to cyclic stresses, the materials may
experience structural change that in turn leads to the change of material properties.
Consequently, the order of the fractional differential operator changes, leading to
variable-order FPDEs (e.g., of the form (1.1) [30, 38]).
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We now turn to the numerical discretizations of variable-order FPDEs. It is well
known that finite difference methods are relatively simple to implement, apply to
a wide range of problems, and enjoy good numerical and mathematical properties
(e.g., the maximum principle), and have attracted active research activities in the
FPDE community [1, 7, 12, 44]. In this paper we base our work on the high-order
temporal discretizations such as the L1-2 formula [7] and L2-1, formula [1], which
were developed recently for constant-order FPDESs, to develop temporal second-order
finite difference schemes for the initial boundary value problem of the variable-order
time-fractional wave equation (1.1)—(1.2) via the order reduction. We prove the un-
conditional stability and provide error estimates of the finite difference schemes via
the discrete energy technique.

In the development of the finite difference schemes, we assume that the spatial
domain 2 is a d-dimensional rectangular domain. Furthermore, for notational simplic-
ity, we restrict our presentation to problem (1.1) in two space dimensions. We denote
x = (z,y) and the spatial domain @ = (I3,r1) x (I2,72). For problem (1.1)—(1.2)
on a general spatial domain, in principle a finite difference discretization, e.g., with a
fictitious domain technique [13], or a finite element discretization may be used to dis-
cretize the spatial Laplacian operator, which is omitted here. The rest of the paper is
organized as follows. In section 2 we introduce notations and cite some lemmas in the
literature to be used subsequently. In section 3 we first transform the problem (1.1)-
(1.2) into an equivalent one by the method of order reduction, and then derive some
temporal second-order finite difference schemes for the problem (1.1)—(1.2), in which
an alternating direction implicit (ADI) scheme is proposed in order to reduce CPU
time for solving the problem (1.1)—(1.2) efficiently. In addition, for the purpose of re-
ducing the storage requirement and improving the accuracy of the scheme, a compact
ADI scheme is also presented. In section 4 we utilize the discrete energy technique
to prove the unconditional stability and convergence of the finite difference schemes.
Some numerical experiments are carried out to investigate the numerical accuracy,
reliability, and efficiency in section 5. The paper ends with some concluding remarks.

2. Preliminaries. We introduce some preliminary notions and notations to be
used in the subsequent sections. For a positive integer N, define a uniform partition
on the time interval [0,T] by ¢, := n7 for n = 0,1,..., N with 7 := T/N. Assume
that o € C1[0, T, the space of continuously differentiable functions defined on [0, T,
satisfies 0 < o < a, < 1. For a sufficiently small 7 > 0, the equation

(2.1) F(o):=0— [1 - %a(tn +o7)| =0

has a unique root o, = o,(7) € (%, 1), which can be conveniently calculated, e.g., by
Newton’s method [5]. We accordingly define a partial time step t,,4,, by

(2.2) thto, =tn+0p,7, n=12...,N—1

Let T := {v"}_, be a temporal grid space; we define the temporal operators
(2.3)

1 0
vi =2 —;—v , p"on = g "t (1 — o, )0,
1<n<N-1;
n+l _ ,\n n+1 _ n _ n—1
50 = v v G = (20, + 1)v 4o,0™ + (20, — 1)V 7
T 2T
1<n<N-1.
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For o € C[0,T] and g € C[0, T}, the spaces of continuous functions and contin-
uously differentiable functions defined on [0, T], respectively. Let
(2.4)

. 0 . 21’0‘1/276‘1/2F(2—o¢1/2), n =20,

Unto, = a(tn—l-on)a g = g(tn)a Sp 1= 7'0‘"*”"].—‘(2704“4_0-”), l<n<N-L.

We discretize OCD?(t)g(t)h:tn“n (1 < n < N —1) by approximating g(s) on
the interval [t,,t,10,] via the linear interpolation polynomial of function g(t) using
two points (t,, g(t,)) and (tn41,9(tn+1)), and by approximating g(s) on the interval
[tk—1,tx] for kK = 1,2,...,n via the quadratic interpolation polynomial of function
g(s) using three points (tx—1,9(tk—1)), (tk, 9(tx)), and (tg+1,g(tx+1)) to obtain

(2:5) §D;Vg(0)

t=tntop

1 n [tk "(s)ds bnton "(s)ds
[ e g ]
F(l - an+0n) =1/ tk—1 (tﬂ-i-dn - S) nton t (tn-l-an - 3) nton

n

tk+ s—t

1—S 1 . 1
S l=vr ; ( n /tk : 5tgk * Tt : 5t9k+2
F(l - O‘ﬂ-&-w) b1V teo1 (tn+an - S)Q"M"

tnton 5 n+3
+/ ¢ 2a ds>
t (tn+an) — §)%n+on

n

_1
2

_ i ic;@k (gk+1 o gk) —. DOnton gn+an_
Sn 1o

Here, for clarity, we leave the derivation (2.5) and the explicit formula for cgi)k to

Appendix A.

LEMMA 2.1 (see [5]). If0 < at) < 1, then {c,&")}zzo satisfy the following
relations:

1—anto,
2(n + op,)%nton

) (n)

> (n)

o S>> s ) s >0, (20, — e —0,d™ > 0.

LEMMA 2.2 (see [5, 31, 34, 35]). The following expansions hold for v € C3]0,T)
and 0 < a(t) < 1:

’U(tl/g) = ’U% —+ 0(72), vt(tl/Q) = (;t'l)% + 0(7—2)7
o vl — o0 _
¢ D (t)v(t)’t:tl i +O(r?7™2),

V(tnte,) = 0" £ O(T?),  vi(tnso,) =00" +0(7?), 1<n <N -1,

OCD?(t)U(t)‘t:tn+(,n — DOnton g ton 4 0(7—3*f’4n+on), 1<n<N-1,

where sq is defined in (2.4).

LEMMA 2.3 (see [23]). Let v,w, g™ € be € T be nonnegative temporal grid func-
tions, g™ be nondecreasing, and A and B be nonnegative constants. (1) If v™ <
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(1+7B)v" L + 7wt for 1 <n < N, then
n—1
v" < exp(BnT) [vo +7’Zwl], 0<n<N.
1=0
n—1

(I) If v™ < g" + Bt Y. v! for 0 <n < N, then
=1

" < g"exp(Bnr), 0<n<N.

Let My and M, be positive integers. Define a uniform partition of 2 by z; :=
l1 +ihqy for 0 < i < M; + 1 with hy := (Tl - ll)/(Ml + 1) and Yj = lo 4+ jho for
0 <j < My+1 with hy := (ro — l2)/(Ma + 1). We assume that the partition is
quasi-uniform, i.e., 0 < @Q1h1 < hy < Q2h1 < oo with @1 and Q5 being positive
constants independent of hy, ho, or 7. We denote h := max{hy, ha}. In addition, let
wi={@j)|1<i<M 1,1<j< M}, w:={G6j)|0<i<M+1, 0<j<
My + 1}7 and Ow := @\w. Define spatial grid function spaces

= {u={uiy |, (1)} €} = {ulu€thui; =0, (i,]) € Ow}.
We introduce the following discrete operators in the grid space 4l:

Uigl,j — 2Ui5 + Ui—1,j

o Wid1g T Wi 200 5 =
Oallyy 1 j = I y o O = h2 ’
U1 — Ui 9 Wil — 22U 5+ U
Oyt jay 1= =00 Oy = 12 ’
i—1,j + 10u;; + Yitli  j<i< M,  0<j<My+1,
Arugj = 12 o o
i, i=0,M +1, 0<j<DMy+1,;
U j—1 + 10u; ; + ui,j+17 1< < My, 0<i< M;+1,
AQui,j = 12
ui,ju j:O,M2+17 O§Z§M1+17

. £2 2 o . 2 2
Ahui,j = 6$ui7j + 6yui7]‘, Ahui,j = Al.Agui’j, Ahum = AQ(Sx + .A1(5y

In the grid function space iDJ., define the discrete inner products and norms

M, Ms
(u,w) = hthZZui,jwi,j7 Jull == /(u,u),
i=1 j=1
(u,w) 4, = (v, Apw), (u,w)4, = (u, Ajw), (u,w) 4, := (u, Asw),
||uHAh = \/m7 HUHA1 =V (U’Alu)7 ||u||A2 = (u7 AgU),
M; M,
(Bt p0) 1= bahe S Gty bawyy o sl i= /(o 0,0
i=0 j=1
M- ]1\42
(0yu, 6yw) := hihso Z Z‘Sy“i,j+% OyW; ji 1, [6yull == \/(dyu, dyu) ,
i=1 j=0

uly := 3/ ll0zu]l® + [[6yul® .
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3. Derivation of finite difference schemes. Let a(t) := 8(t)—1 and v(z,y,t) :=
ug(x,y,t). It is straightforward to verify that

§ DY u(z,y,t) = §DF Do(a, y, 1)

We use the method of order reduction to reformulate the initial boundary value prob-
lem of the variable-order time fractional wave PDEs (1.1)—(1.2) to the following initial
boundary value problem of the variable-order FPDE system

’Ut(gjvyat) + OCD?(t)U(‘T7y7t) = Ua:x(%@/,t) + Uyy(xa y7t) + f(z7y7t)a
(3.1)
(z,y) €Q, t € (0,7T],

(3.2) )
Ut(xvy’t) = ’U(SL’,yJ), (Qf,y) e te (O,T],
(3.3)
u(m,y,O) = ¢($,y), ’U((E,y70) = 1/)(55711), (x,y) € Q,
(3.4)
u(g:,y,t) = 07 (IE,y) € 89, te [O,T]

We turn to the derivation of temporal second-order finite difference schemes for
problem (3.1)-(3.4).

3.1. A second-order finite difference scheme. Let v, := w(Zs, Y5, tn)s v
V(w4 Y5, tn), and f1 i= f(@i,y;,t0) for (z4,y;) € Qand 0 <n < N. We assume that
the solution u € C*(Q x [0,T]). We apply the first three expansions in Lemma 2.2
to discretize the two terms on the left-hand side and the source term in (3.1) at the
space-time location (x;,y;,t1/2) and use the five-point finite difference approximation
Apt t0 Ugy + Uyy at (24, 1;,t1/2) to reformulate (3.1) in the following form:

1 0

1 Vs — U 1 1
(3.5) Siv2; + % = ApuZ; + 3+ R, (i)) € w.

Here sg is defined in (2.4) and jo = O(72 212 4+ h? + h3) represents the local
truncation error resulting from these approximations.

At later time steps, we utilize the last three expansions in Lemma 2.2 to get the
expansion

(3.6)

1< -

5,5112]»—&—; Z c;njk(vﬁjl—vij) = Ahuz;r”"—kf;f;r”" +R};, (i,j) €w, 1 <n < N-1,
" k=0

where to similarly discretize (3.1) at the space-time location (z;, y;, tnte,) for n > 1

is given by

Uz (i, Yjs tnto, ) + Uyy (Tis Vg, tntor, ) = Ahu?,;ran + O(T2 + h% + h%)

Here R}; = O(7? 4 hi 4 h3) is the local truncation error for 1 <n < N — 1.
We use Lemma 2.2 to discretize (3.2) at the points (z;,y;,t1) and (24, y;,tn+o,)
for n > 1:

1

1
2 2 0 n __ ,nto n .o _
(3.7) Srul; =02+, gy =0l 0 g, (i,7) € @.
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Here the local truncation error T?,j with 0 <n < N — 1 can be bounded by
(3.8)
TZj = 0(7'2)7 Ahrzj = 0(72), Ahrzj = 0(7'2), (1,7) € w; rzj =0, (i,§) € Ow.
The initial value condition (3.3) and boundary value condition (3.4) can be for-
mulated as
(3.9)
ug,j:¢(xi7yj)a Ugj :1/1(551',%), (Za.]) € w; UZJ :07 (Za.]) ana OS”SN
Let U}"; and V}"; be the finite difference approximations to u;'; and v;';, respec-
tively. We drop the local truncation error terms in (3.5)—(3.7) to obtain the following
second-order finite difference scheme:

(3.10)
s, Vi -V T S

0V + T s ApUZ + 125, (6,)) € w,

(3.11)
1 - n n—+o n—+o ..

OV > e (VI V) = AU £ () €w 1< < N -1,
n kf=0

(3.12)

5tUl?_]:‘/;7§]’ (StU,Z;L]:‘/;ZJrUn’ (Z,j)eﬁx_}, ].SnSN*].,

(3.13

Uzo,] = ¢(xi7yj)7 V;?j = w(xhyj)? (%J) € w; UZ,L] = ‘/7,7,9 =0, (Z,j) € aw7 0<n<N.

Equations in (3.12) can be reformulated for (i,j) e w and 1 <n < N —1 as

n+on n—1 n
27'Vifj — (20, — 1)Ui,j + 40nUi7j.

1
3.14 Ul =7vz 4+ U?°
( ) 1,7 T l,]+ 2o,n+1

vy Unt=

With the given initial value condition and boundary value condition in (3.13),
(3.10) and the first family of equations in (3.14) are solved for U}'; and V;'; for (i, j) €
w. One way to achieve this goal is to use a block Gaussian elimination by substituting
the first family of equations in (3.14) into (3.10) to yield a tridiagonal block algebraic
system for V;';. Once V;!; is obtained, U} ; can be obtained easily from the first family
of equations in (3.14). Once U}, and V;!; are obtained, the finite difference scheme
can be solved for Ul”fl and Vi?‘l for (i,j) € w at time step ¢, for l <n < N—1ina
time-stepping procedure. This would eliminate Ul"j' Yin (3.11) by the second family
of equations in (3.14) to arrive at a linear system for Vif‘jﬂ for (4,7) € w. Once, V;Zﬂ

for (i,7) € w are obtained, Ul"j ! are obtained from the second family of equations in
(3.14).

3.2. An ADI finite difference scheme. Due to the nonlocal nature of frac-
tional differential operators, FPDEs generate numerical discretizations that have sig-
nificantly increased computational complexity [39, 44]. Different acceleration tech-
niques were developed for the efficient numerical solutions of FPDEs [14, 15, 20, 36].
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In this paper we analyze an ADI acceleration for the finite difference scheme devel-
oped in subsection 3.1 for its great computational advantage, relative simplicity, and
wide application. For simplicity of exposition, we outline the idea of the ADI scheme
assuming that M; = Ms so the total number of unknowns is M = M12 at each time
step.

For a one-dimensional analogue of the finite difference scheme, the resulting lin-
ear system can be inverted in O(M7) computations by the Thomas algorithm each
time step, which is of optimal order computational complexity. However, for the
two-dimensional problem, the resulting algebraic linear system is inverted in O(M?)
computations at each time step due to the fact that the stencil of the finite difference
discretization is widespread. The idea of ADI is to reformulate the two-dimensional
finite difference scheme as two families of one-dimensional linear systems in the x and
y directions, respectively [20, 36]. The computational cost of inverting the resulting
linear systems is M2O(M;) + M1O(M3) = O(M1M3) = O(M), i.e., in the optimal-
order computational complexity at each time step. Although it has been successfully
applied to the efficient solutions of integer-order PDEs, the ADI technique has never
been developed and, in particular, analyzed for variable-order fractional wave PDEs.
Motivated by all the considerations, we develop and analyze an ADI finite difference
scheme in this paper.

We substitute the first family of equations in (3.7) into (3.5) to eliminate u; ; in
(3.5) to reformulate (3.5) as follows:

1 1 .
(3.15) (% + ;)(Ui{j — o)) = 7Ahu SEA, RO (i) €w
Here RO = TApr); + R); = O(7*7*1/2 + hi + h3) with R}, and r); being intro-
duced in ( ) and ( 7, respectlvely A direct calculation bhOWb that (3 15) can be
reformulated as follows:

(3.16)
1

1 1 1 0 3074(5555575’0in T <0 o

—_— — s — s — 7 = _A A 2 RY
(SO + T)(U »J UZ’J) 16(50+T) 9 h/U + hu + 0,59 (27]) cw
Here

0 50 - 22 2 2 2

(317) Ri,j = Ri,j + W(S 6 (StU = O(T /2 + hl + h2)

We substitute the second family of equations in (3.7) into (3.6) to reformulate (3.6)
as follows:
(3.18)

5t”3j+s [C‘()n)”nj ' Z( e — e v C%n)”?vj]
n k=1

(20, — l)UnAhui
20, + 1

2JnTAhUn+a" ( 402

n+a -
" R
20, +1 20, +1 + f +

for (i,7) €wand 1 <n < N —1. Here

. 2
(3.19) gr .= ZTn

n n 2 2 2
ij T mAhTi,j + Ri7j = O(T + h‘l + hQ)

with R}; and r}'; being introduced in (3.6) and (3.7), respectively.
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Equation (3.18) can be reformulated as follows:

n 1 n) n . n n k n
opv]’; + . {C(() )Uz‘,jH - Z(Cg—)k - CEz—)k+1)Uz‘,j - ng )’U?J:|

k=1
N 80i5n73625§1}2j1
(3.20) (205 + 1)2[(207 + )55 + 275"
20,T 402
— 20T A, nton ( n 1— n)A n
2o+ 10 TG o T T O Bnthy
20, — 1)oy, _ nto. ~
- 2 +)1 Apugyt + 170+ Ry
for (i,j) €ewand 1 <n < N — 1. Here
8ots, >

PN . pn 2¢2 n+l _ 2 2 2
(3.21) R}, :=R; ] §z6yvi7j = O(7° + hi + h3).

(200 +1)2[(200, + 1)sp + 270(()”)
Equations (3.16) and (3.20) can be enclosed by the following equations:
2rvp T 4+ dopul; — (20, — Duf-t

1T, 1 0 0 n+1l __ (2% JY
(322)  wj; =g (vi;+0iy) +uiy, wly = 20, + 1

for (i,j) € wand 1 <n < N —1 and the initial boundary value conditions
(3.23)

Denote
2 4 2 2
(3.24) gy = L TnSnT n>1.

7.\ 77 = )
A(s0 + ) " Q0w+ )20 + 1)y + 27¢]
We multiply (3.16) by so7/(so + ) to rewrite the equation as
1 1 SoT 1.

(325)  (vi; = viy) +T5058y0kv 5 = 2molnvi; + —— (Anug; o+ fi; + RYj)-
Let I be the identity operator. We can split (3.25) for (i,j) € w as follows:

s ER
(3:26) (I—mod2)(I—mod})ol; = (L+modd) (I +mody ol (Aud 4 f2+ B2 ).

0

Let U}; and V;; be the finite difference approximations to u;; and v}, re-

spectively. An ADI finite difference scheme is formulated as follows: For any fixed

1 < j < M,, solve the following one-dimensional linear system in the z-direction for
1%,
Vij:
(3.27)

2\1/1,% 2 2\1,0 SoT

(I - 7705:0)‘/1,]’ = (I+n06x)(1+ noéy)‘/z’,j + S0+

0

.
1« 1,% _
Vo = Vi1 =0

For each fixed 1 < i < My, solve the following one-dimensional linear system in the
y-direction for Vzlj and then find all the Ui{ ; as follows:
1,% .
(I =md)Vi; =V,5", 1< < My, Vil = Vi = 0;
(3.28) -
1 1 0 0 . _
U= -(V5+V25) + U, (i) € w.

i =g i
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Similarly, at each subsequent time step t,, for n = 1,2,--- /N — 1, for any fixed
1 < 7 < Ms, solve the following one-dimensional system in the z-direction for Vlnj*
(I —nu82)V" =05, 1<i< My Vet = Vi =0
_— 275y 4o, V1 — (20, — )V
0] (n)
0

(20, + 1)sp, + 27¢ 27
(3.29) 1 20, (1 —
(n) (n) k n 0 Gn( O-")T n
+ . LX_; (Cnfk - Cnkarl)Vi,j + ng )Vi,j + WAhVi,j
(20, — 1)oy,

42
+( In +1—on)AhU{}j—

A, Unl nton |
20, + 1 h¥i,j Jrfm

20, +1
For each fixed 1 < i < My, solve the following one-dimensional linear system in the
y-direction for ViijJrl and then find all the Ulnjr L.

(L= m SV = Vi 1<j< My Vi = Vi, =0
(3.30)

UL = @rVigtT +4onUly = (200 = DU /200 +1), (i24) €@

3.3. A compact ADI finite difference scheme. Under the assumption that
the solution u is six time continuously differentiable in space, we derive a fourth-order
compact finite difference approximation in space. The key advantage of the compact
ADI scheme is that it uses the same stencil as the ADI scheme just described earlier
to achieve a fourth-order spatial accuracy, which greatly reduces computational cost
and memory requirement. We apply the averaging operator A4; on both sides of
(3.1) evaluated at (xi,yj,t%) and (z;,Y;, tnto, ), respectively, to obtain the following
equations:

1
2

1 1 1 .
Apdro?; + S—Ah(vi{j —vl)) = ApuZ; + ApfZ + R
0

»J 1,57
(3.31) &
Al + 300, (ks — duok) = M A R
™ k=0
for (i,j) € wand 1 < n < N —1. Here jo = O(r?7v2 + hi + h3), Rfj =
O(72 + hi + h3).
A similar derivation to subsection 3.2 yields the finite difference approximation

(A1 — 1002) (A2 — o0, Vi

SoT

= (A1 +1002) (A2 + o0 ) Vs + (ARUZ; + Anf?):

-
(A1 = 7n02) (Az — nudy ) VM
278, 1 _
(3:32)  _ TS — A Ao (40 VI — (20, — 1)V
(20, + 1)s,, + 270(()") 27 7 I

n

1 (n (n) e 0
+ ;A1A2 [;(an —Cp e )Vig + c’sln)‘/;,j +

402
n_ 41 n)A U —
+(2an+1+ Tn ) Rhig

20, (1 — o,)T
SO T On)T
20, 1 Vi

(20, — 1oy,
20, + 1

n—1 n+on,
AU+ Anfi }

for (i,j) € wand 1 <n < N — 1, which are closed by (3.13)—(3.14).
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4. Stability analysis and error estimate. In this section we analyze the
stability and convergence of the finite difference schemes developed in section 3.

4.1. Auxiliary lemmas. We cite some auxiliary lemmas to be used in the sub-
sequent proofs.

LEMMA 4.1 ([33]). Letw,z € {1 be spatial grid functions satisfying the homoge-
neous boundary condition. The following identities and inequalities hold:
(4.1)

2
7(’[11, Ahz) = (5111), 5562) + (5ywa §yz)v 7(11), Ahw) = |w‘%v *(wa Ahw) > g‘wﬁ’

6 6 —-1/2
Apw| < Jwl, ||lw] < w1, = + ;
el < . ol < Qolil, Qo= (S + =)

2 2 1
slholl® < llwl, < ol Slhwl® < llwl, < lll® Slel® < ik, < ol

LEMMA 4.2. For any space-time grid function v € 1 x T, the following estimates
hold:

(n) s k ,nton,
2 :Cn k —v,v )

1 n n = n n n
(1.2 22M>v“2—2x2a ) P = 1P,
k=1
(3) ot < o [l

Proof. Inequality (4.2) can be deduced by

Zc(n) k+1 _ ’Uk n+an > 2 ZC ||Uk+1H2 _ ||,UkH2)
n

1 n n n n n
— 3 {co )||U 12— Z (cn—)k gL )k+1)||”k||2 — e l°1%);
k=1

see more details in [1, Lemma 1]. As seen, the proof mainly relies on Lemma 2.1.
A direct evaluation shows

e * = o2 o+ (@ = o) |F 4 20w (1 ) (07, 0741
< for 4+ (= on) (Jom 1+ o ]F) < [l |+ flom]

Thus we complete the proof. ]

LEMMA 4.3. Suppose that o/ (t) < 0 when 0 <t <T. For any fired n(2 <n < N),
we have
i D
S < (14Qsn)E—, 0<k<n-2

n Sn—1

In order not to break the flow of the paper, we move its proof to Appendix B.
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LEMMA 4.4. For fived n, we have

no B ()

(4.4) T2%§Q4<O@
k=1
n (k)

(4.5) 727<Q5<oo
k=1

Proof. To estimate the above inequalities, we employ the integral definition of
the coefficients cgcn) defined in (A.1).
For the inequality (4.4), it can be verified that for 2 < k <n

(k) (k)
Cr-1— Gk
1- Ok+oy,

1
= / <§ - 0) [(k +or —1—0)""%F 7% — (k+ oy — 9)7O‘k+”’v}d9
0

[
1 —a'ak—l
+/ 9<ak+gk/ (k—§+ak+g) o df)d&
0 —0

3 [t N 11, 1 Tkt~
< — (k+0k—1 6) k+akd0+2ak+o—k g_ié- k_§+0'k+§ dg
0

[N

-2
3 1 1 —Qktoy, 7
S7/(’““”9—1—6’) a"*“kd9+ k+o— 3 < Sk +op —2)7
2 Jo 2 4
Thus we have

Cc — C
k—1 k? Aktoy,
Ty S < 4TZtk+arz-

k=2

Here a few cases are considered separately.
(1) If tyyg,—2 < 1, then t, 2"7% < #% _, Tt follows that

n

TZtki‘SZ“’“ < Y (o —2) = e [o;“* + (k+on— 2)&*}

k=2 k=3
n 3 —Q Uy
oo {2“*+Z(k—2) 1<71 s [2"‘*+Z/ s—— ds}
k=3
11—
ay l—a + nfé
< 2% r e
1— o,

(2) If t4o,—2 > 1, then there exists an integer k. such that tgy,, —2 < 1 for
1<k<k,and tgis,—2 > 1for k. +1 <k < n. Then we have

1—os

Oktoy, Qo) —Qktoy, . 1-a. k.3
thkwk thkwk 2+ T Z libor—2 < 2 T, TR
k=k.+1

In addition, we have
1 _ @ s
I W < 171_0‘”"1 (1 + 01) e + Ui At <
S1 4 2

From the above analysis, the inequality (4.4) is proved.

rl=o-

| Ot
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For the second inequality (4.5), we have

3

1

Sk Ta’““k 'l — aktoy)

C¥1c+cr,C
ctok—

()
Through a similar treatment to (4.4), we can easily get that 7> ,_, Csk—k is also

bounded. This completes the proof. 0

LEMMA 4.5. Let u,v € 9 x T be space-time grid functions and E™, F", and G™
be defined by
(4. 6)
E™ = 2001 + V|[o"||* = 2on_1 = Do Y]* + 202_, + 001 — D" — o,
2

F":=(20,-1+1 |u"’1 (20— 1—1)‘ n- 1’3—}—(20271 +Un_1—1)’u"—u"_1 1

G" = E"™ + F" 4+ Zc(n 1)||’Uk||2; 1<n<N.

The following estimates hold for 1 <n < N —1:

1 1
En+1 > n+12 FnJrl > n+1|2
(47) = on HU H ) = on |U |17

En+1 _ Em Fn+1 _ Fn

(6tvn7 Un+o-") > AT ) - (5tAhun7 un+0n) > AT )

G' < (407 + oo = D ([[o"IP +u'[}) + (of =) ([ + "),
(48) 1 - n+1
ntl ~ _* (||,m+1)2 n+12 k|2
Gtz = (o™ ) + NI — kgzllv [

Proof. As pointed out early in [31, Lemma 3.5], it is easy to know that the first
three inequalities in (4.7) hold. With the help of (4.1), we further have

Fn+1 _ Fn

— (B um ) = (Bideu”, ST A (86, u” By 2

From the definition of E™ and F™ in (4.6), we get
B < (dof +doo = Do |* + (4o — 1)[[°]1%,
F' < (402 + 409 — D)|u'|? + (402 — 1)|u°}3.
Recalling Lemma 2.1 and (4.7), (4.8) is verified. This completes the proof. |

4.2. Stability and convergence of the finite difference scheme (3.10)—
(3.13). The goal of this subsection is to prove the following theorems.
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THEOREM 4.6. Assume that o/ (t) <0 when 0 <t <T. Then the finite difference
scheme (3.10)~(3.13) is unconditionally stable. Namely, suppose that {U}';, V;"; | (,]) €
@, 0 <n < N} satisfies

(4.9)
o ViV I
Wi+ = =AU G ) Ew,
(4.10)
1 . n n+o. n+o ..
OV = D (VI V) = AU £ () €w, 1SS N -1,
n k‘:O
(4.11)
1 1 1 .. _
§UZ = Vi 4+ g2, 6UY =V 4 giton (i,j)ew, 1<n< N -1,
(4.12)

Upj = ¢(iyy;), Vidy = v(@i,yy), (i,) €w; Uy =V =0, (i,j) € 0w, 0 <n < N.

Then it holds that
(4.13)
IVH+ 10 < QUIVOY + U0y + 7022 £3 || + 7] Ang? ),

IVt < Q [HVO U0+ 72 13| 4 Ang |
n 1/2 n 1/2
@M B R OV R EVES
k=1 k=1

Here Q) is a positive constant that is independent of T and h.

Proof. We carry out the proof in two steps.
Step 1. We prove the first estimate in (4.13). Take the inner product of (4.9)
with V2 to get

(8:VE,VE) 4 Si(v1 —VOVE) = (AU, VE) + (f3,V
0

N

Use (2.3) and Lemma 4.1 to rewrite the equation as follows:

1 1 1 1 1 1 1 1
(4.14) (5 + g) (IVHZE=IVO?) = = (6:Uz2,6.V2) = (6,U2,6,V=) + (f2,V 7).
0
Apply Ay, to the first equation in (4.11) to get
1 1 1
(4.15) G ARUZ; = ARVE + Apglyy  (4,]) € w.
Take the inner product of (4.15) with —U? and use Lemma 4.1 to obtain

1 1 1 1 1 1 1
(4.16) §(|U1|f —|U%F) = (6.V2,8,U%2) + (6,V2,6,U?) — (Apg?,U?).
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Combine (4.14) and (4.16), and use Lemma 4.1 to obtain

1 1 1 11 11
(—+%MWWfWWH5ﬂW%ﬂWm:Wwwfmwmm

21

1 1
< TV 4 2+ g 0 + D gt
<inW+mﬂm+in%iww2ﬂWﬁ+%WAgw
~ 259 4 A7 1 1

We recollect terms to obtain the following estimate:

201/2 1=y
].—‘(2*0(1/ )

272 D(2 — o) T £ 312 4 Q37 Ang? 2.

IV + 10 < ( F1) VO + 200

(4.17)

We thus prove the first estimate in (4.13).

Step 2. We next turn to the second estimate in (4.13). For 1 <n < N — 1, take
the inner product of (4.10) with V"7 and use (4.2) to get
(4.18)

n n+o 1 n n n n
@%V“H%FMW“2ZQQHHMW2¢WW

k=1
n

n n+on, 1 (n) nto,
< oV, Vit )jtﬁkz:0 (VL yk ynton)
= (AhUn+‘7”7V"+U”) + (f'fl-‘rUn?VTL-‘,-g'n)

_ (51 Un-‘ron’ 51;Vn+0") _ (5y Un+0” , 5yvn+on) + (fTH‘Un , V"+‘7”> .

Apply Ay to the second equation in (4.11), take the inner product of the resulting
equation with —U"*°», and use Lemma 4.1 to obtain the following equation for
1<n<N-1:

(4.19)

— (5tAhU", U"‘H’") = (5mV"+U”, 5mU”+”")+(5yV"+”" , 5yU”+‘7") — (Ahg"'“’", U"'“’").

Add (4.18) and (4.19), and use the estimate (4.7) to conclude

iT[(EnJrl +Fn+1) _ (En +Fn)]

1 n n n n
o [NV - S, - e IV - PV
" k=1

S ((5,5Vn, V7L+O'n) _ (@AhUn7 Un+an)

n

1 n n
b o |7 IV = S, = e DIV - O]
n k=1

< (7o V) — (Bag™ o U, 1< N1
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We multiply the inequality by 47 and rearrange the terms to get, for 1 <n < N —1,

n+1 n+1 ntl |, 2T a2, k)2
G =FE + F + . k+1||V ||
)
27 [ &
(4.20) SEn+Fn+S{ZC(n) ||VkH2+C(n) HV1H2+C£Ln)||VO||2
" lg=2

- i—Tc NVHZ + dr(frtom Viton) — dr(Ayg™ o, U™ om).
n

Lemma 4.3 implies

n

2T —1
el |75 b

2T o~ (n
(4.21) slzc“ VEIP < (14 Qam)

"o Sn-175

We incorporate (4.21) into (4.20) so that for 1 <n < N —1

Cnl1

G < (14 Qur)G™ o+ [l — ]V
2
+ S—Tc;m [VOI|2 + dr (from, Viton) — dr(Apg™tom , U™m).

Apply the first Gronwall inequality in Lemma 2.3 to deduce that for 1 <n < N —1

Gt < e [Gl rory ek e +2TZ ||v0||2
(4.22) h=1

+ 4T Z (fk+ak, Vk?+0'l«) — AT Z (Ahgk+0'k,Uk+a'k):| .
k=1

k=1

Note that I" is decreasing on the interval (0,1]. Since 0 < 1 — . < 1 — a(t) < 1,
I(1—a(t)™t <1. As T7*® < max{1,T~'} for ¢t € [0,T], we conclude that Qs :=
ming<i<7 [I'(1 — cu(t))T("(’f)]f1 < max{1,T77!} < co. We use the second estimate in
(4.8) to bound G™*! from below by

n+1
(4.23) G > (IIV”HII2 HU ) + Qe > IIVE™.
k=2

We combine estimates (4.22) and (4.23) to conclude that for 1 <n < N —1

(4.24)
n+1 n+1

VA2 + (Ut Q"’TZHV’“II%IIV”“||2+|U"+1 +0aQer Y [VF)?
k=2 k=2
n B ) n_ k)
§€Q3T|:G1+2T||V1||QZI€S+2T||VO|| Z -
k .
k=1
o SQ T o
ZIIU’” 2 4 897 ZHA b ﬂ
Ok 1
EQGTZHVk-i-ok”Q Q Z”fk-i-akHQ O<e<l.
k=1
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We use (4.1), (4.3), and the first inequality in (4.8) and fix an € such that ¢ < 1 to
obtain

(4.25)

[V + [Un

< Qre®t [(403 +4oo = DIV + [UYF) + (dog = DAV +|U°F)

n b n B )
+ 27]|VO|? Z +27||V 12 Z +TZ|Uk —|—8QOTZ||A;L k+%||2}

+ QoI V* + Q7TZ [Faaid

k=1

(k) (k)
Ck—1"Ck

With the help of (4.4) and (4.5) in Lemma 4.4, we know that 7 _, and

Sk
(*)
T j—y = are bounded. Further since ||[V'| and |[U'|; were already bounded in

(4.17), we deduce from (4.25) that
(4.26)

o 12
||Vn+1||2+‘Un+1 <Q8TZ ||Vk||2+‘Uk| )JrQs [||V0||2+U0 1+7'1+ 1/2||f2||
k=1

+ 2 Ang? |2 + 7D NFEER D [AngE e 2} ,
k=0 k=1
We apply the second Gronwall inequality in Lemma 2.3 to complete the proof of the
second estimate in (4.13). O

THEOREM 4.7. Suppose the problem (3.1)—(3.4) has a unique smooth solution
{u(x,t), v(x,t)}.  Let {U;,V";} be the solution of the difference scheme (3.10)-
(3.13). Denote

el =y, —Ur. et .= —Vn

0,7 i, 0,50 ij W50 ('L ])EOJ 0<n<N.

Then, the optimal-order error estimate holds:
(4.27) le®], +|le"]| < Q(r*+h?), 1<n<N.

Proof. Subtracting (3.10)—(3.13) from (3.5)—(3.7) and (3.9), respectively, we get
the system of error equations as follows:

(4.28)
-1 ézlj - égj ..

o€l + T = Ahe i+ R}, (i,j)ew

(4.29)
it ZCW et ek ) = Apel T + R, (i,j) €w, 1<n <N -1,
(4.30)
1 1

Srel; = el +ri, el =&+, (1,j)€w, 1<n<N-1,

(4.31)
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Apply the stability estimate (4.13) to the system of error equations to deduce the
error estimate (4.27). d

Remark 4.8. We have proved the stability and convergence of the difference scheme
with the condition that «/(t) < 0 when 0 < ¢t < 7. The numerical example demon-
strated that this condition is unnecessary, which needs further consideration.

4.3. Stability and convergence of the ADI scheme and the compact ADI
scheme. We similarly prove the following theorem on the stability and convergence
of the ADI scheme and the compact ADI scheme.

THEOREM 4.9. The ADI finite difference scheme and the compact ADI finite dif-
ference scheme are unconditionally stable. Moreover, the ADI finite difference scheme
has a second-order convergence rate in both space and time and the compact ADI fi-
nite difference scheme has a fourth-order convergence rate in space and second-order
convergence rate in time.

Proof. The analysis of the ADI scheme and compact ADI scheme can be carried
out using a similar technique to the proof of Theorem 4.6, which we outline here.
As a matter of fact, the ADI scheme (3.27)—(3.30) can be expressed in the following
equivalent form:

(4.32)
1
syh o Ve m Vi ST R0V Ry
2 : : J— 2 2 7)€ w,
i S0 16(s0 +7) Wi 40 (i) ew

n 1 = n
BV + - e VT =) +
" k=0

4, 352527 n+1
807,50 T"050,V;";

(20, + 1)2[(20, + 1)sp, + 27¢(™)]

= AU + 1, (i j) €w, 1<n < N —1,

SUE = V2

4,37

ULy = Vit () €@, 1<n <N -1,
UP; = o(xi,y;), Vi =v(zi,y;), (i,5) €w; UPy =0, (i,j) € 0w, 0<n < N.

We compare (4.32) with the corresponding equations for the finite difference scheme
(3.10)—(3.13) to find out that the last term on the left-hand side of the first two
equations in (4.32) are the only extra terms to the corresponding equations in the
finite difference scheme (3.10)—(3.13). We use the corresponding procedures leading
to (4.14) and (4.18) to rewrite these two terms as follows:

1 1 1 1 1
(4.33)  (62620,V7,V2) = (6:050,V2,6,6,V?) = Z(H@ayvlu? — 1626, V|1?),

(S262V 4L V) = (6,8, 8,8,V

e e RN
3oy, — 1 " n
2 7l2 (”53651/‘/ +1H2 - H(S:c(syv ||2)

We use a similar procedure to the proof of the stability of the finite difference scheme
(3.10)—(3.13) in Theorem 4.6 to prove the stability and second-order spatial and tem-
poral convergence rates of the ADI scheme and omit the details.

We finally turn to the analysis of the compact ADI scheme. Similarly to the ADI
scheme (4.32), we rewrite the compact ADI scheme (3.32) as the following equivalent
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form:
(4.34)
1
1 AV — ALVE sqT626%6,V 2 1 1
sV 4 T T 00V UE - AE () e w
AndeVi% + 5 T6(s0 + 1) WUZ + Anfly, (6,J) Ew
8(7%5”7'3592655‘/&“

i,J

1 n
AV 4+ — S e (ARVEY — A, VE) 4
I s, kz_o k J (20, + 1)2[(207, + 1)sp, + 27¢(™]

= MU + Apf, (i,j) €w, 1<n <N -1,

SU2 =V

i) 6tUiTvLj:Vz'le+U”, (i,j) ew, 1<n<N-—-1,

Ui07j = ¢($iayj)7 V;?] = w(mivyj)a (7'7.7) € w; UZ] = 07 (17]) € 8(4), 0 S n S N.

We compare (4.34) with the corresponding equations for the ADI scheme (4.32) to
find out that the first two equations in (4.34) are compact operator notations to the
corresponding equations in the ADI scheme (4.32). Fortunately, with the help of the
good properties of the compact operator given in Lemma 4.1, by a similar technique
to the proof of Theorem 4.6, we can easily prove the stability and fourth-order spatial
convergence rate and second-order temporal convergence rate of the compact ADI
scheme. O

5. Numerical experiments. We carry out numerical experiments to investi-
gate the accuracy and efficiency of the finite difference scheme (3.10)—(3.13), and ADI
finite difference scheme (3.27)—(3.30), and the compact ADI finite difference scheme
(3.32). All the schemes are implemented in MATLAB (R2019b). The data are chosen
as follows: Q = (0, 7)x (0, 7) and [0, 7] = [0, 1], the initial data are ¢(x,y) = sinzsiny
and v(x,y) = 0, three different types of variable order 3(t) = (6 +sint)/4, 2 —t? and
1+ exp(—t) are chosen, and the forcing term is

f(x,y,t)

6 6
=(6(t+1)+——" 36O 4 7
(5040 + 1) TG B0)
It can be verified directly that the true solution to problem (1.1)—(1.2) with the data
given above is

$2-81) 1 2(t3 4 3t% + 1)) sin x sin y.

u(z,y,t) = (£ + 3t + 1) sinzsiny.
In the numerical example runs, we choose h := hy = hs and measure the error of

the numerical solution in the H;-norm

F(h,7) = JHax U™ —u"y,

and fit the convergence rate
F(h,27)
m), OT’d@T}L = 10g2 (
F(2h,27) )
F(h,T)

Since both the finite difference scheme (3.10)—(3.13) and the ADI scheme (3.27)—
(3.30) have second-order convergence rates in space and time, we choose 7 ~ h in

the numerical experiments and present the results in Table 1. We observe that both
schemes generate numerical solutions with the same accuracy and that the ADI scheme

F(2h, 'r))

O'rde’l"T = 10g2 ( W

Order :=log, (
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TABLE 1
Convergence rates and the CPU time of the finite difference scheme and the ADI scheme.

ADI scheme The finite difference scheme

A h i F(h,7) Order CPU time (s) F(h,7) Order CPU time (s)
(6 Fsint)/4 7/20 1/20 1.9530e-3 0.13 1.9616¢-3 0.48
w/40 1/40 5.4903e-4 1.83 0.41 5.5014e-4 1.83 2.16
w/80 1/80 1.4679e¢-4 1.90 2.82 1.4693e-4 1.90 86.16
w/160 1/160 3.8217e-5 1.94 23.17 3.8236e-5 1.94 4579
2 —t? w/20 1/20 2.5310e-3 0.06 2.5542e-3 0.12
w/40 1/40 6.3357e-4 2.00 0.38 6.3651e-4 2.00 2.08
w/80 1/80 1.5858e-4 2.00 2.81 1.5895e-4 2.00 83.58
w/160 1/160 3.9674e-5 2.00 23.28 3.9722e-5 2.00 4606
T +exp(—t) /20 1/20 2.4211e-3 0.07 2.4459¢-3 0.10
w/40 1/40 6.2297e-4 1.96 0.39 6.2615e-4 1.97 2.03
w/80 1/80 1.5799e-4 1.98 2.84 1.5840e-4 1.98 85.40
w/160 1/160 3.9784e-5 1.99 23.13 3.9836e-5 1.99 4614
TABLE 2

The temporal convergence rates of the ADI scheme and the compact ADI scheme with h =
/2000.

() - The ADI scheme The compact ADI scheme
F(h,T) Order, F(h,T) Order,
(6 +sint)/4 1/20 1.9530e-3 1.9528e-3
1/40 5.4922e-4 1.83 5.4904e-4 1.83
1/80 1.4696e-4 1.90 1.4679e-4 1.90
1/160 3.8399e-5 1.94 3.8217e-5 1.94
2 —t? 1/20 2.5292e-3 2.5288e-3
1/40 6.3382e-4 2.00 6.3344e-4 2.00
1/80 1.5895e-4 2.00 1.5857e-4 2.00
1/160 4.0054e-5 1.99 3.9674e-5 2.00
T+ exp(—?) 1/20  2.4191e3 2418763
1/40 6.2322e-4 1.96 6.2283e-4 1.96
1/80 1.5838e-4 1.98 1.5798e-4 1.98
1/160 4.0176e-5 1.98 3.9784e-5 1.99

uses much less CPU time than the finite difference scheme does as the spatial mesh
sizes and time step size gets finer and finer. This clearly demonstrates the numerical
and computational advantage of the ADI scheme and coincides with the analysis.

Next we investigate the performance of the ADI scheme and the compact ADI
scheme. In Table 2, we compute the temporal convergence rate of both schemes with
a very fine spatial grid size so that the spatial error can be neglected. We observe
from the numerical results that both schemes have second-order temporal convergence
rates, which is consistent with the theoretical results.

In Table 3 we investigate the spatial convergence rates for both the ADI scheme
and the compact ADI scheme, where we use a very fine temporal step size and test
the spatial convergence rate. Since the ADI scheme has the second-order spatial con-
vergence rate while the compact ADI scheme has the fourth-order spatial convergence
rate, we fix the temporal step size 7 = 1/2000 for the ADI scheme and 7 = 1/5000
for the compact ADI scheme, but use the same spatial step size refined from h = /5
to m/40. We observe from these results that the ADI scheme has the second-order
spatial accuracy and the compact ADI scheme has the fourth-order spatial accuracy,
which substantiates the theoretical analysis. We note that the spatial convergence
rate of the compact ADI scheme deteriorates as the mesh size h is refined, which
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TABLE 3
The spatial convergence rates of the ADI scheme and the compact ADI scheme.

The ADI scheme The compact ADI scheme

A h T F(h,T) Ordery, T F(h,T) Ordery,

(6 Fsinf)/4 x/5 1/2000 6.42320-2 1/5000  1.30060-3
/10 1.6384e-2 1.97 8.1410e-5 4.00
/20 4.1168e-3 1.99 5.1216e-6 3.99
7 /40 1.0307e-3 2.00 3.5271e-7 3.86

2 —t? /5 5.9244e-2 1.2000e-3
7/10 1.5115e-2 1.97 7.5120e-5 4.00
/20 3.7983e-3 1.99 4.7339e-6 3.99
/40 9.5096e-4 2.00 3.3399e-7 3.83

T¥exp(—t) «/5 6.11506-2 1.2384e-3
w/10 1.5600e-2 1.97 7.7525e-5 4.00
/20 3.9200e-3 1.99 4.8846e-6 3.99
/40 9.8142e-4 2.00 3.4376e-7 3.83

TABLE 4

The CPU time of the ADI scheme and the compact ADI scheme.

B(#) - The ADI scheme The compact ADI scheme
h F(h,7) CPU time (s) h F(h,7) CPU time (s)

(6 +sint)/4  1/16 7/16  8.5657e-3 0.02 w/4 5.2455e-3 0.13
1/64 w/64  5.8217e-4 0.30 w/8 3.7699e-4 0.24
1/256 w/256 3.7609e-5 16.96 w/16 2.4840e-5 5.52
1/1024 w/1024 2.3846e-6 1831 w/32 1.5875e-6 172
2 —t? 1/16 7/16  9.9110e-3 0.02 w/4 6.7933e-3 0.02
1/64 w/64  6.1928e-4 0.29 /8 4.2944e-4 0.20
1/256 w/256 3.8723e-5 16.58 w/16 2.6936e-5 5.56
1/1024 w/1024 2.4206e-6 1817 7/32 1.6851e-6 170
T+exp(—t) 1/16  n/16 9.8694c-3 0.02 /4 6.66376-3 0.02
1/64 w/64  6.2944e-4 0.30 w/8 4.3359e-4 0.24
1/256 w/256 3.9548e-5 16.74 w/16 2.7383e-5 5.47
1/1024 w/1024 2.4751e-6 1825 w/32 1.7160e-6 172

implies that with the spatial mesh size h = 7/40 the impact of the temporal error
of the compact ADI scheme cannot be safely neglected as h? is already comparable
to 7 =1/5000. This indicates the fourth-order convergence rate of the compact ADI
scheme from another point of view.

Finally, in Table 4 we investigate the CPU time of the ADI scheme and the com-
pact ADI scheme. We let 7 = h for the ADI scheme and 7 ~ h? for the compact ADI
scheme to take full advantage of the convergence rates of the schemes. We observe
that the compact ADI scheme can use a much coarser spatial mesh size and the same
temporal step size as those used by the ADI scheme to achieve the same accuracy.
Consequently, the compact ADI scheme has an improved computational efficiency.

6. Concluding remarks. We developed a temporal second-order finite dif-
ference scheme for the variable-order time-fractional wave PDE (1.1) by generaliz-
ing Alikhanov’s L2-1, formula and applying the method of order reduction to the
variable-order fractional differential operator. We further developed an ADI finite dif-
ference scheme and a compact ADI finite difference scheme to the variable-order time-
fractional wave PDE (1.1). We then used the discrete energy technique to prove the
unconditional stability of these schemes. We proved that the finite difference scheme
and the ADI finite difference scheme have the second-order spatial and temporal con-
vergence rates, and that the compact ADI finite difference scheme has the fourth-order
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spatial convergence rate and the second-order temporal convergence rate. Numerical
experiments were presented to substantiate the theoretical analysis, and to demon-
strate the computational efficiency of the ADI scheme and the compact ADI scheme.

Because of the complexities of variable-order time-FPDEs, their mathematical
analysis has been very meager in the literature. The well-posedness and regularity of
the initial-value problem of a nonlinear variable-order fractional ordinary differential
equation were analyzed in [40] along with the error estimates of its numerical approxi-
mation. These results were then combined with a spectral analysis technique to prove
the well-posedness and regularity estimate of the initial boundary value problem of a
variable-order time-fractional diffusion PDEs in [38]. The well-posedness and regular-
ity estimate of the initial boundary value problem of a variable-order time-fractional
diffusion PDE with a space-dependent variable order were analyzed in [16].

The well-posedness and regularity estimate were proved in [45] for the initial-value
problem of a nonlinear variable-order fractional wave ordinary differential equation,
which is probably the most closely related well-posedness and regularity estimate re-
sults to problem (1.1)-(1.2). To the best knowledge of the authors, the well-posedness
and related regularity estimates of the initial boundary value problem of the variable-
order time-fractional wave PDE (1.1)-(1.2) are yet to be proved, and are currently
under investigation.

Appendix A. The derivation of (2.5). We reformulate (2.5) to obtain

1 thits —s 1
- U L (b, — 5) " tonds| Gig?
t

tmtuior DO —amro) | L 7

n—l tht1 tk: 3 — S8
+35 _
[
k=1

Sy g(t)

tr

t —
hS tk*é —Qnio k+i
+ (t7L+O'n - 3) nds 5tg 2
th—1 T

thos—t, 1 tnton )
[ et [ g, = o)
t

tn—1 n

Tl=@nton 1 3 1
— c _ ) On+ton 3
F(l—anm){u} (5-0)m+on—0) de]étg

n—1 1
+ kz [/O (g - 9) (n—k+0, —0)"“+ondf
=1

i 0
2 1 1
n / 9(an+gn / (n—k+ = +op+ g)*anw*ldg) dﬂ} SugF 3
0 —9 2

l-anto,

1 6
2 1 g 1
_ *Qn+an*1 n 71+§
+ |:/0 9<an+an [0(2 +O'n+€) d§)d9—|— 14_ Oén+an:|5tg }

1 n
= ZCEZL—)k(ng - gk)'
" k=0
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Here the coefficients {cgl)}zzo for n > 1 are given by
(A1)

1_an+0'n

/étg( /0 1 ¢ —Oén+an—1d§ g0+ m
o [ (Lase) o T
0 _g \2 " 1 —oanqo,

1,3 —Qnton e
3_ o
/0 (5-0)(k+0.—0) do

() _(q _ z
o’ =(1—anio,) +/0% 9(%“” /_Z (k:—i— % +o—n+§)7%+wild’f)d9’

1<k<n-1,

1 3_4 n+o,—0) ",
L G-0)mro—o)

Further computing yields for n > 1

(A.2)
2—a,
(1 _|_O.n)2—an+nn, — o n+on 1 e 1—omio,
2 — an+a B § [(1 + Un)l mron — On - :I’
k=0,
(k +o,+ 1)27Qn+an _ 2(]{} + Un)27Q"+U" + (k + o, — 1)27an+c,n
2 — anto,
(k + on + 1)170"7L+0n _ Q(k + O.n)lfar,ﬁan + (k + oy — 1)17an+(,n
) 2
k 1<k<n-1,

3(k‘ + O.n)l—anJran _ (k + 0, — 1)1—Oln,+0n
2

(k +00)20mton — (k + 0 — 1)2 s

2 — anto,

k=n.
Appendix B. Proof of Lemma 4.3. Before giving the proof, we first present
two lemmas that need be used.
LEMMA B.1. Denote ||/ ||cc = max |a/(t)|. Then we have
0<t<T
37

/ 3 !
’O‘n+0n - O‘n71+0n71’ < 7”04 o ’Un - Unfl| < ZTHO‘ [

In addition, if o'(t) < 0 when t € (t
On—1+0,_1-

n_%,tm_l), then o, > 0p_1 and Qniys, <

Proof. (a) Using the Taylor expansion, we have

(Bl) Anto, — Un—140, 1 — O/(gn) [tn —tp-1+ (Un - o‘nfl)T]
= O‘/(En)(l +on — Un—l)Ta fn € (tn—l+aﬂ,_1;tn+an)~

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/02/22 to 129.252.33.30 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

SECOND-ORDER SCHEMES FOR VARIABLE-ORDER WAVE 127

Noting the fact that o,_1,0, € (3,1), we have

3T, ,
|an+an — an71+ar,L71| < 7”& HOO

(b) By the definition of (2.1), we have o, = 1 — 2a(t,, + 0,,7) and then

(B.2) 0p,—0p-1 = —% [a(tn—i—onT)—a(tn,l +0n,1T):| = —%a/(fn)(l—l—an—an,l)r

Further we have |0y, — 0—1| < 370/ || -
(¢) From (B.1) and (B.2), we see that o, > o,—1 and anto, < an_14e,_, if
of(t) <0 when t € (t,_1,tn+1). d

LEMMA B.2. Suppose that o/(t) <0, t € [0,T]. For fired n and k < n—2, denote

QAp—14o, 1
F(l — Oén,1+gn71) On 1-— Un—140,_1 tnfl
P’I’L = 9 STL - : : QAntop
F(l - an+an) On—1 1- Unto, tn

)

_ 0(.,1714,0.7171
G(n)(kﬁ):[twr(anq H)T]a 7 lgkgn—é, —1g9g1
[tr + (o0 — O)7] """ 2 27 2
Then we have
)
(B.3) P, <1+ Qor.
a'(t) <0 when 0 <t < T, we have
(IT) If &' (t) < 0 when 0 T h
1 1 1
(B.4) G(”)(k+2,0) < G(")(k+ 2,0), 0<k<n-20<0<,
(B5) Sn S 1 + QlOTa
1
. max ) S + 117, a S S n—a4,
B.6 G (k,0)<1+Q k 2
—i<e<1 2

where Q; (i = 9,10, 11) are positive constants independent of T and h.

Proof. (a) Notice the fact that 0 < a(t) < a, < 1, and T'(z) is a decreasing and
differentiated function on the interval [1 — a, 1]. Denote I'y, = maxi_qo,<¢<1 |I7(2)].
Then we obtain

'l —an-140,_,) _ I'(l1 = ango,) +IV'(n)(Qnto, — On—140,_,)

P, =

(1l - anto,) a I'(1l - anto,)
max |[TV(s)]
1—a,.<s<1 3
<1 - e nto. — Qp—_lio <1 — ]_—‘* ! -
<1+ min F(S) |a +on Op—1+ n—l‘ <1+ 2T ||Oé ||
1—a*<s<1
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(b) Since 0, > 01 and 140, _; > Opto, for 0<k<n—2,0<60< 1 we
have

OG™ (k +1,0)
96

_ Tl ona =0 e 0]
vy + o= 07

and where
AP(0) = (o, — Onerio ) (b s = 07) + (Qnto, Ont — Qn140,_,00)7 < 0.

Thus, G (k + %, 6) is a monotonically decreasing sequence with respect to 6. Hence,
(B.4) holds.
(¢) Denote &, = (n—140,_; + Qnto,)/2- Let’s analyze each term in S,,.
It is easy to obtain
On

On — 0On-—1 ‘o—n_o—n71|

=1+ <14
On—1 On—1 On—1

3
<1+ 5ot

and

1- An—1+40,_1

1- Anto
3 !
- Anto, = On—140,_1 <14+ |an+0n — Qn-1to, | <14 57'”@ lloo
1—onqto, - 1—oanto, - 1—a,
On the other hand,
QUn—140,_, - Qn—1+40,_ 1 —0n
tn—l o (tn—l)a" tn—l
ti‘i"“" tn gnw” —anp
~ Fn—1+0,_1 Fnton
ty1 )@ Sagl S
= Ntn—1tn
128
In—1+4o,_ 1 “nton
Dnoltomoy Tnton
S tnfltn
If t, > 1, then
n—1+0,_1 %nton
2
(hqm) =1+ 0(n).

Ift, < %, noting on—14¢,_, = Qnto, , We have

An—lto, 1 Fnton

(tn—ltn) ’ S 1.

Summarizing the above results, we can obtain

Sn S 1 + Q107—~
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(d) For%ﬁkgn—l —%g@gl,wehave

G (k,0)
[tk + (0n—1 — 0)7] Gn-iten-1
[tk. + (o0 — 9)7’] Gnton
itk + (on—1 — 9)7}&71 [tk (001 = O)T
Lty + (o0 —O)7 [te + (0 — O)T

] AXn—1+40,_1 —0n

] Antop —Qn

n—l+o, 1 %nton

— :1+M}&" . {[tk+(0'n_1 79)7'] . [thF(Un*@)T]} P
— :1 + %rn : {[tk + (01 — 0)7] - [t + (00 — 0)7] }”"1“1‘“”%

n—14o,_ 1 %ntop
2

<(1+ 2||0/||oo7')&" : {[tk + (on-1—0)7] - [te + (00 — 9)7’]}

If t), > 1, noting |an—140,_1 — Unton,| < 370/ ||, we have

n—l4o,_ 1 %nton

[th + (-1 — O)T] - [ti + (00 — O)7] z =1+0(7).

If t; < %, then [ty+(0n—1—0)7]-[tx+ (0, —0)7] < 1. Noting apn—140,_ 1 —On+o, = 0,
we have

An—lto, 1 %nton

[tk + (0n—1 — O)T] - [ti + (o0 — 0)7] 2 <1.
Thus
G(n) (k’, 9) S 1 + QllT-
This completes the proof. ]

Now we give the proof of Lemma 4.3. A careful calculation with an application
of (B.4) shows that for k=0

(n) !
& - 1{ / 0 (ty + (00 = O)T) " = (ty + (o0 + 0)7) " a0

Sn INO anthfn) 0
On

+ t;an+0n }
1—anyo,

B P, {/
r- anfl‘i’o'n—l) 0

G(”) l’—e _ —Qn—1to
- (3, =0) ]de+5n—"" Ly o }

B 1 _ . n—1
<té + (opn-1+ 9)7)”‘" tHon-1 On—lton

< P, ) { A; el) (%, —6‘) . 9[(t% +(op_1 — 9)7_)—an71+0n71

F(l — On—1+40,_1

N|=

9[ G™(3,0)
(ts + (on-1 — g)r) it

—Qn—1+o Onp— —Qn—140,_
R e T
—On_140,_,

1 =1
<P, max{ max G (5, —9)’Sn} .0

0<6<% Sp—1
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and, for 1 <k <n — 2, we have

4 _ 1){ /01 (g = 0) (1 + (o — 0)7) "0

Sn F(l — Qpto,

n /§ 9[(75“% (o = 0)7) T — (s + (on + 9)7)‘”‘““"}10}
0

P, L3 G (k,0)
= ) a0
Il = on-110,,) { /0 (2 ) (tk + (on—1 — O)7) " Mt

1 G™(k+3,0) GM(k+ 3,-0)
k+% n—1 T) (tk-t,-% + (U7L—1 + 0)7')

P, '3 G™ (k,0)
2 9 A 6
F(l — 04”_14_(,”71) { A (2 ) (tk + (Jnfl _ 0)7_) n—1+o,_ 1

+/0§ G (k+ %,—9)

'9[(%% (a1 = O)7) T = (g + (01 + G)T)_anua"‘l}de}

IN

(n—1)
1
<P, max{ max G™(k,0), max G (k+ =, —9)} G .
0<6<1 0<6<1 2 Sp—1

Thanks to the inequalities (B.3) and (B.5)—(B.6), there exists a constant ()3 indepen-
dent of k£ and n such that

(n) (n—1)

cl€7§(1_|_Q37-)c’g , 0<k<n-2.
n Sn—1
This completes the proof. 0
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