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We develop a fast numerical method for a variably distributed-order time-fractional diffusion equation modeling
the anomalous diffusion with uncertainties in inhomogeneous medium. Different from the analysis techniques of
the commonly-used schemes for time-fractional problems like L1 methods, error estimates are proved based on
a novel discretization coefficient splitting. The proposed method has the same accuracy as traditional schemes,
while only O(N?*?1log N) computations and O(N log N) storage are required for generating and storing temporal

discretization coefficients, where N refers to the number of time steps. We further design a corresponding fast
divide and conquer algorithm to reduce the computational complexity of solving the linear system from O(M N?)
of the time-stepping method to O(M N log> N) with M being the number of spatial nodes. Numerical experiments
are presented to substantiate the theoretical results.

1. Introduction

Field tests showed that distributed-order fractional partial differen-
tial equations could adequately describe the complex processes with
memory or hereditary effects, e.g., the anomalous diffusive transport
in heterogenous porous media, and thus attracted extensive research
interests [3,6,7,10,12,16-19,22-25,42-44,47,49]. In this paper we con-
sider the following mobile-immobile variably distributed-order time-
fractional diffusion equation proposed in [34,40,46]

o+ k(D u— KAu= f(x,1), (x,1)€Qx(0,T];
u(x,)=0, (x,f)€0QxI[0,T].

(€9)]
u(x,0) =uy(x), x €Q;

Here Q c R? (1 <d < 3) is a simply connected bounded domain with the
piecewise smooth boundary dQ and convex corners, x € Q, K > 0 is the
diffusivity coefficient, k(¢) > 0 is the variable mass partition coefficient
between the mobile phase and the immobile phase, f is the source or
sink term and u, is the prescribed initial data.

Model (1) is derived from the mobile-immobile time-fractional dif-
fusion equation, in which the second left-hand side term of (1) is re-
placed by the standard (variable-order) Caputo fractional derivative,
that has been investigated in several works [30,34,39,45,48]. Recently
the commonly-used distributed-order fractional derivative Df gt :=
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j;)l p(a)a} ~%g(t)da is invoked in the mobile-immobile time-fractional dif-
fusion equation to obtain (1) with Df u as the second left-hand side term
[32,36]. The current problem (1) is proposed in [40] and generalizes
the existing models by using the following variably distributed-order
fractional derivative operator Df defined by [2,27,40]

1

Dyg() := / pla, 10} g(nda, @
0

where 0/~ represents the Caputo fractional derivative operator defined
via the convolution 9!~%g := (+*"!/I'(a)) * (9,g) [4,21,29,31] and the
probability density function p(a, ) satisfies /01 pla,tyda =1 for t €[0,T].
Concerning the standard distributed-order fractional derivative, (2)
serves as its generalization by accommodating the time dependence of
the probability density function to describe more complex dynamics
[5,13,15,37].

A fully-discrete finite element method for model (1) was developed
and analyzed in [40], in which the composite middle rectangular for-
mula with mesh size O(N~1/2) (N refers to the number of time steps)
was used to discretize the distributed-order integral without loss of the
first-order temporal accuracy and the resulting single-order fractional
derivatives were approximated by the L1 scheme [8,9,14,26,41]. Such
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discretization requires O(N3/2) computational cost. Furthermore, the
computational cost of solving the linear system of the time-stepping fi-
nite element scheme in [40] is O(M N?2) with M being the number of
degree of freedom of the finite element space, which is computationally
expensive.

Concerning the aforementioned issues, we intend to improve the
computational efficiency in two aspects. Different from the L1 meth-
ods, we first develop and analyze a novel fast approximated scheme
for the variably distributed-order fractional derivative (2), which re-
duces the computational cost of generating the temporal discretization
coefficients to O(N2log N). Based on this discretization, we develop
different numerical analysis techniques from [40] to carry out error es-
timates of the corresponding finite element method. We then propose
a fast divide and conquer (DAC) method [20,28] of the finite element
scheme, which further reduces the computational cost and the storage
of the coefficients to O(N3/21og N) and O(N log N), respectively, and
the computational cost of solving the linear system to O(M N log®> N) by
the all-at-once manner.

The rest of this paper is organized as follows. In Section 2 we go over
the existing theoretical and numerical results for model (1). In Section 3
we develop and analyze a fast approximated scheme of the variably
distributed-order fractional derivative, based on which we prove the er-
ror estimates for the corresponding finite element method in Section 4.
In Section 5 we develop a fast DAC algorithm to solve the linear sys-
tem of the finite element scheme. Several numerical experiments are
performed to substantiate the theoretical findings in the last section.

2. Preliminaries

We introduce notations and norms, and refer the well-posedness and
regularity of model (1) as well as its numerical methods from the liter-
ature.

2.1. Well-posedness and regularity

For a given interval 7, let C"(I) with m € N be the space of contin-
uously differentiable functions of order m on 1. For r >0, let H"(Q) be
the fractional Sobolev space of order r on Q, H(;(Q) be the subspace of
H'"(Q) enforced with proper zero boundary conditions, and C"(Z;X),
with X being a Banach space, be the space of continuously differen-

tiable functions of order m on I with respect to the norm || - ||y. All
these spaces are equipped with standard norms [1].
Let {4,912, be the eigenpairs of —KA, and H’(Q) := {v [S
L2(Q) : lvlin(m 1= Y2 B(v,9)* < o} be the subspace of H*(Q)
; 2 1/2 70(Q) — T2
with [[vll g, * (||U||L2(Q) + v lHS(Q) such that H(Q) = L*(Q) and

H*(Q)= H*(Q)n H}(Q) [33,38].
We then make the following assumptions on p(«,1):

Assumption A. supp p C [a, «] for constants 0 < e <a <1 and t €[0,T1],
and p, p, € C([0,1]x [0,T71).

In the rest of the paper we use Q to denote a generic positive con-
stant that may assume different values at different occurrences. We
may drop the subscript L? in (-,-);2 and || - || ;2, and the space-time do-
mains in the Sobolev spaces and norms, e.g., abbreviate H!(Z; H*(Q))
as H!(H?), when no confusion occurs.

We cite the well-posedness and regularity of (1) from [40] for future
use.

Lemma 2.1. Suppose k € C[0,T), uy € H"*2 and f € H'(H") fory > d /2,
and the Assumption A holds. Then problem (1) has a unique solution u €
C'([0,T1; H?) with the following stability estimate

”ullcl([(),T];Hx) < Q(”u()”HZH + ”f“Hl([flS))v 0<s<y.

where Q > 0 is a constant depending on a, ||k|| ¢ 0.7y and T
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Lemma 2.2. Suppose k € C'[0,T], uy € H**, f € H'(H*")( H2(H?)
for s >0, and the Assumption A holds. Then u € C2((0,T]; H*) and the
following estimate holds for 0 <t < 1,

”u”C'Z([,’T] HA) = Qta 1(””0”[{4“ + ”f”Hl(HZﬂ) + ||f”H2(H3))

where Q > 0 is a constant depending on a, ||k|| 107 and T.

2.2. L1 finite element method: a brief review

Let 0 < N, L € N and we define uniform partitions on [0,7] and [, a]
by ¢, :=nzr for n=0,1,---,N with 7 :=T/N, and o; :=lc for 0 </ <
L with ¢ :=(a — a)/L. We also define a quasi-uniform partition on
with the mesh diameter 4, and let S, be the space of continuous and
piecewise linear functions on Q with respect to the partition. The Ritz
projection operator I, : Hé (©) — S, is given by

(KVI,g, Vi) = (KVe, Vy),

which has the following approximation property [1,11]

Yn € Sp»

3
S}, = S, is defined for any ¢ € S, by

llg - Mgl < QR ligl o). Ve € H* Q)N Hy(Q).

The discrete Laplace operator £, :

(LnCsx2n) =KV, Vg,

Denote u, :=u(x,t,),k, :=k(t,) and f, := f(x,t,). We use the back-
ward Euler scheme and the L1 scheme to discrete d,u and 9! ~"u, respec-
tively, at r =¢, with a € [e, ] by

Vi, €Sy

t’l

u,—u

du, = 7‘1 + % / O,ut —t,_)dt :=68.u, +E,,
" @
= ank(uk U )+ — F(a) 2 / Zu_—s(jlu,; .
where the coefficients b, , for 1 <k <n are given by
by = =) = Wy = 10" _ (n—k+1)* = (n—k)* )

(1 + a) l=eT(1 + a)

We use the composite middle rectangular formula to approximate

the integral with respect to a in D/ u as
n

L

ID u —UZp((x, 1/2>10)9,
I=1

l=a;_1p2

u+F, (6)

where the corresponding truncation error could be expressed as

R

by_y 1/2 %1-1/2

dndf;’da

We apply the first right-hand side term of the second equation of (4) to
approximate a}‘“u,, in (6) to obtain its discretization at r =7, as

L n
Dy u, ~o Z Py 2,t,) Z B =) + F,
= k=1
@)

n
. S I 2
=0 z Gy g (g —ug_y) 1= Slnun +F,,
k=1

where ¢! , is given in (5) with @ = a;_, /, and
L

=0 Pyt )b, 1<k<n,
=1

We apply the preceding discretizations to obtain an L1 finite element
scheme of (1): find U,, €S, forn=1,2,---,N such that Vy, € S,
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6.0, + k(t,)3] Up, ) + (KVU,.. V) = (f 2p)- ®

Error estimates of this scheme are given in the following theorem.

Theorem 2.1. Suppose uy, € H*, f € H'(H?) (| H*>(L?), the Assumption A
holds, and max; (o 77 [12(, )21 (4 7) < co. Then the following error estimate
holds N

—Ullooy2, i= -0
ll = Ull goocy2) | max llu, = Uyl 12
2 2
< Olupll o + ||f||Hl([.“[2) + ||f||H2(L2))(<7 +7+h%).

Proof. We could follow [40] to prove this theorem. The only difference
lies in the estimate of £,. By assumptions on p, £, is bounded by

wsg 1]

oy 1/2‘1/ 12

<Q622/ ‘ p(at)

F(a)

pla,1,)\’
(") /
. 0
F ouln’(t, — s)ds
(t, — s)-

Oguds ‘
s
(1, — )

dyuln(t, — s)ds
t, — )l

]da

Lof p(a t) "
ot (480 [t
o~ llullcro,r )[;a[ 1 [ T(a) (t, —s)1 «

”1
In(t, — s)ds
(tn _ s)]—a

‘ pla,t,)
[(a)

f In? (t,—s)ds
(t, — )@

]da

o)

‘ pla, tn)
(a)

For each t,, we apply (7, — s)*|In(t, — 5)| <O for 0 <e < 1 to get

' 1,

; In(t, — s)ds
t, —s)l-@

(t, — 5 In(t, — )
(In — s)l—a+s

and a similar estimate with In(z, —s) in this equation replaced by In’(z, —
5), based on which we bound £, by || £, || o2y < Ollull 1o ry;22)0% - For
the remaining part of the proof we refer [40] for the details. []

3. An efficient discretization for variably distributed-order
fractional derivative

When implementing the scheme (8) in the previous section, we have
to compute the coefficients {4, } for | <k <n <N, totally O(LN?) op-
erations. To maintain the first-order accuracy in time, we should set
L = O(N'/2) (such that o> = (O(N~1/2))* = O(N~1)), which leads to
O(N>/?) computations and O(N?) storage for computing and storing
these coefficients. To improve the efficiency without loss of accuracy,
we develop a novel scheme by discretizing the variably distributed-
order fractional derivative in a different approach.

3.1. Formulation of fast scheme

Given a function z = z(¢) on t € [0,T] with z,
cretize D] z, by replacing a}""”z,, by (4)

1= z(t,), we first dis-

= 2 iz — 2—) + 1, (2), 9)

k=1

where the coefficients ¢, for 1 <k <n and local truncation error r, are
given by

26
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a a
cn,k ::/p(a7tn)bn,kda:/
a a

rp(2) —Z/

pla,t,)

PO (k) = (= k) )d
rl‘“F(1+a)<(n - ))a

s
2/ (s) = 6,z
(tn _S)l—a

pla,t,)

dsda.
F(a)

10
Then we consider the approximation of ¢, ; for 1 <k <n < N by defining
an auxiliary function
(a+1)*In"(a+1)—a*In"a
m!

gy (x) 1= , x€l0,1], 1)

where a,m € N are two nonnegative parameters. For a fixed positive
integer S, we apply the Taylor expansion of the exponential function to
expand (n—k+1)*—(n—k)* forn—k>1ata=a as

(n—k+1D%—(n—k)*

S\ (@—a)
=Y = =k + DEW =k + 1) = (2= K% In* (1 = K)]
— S+1
+% [(n =k + D InS¥ (0 — k + 1) = (n = k)P InSH (n = k)
S
= Z(Q_g)vg;_k(g)_l_(a_g)sﬂ S+1(9nk)
v=0

where 6, , € [a,] is a constant depending on n — k and .S. By dropping
the local truncation error, we obtain an approximation of ¢, as

Cn k> n—k<S8,
En,k = S H (12)

pla,t,)(a—a)” y
;(/mda)gn_k(g), n—k>S+1,

with errors H, ; :=c, — ¢, given by

0, n—k<S

/

pla,t )(a_a)S-H S+l(9n k)

r1=e(1 + a)

H, = 13)

n—k>S+1.

da,

By replacing c,, with ¢, in (9), we obtain an approximation of Dz at
r=t, as

n
IDfn z, = Z Cuk(Zg = Zg—1) + q,(2) + 1, (2)
k=1

1=68] 2, +4,(2) +71,(2),

(14

where r,(z) is given in (10) and g,(z) is defined by

4.(2) = Z H, (2 — 2y

k=1

3.2. Estimates of local truncation errors

Lemma 3.1. The coefficients {c,,’k}2= | in (10) satisfy

@
pla,t,)da
m cnn>cn,n71>'“>Cn,k>"'>cn,l>0’
pla,t,)da pla,t,)da

<c, _—
rl=a(n— k + 1)1=2T(a) rl=a(n — k)1=a[(a)

j

a
kﬁ/
a

Proof. These results follow from the properties of b, [35]

1

m =byy > by >

>by>>b,; >0,
1 O

e < , k<n.
tl=a(n - k)!-2T(a)

rl=a(n -k + 1) ar(a)
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Lemma 3.2. Suppose that S in (12) satisfies

Condition S : S > e*In N —1 for u > 1 satisfying e* (u—1-In(@-a)) > 3-a.

Then there exists a constant O such that

n n
Zlcn,k_fn,klzlen,klSQANils 1<n<N.
k=1 k=1

Remark 3.1. To roughly show the value of y, let u > 1 satisfy a more
constrained inequality than that in Condition S, that is, e/(u — 1) > 3.
Then we approximately solve this inequality to find that u > 1.61.
Therefore it suffices to set S = [e!%'In N — 1| = O(log N) to meet the
Condition S. We will see in Theorem 4.2 that the Condition S is suf-
ficient to ensure the first-order accuracy in time of the errors of the
fast numerical scheme (18) using the discretization 5{: of the variably

distributed-order derivative operator D’ .
n

Proof. We estimate H, , by analyzing the auxiliary function g (x) de-
fined in (11). It is clear that gs“(e) >0 and

n=k+ D052 (n—k+1) = (n— k) IS+t (n—

S+ D!

dde (8,4 ©) = Do

which means g*!(6) is monotonically increasing for ¢ € [0,1] and thus

n—k+ DI (n—k+1) = (n—k)InS*'(n—k)

S+1(9n k) < gS-H(l)

S+D!
Therefore we bound H,, in (13) by
[ i) a@— @t

H < U +11

[l _</ 71=4T(1 +a) da)s L0
which leads to

: [ ot a- a5 L NG - 5 S N
Z'anlﬁ/% a Y eStlh<
=1 7i=e0(1 + a) = (S+1)!
a

We use the Stirling’s formula (S + 1)! > (S + 1)St3/2¢~(S+D to obtain

(E—g)s+'lns+'N< 1 e@-a)lnN 5+1< e@-a)ln N\
S+ D! NG S+1 ) = S+1 > ‘

In order to maintain the first-order accuracy in time, we require .S to
satisfy

<e(ﬁ—g)lnN e(@—a)ln N

<-G3- .
S+1 )— G-@hN

S+1

By assuming S + 1 =e”In N for some u > 1, we have

S+1
) < N3 (S + 1)1n(

(e #@-0)<-G-a)=>e((u-1)-In@-a)) 23-a.

a

Thus we finish the proof of the lemma.

Theorem 3.1. Suppose that z € C'[0,T]1() C%(0,T] with

”ZHCZ[,,T] < Qol—_l, O<rx1.

If S satisfies the Condition S, we have the following estimates

”Z”cl[o_]] <0y,

Iru(2)] QQun*' N7, |q,(2)] SQQON ™",
where the constant O is given in Lemma 3.2.

Proof. The r, can be bounded similar to Theorem 4.1 in [40], and for
g, we use the estimate of H, , in Lemma 3.2 to get

n n
g, < X 1 H, g llzi = 25y | <20zl oy D, 1 Hyi] < QOONT
k=1 k=1

Thus we finish the proof. []
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3.3. Fast coefficient generation and efficient storage

For implementation, the coefficients ¢, , can be generated and stored
by a fast algorithm. Denote

a
C;::/

14

pla,t,)(a—a)
tl=e[(1 + @)

then ¢, , in (12) for n— k > .S + 1 can be expressed as

Ky

G= . Cre_ (@. (15)
v=0

Thus we require to compute ¢, , forn—k<.S, C) for S+1<n<N,0<

vsSanng_k(g) for S+1<n—k<N-1.

As discussed in Remark 3.1, we set .S = O(log N) to ensure the O(r)
temporal accuracy. We use the composite middle rectangle formula
to compute c,; for n — k < S with the O(r) accuracy by setting the
mesh size ¢ = O(y/7), which requires O(N3/?log N) computations and
O(N log N) storage, respectively.

Similarly, O(N3/21og N) computations and O(N log N) memories are
required in evaluating and storing C} for S +1<n< N and 0 <v <
S, respectively. Thus computing ¢, , for n —k > S + 1 totally requires
O(N?log N) operations by (15).

We summarize the above discussions in the following theorem.

Theorem 3.2. Under the Condition S, the coefficients ¢, ; for | <k <n< N
can be efficiently computed and stored in O(N?log N) operations.

4. Error estimate for fast finite element scheme

In Section 3 we developed an efficient discretization scheme 51 Plein)
for the variably distributed-order fractional derivative operator D/ 0,
In this section, we apply this to construct a fast finite element scheme
for model (1) and prove its error estimates.

We apply (14) to construct a different discretization of D’u from the
L1 scheme as

D} uy =) uy + R, + F,, (16)

where

n

gﬂu =Z~,,k(uk—uk D, F,:=

2/

and ¢, , and H,, are given in (12) and (13), respectively.

We plug the discretization of d,u in (4) and IDfn u, in (16) into (1),
integrate the resulting equation multiplied by y € H(} () on Q to get a
weak formulation of model (1): for any y € H(i (Qand 1<n<N,

n
Z H, (g — ug_y),

p(a,t,)
F(a)

b 6,
su(-,s) — ukd da.
t, — )l

(6etty + k7 o ) + (KVu, V) = (£ 2) = (ky(Ry + F) + E, ). (17)

We drop the local truncation errors on the right-hand side of (17) to
obtain a fast finite element scheme of (1): find U, € S, with Uy = IT,,u,
for 1 <n < N such that for any y, €S, and 1 <n<N,
6.0, +k,67 Uy 1) + (KVU,L NV 20) = (fs ) (18)

Let n =u—Ilu and u, — U, =u, — u, + Mu, — U, =: 5, +&,, we
bound 7, = (u — IT,u)(x,1,) in the following theorem.

Theorem 4.1. Suppose that the assumptions of Lemma 2.2 hold, then n can
be estimated as follows

<Olugll o + 1 N g1 g2k

where Q is a constant independent of =, h and u.

16,10 e 2y + 187 1l oo
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Proof. We use Lemma 2.1 and (3) to get

o,udt

el w2y = max L | <o lulerorne

-1

From (14), we express §/ ,, by

n n

n
&y = Z Cog (e =My = 2 Cnge (e — M) + Z H, (e = m—p)-
py

k=1 k=1
(19)

The first term on the right-hand side of (19) can be bounded by

n

2

k=1

n

>

k=1

Ik
Cot My — nk_l)H Cu (L —11p) / ogu(-,s)ds
t_

n
< Q||M||c1([o,TJ;H2)Th2 z Cnk = Q”””C’([O,T];ﬁZ)hz’
k=1

a
pla,t,)ts

where weuse D 1= [ ———=
g T@+1)

1=t, _/
Tk
/ ds da
t, —s)l-@

*p(a,t,)
I'a+1)

da < Q to obtain

/(t =)= o

IDfnt = / pla, )9} “tda
-2/
- 2 /

Similarly, we use Lemma 3.2 to estimate the second term on the
right-hand side of (19) by

pla,t,)
I'(ar)

p(a.t,)
[(a)

[(n—k+1)“—(n—k)”]da=rz":cn,k5Q.

k=1

n
Z H, (. — nk—l)' <
k=1

Tk
n’k(I—Hh)/dxu(-,s)ds
[

n
< Qllullcl([O‘T];ﬁZ)Thz 2 |Hn,k| < QQA”ullcl([O’Tk[:ﬂ)Tzhz-
k=1
We insert the previous estimates into (19) to finish the proof. []

Before the error estimates of the fast scheme (18), it is worth men-
tioning that the coefficients {¢,,} in 6” u, in (14) do not enjoy the
monotonicity like {b,,} and {c,,} (cf. "Lemma 3. 1), which is a key
ingredient in error estimates of the L1 schemes of (variably) distributed-
order tFDEs. Consequently, the techniques to prove Theorem 2.1 in [40]
do not apply. To resolve this issue, we design the following decomposi-
tion for entries in {¢, ; }

Cakrt) + (ot = Enge) |

S st = Cnk 18 prt = Cppar | F € — G-

1kt = Enicl = lCnhrt = Cage + (pprr —

(20)

By employing this technique we could circumvent the loss the mono-
tonicity of the coefficients and prove error estimates of the fast scheme
(18) in the following theorem.

Theorem 4.2. Under the assumptions of Lemma 2.2 and the Condition S,
the following estimate holds for (18)

llu =Tl geo 12y < Ol g + 1F W g1 gy + 1 g2 r2))(x + B2).
Proof. We subtract (18) from (17) and set y, = y =¢&, to get
(6.6, +k, 21

8) &mn) + (KVE,, VE) = ~(G,. 8.

28
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where G, :=6.1, + kngf; Ny + k,(R, + F,) + E,. We rewrite 5,””5,, as

g[pn 5n = En,nén - Z(En,kJrl - En,k)ék - En,léO'
k=1

Correspondingly, (21) can be reformulated as

(14 7k(t,)E, ) 111> + (K VE,, VE,)

n—1
22
<G8+ Tkn( Z(En,k+l - En,k)fk,fn) +17(G,.&,)- 22
k=1

Apply (20) and the Cauchy inequality to cancel ||&,|| on both sides to
obtain

n—1

(1 2k (t)E00) NEall S NEuill+ Thy D (it = Cuk + €k = Gl

= (23)
+epir — En,k+1|)||§k|| +7]|G,,l.
By (23), for n=1, we have
&l < zllGy Il < 71+ 201kl oI G I
where O is given in Lemma 3.2. We assume
m
IEall < Py DG Py =21+ 200kl crory7)"s 1<m<n—1, (24)
j=1

plug (24) with 2 <m <n-1 into (23), and use the fact that Py > Py_; >
> P >7and

n—1

Z(Cn,k+l ~Cnk + |cn,k+l - En,k+l | + |En,k —Cnk |)
k=1
n—1 n=2

< Z(c,,’kﬂ — ) +2 Z ek — Euil < ¢, +20 (using Lemma 3.2)
=1 k=1

to arrive

n—1
(1 + 2y, IIE, N < P, IZMG I+ 7k, (Pt D 1G 1)
j=1

Z Cnert = ke kit = gt |+ 180 = i) + NGyl

< (P lZHG 1)1+ Ty + 27K, 0).

Consequently we obtain
27k Q )

< (e ) (1 e

n
< (P Z 1611 )1 + 201Kl = Py Y 16 I
j=1 Jj=1

15,1

that is, (24) holds for m = n and so for any m > 2 by mathematical in-
duction. By using the fact that (1 + 27|kl ;O™ < O, we remain to
bound = ¥, |G, |I.

E, could be bounded by

Iy

1
VN <2 [ Bogutealie=s,
-1

1 Ar—
< Olug s + 117 Wiz, + I1f | garons™ N <.

Similar to the proof of Theorem 3.1, we bound R, by applying the
regularities of u(x,7) provided in Lemmas 2.1-2.2

IR < Ol g + 1L/ g1 2y + 1/ | 22 N2,

We use Lemma 3.2 to estimate F, by

n

A 2

IFll < QT“"”cl([o,T];LZ) Z |Hn,k| < QQ”””CI([(),T];LZ)T .
k=1
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Combining these estimates with Theorem 4.1, G, with 1 <n < N can be
bounded by

G, < Qlllugll sz + 1L/ g1 g2y + 1L g2 p2)) 00 +n2 " N2).
N

Applying the fact that Z n ! < QN2 we get

n=1

N
e G < Olugl o+ 11 W g iz, + I1f I gai))x + A2,

n=1

which completes the proof. []

Remark 4.1. In the proof of Theorem 4.2, we use the exact form of C;/
without discretization, and thus the result is independent from the mesh
size ¢ of the quadrature. In the numerical simulation, we compute C)
via the composite middle rectangular formula with O(¢?) accuracy, and
we set 0 = O(z!/2) in order to maintain the first-order accuracy in time.

5. A fast all-at-once DAC solver

Let {y/l-(x)},?‘i " where M refers to the number of degree of freedom of
the finite element space, be the basic functions of S, satisfying y;(x;) =1
and y;(x;) =0 for j #i. The M x M matrices B), and B denote the mass
and stiffness matrices where

(BM),',,' = / Wi(x) : Wj(x)dxa (Bs),;,j =K / VWi(x) . VWj(x)dx-

Q Q
Let U'(1<n<N,1<i< M) be the finite element solution of (18) at
t=t, and x = x;. We define a lower triangular matrix A = (an,k)fq" ey O
store the discretization coefficients of 6, and 5/ by

1 ~
=+ K,Cpps k=n,
_ ==+, €y —Cpp)y k=n-—1,
apk = T
Kn(gn,k _En.k+l)’ 1 skSn—Z,
0, otherwise.

Let U™ =[U U}, -, UL 1T and F® = [F/, Fy, - Fy 17 with F' =
fﬂ f(x,1,)y;(x)dx for 1 <n < N. Then the matrix form of (18) is
n—1

(a,,y,,BM +BS)U(") =F® _ ZankaMU(k), 1<n<N.
k=0

(25)

For each time step, O(M) operations are required to compute B, U*
for 0 <k <n-1, and hence O(nM) operations are needed for evaluat-
ing ZZ;(]) a, By U™, As the computational complexity for solving the
linear system (25) is O(M), totally O(M N + N?) storage and O(M N?)
computations are needed for solving (25) by the time-stepping method,
which is expensive and motivates the development of the fast solver.

5.1. Fast solver and its analysis

We solve the finite element system (18) by rewriting it as the fol-
lowing all-at-once system

(A®By +Iy ®Bg)U=F, (26)

where Iy isa N x N identity matrix, U = [(U")T, 0@)T, ..., @™M)T|T
and F = [F<]1)T,F(2)T,---,F(N)T]T. From (12) and (15), we decompose
the matrix A into the sum of a band matrix A, and a sum of diagonal
matrices multiplied by Toeplitz matrices A,,

S
A=A, +A, :=A,+diag(K) )’ diag(C})T",
v=0

27)

29
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where (A,); ; = a;; for |i — j| <.S and zeros elsewhere, K = [k}, k, -,
kylT, CY =1[C}.C}, . C}]" and the Toeplitz matrix T = toep(”,0)
with tﬁ” = (IZJ)’Z , and 0 being its first column and first row, respectively.
Here tivl) is given by tivl) = gl@l (@) — gfi)z(g) for S+1<i<N and tivl) =0
otherwise.

We divide A into four N /2 x N /2 matrices as

e[r 0],

A Ay
and accordingly divide U = [U],U]1" and F =[F|,F]]". Then we
could solve (26) by equivalently solving the following two linear sub-
systems
{(A1®BM+IN/2®BS)U1:F1, 28)
(A, ®By +1y,, ®Bg)U,=F, - (A; @By )U;.

As each subsystem in (28) has a similar structure as (26), we could
repeat the previous steps to obtain a fast DAC (fDAC) algorithm pre-
sented in Algorithm 1, and we remain to estimate its computational
cost in the following.

Algorithm 1 The fDAC algorithm for (26).

function U = fDAC(A,B,,,Bg, F)
P =length(A(:, 1))
ifP<S
solve
p—1
(@,, By +BOUP =F? -3 a, B, UV,
k=0

forI<p<P
else
U, =fDAC(A,,B,,,Bg, F,)
F,=F,-(A;®B,)U,
U, =fDAC(A,.B,,.Bg. F,)
end if
end function

Lemma 5.1. For any v € RN/2, the matrix-vector multiplication Ayv can
be carried out in O(N log> N) operations, and hence (A; ®By)U, in (28)
can be computed in O(M N log® N) operations.

1
A, 0

Proof. By (27), we have
Al 0
3 + 3 A2
A} A} A

A0
A= = .
A3 A ;

which yields Agl)v = Agv +Alv. As A, is a band matrix with band-
width S, there are only (S + 1)(.S + 2)/2 nonzero entries on the top
right corner of Ag, and thus the computational complexity of Aiv is
0(5?) = O(log” N). By (15), the N/2x N /2 matrix A} can be decom-
posed by a sum with S + 1 summands with each summand being a
diagonal matrix multiplied by a Toeplitz matrix. By applying the fast
Fourier transform [20], the matrix-vector multiplication Afv can be car-
ried out in O(SN /2log N /2) = O(N log> N)) operations. We thus proved
the first statement of the lemma.
We use the property of Kronecker product to get

(A} ®B,)U,| = vec(By XAHT) = vec (B, (AYXT)),

where X is the matrix form of U, given by reshaping U, intoa M x N /2
matrix with its i-th row representing the unknowns at x;, and vec(-)
reshapes a M x N /2 matrix into a vector by a inverse manner. There-
fore, the multiplication Z = A13XT requires O(M N log? N) operations.
We combine the fact that the computational complexity of B,,Z is
O(M N) to prove the second statement of this lemma. []
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In the following theorems, we show the efficiency of the fDAC algo-
rithm. Due to the dividing operations in the DAC method, we assume
that § = N /27 for some 0 < J €N such that S satisfies the Condition S.

Theorem 5.1. O(N3/2log N) computations and O(N log N) storage are
needed to compute and store the components of A, respectively.

Proof. We only need to compute and store the components A;, K,CY,
tgv) of A in (27) for Algorithm 1 with totally O(N log N) memory re-
quirement, rather than directly generating {¢,,}. The computational
cost of A, and C(]\‘;) is O(N3/21og N) by using the composite middle rect-
angular formula, while O(N) and O(N log N) operations are required for
K and tﬁv), respectively. Thus O(N3/?log N) computations are needed
for generating components of A. []

Theorem 5.2. The fDAC algorithm requires O(M N log®> N) computations
for solving the linear system. Compared with the O(M N?) computational
cost of the time-stepping method mentioned before Section 5.1, the fDAC
algorithm significantly improves the efficiency.

Proof. By assumptions on S, it holds J = O(log N). By Lemma 5.1,
we require O(M N /2log> N /2) operations to compute (A; ® By, )U,
in (28). As the fast DAC algorithm repeats the dividing operations like
(28), the total computational complexity of matrix-vector multiplica-
tions in the dividing procedure can be computed by

N . 2N _, N 5N , 0 N. 4N
MXO(?IOg 7+2 2—210g ?+“'+2 2—JlOg 2—‘1)
_ UMN[, 1 ot 1\ L s
_O(T(log N(1+5+...+2 ~F))—O(MN10g N).

After the dividing procedure, we need to solve 2/ subsystems, each of
which requires O(M S + S?) computations. Thus the total computational
complexity is

2/ xO(M S + S?)=0O(M N log N + N log® N).

Adding the above two results yields the total computational cost of the
fDAC algorithm. [J

6. Numerical experiments

We carry out numerical experiments to investigate the performance
of the time-stepping finite element method (FEM) for solving (8) and
the fast finite element method (fFEM) for solving (26) by the fDAC al-
gorithm. All numerical experiments are implemented on Matlab R2016b
on a computer with Intel(R) Core(TM) i7-9700 and Ram 16 GB.

We choose T =1,Q=(0,1) or (0,1)%, K =0.01 and use a uniform
rectangular partition on Q with the mesh size 4. The probability density
function p(a,1) is set in the form of Gaussian hump

1 (@ —0.5)
exp (- - ),
257X 1073+ 1) 25x1073(t+1)

and ¢ =0.3 and @ =0.7. We give the smooth or singular solutions in the
following four cases:

pla, 1) =

(i) u(x,1)=t"*%sin(rx),
(iv) u(x, y,1) = 1"+ sin(zx) sin(zy).

@ u(x,1) =*sin(zx),
(iii) u(x, y, 1) = £ sin(zx) sin(zy),

The right-hand side terms f are evaluated correspondingly. For all ap-
plications of the composite middle rectangle formula, we set L=0c"! =
[V/N| +1 to ensure the O(r) accuracy. We set .S = 2l¢"* loe N/log2]+1 ¢
satisfy the Condition S.

30

Computers and Mathematics with Applications 108 (2022) 24-32

Table 1
Errors and convergence rates for (i)-(iv).

T ||14—U\|i_w(w ! ||“—0||Lm(1_z> T

i) 23 1.4217E-02 - 1.4217E-02 -
276 7.0730E-03 1.01 7.0730E-03 1.01
277 3.4950E-03 1.02 3.4950E-03 1.02
278 1.7418E-03 1.00 1.7418E-03 1.00

(ii) 275 6.2315E-03 - 6.2315E-03 -
276 3.2608E-03 0.93 3.2608E-03 0.93
277 1.6606E-03 0.97  1.6606E-03 0.97
28 8.5363E-04 0.96  8.5363E-04 0.96

(iii) 273 9.7524E-03 - 9.7524E-03 -
276 4.8879E-03 1.00 4.8879E-03 1.00
277 2.4503E-03 1.00 2.4503E-03 1.00
278 1.2559E-03 0.96 1.2559E-03 0.96

(iv) 23 4.2474E-03 - 4.2474E-03 -
2°6 2.2505E-03 0.92 2.2505E-03 0.92
277 1.1768E-03 0.94 1.1768E-03 0.94
278 6.3820E-04 0.88 6.3820E-04 0.88

Table 2

CPU times of computing {c,,} and com-
ponents of ¢, ;.

N cPU,, CPUy,

29 16.3s 48s

210 1min33s 14s

211 8 min 26 s 38s

212 45 min 52 s 1 min 47 s

213 4 h 30 min 5 min

214 / 14 min 10's
215 - 39 min 46 s
216 - 1 h 52 min

6.1. Comparison of convergence rates

As the spatial discretization is standard, we measure the temporal
convergence rates of the FEM and fFEM with A = 1/200 for (i)-(ii) and
h=1/100 for (iii)-(iv) by

”M—[AJHI:(,O(LZ)SQN_I, ”u_U”Loo(LZ)SQN_i,

and present the numerical results in Table 1. We observe that the fFEM
has almost the same accuracy as the FEM. Moreover, both methods
have first order temporal convergence rates, which is consistent with
the theoretical analysis.

6.2. CPU times of generating coefficients

We record the CPU times C PU,, for computing {c,,} and CPU
for computing the components of {¢,,}, and present the numerical re-
sults in Table 2 and the left plot of Fig. 1. The symbol ‘/’ implies that the
running time of generating {c, )} is more than 20 hours and we stop it,
and the symbol ‘- implies that the storage is out of memory. From the
numerical results we observe that the fast approximation (16) is much
more efficient than (7) in generating the coefficients. For instance, when
N =2!4, more than 20 hours are needed to compute {c,, }, while only 7
minutes are required for computing the components of {¢,,} as proved
in Theorem 5.1. For large N like 2!5, the memory of the computer is
not enough to store {c,, }, while the fast approximation still works.

6.3. CPU times of solving the linear systems

We record the CPU times CPU,, of solving the time-stepping FEM
and CPUg of solving (26) by fDAC algorithm by setting h =27* for
(i)—(ii) and h =273 for (iii)-(iv). The numerical results are presented in
Tables 3-4 and the right plot of Fig. 1 for case (i), which demonstrates
that the fFEM is much more efficient in solving the linear systems than
the FEM.
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N x10%

Fig. 1. CPU times of computing the coefficients (left) and solving the linear systems (right).

10° —— CPUM
- CPUy
107 . . . . . :
0 1 2 3 4 5 6 7
N x10*
Table 3
CPU times of solving FEM and fFEM for (i)-(ii).
N 63} (ii)
CPU, CPU: CPU, CPU,
20 0.096 s 0.21s 0.098 s 0.14s
210 0.38 s 0.40s 0.38s 0.30 s
21 1.53s 0.71s 1.54s 0.66 s
212 6.31s 1.32s 6.28 s 1.39s
213 26.1s 2.69s 25.5s 2.78s
214 / 5.65s / 6.01s
213 - 12.1s - 12.0s
216 - 25.2s - 25.2s
Table 4
CPU times of solving FEM and fFEM for (iii)-(iv).
N (iii) (iv)
CPU.  CPUgs CPU.  CPUs
2° 0.17 s 0.40's 0.17 s 0.42s
210 0.65 s 0.92s 0.65 s 0.86 s
21 2.58s 2.07 s 2.56 s 1.81s
212 10.8 s 3.85s 10.4 s 3.93s
213 41.8 s 8.10s 41.9s 8.07 s
214 / 18.3s / 17.1s
215 - 35.6s - 35.5s
216 - 1min 14 s - 1min16s
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