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We develop a fast numerical method for a variably distributed-order time-fractional diffusion equation modeling 
the anomalous diffusion with uncertainties in inhomogeneous medium. Different from the analysis techniques of 
the commonly-used schemes for time-fractional problems like L1 methods, error estimates are proved based on 
a novel discretization coefficient splitting. The proposed method has the same accuracy as traditional schemes, 
while only 𝑂(𝑁3∕2 log𝑁) computations and 𝑂(𝑁 log𝑁) storage are required for generating and storing temporal 
discretization coefficients, where 𝑁 refers to the number of time steps. We further design a corresponding fast 
divide and conquer algorithm to reduce the computational complexity of solving the linear system from 𝑂(𝑀𝑁2)

of the time-stepping method to 𝑂(𝑀𝑁 log3 𝑁) with 𝑀 being the number of spatial nodes. Numerical experiments 
are presented to substantiate the theoretical results.

1. Introduction

Field tests showed that distributed-order fractional partial differen-
tial equations could adequately describe the complex processes with 
memory or hereditary effects, e.g., the anomalous diffusive transport 
in heterogenous porous media, and thus attracted extensive research 
interests [3,6,7,10,12,16–19,22–25,42–44,47,49]. In this paper we con-
sider the following mobile-immobile variably distributed-order time-
fractional diffusion equation proposed in [34,40,46]

𝜕𝑡𝑢+ 𝑘(𝑡)𝔻
𝜌

𝑡
𝑢−𝐾Δ𝑢 = 𝑓 (𝒙, 𝑡), (𝒙, 𝑡) ∈ Ω × (0, 𝑇 ];

𝑢(𝒙,0) = 𝑢0(𝒙), 𝒙 ∈Ω; 𝑢(𝒙, 𝑡) = 0, (𝒙, 𝑡) ∈ 𝜕Ω× [0, 𝑇 ].
(1)

Here Ω ⊂ℝ
𝑑 (1 ≤ 𝑑 ≤ 3) is a simply connected bounded domain with the 

piecewise smooth boundary 𝜕Ω and convex corners, 𝒙 ∈Ω, 𝐾 > 0 is the 
diffusivity coefficient, 𝑘(𝑡) ≥ 0 is the variable mass partition coefficient 
between the mobile phase and the immobile phase, 𝑓 is the source or 
sink term and 𝑢0 is the prescribed initial data.

Model (1) is derived from the mobile-immobile time-fractional dif-
fusion equation, in which the second left-hand side term of (1) is re-
placed by the standard (variable-order) Caputo fractional derivative, 
that has been investigated in several works [30,34,39,45,48]. Recently 
the commonly-used distributed-order fractional derivative 𝜌

𝑡
𝑔(𝑡) ∶=
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∫ 1

0
𝜌(𝛼)𝜕1−𝛼

𝑡
𝑔(𝑡)𝑑𝛼 is invoked in the mobile-immobile time-fractional dif-

fusion equation to obtain (1) with 𝜌

𝑡
𝑢 as the second left-hand side term 

[32,36]. The current problem (1) is proposed in [40] and generalizes 
the existing models by using the following variably distributed-order 
fractional derivative operator 𝔻𝜌

𝑡
defined by [2,27,40]

𝔻
𝜌

𝑡
𝑔(𝑡) ∶=

1

∫
0

𝜌(𝛼, 𝑡)𝜕1−𝛼
𝑡

𝑔(𝑡)𝑑𝛼, (2)

where 𝜕1−𝛼
𝑡

represents the Caputo fractional derivative operator defined 
via the convolution 𝜕1−𝛼

𝑡
𝑔 ∶=

(
𝑡𝛼−1∕Γ(𝛼)

)
∗ (𝜕𝑡𝑔) [4,21,29,31] and the 

probability density function 𝜌(𝛼, 𝑡) satisfies ∫ 1

0
𝜌(𝛼, 𝑡)𝑑𝛼 = 1 for 𝑡 ∈ [0, 𝑇 ]. 

Concerning the standard distributed-order fractional derivative, (2)
serves as its generalization by accommodating the time dependence of 
the probability density function to describe more complex dynamics 
[5,13,15,37].

A fully-discrete finite element method for model (1) was developed 
and analyzed in [40], in which the composite middle rectangular for-
mula with mesh size 𝑂(𝑁−1∕2) (𝑁 refers to the number of time steps) 
was used to discretize the distributed-order integral without loss of the 
first-order temporal accuracy and the resulting single-order fractional 
derivatives were approximated by the 𝐿1 scheme [8,9,14,26,41]. Such 
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discretization requires 𝑂(𝑁5∕2) computational cost. Furthermore, the 
computational cost of solving the linear system of the time-stepping fi-
nite element scheme in [40] is 𝑂(𝑀𝑁2) with 𝑀 being the number of 
degree of freedom of the finite element space, which is computationally 
expensive.

Concerning the aforementioned issues, we intend to improve the 
computational efficiency in two aspects. Different from the L1 meth-
ods, we first develop and analyze a novel fast approximated scheme 
for the variably distributed-order fractional derivative (2), which re-
duces the computational cost of generating the temporal discretization 
coefficients to 𝑂(𝑁2 log𝑁). Based on this discretization, we develop 
different numerical analysis techniques from [40] to carry out error es-
timates of the corresponding finite element method. We then propose 
a fast divide and conquer (DAC) method [20,28] of the finite element 
scheme, which further reduces the computational cost and the storage 
of the coefficients to 𝑂(𝑁3∕2 log𝑁) and 𝑂(𝑁 log𝑁), respectively, and 
the computational cost of solving the linear system to 𝑂(𝑀𝑁 log3𝑁) by 
the all-at-once manner.

The rest of this paper is organized as follows. In Section 2 we go over 
the existing theoretical and numerical results for model (1). In Section 3
we develop and analyze a fast approximated scheme of the variably 
distributed-order fractional derivative, based on which we prove the er-
ror estimates for the corresponding finite element method in Section 4. 
In Section 5 we develop a fast DAC algorithm to solve the linear sys-
tem of the finite element scheme. Several numerical experiments are 
performed to substantiate the theoretical findings in the last section.

2. Preliminaries

We introduce notations and norms, and refer the well-posedness and 
regularity of model (1) as well as its numerical methods from the liter-
ature.

2.1. Well-posedness and regularity

For a given interval , let 𝐶𝑚() with 𝑚 ∈ ℕ be the space of contin-
uously differentiable functions of order 𝑚 on . For 𝑟 ≥ 0, let 𝐻𝑟(Ω) be 
the fractional Sobolev space of order 𝑟 on Ω, 𝐻𝑟

0
(Ω) be the subspace of 

𝐻𝑟(Ω) enforced with proper zero boundary conditions, and 𝐶𝑚(; ), 
with  being a Banach space, be the space of continuously differen-
tiable functions of order 𝑚 on  with respect to the norm ‖ ⋅ ‖ . All 
these spaces are equipped with standard norms [1].

Let {𝜆𝑖, 𝜑𝑖}
∞
𝑖=1

be the eigenpairs of −𝐾Δ, and 𝐻̌𝑠(Ω) ∶=
{
𝑣 ∈

𝐿2(Ω) ∶ |𝑣|2
𝐻̌𝑠(Ω)

∶=
∑∞

𝑖=1
𝜆𝑠
𝑖
(𝑣, 𝜑𝑖)

2 < ∞
}
be the subspace of 𝐻𝑠(Ω)

with ‖𝑣‖𝐻̌𝑠(Ω) ∶= (‖𝑣‖2
𝐿2(Ω)

+ |𝑣|2
𝐻̌𝑠(Ω)

)1∕2 such that 𝐻̌0(Ω) = 𝐿2(Ω) and 

𝐻̌2(Ω) =𝐻2(Ω) ∩𝐻1
0
(Ω) [33,38].

We then make the following assumptions on 𝜌(𝛼, 𝑡):

Assumption A. supp 𝜌 ⊂ [𝛼, 𝛼] for constants 0 < 𝛼 < 𝛼 ≤ 1 and 𝑡 ∈ [0, 𝑇 ], 
and 𝜌, 𝜌𝑡 ∈ 𝐶([0, 1] × [0, 𝑇 ]).

In the rest of the paper we use 𝑄 to denote a generic positive con-
stant that may assume different values at different occurrences. We 
may drop the subscript 𝐿2 in (⋅, ⋅)𝐿2 and ‖ ⋅ ‖𝐿2 , and the space-time do-
mains in the Sobolev spaces and norms, e.g., abbreviate 𝐻1(; 𝐻2(Ω))

as 𝐻1(𝐻2), when no confusion occurs.
We cite the well-posedness and regularity of (1) from [40] for future 

use.

Lemma 2.1. Suppose 𝑘 ∈ 𝐶[0, 𝑇 ], 𝑢0 ∈ 𝐻̌𝛾+2 and 𝑓 ∈𝐻1(𝐻̌𝛾 ) for 𝛾 > 𝑑∕2, 
and the Assumption A holds. Then problem (1) has a unique solution 𝑢 ∈
𝐶1([0, 𝑇 ]; 𝐻̌𝛾 ) with the following stability estimate

‖𝑢‖𝐶1([0,𝑇 ];𝐻̌𝑠) ≤𝑄(‖𝑢0‖𝐻̌2+𝑠 + ‖𝑓‖𝐻1(𝐻̌𝑠)), 0 ≤ 𝑠 ≤ 𝛾.

where 𝑄 > 0 is a constant depending on 𝛼, ‖𝑘‖𝐶([0,𝑇 ]) and 𝑇 .

Lemma 2.2. Suppose 𝑘 ∈ 𝐶1[0, 𝑇 ], 𝑢0 ∈ 𝐻̌4+𝑠, 𝑓 ∈ 𝐻1(𝐻̌2+𝑠) 
⋂

𝐻2(𝐻̌𝑠)

for 𝑠 ≥ 0, and the Assumption A holds. Then 𝑢 ∈ 𝐶2((0, 𝑇 ]; 𝐻̌𝑠) and the 
following estimate holds for 0 < 𝑡 ≪ 1,

‖𝑢‖𝐶2([𝑡,𝑇 ];𝐻̌𝑠) ≤𝑄𝑡𝛼−1(‖𝑢0‖𝐻̌4+𝑠 + ‖𝑓‖𝐻1(𝐻̌2+𝑠) + ‖𝑓‖𝐻2(𝐻̌𝑠)),

where 𝑄 > 0 is a constant depending on 𝛼, ‖𝑘‖𝐶1[0,𝑇 ] and 𝑇 .

2.2. L1 finite element method: a brief review

Let 0 <𝑁, 𝐿 ∈ℕ and we define uniform partitions on [0, 𝑇 ] and [𝛼, 𝛼]
by 𝑡𝑛 ∶= 𝑛𝜏 for 𝑛 = 0, 1, ⋯ , 𝑁 with 𝜏 ∶= 𝑇 ∕𝑁 , and 𝛼𝑙 ∶= 𝑙𝜎 for 0 ≤ 𝑙 ≤
𝐿 with 𝜎 ∶= (𝛼 − 𝛼)∕𝐿. We also define a quasi-uniform partition on Ω
with the mesh diameter ℎ, and let 𝑆ℎ be the space of continuous and 
piecewise linear functions on Ω with respect to the partition. The Ritz 
projection operator Πℎ ∶𝐻1

0
(Ω) → 𝑆ℎ is given by

(
𝐾∇Πℎ𝑔,∇𝜒ℎ

)
=
(
𝐾∇𝑔,∇𝜒ℎ

)
, ∀𝜒ℎ ∈ 𝑆ℎ,

which has the following approximation property [1,11]

‖𝑔 −Πℎ𝑔‖ ≤𝑄ℎ2‖𝑔‖𝐻2(Ω), ∀𝑔 ∈𝐻2(Ω) ∩𝐻1
0
(Ω). (3)

The discrete Laplace operator ℎ ∶ 𝑆ℎ → 𝑆ℎ is defined for any 𝜁 ∈ 𝑆ℎ by

(ℎ𝜁,𝜒ℎ) = (𝐾∇𝜁,∇𝜒ℎ), ∀𝜒ℎ ∈ 𝑆ℎ.

Denote 𝑢𝑛 ∶= 𝑢(𝒙, 𝑡𝑛), 𝑘𝑛 ∶= 𝑘(𝑡𝑛) and 𝑓𝑛 ∶= 𝑓 (𝒙, 𝑡𝑛). We use the back-
ward Euler scheme and the 𝐿1 scheme to discrete 𝜕𝑡𝑢 and 𝜕1−𝛼

𝑡
𝑢, respec-

tively, at 𝑡 = 𝑡𝑛 with 𝛼 ∈ [𝛼, 𝛼] by

𝜕𝑡𝑢𝑛 =
𝑢𝑛 − 𝑢𝑛−1

𝜏
+

1

𝜏

𝑡𝑛

∫
𝑡𝑛−1

𝜕𝑡𝑡𝑢(𝑡− 𝑡𝑛−1)𝑑𝑡 ∶= 𝛿𝜏𝑢𝑛 +𝐸𝑛,

𝜕1−𝛼
𝑡𝑛

𝑢𝑛 =

𝑛∑
𝑘=1

𝑏𝑛,𝑘(𝑢𝑘 − 𝑢𝑘−1) +
1

Γ(𝛼)

𝑛∑
𝑘=1

𝑡𝑘

∫
𝑡𝑘−1

𝜕𝑠𝑢− 𝛿𝜏𝑢𝑘

(𝑡𝑛 − 𝑠)1−𝛼
𝑑𝑠,

(4)

where the coefficients 𝑏𝑛,𝑘 for 1 ≤ 𝑘 ≤ 𝑛 are given by

𝑏𝑛,𝑘 ∶=
(𝑡𝑛 − 𝑡𝑘−1)

𝛼 − (𝑡𝑛 − 𝑡𝑘)
𝛼

𝜏Γ(1 + 𝛼)
=

(𝑛− 𝑘+ 1)𝛼 − (𝑛− 𝑘)𝛼

𝜏1−𝛼Γ(1 + 𝛼)
. (5)

We use the composite middle rectangular formula to approximate 
the integral with respect to 𝛼 in 𝔻𝜌

𝑡𝑛
𝑢 as

𝔻
𝜌

𝑡𝑛
𝑢 = 𝜎

𝐿∑
𝑙=1

𝜌(𝛼𝑙−1∕2, 𝑡𝑛)𝜕
1−𝛼𝑙−1∕2

𝑡
𝑢+ 𝐹𝑛, (6)

where the corresponding truncation error could be expressed as

𝐹𝑛 ∶ =

𝐿∑
𝑙=1

𝛼𝑙

∫
𝛼𝑙−1

𝛼

∫
𝛼𝑙−1∕2

𝜉

∫
𝛼𝑙−1∕2

𝜕𝜂𝜂
(
𝜕
1−𝜂

𝑡𝑛
𝑢
)
𝑑𝜂𝑑𝜉𝑑𝛼.

We apply the first right-hand side term of the second equation of (4) to 
approximate 𝜕1−𝛼

𝑡𝑛
𝑢𝑛 in (6) to obtain its discretization at 𝑡 = 𝑡𝑛 as

𝔻
𝜌

𝑡𝑛
𝑢𝑛 ≈ 𝜎

𝐿∑
𝑙=1

𝜌(𝛼𝑙−1∕2, 𝑡𝑛)

𝑛∑
𝑘=1

𝑏𝑙
𝑛,𝑘

(𝑢𝑘 − 𝑢𝑘−1) + 𝐹𝑛

∶= 𝜎

𝑛∑
𝑘=1

𝑎̂𝑛,𝑘(𝑢𝑘 − 𝑢𝑘−1) ∶= 𝛿
𝜌

𝑡𝑛
𝑢𝑛 + 𝐹𝑛,

(7)

where 𝑏𝑙
𝑛,𝑘
is given in (5) with 𝛼 = 𝛼𝑙−1∕2 and

𝑎̂𝑛,𝑘 = 𝜎

𝐿∑
𝑙=1

𝜌(𝛼𝑙−1∕2, 𝑡𝑛)𝑏
𝑙
𝑛,𝑘

, 1 ≤ 𝑘 ≤ 𝑛.

We apply the preceding discretizations to obtain an L1 finite element 
scheme of (1): find 𝑈̂𝑛 ∈ 𝑆ℎ for 𝑛 = 1, 2, ⋯ , 𝑁 such that ∀𝜒ℎ ∈ 𝑆ℎ
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(𝛿𝜏 𝑈̂𝑛 + 𝑘(𝑡𝑛)𝛿
𝜌

𝑡𝑛
𝑈̂𝑘, 𝜒ℎ) + (𝐾∇𝑈̂𝑛,∇𝜒ℎ) = (𝑓,𝜒ℎ). (8)

Error estimates of this scheme are given in the following theorem.

Theorem 2.1. Suppose 𝑢0 ∈ 𝐻̌4, 𝑓 ∈𝐻1(𝐻̌2) 
⋂

𝐻2(𝐿2), the Assumption A
holds, and max𝑡∈[0,𝑇 ] ‖𝜌(⋅, 𝑡)‖𝑊 2,1(𝛼,𝛼) <∞. Then the following error estimate 
holds

‖𝑢− 𝑈̂‖𝐿̂∞(𝐿2) ∶= max
1≤𝑛≤𝑁

‖𝑢𝑛 − 𝑈̂𝑛‖𝐿2

≤𝑄(‖𝑢0‖𝐻̌4 + ‖𝑓‖𝐻1(𝐻̌2) + ‖𝑓‖𝐻2(𝐿2))(𝜎
2 + 𝜏 + ℎ2).

Proof. We could follow [40] to prove this theorem. The only difference 
lies in the estimate of 𝐹𝑛. By assumptions on 𝜌, 𝐹𝑛 is bounded by

‖𝐹𝑛‖ ≤
𝐿∑
𝑙=1

𝛼𝑙

∫
𝛼𝑙−1

‖‖‖‖

𝛼

∫
𝛼𝑙−1∕2

𝜉

∫
𝛼𝑙−1∕2

𝜕𝜂𝜂(𝜕
1−𝜂

𝑡
𝑢)𝑑𝜂𝑑𝜉

‖‖‖‖𝑑𝛼

≤𝑄𝜎2

𝐿∑
𝑙=1

𝛼𝑙

∫
𝛼𝑙−1

[||||
(𝜌(𝛼, 𝑡𝑛)

Γ(𝛼)

)′′ 𝑡𝑛

∫
0

𝜕𝑠𝑢𝑑𝑠

(𝑡𝑛 − 𝑠)1−𝛼
𝑑𝑠
||||

+2
||||
(𝜌(𝛼, 𝑡𝑛)

Γ(𝛼)

)′ 𝑡𝑛

∫
0

𝜕𝑠𝑢 ln(𝑡𝑛 − 𝑠)𝑑𝑠

(𝑡𝑛 − 𝑠)1−𝛼

||||

+
||||
𝜌(𝛼, 𝑡𝑛)

Γ(𝛼)

𝑡𝑛

∫
0

𝜕𝑠𝑢 ln
2(𝑡𝑛 − 𝑠)𝑑𝑠

(𝑡𝑛 − 𝑠)1−𝛼

||||
]
𝑑𝛼

≤𝑄𝜎2‖𝑢‖𝐶1([0,1];𝐿2)

𝐿∑
𝑙=1

𝛼𝑙

∫
𝛼𝑙−1

[||||
(𝜌(𝛼, 𝑡𝑛)

Γ(𝛼)

)′′ 𝑡𝑛

∫
0

𝑑𝑠

(𝑡𝑛 − 𝑠)1−𝛼
𝑑𝑠
||||

+2
||||
(𝜌(𝛼, 𝑡𝑛)

Γ(𝛼)

)′ 𝑡𝑛

∫
0

ln(𝑡𝑛 − 𝑠)𝑑𝑠

(𝑡𝑛 − 𝑠)1−𝛼

||||+
||||
𝜌(𝛼, 𝑡𝑛)

Γ(𝛼)

𝑡𝑛

∫
0

ln2(𝑡𝑛 − 𝑠)𝑑𝑠

(𝑡𝑛 − 𝑠)1−𝛼

||||
]
𝑑𝛼.

For each 𝑡𝑛, we apply (𝑡𝑛 − 𝑠)𝜀| ln(𝑡𝑛 − 𝑠)| ≤𝑄 for 0 < 𝜀 ≪ 1 to get

𝑡𝑛

∫
0

ln(𝑡𝑛 − 𝑠)𝑑𝑠

(𝑡𝑛 − 𝑠)1−𝛼
=

𝑡𝑛

∫
0

(𝑡𝑛 − 𝑠)𝜀 ln(𝑡𝑛 − 𝑠)

(𝑡𝑛 − 𝑠)1−𝛼+𝜀
≤𝑄

and a similar estimate with ln(𝑡𝑛−𝑠) in this equation replaced by ln2(𝑡𝑛−
𝑠), based on which we bound 𝐹𝑛 by ‖𝐹𝑛‖𝐿̂∞(𝐿2) ≤𝑄‖𝑢‖𝐶1([0,𝑇 ];𝐿2)𝜎

2. For 
the remaining part of the proof we refer [40] for the details. □

3. An efficient discretization for variably distributed-order 
fractional derivative

When implementing the scheme (8) in the previous section, we have 
to compute the coefficients {𝑎̂𝑛,𝑘} for 1 ≤ 𝑘 ≤ 𝑛 ≤𝑁 , totally 𝑂(𝐿𝑁2) op-
erations. To maintain the first-order accuracy in time, we should set 
𝐿 = 𝑂(𝑁1∕2) (such that 𝜎2 =

(
𝑂(𝑁−1∕2)

)2
= 𝑂(𝑁−1)), which leads to 

𝑂(𝑁5∕2) computations and 𝑂(𝑁2) storage for computing and storing 
these coefficients. To improve the efficiency without loss of accuracy, 
we develop a novel scheme by discretizing the variably distributed-
order fractional derivative in a different approach.

3.1. Formulation of fast scheme

Given a function 𝑧 = 𝑧(𝑡) on 𝑡 ∈ [0, 𝑇 ] with 𝑧𝑛 ∶= 𝑧(𝑡𝑛), we first dis-
cretize 𝔻𝜌

𝑡𝑛
𝑧𝑛 by replacing 𝜕1−𝛼

𝑡𝑛
𝑧𝑛 by (4)

𝔻
𝜌

𝑡𝑛
𝑧𝑛 =

𝑛∑
𝑘=1

𝑐𝑛,𝑘(𝑧𝑘 − 𝑧𝑘−1) + 𝑟𝑛(𝑧), (9)

where the coefficients 𝑐𝑛,𝑘 for 1 ≤ 𝑘 ≤ 𝑛 and local truncation error 𝑟𝑛 are 
given by

𝑐𝑛,𝑘 ∶=

𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)𝑏𝑛,𝑘𝑑𝛼 =

𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)

𝜏1−𝛼Γ(1 + 𝛼)

(
(𝑛− 𝑘+ 1)𝛼 − (𝑛− 𝑘)𝛼

)
𝑑𝛼,

𝑟𝑛(𝑧) ∶=

𝑛∑
𝑘=1

𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)

Γ(𝛼)

𝑡𝑘

∫
𝑡𝑘−1

𝑧′(𝑠) − 𝛿𝜏𝑧𝑘

(𝑡𝑛 − 𝑠)1−𝛼
𝑑𝑠𝑑𝛼.

(10)

Then we consider the approximation of 𝑐𝑛,𝑘 for 1 ≤ 𝑘 ≤ 𝑛 ≤𝑁 by defining 
an auxiliary function

𝑔𝑚
𝑎
(𝑥) ∶=

(𝑎+ 1)𝑥 ln𝑚(𝑎+ 1) − 𝑎𝑥 ln𝑚 𝑎

𝑚!
, 𝑥 ∈ [0,1], (11)

where 𝑎, 𝑚 ∈ ℕ are two nonnegative parameters. For a fixed positive 
integer 𝑆, we apply the Taylor expansion of the exponential function to 
expand (𝑛 − 𝑘 + 1)𝛼 − (𝑛 − 𝑘)𝛼 for 𝑛 − 𝑘 ≥ 1 at 𝛼 = 𝛼 as

(𝑛− 𝑘+ 1)𝛼 − (𝑛− 𝑘)𝛼

=

𝑆∑
𝜈=0

(𝛼 − 𝛼)𝜈

𝜈!

[
(𝑛− 𝑘+ 1)𝛼 ln𝜈 (𝑛− 𝑘+ 1) − (𝑛− 𝑘)𝛼 ln𝜈(𝑛− 𝑘)

]

+
(𝛼 − 𝛼)𝑆+1

(𝑆 + 1)!

[
(𝑛− 𝑘+ 1)𝜃𝑛,𝑘 ln𝑆+1(𝑛− 𝑘+ 1) − (𝑛− 𝑘)𝜃𝑛,𝑘 ln𝑆+1(𝑛− 𝑘)

]

=

𝑆∑
𝜈=0

(𝛼 − 𝛼)𝜈𝑔𝜈
𝑛−𝑘

(𝛼) + (𝛼 − 𝛼)𝑆+1𝑔𝑆+1
𝑛−𝑘

(𝜃𝑛,𝑘),

where 𝜃𝑛,𝑘 ∈ [𝛼, 𝛼] is a constant depending on 𝑛 − 𝑘 and 𝑆. By dropping 
the local truncation error, we obtain an approximation of 𝑐𝑛,𝑘 as

𝑐𝑛,𝑘 =

⎧⎪⎪⎨⎪⎪⎩

𝑐𝑛,𝑘, 𝑛− 𝑘 ≤ 𝑆,

𝑆∑
𝜈=0

( 𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)(𝛼 − 𝛼)𝜈

𝜏1−𝛼Γ(1 + 𝛼)
𝑑𝛼

)
𝑔𝜈
𝑛−𝑘

(𝛼), 𝑛− 𝑘 ≥ 𝑆 + 1,

(12)

with errors 𝐻𝑛,𝑘 ∶= 𝑐𝑛,𝑘 − 𝑐𝑛,𝑘 given by

𝐻𝑛,𝑘 =

⎧
⎪⎪⎨⎪⎪⎩

0, 𝑛− 𝑘 ≤ 𝑆
𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)(𝛼 − 𝛼)𝑆+1𝑔𝑆+1
𝑛−𝑘

(𝜃𝑛,𝑘)

𝜏1−𝛼Γ(1 + 𝛼)
𝑑𝛼, 𝑛− 𝑘 ≥ 𝑆 + 1.

(13)

By replacing 𝑐𝑛,𝑘 with 𝑐𝑛,𝑘 in (9), we obtain an approximation of 𝔻
𝜌

𝑡
𝑧 at 

𝑡 = 𝑡𝑛 as

𝔻
𝜌

𝑡𝑛
𝑧𝑛 =

𝑛∑
𝑘=1

𝑐𝑛,𝑘(𝑧𝑘 − 𝑧𝑘−1) + 𝑞𝑛(𝑧) + 𝑟𝑛(𝑧)

∶= 𝛿
𝜌

𝑡𝑛
𝑧𝑛 + 𝑞𝑛(𝑧) + 𝑟𝑛(𝑧),

(14)

where 𝑟𝑛(𝑧) is given in (10) and 𝑞𝑛(𝑧) is defined by

𝑞𝑛(𝑧) =

𝑛∑
𝑘=1

𝐻𝑛,𝑘(𝑧𝑘 − 𝑧𝑘−1).

3.2. Estimates of local truncation errors

Lemma 3.1. The coefficients 
{
𝑐𝑛,𝑘

}𝑛
𝑘=1

in (10) satisfy

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)𝑑𝛼

𝜏1−𝛼Γ(1 + 𝛼)
= 𝑐𝑛,𝑛 > 𝑐𝑛,𝑛−1 >⋯ > 𝑐𝑛,𝑘 >⋯ > 𝑐𝑛,1 > 0,

𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)𝑑𝛼

𝜏1−𝛼(𝑛− 𝑘+ 1)1−𝛼Γ(𝛼)
≤ 𝑐𝑛,𝑘 ≤

𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)𝑑𝛼

𝜏1−𝛼(𝑛− 𝑘)1−𝛼Γ(𝛼)
, 𝑘 < 𝑛.

Proof. These results follow from the properties of 𝑏𝑛,𝑘 [35]

⎧
⎪⎨⎪⎩

1

𝜏1−𝛼Γ(1 + 𝛼)
= 𝑏𝑛,𝑛 > 𝑏𝑛,𝑛−1 >⋯ > 𝑏𝑛,𝑘 >⋯ > 𝑏𝑛,1 > 0,

1

𝜏1−𝛼(𝑛− 𝑘+ 1)1−𝛼Γ(𝛼)
≤ 𝑏𝑛,𝑘 ≤ 1

𝜏1−𝛼(𝑛− 𝑘)1−𝛼Γ(𝛼)
, 𝑘 < 𝑛.

□
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Lemma 3.2. Suppose that 𝑆 in (12) satisfies

Condition 𝑆 ∶ 𝑆 ≥ 𝑒𝜇 ln𝑁−1 for 𝜇 ≥ 1 satisfying 𝑒𝜇
(
𝜇−1−ln(𝛼−𝛼)

) ≥ 3−𝛼.

Then there exists a constant 𝑄̂ such that
𝑛∑

𝑘=1

|𝑐𝑛,𝑘 − 𝑐𝑛,𝑘| =
𝑛∑

𝑘=1

|𝐻𝑛,𝑘| ≤ 𝑄̂𝑁−1, 1 ≤ 𝑛 ≤𝑁.

Remark 3.1. To roughly show the value of 𝜇, let 𝜇 ≥ 1 satisfy a more 
constrained inequality than that in Condition S, that is, 𝑒𝜇(𝜇 − 1) ≥ 3. 
Then we approximately solve this inequality to find that 𝜇 ≥ 1.61. 
Therefore it suffices to set 𝑆 = ⌊𝑒1.61 ln𝑁 − 1⌋ = 𝑂(log𝑁) to meet the 
Condition S. We will see in Theorem 4.2 that the Condition S is suf-
ficient to ensure the first-order accuracy in time of the errors of the 
fast numerical scheme (18) using the discretization 𝛿𝜌

𝑡𝑛
of the variably 

distributed-order derivative operator 𝔻𝜌

𝑡𝑛
.

Proof. We estimate 𝐻𝑛,𝑘 by analyzing the auxiliary function 𝑔𝑚
𝑎
(𝑥) de-

fined in (11). It is clear that 𝑔𝑆+1
𝑛−𝑘

(𝜃) > 0 and

𝑑

𝑑𝜃

(
𝑔𝑆+1
𝑛−𝑘

(𝜃)
)
=

(𝑛− 𝑘+ 1)𝜃 ln𝑆+2(𝑛− 𝑘+ 1) − (𝑛− 𝑘)𝜃 ln𝑆+1(𝑛− 𝑘)

(𝑆 + 1)!
> 0,

which means 𝑔𝑆+1
𝑛−𝑘

(𝜃) is monotonically increasing for 𝜃 ∈ [0, 1] and thus

𝑔𝑆+1
𝑛−𝑘

(𝜃𝑛,𝑘) ≤ 𝑔𝑆+1
𝑛−𝑘

(1) =
(𝑛− 𝑘+ 1) ln𝑆+1(𝑛− 𝑘+ 1) − (𝑛− 𝑘) ln𝑆+1(𝑛− 𝑘)

(𝑆 + 1)!
.

Therefore we bound 𝐻𝑛,𝑘 in (13) by

||𝐻𝑛,𝑘
|| ≤ (

𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)(𝛼 − 𝛼)𝑆+1

𝜏1−𝛼Γ(1 + 𝛼)
𝑑𝛼

)
𝑔𝑆+1
𝑛−𝑘

(1),

which leads to

𝑛∑
𝑘=1

|𝐻𝑛,𝑘|≤
𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)(𝛼 − 𝛼)𝑆+1

𝜏1−𝛼Γ(1 + 𝛼)
𝑑𝛼

𝑛∑
𝑘=1

𝑔𝑆+1
𝑛−𝑘

(1)≤ 𝑁2−𝛼(𝛼 − 𝛼)𝑆+1 ln𝑆+1𝑁

(𝑆 + 1)!
.

We use the Stirling’s formula (𝑆 + 1)! ≥ (𝑆 + 1)𝑆+3∕2𝑒−(𝑆+1) to obtain

(𝛼 − 𝛼)𝑆+1 ln𝑆+1𝑁

(𝑆 + 1)!
≤ 1√

𝑆 + 1

(
𝑒(𝛼 − 𝛼) ln𝑁

𝑆 + 1

)𝑆+1

≤
(

𝑒(𝛼 − 𝛼) ln𝑁

𝑆 + 1

)𝑆+1

.

In order to maintain the first-order accuracy in time, we require 𝑆 to 
satisfy

(
𝑒(𝛼 − 𝛼) ln𝑁

𝑆 + 1

)𝑆+1

≤𝑁𝛼−3
⇒ (𝑆 + 1) ln

( 𝑒(𝛼 − 𝛼) ln𝑁

𝑆 + 1

) ≤ −(3 − 𝛼) ln𝑁.

By assuming 𝑆 + 1 = 𝑒𝜇 ln𝑁 for some 𝜇 ≥ 1, we have

𝑒𝜇 ln
(
𝑒1−𝜇(𝛼 − 𝛼)

) ≤ −(3 − 𝛼)⇒ 𝑒𝜇
(
(𝜇 − 1) − ln(𝛼 − 𝛼)

) ≥ 3 − 𝛼.

Thus we finish the proof of the lemma. □

Theorem 3.1. Suppose that 𝑧 ∈ 𝐶1[0, 𝑇 ] 
⋂

𝐶2(0, 𝑇 ] with

‖𝑧‖𝐶1[0,1] ≤𝑄0, ‖𝑧‖𝐶2[𝑡,𝑇 ] ≤𝑄0𝑡
𝛼−1, 0 < 𝑡≪ 1.

If 𝑆 satisfies the Condition S, we have the following estimates

|𝑟𝑛(𝑧)| ≤𝑄𝑄0𝑛
𝛼−1𝑁−𝛼 , |𝑞𝑛(𝑧)| ≤𝑄𝑄0𝑄̂𝑁−1,

where the constant 𝑄̂ is given in Lemma 3.2.

Proof. The 𝑟𝑛 can be bounded similar to Theorem 4.1 in [40], and for 
𝑞𝑛 we use the estimate of 𝐻𝑛,𝑘 in Lemma 3.2 to get

|𝑞𝑛(𝑧)| ≤
𝑛∑

𝑘=1

|𝐻𝑛,𝑘||𝑧𝑘 − 𝑧𝑘−1| ≤ 2‖𝑧‖𝐶[0,𝑇 ]

𝑛∑
𝑘=1

|𝐻𝑛,𝑘| ≤𝑄𝑄0𝑄̂𝑁−1.

Thus we finish the proof. □

3.3. Fast coefficient generation and efficient storage

For implementation, the coefficients 𝑐𝑛,𝑘 can be generated and stored 
by a fast algorithm. Denote

𝐶𝜈
𝑛
∶=

𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)(𝛼 − 𝛼)𝜈

𝜏1−𝛼Γ(1 + 𝛼)
𝑑𝛼, 1 ≤ 𝑛 ≤𝑁, 0 ≤ 𝜈 ≤ 𝑆,

then 𝑐𝑛,𝑘 in (12) for 𝑛 − 𝑘 ≥ 𝑆 + 1 can be expressed as

𝑐𝑛,𝑘 =

𝑆∑
𝜈=0

𝐶𝜈
𝑛
𝑔𝜈
𝑛−𝑘

(𝛼). (15)

Thus we require to compute 𝑐𝑛,𝑘 for 𝑛 − 𝑘 ≤ 𝑆, 𝐶𝜈
𝑛
for 𝑆 + 1 ≤ 𝑛 ≤𝑁, 0 ≤

𝜈 ≤ 𝑆 and 𝑔𝜈
𝑛−𝑘

(𝛼) for 𝑆 + 1 ≤ 𝑛 − 𝑘 ≤𝑁 − 1.
As discussed in Remark 3.1, we set 𝑆 = 𝑂(log𝑁) to ensure the 𝑂(𝜏)

temporal accuracy. We use the composite middle rectangle formula 
to compute 𝑐𝑛,𝑘 for 𝑛 − 𝑘 ≤ 𝑆 with the 𝑂(𝜏) accuracy by setting the 
mesh size 𝜎 = 𝑂(

√
𝜏), which requires 𝑂(𝑁3∕2 log𝑁) computations and 

𝑂(𝑁 log𝑁) storage, respectively.
Similarly, 𝑂(𝑁3∕2 log𝑁) computations and 𝑂(𝑁 log𝑁)memories are 

required in evaluating and storing 𝐶𝜈
𝑛
for 𝑆 + 1 ≤ 𝑛 ≤ 𝑁 and 0 ≤ 𝜈 ≤

𝑆, respectively. Thus computing 𝑐𝑛,𝑘 for 𝑛 − 𝑘 ≥ 𝑆 + 1 totally requires 
𝑂(𝑁2 log𝑁) operations by (15).

We summarize the above discussions in the following theorem.

Theorem 3.2. Under the Condition S, the coefficients 𝑐𝑛,𝑘 for 1 ≤ 𝑘 ≤ 𝑛 ≤𝑁

can be efficiently computed and stored in 𝑂(𝑁2 log𝑁) operations.

4. Error estimate for fast finite element scheme

In Section 3 we developed an efficient discretization scheme 𝛿1−𝜌(𝛼,𝑡𝑛)
𝜏

for the variably distributed-order fractional derivative operator 𝔻𝜌(⋅,𝑡)
𝑡

. 
In this section, we apply this to construct a fast finite element scheme 
for model (1) and prove its error estimates.

We apply (14) to construct a different discretization of 𝔻𝜌

𝑡
𝑢 from the 

𝐿1 scheme as

𝔻
𝜌

𝑡𝑛
𝑢𝑛 = 𝛿

𝜌

𝑡𝑛
𝑢𝑛 +𝑅𝑛 + 𝐹𝑛, (16)

where

𝛿
𝜌

𝑡𝑛
𝑢𝑛 =

𝑛∑
𝑘=1

𝑐𝑛,𝑘(𝑢𝑘 − 𝑢𝑘−1), 𝐹𝑛 ∶=

𝑛∑
𝑘=1

𝐻𝑛,𝑘(𝑢𝑘 − 𝑢𝑘−1),

𝑅𝑛 ∶=

𝑛∑
𝑘=1

𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)

Γ(𝛼)

𝑡𝑘

∫
𝑡𝑘−1

𝜕𝑠𝑢(⋅, 𝑠) − 𝛿𝜏𝑢𝑘

(𝑡𝑛 − 𝑠)1−𝛼
𝑑𝑠𝑑𝛼,

and 𝑐𝑛,𝑘 and 𝐻𝑛,𝑘 are given in (12) and (13), respectively.
We plug the discretization of 𝜕𝑡𝑢 in (4) and 𝔻

𝜌

𝑡𝑛
𝑢𝑛 in (16) into (1), 

integrate the resulting equation multiplied by 𝜒 ∈𝐻1
0
(Ω) on Ω to get a 

weak formulation of model (1): for any 𝜒 ∈𝐻1
0
(Ω) and 1 ≤ 𝑛 ≤𝑁 ,

(𝛿𝜏𝑢𝑛 + 𝑘𝑛𝛿
𝜌

𝑡𝑛
𝑢𝑛, 𝜒) + (𝐾∇𝑢𝑛,∇𝜒) = (𝑓𝑛, 𝜒) − (𝑘𝑛(𝑅𝑛 + 𝐹𝑛) +𝐸𝑛, 𝜒). (17)

We drop the local truncation errors on the right-hand side of (17) to 
obtain a fast finite element scheme of (1): find 𝑈̃𝑛 ∈ 𝑆ℎ with 𝑈̃0 = Πℎ𝑢0
for 1 ≤ 𝑛 ≤𝑁 such that for any 𝜒ℎ ∈ 𝑆ℎ and 1 ≤ 𝑛 ≤𝑁 ,

(𝛿𝜏 𝑈̃𝑛 + 𝑘𝑛𝛿
𝜌

𝑡𝑛
𝑈̃𝑛, 𝜒ℎ) + (𝐾∇𝑈̃𝑛,∇𝜒ℎ) = (𝑓𝑛, 𝜒ℎ). (18)

Let 𝜂 = 𝑢 − Πℎ𝑢 and 𝑢𝑛 − 𝑈𝑛 = 𝑢𝑛 − Πℎ𝑢𝑛 + Πℎ𝑢𝑛 − 𝑈𝑛 =∶ 𝜂𝑛 + 𝜉𝑛, we 
bound 𝜂𝑛 = (𝑢 −Πℎ𝑢)(𝒙, 𝑡𝑛) in the following theorem.

Theorem 4.1. Suppose that the assumptions of Lemma 2.2 hold, then 𝜂 can 
be estimated as follows

‖𝛿𝜏𝜂‖𝐿̂∞(𝐿2) + ‖𝛿𝜌𝑡𝑛𝜂‖𝐿̂∞(𝐿2) ≤𝑄(‖𝑢0‖𝐻̌4 + ‖𝑓‖𝐻1(𝐻̌2))ℎ
2,

where 𝑄 is a constant independent of 𝜏, ℎ and 𝑢.
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Proof. We use Lemma 2.1 and (3) to get

‖𝛿𝜏𝜂‖𝐿̂∞(𝐿2) = max
1≤𝑛≤𝑁

1

𝜏

‖‖‖‖(𝐼 −Πℎ)

𝑡𝑛

∫
𝑡𝑛−1

𝜕𝑡𝑢𝑑𝑡
‖‖‖‖≤𝑄ℎ2‖𝑢‖𝐶1([0,𝑇 ];𝐻2).

From (14), we express 𝛿𝜌
𝑡𝑛
𝜂𝑛 by

𝛿
𝜌

𝑡𝑛
𝜂𝑛 =

𝑛∑
𝑘=1

𝑐𝑛,𝑘(𝜂𝑘 − 𝜂𝑘−1) =

𝑛∑
𝑘=1

𝑐𝑛,𝑘(𝜂𝑘 − 𝜂𝑘−1) +

𝑛∑
𝑘=1

𝐻𝑛,𝑘(𝜂𝑘 − 𝜂𝑘−1).

(19)

The first term on the right-hand side of (19) can be bounded by

‖‖‖‖
𝑛∑

𝑘=1

𝑐𝑛,𝑘(𝜂𝑘 − 𝜂𝑘−1)
‖‖‖‖ =

‖‖‖‖
𝑛∑

𝑘=1

𝑐𝑛,𝑘(𝐼 −Πℎ)

𝑡𝑘

∫
𝑡𝑘−1

𝜕𝑠𝑢(⋅, 𝑠)𝑑𝑠
‖‖‖‖

≤𝑄‖𝑢‖𝐶1([0,𝑇 ];𝐻2)𝜏ℎ
2

𝑛∑
𝑘=1

𝑐𝑛,𝑘 ≤𝑄‖𝑢‖𝐶1([0,𝑇 ];𝐻̌2)ℎ
2,

where we use 𝔻𝜌

𝑡𝑛
𝑡 =

𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)𝑡
𝛼
𝑛

Γ(𝛼 + 1)
𝑑𝛼 ≤𝑄 to obtain

𝔻
𝜌

𝑡𝑛
𝑡 =

𝛼

∫
𝛼

𝜌(𝛼, 𝑡)𝜕1−𝛼
𝑡

𝑡𝑑𝛼
||||𝑡=𝑡𝑛

=

𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)

Γ(𝛼)

𝑡𝑛

∫
0

𝑑𝑠

(𝑡𝑛 − 𝑠)1−𝛼
𝑑𝛼

=

𝑛∑
𝑘=1

𝛼

∫
𝛼

𝜌(𝛼, 𝑡𝑛)

Γ(𝛼)

𝑡𝑘

∫
𝑡𝑘−1

𝑑𝑠

(𝑡𝑛 − 𝑠)1−𝛼
𝑑𝛼

=

𝑛∑
𝑘=1

𝛼

∫
𝛼

𝜏𝛼𝜌(𝛼, 𝑡𝑛)

Γ(𝛼 + 1)

[
(𝑛− 𝑘+ 1)𝛼 − (𝑛− 𝑘)𝛼

]
𝑑𝛼 = 𝜏

𝑛∑
𝑘=1

𝑐𝑛,𝑘 ≤𝑄.

Similarly, we use Lemma 3.2 to estimate the second term on the 
right-hand side of (19) by

‖‖‖‖
𝑛∑

𝑘=1

𝐻𝑛,𝑘(𝜂𝑘 − 𝜂𝑘−1)
‖‖‖‖ ≤

‖‖‖‖
𝑛∑

𝑘=1

𝐻𝑛,𝑘(𝐼 −Πℎ)

𝑡𝑘

∫
𝑡𝑘−1

𝜕𝑠𝑢(⋅, 𝑠)𝑑𝑠
‖‖‖‖

≤𝑄‖𝑢‖𝐶1([0,𝑇 ];𝐻̌2)𝜏ℎ
2

𝑛∑
𝑘=1

|𝐻𝑛,𝑘| ≤𝑄𝑄̂‖𝑢‖𝐶1([0,𝑇 ];𝐻̌2)𝜏
2ℎ2.

We insert the previous estimates into (19) to finish the proof. □

Before the error estimates of the fast scheme (18), it is worth men-
tioning that the coefficients {𝑐𝑛,𝑘} in 𝛿

𝜌

𝑡𝑛
𝑢𝑛 in (14) do not enjoy the 

monotonicity like {𝑏𝑛,𝑘} and {𝑐𝑛,𝑘} (cf. Lemma 3.1), which is a key 
ingredient in error estimates of the L1 schemes of (variably) distributed-
order tFDEs. Consequently, the techniques to prove Theorem 2.1 in [40]
do not apply. To resolve this issue, we design the following decomposi-
tion for entries in {𝑐𝑛,𝑘}

|𝑐𝑛,𝑘+1 − 𝑐𝑛,𝑘| = |𝑐𝑛,𝑘+1 − 𝑐𝑛,𝑘 +
(
𝑐𝑛,𝑘+1 − 𝑐𝑛,𝑘+1

)
+
(
𝑐𝑛,𝑘 − 𝑐𝑛,𝑘

) |
≤ 𝑐𝑛,𝑘+1 − 𝑐𝑛,𝑘 + |𝑐𝑛,𝑘+1 − 𝑐𝑛,𝑘+1|+ |𝑐𝑛,𝑘 − 𝑐𝑛,𝑘|.

(20)

By employing this technique we could circumvent the loss the mono-
tonicity of the coefficients and prove error estimates of the fast scheme 
(18) in the following theorem.

Theorem 4.2. Under the assumptions of Lemma 2.2 and the Condition 𝑆, 
the following estimate holds for (18)

‖𝑢− 𝑈̃‖𝐿̂∞(𝐿2) ≤𝑄(‖𝑢0‖𝐻̌4 + ‖𝑓‖𝐻1(𝐻̌2) + ‖𝑓‖𝐻2(𝐿2))(𝜏 + ℎ2).

Proof. We subtract (18) from (17) and set 𝜒ℎ = 𝜒 = 𝜉𝑛 to get

(𝛿𝜏𝜉𝑛 + 𝑘𝑛𝛿
𝜌

𝑡𝑛
𝜉𝑛, 𝜉𝑛) + (𝐾∇𝜉𝑛,∇𝜉𝑛) = −(𝐺𝑛, 𝜉𝑛), (21)

where 𝐺𝑛 ∶= 𝛿𝜏𝜂𝑛 + 𝑘𝑛𝛿
𝜌

𝑡𝑛
𝜂𝑛 + 𝑘𝑛(𝑅𝑛 + 𝐹𝑛) +𝐸𝑛. We rewrite 𝛿

𝜌

𝑡𝑛
𝜉𝑛 as

𝛿
𝜌

𝑡𝑛
𝜉𝑛 = 𝑐𝑛,𝑛𝜉𝑛 −

𝑛−1∑
𝑘=1

(𝑐𝑛,𝑘+1 − 𝑐𝑛,𝑘)𝜉𝑘 − 𝑐𝑛,1𝜉0.

Correspondingly, (21) can be reformulated as
(
1 + 𝜏𝑘(𝑡𝑛)𝑐𝑛,𝑛

)‖𝜉𝑛‖2 + 𝜏(𝐾∇𝜉𝑛,∇𝜉𝑛)

≤ (𝜉𝑛−1, 𝜉𝑛) + 𝜏𝑘𝑛

( 𝑛−1∑
𝑘=1

(𝑐𝑛,𝑘+1 − 𝑐𝑛,𝑘)𝜉𝑘, 𝜉𝑛

)
+ 𝜏(𝐺𝑛, 𝜉𝑛).

(22)

Apply (20) and the Cauchy inequality to cancel ‖𝜉𝑛‖ on both sides to 
obtain

(
1 + 𝜏𝑘(𝑡𝑛)𝑐𝑛,𝑛

)‖𝜉𝑛‖ ≤ ‖𝜉𝑛−1‖+ 𝜏𝑘𝑛

𝑛−1∑
𝑘=1

(
𝑐𝑛,𝑘+1 − 𝑐𝑛,𝑘 + |𝑐𝑛,𝑘 − 𝑐𝑛,𝑘|

+|𝑐𝑛,𝑘+1 − 𝑐𝑛,𝑘+1|
)‖𝜉𝑘‖+ 𝜏‖𝐺𝑛‖.

(23)

By (23), for 𝑛 = 1, we have

‖𝜉1‖ ≤ 𝜏‖𝐺1‖ ≤ 𝜏(1 + 2𝑄̂‖𝑘‖𝐶[0,𝑇 ]𝜏)‖𝐺1‖,
where 𝑄̂ is given in Lemma 3.2. We assume

‖𝜉𝑚‖ ≤ 𝑃𝑚

𝑚∑
𝑗=1

‖𝐺𝑗‖, 𝑃𝑚 ∶= 𝜏(1 + 2𝑄̂‖𝑘‖𝐶[0,𝑇 ]𝜏)
𝑚, 1 ≤𝑚 ≤ 𝑛− 1, (24)

plug (24) with 2 ≤𝑚 ≤ 𝑛 −1 into (23), and use the fact that 𝑃𝑁 > 𝑃𝑁−1 >

⋯ > 𝑃1 > 𝜏 and

𝑛−1∑
𝑘=1

(𝑐𝑛,𝑘+1 − 𝑐𝑛,𝑘 + |𝑐𝑛,𝑘+1 − 𝑐𝑛,𝑘+1|+ |𝑐𝑛,𝑘 − 𝑐𝑛,𝑘|)

≤
𝑛−1∑
𝑘=1

(𝑐𝑛,𝑘+1 − 𝑐𝑛,𝑘) + 2

𝑛−2∑
𝑘=1

|𝑐𝑛,𝑘 − 𝑐𝑛,𝑘| ≤ 𝑐𝑛,𝑛 + 2𝑄̂ (using Lemma 3.2)

to arrive

(1 + 𝜏𝑘𝑛𝑐𝑛,𝑛)‖𝜉𝑛‖≤ 𝑃𝑛−1

𝑛−1∑
𝑗=1

‖𝐺𝑗‖+ 𝜏𝑘𝑛

(
𝑃𝑛−1

𝑛−1∑
𝑗=1

‖𝐺𝑗‖
)

×

𝑛−1∑
𝑘=1

(
𝑐𝑛,𝑘+1− 𝑐𝑛,𝑘+ |𝑐𝑛,𝑘+1− 𝑐𝑛,𝑘+1|+ |𝑐𝑛,𝑘− 𝑐𝑛,𝑘|

)
+ 𝜏‖𝐺𝑛‖

≤ (𝑃𝑛−1

𝑛∑
𝑗=1

‖𝐺𝑗‖
)
(1 + 𝜏𝑘𝑛𝑐𝑛,𝑛 + 2𝜏𝑘𝑛𝑄̂).

Consequently we obtain

‖𝜉𝑛‖ ≤ (𝑃𝑛−1

𝑛∑
𝑗=1

‖𝐺𝑗‖
)(

1 +
2𝜏𝑘𝑛𝑄̂

1 + 𝜏𝑘𝑛𝑐𝑛,𝑛

)

≤ (𝑃𝑛−1

𝑛∑
𝑗=1

‖𝐺𝑗‖
)
(1 + 2𝑄̂‖𝑘‖𝐶[0,𝑇 ]𝜏) = 𝑃𝑛

𝑛∑
𝑗=1

‖𝐺𝑗‖,

that is, (24) holds for 𝑚 = 𝑛 and so for any 𝑚 ≥ 2 by mathematical in-
duction. By using the fact that (1 + 2𝜏‖𝑘‖𝐶[0,𝑇 ]𝑄̂)𝑁 ≤ 𝑄, we remain to 
bound 𝜏

∑𝑁

𝑛=1
‖𝐺𝑛‖.

𝐸𝑛 could be bounded by

‖𝐸𝑛‖ ≤ 1

𝜏

𝑡𝑛

∫
𝑡𝑛−1

‖𝜕𝑡𝑡𝑢(⋅, 𝑡𝑛)‖|𝑡− 𝑡𝑛|𝑑𝑡

≤𝑄(‖𝑢0‖𝐻̌4 + ‖𝑓‖𝐻1(𝐻̌2) + ‖𝑓‖𝐻2(𝐿2))𝑛
𝛼−1𝑁−𝛼 .

Similar to the proof of Theorem 3.1, we bound 𝑅𝑛 by applying the 
regularities of 𝑢(𝒙, 𝑡) provided in Lemmas 2.1–2.2

‖𝑅𝑛‖ ≤𝑄(‖𝑢0‖𝐻̌4 + ‖𝑓‖𝐻1(𝐻̌2) + ‖𝑓‖𝐻2(𝐿2))𝑛
𝛼−1𝑁−𝛼 .

We use Lemma 3.2 to estimate 𝐹𝑛 by

‖𝐹𝑛‖ ≤𝑄𝜏‖𝑢‖𝐶1([0,𝑇 ];𝐿2)

𝑛∑
𝑘=1

|𝐻𝑛,𝑘| ≤𝑄𝑄̂‖𝑢‖𝐶1([0,𝑇 ];𝐿2)𝜏
2.
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Combining these estimates with Theorem 4.1, 𝐺𝑛 with 1 ≤ 𝑛 ≤𝑁 can be 
bounded by

‖𝐺𝑛‖ ≤𝑄(‖𝑢0‖𝐻̌4 + ‖𝑓‖𝐻1(𝐻̌2) + ‖𝑓‖𝐻2(𝐿2))(ℎ
2 + 𝑛𝛼−1𝑁−𝛼).

Applying the fact that 
𝑁∑
𝑛=1

𝑛𝛼−1 ≤𝑄𝑁𝛼 , we get

𝜏

𝑁∑
𝑛=1

‖𝐺𝑛‖ ≤𝑄(‖𝑢0‖𝐻̌4 + ‖𝑓‖𝐻1(𝐻̌2) + ‖𝑓‖𝐻2(𝐿2))(𝜏 + ℎ2),

which completes the proof. □

Remark 4.1. In the proof of Theorem 4.2, we use the exact form of 𝐶𝜈
𝑛

without discretization, and thus the result is independent from the mesh 
size 𝜎 of the quadrature. In the numerical simulation, we compute 𝐶𝜈

𝑛

via the composite middle rectangular formula with 𝑂(𝜎2) accuracy, and 
we set 𝜎 =𝑂(𝜏1∕2) in order to maintain the first-order accuracy in time.

5. A fast all-at-once DAC solver

Let {𝜓𝑖(𝒙)}
𝑀
𝑖=1
, where 𝑀 refers to the number of degree of freedom of 

the finite element space, be the basic functions of 𝑆ℎ satisfying 𝜓𝑖(𝒙𝑖) = 1

and 𝜓𝑖(𝒙𝑗 ) = 0 for 𝑗 ≠ 𝑖. The 𝑀×𝑀 matrices 𝐁𝑀 and 𝐁𝑆 denote the mass 
and stiffness matrices where

(𝐁𝑀 )𝑖,𝑗 = ∫
Ω

𝜓𝑖(𝒙) ⋅𝜓𝑗 (𝒙)𝑑𝒙, (𝐁𝑆 )𝑖,𝑗 =𝐾 ∫
Ω

∇𝜓𝑖(𝒙) ⋅∇𝜓𝑗 (𝒙)𝑑𝒙.

Let 𝑈𝑛
𝑖
(1 ≤ 𝑛 ≤ 𝑁, 1 ≤ 𝑖 ≤ 𝑀) be the finite element solution of (18) at 

𝑡 = 𝑡𝑛 and 𝒙 = 𝒙𝑖. We define a lower triangular matrix 𝐀 = (𝑎𝑛,𝑘)
𝑁
𝑛,𝑘=1

to 
store the discretization coefficients of 𝛿𝜏 and 𝛿

𝜌

𝑡𝑛
by

𝑎𝑛,𝑘 =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

1

𝜏
+ 𝜅𝑛𝑐𝑛,𝑛, 𝑘 = 𝑛,

−
1

𝜏
+ 𝜅𝑛(𝑐𝑛,𝑛−1 − 𝑐𝑛,𝑛), 𝑘 = 𝑛− 1,

𝜅𝑛(𝑐𝑛,𝑘 − 𝑐𝑛,𝑘+1), 1 ≤ 𝑘 ≤ 𝑛− 2,

0, otherwise.

Let 𝑼 (𝑛) = [𝑈𝑛
1
, 𝑈𝑛

2
, ⋯ , 𝑈𝑛

𝑀
]⊤ and 𝑭 (𝑛) = [𝐹 𝑛

1
, 𝐹 𝑛

2
, ⋯ , 𝐹 𝑛

𝑀
]⊤ with 𝐹 𝑛

𝑖
=

∫
Ω
𝑓 (𝒙, 𝑡𝑛)𝜓𝑖(𝒙)𝑑𝒙 for 1 ≤ 𝑛 ≤𝑁 . Then the matrix form of (18) is

(
𝑎𝑛,𝑛𝐁𝑀 +𝐁𝑆

)
𝑼

(𝑛) = 𝑭
(𝑛) −

𝑛−1∑
𝑘=0

𝑎𝑛,𝑘𝐁𝑀𝑼
(𝑘), 1 ≤ 𝑛 ≤𝑁. (25)

For each time step, 𝑂(𝑀) operations are required to compute 𝐁𝑀𝑼
(𝑘)

for 0 ≤ 𝑘 ≤ 𝑛 − 1, and hence 𝑂(𝑛𝑀) operations are needed for evaluat-
ing 

∑𝑛−1
𝑘=0

𝑎𝑛,𝑘𝐁𝑀𝑼
(𝑘). As the computational complexity for solving the 

linear system (25) is 𝑂(𝑀), totally 𝑂(𝑀𝑁 +𝑁2) storage and 𝑂(𝑀𝑁2)

computations are needed for solving (25) by the time-stepping method, 
which is expensive and motivates the development of the fast solver.

5.1. Fast solver and its analysis

We solve the finite element system (18) by rewriting it as the fol-
lowing all-at-once system

(
𝐀⊗𝐁𝑀 + 𝐈𝑁 ⊗𝐁𝑆

)
𝑼 = 𝑭 , (26)

where 𝐈𝑁 is a 𝑁 ×𝑁 identity matrix, 𝑼 = [(𝑼 (1))⊤, (𝑼 (2))⊤, ⋯ , (𝑼 (𝑁))⊤]⊤

and 𝑭 = [𝑭
(1)⊤

1
, 𝑭 (2)⊤, ⋯ , 𝑭 (𝑁)⊤]⊤. From (12) and (15), we decompose 

the matrix 𝐀 into the sum of a band matrix 𝐀𝑏 and a sum of diagonal 
matrices multiplied by Toeplitz matrices 𝐀𝑡,

𝐀 =𝐀𝑏 +𝐀𝑡 ∶=𝐀𝑏 + diag(𝑲)

𝑆∑
𝜈=0

diag(𝑪𝜈
𝑁
)𝐓(𝜈), (27)

where (𝐀𝑏)𝑖,𝑗 = 𝑎𝑖,𝑗 for |𝑖 − 𝑗| ≤ 𝑆 and zeros elsewhere, 𝑲 = [𝜅1, 𝜅2, ⋯ ,
𝜅𝑁 ]⊤, 𝑪𝜈

𝑁
= [𝐶𝜈

1
, 𝐶𝜈

2
, ⋯ , 𝐶𝜈

𝑁
]⊤ and the Toeplitz matrix 𝐓(𝜈) = 𝑡𝑜𝑒𝑝(𝒕

(𝜈)
𝑐 , 𝟎)

with 𝒕(𝜈)𝑐 = (𝑡𝜈
𝑐,𝑖
)𝑁
𝑖=1

and 𝟎 being its first column and first row, respectively. 

Here 𝑡(𝜈)
𝑐,𝑖
is given by 𝑡(𝜈)

𝑐,𝑖
= 𝑔

(𝜈)

𝑖−1
(𝛼) − 𝑔

(𝜈)

𝑖−2
(𝛼) for 𝑆 + 1 ≤ 𝑖 ≤𝑁 and 𝑡(𝜈)

𝑐,𝑖
= 0

otherwise.
We divide 𝐀 into four 𝑁∕2 ×𝑁∕2 matrices as

𝐀 =

[
𝐀1 𝟎

𝐀3 𝐀2

]
,

and accordingly divide 𝑼 = [𝑼⊤
1
, 𝑼⊤

2
]⊤ and 𝑭 = [𝑭 ⊤

1
, 𝑭⊤

2
]⊤. Then we 

could solve (26) by equivalently solving the following two linear sub-
systems

{ (
𝐀1 ⊗𝐁𝑀 + 𝐈𝑁∕2 ⊗𝐁𝑆

)
𝑼 1 = 𝑭 1,(

𝐀2 ⊗𝐁𝑀 + 𝐈𝑁∕2 ⊗𝐁𝑆

)
𝑼 2 = 𝑭 2 −

(
𝐀3 ⊗𝐁𝑀

)
𝑼 1.

(28)

As each subsystem in (28) has a similar structure as (26), we could 
repeat the previous steps to obtain a fast DAC (fDAC) algorithm pre-
sented in Algorithm 1, and we remain to estimate its computational 
cost in the following.

Algorithm 1 The fDAC algorithm for (26).

function 𝑼 = fDAC(𝐀,𝐁𝑀 ,𝐁𝑆 ,𝑭 )

𝑃 = length(𝐀(∶,1))
if 𝑃 ≤ 𝑆

𝑠𝑜𝑙𝑣𝑒

(𝑎𝑝,𝑝𝐁𝑀 +𝐁𝑆 )𝑼
(𝑝) = 𝑭

(𝑝) −

𝑝−1∑
𝑘=0

𝑎𝑝,𝑘𝐁𝑀𝑼
(𝑘) ,

for 1 ≤ 𝑝 ≤ 𝑃

else
𝑼 1 = fDAC(𝐀1 ,𝐁𝑀 ,𝐁𝑆 ,𝑭 1)

𝑭 2 = 𝑭 2 − (𝐀3 ⊗𝐁𝑀 )𝑼 1

𝑼 2 = fDAC(𝐀2 ,𝐁𝑀 ,𝐁𝑆 ,𝑭 2)

end if
end function

Lemma 5.1. For any 𝒗 ∈ ℝ
𝑁∕2, the matrix-vector multiplication 𝐀3𝒗 can 

be carried out in 𝑂(𝑁 log2𝑁) operations, and hence 
(
𝐀3 ⊗𝐁𝑀

)
𝑼 1 in (28)

can be computed in 𝑂(𝑀𝑁 log2𝑁) operations.

Proof. By (27), we have

𝐀 =

[
𝐀1 𝟎

𝐀3 𝐀2

]
=

[
𝐀
1
𝑏

𝟎

𝐀
3
𝑏

𝐀
2
𝑏

]
+

[
𝐀
1
𝑡

𝟎

𝐀
3
𝑡

𝐀
2
𝑡

]
,

which yields 𝐀(1)

3
𝒗 = 𝐀

3
𝑏
𝒗 + 𝐀

3
𝑡
𝒗. As 𝐀𝑏 is a band matrix with band-

width 𝑆, there are only (𝑆 + 1)(𝑆 + 2)∕2 nonzero entries on the top 
right corner of 𝐀3

𝑏
, and thus the computational complexity of 𝐀3

𝑏
𝒗 is 

𝑂(𝑆2) = 𝑂(log2𝑁). By (15), the 𝑁∕2 × 𝑁∕2 matrix 𝐀3
𝑡
can be decom-

posed by a sum with 𝑆 + 1 summands with each summand being a 
diagonal matrix multiplied by a Toeplitz matrix. By applying the fast 
Fourier transform [20], the matrix-vector multiplication 𝐀3

𝑡
𝒗 can be car-

ried out in 𝑂(𝑆𝑁∕2 log𝑁∕2) =𝑂(𝑁 log2𝑁) operations. We thus proved 
the first statement of the lemma.

We use the property of Kronecker product to get

(𝐀3
𝑡
⊗𝐁𝑀 )𝑼 1 = 𝑣𝑒𝑐

(
𝐁𝑀𝐗(𝐀3

𝑡
)⊤
)
= 𝑣𝑒𝑐

(
𝐁𝑀 (𝐀3

𝑡
𝐗

⊤)
)
,

where 𝐗 is the matrix form of 𝑼 1 given by reshaping 𝑼 1 into a 𝑀 ×𝑁∕2

matrix with its i-th row representing the unknowns at 𝒙𝑖, and 𝑣𝑒𝑐(⋅)
reshapes a 𝑀 ×𝑁∕2 matrix into a vector by a inverse manner. There-
fore, the multiplication 𝐙 = 𝐀

3
𝑡
𝐗⊤ requires 𝑂(𝑀𝑁 log2𝑁) operations. 

We combine the fact that the computational complexity of 𝐁𝑀𝐙 is 
𝑂(𝑀𝑁) to prove the second statement of this lemma. □
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In the following theorems, we show the efficiency of the fDAC algo-
rithm. Due to the dividing operations in the DAC method, we assume 
that 𝑆 =𝑁∕2𝐽 for some 0 < 𝐽 ∈ℕ such that 𝑆 satisfies the Condition S.

Theorem 5.1. 𝑂(𝑁3∕2 log𝑁) computations and 𝑂(𝑁 log𝑁) storage are 
needed to compute and store the components of 𝐀, respectively.

Proof. We only need to compute and store the components 𝐀𝑏, 𝑲 , 𝑪𝜈
𝑁
,

𝒕
(𝜈)
𝑐
of 𝐀 in (27) for Algorithm 1 with totally 𝑂(𝑁 log𝑁) memory re-

quirement, rather than directly generating {𝑐𝑛,𝑘}. The computational 
cost of 𝐀𝑏 and 𝑪

(𝜈)

𝑁
is 𝑂(𝑁3∕2 log𝑁) by using the composite middle rect-

angular formula, while 𝑂(𝑁) and 𝑂(𝑁 log𝑁) operations are required for 
𝑲 and 𝒕(𝜈)𝑐 , respectively. Thus 𝑂(𝑁3∕2 log𝑁) computations are needed 
for generating components of 𝐀. □

Theorem 5.2. The fDAC algorithm requires 𝑂(𝑀𝑁 log3𝑁) computations 
for solving the linear system. Compared with the 𝑂(𝑀𝑁2) computational 
cost of the time-stepping method mentioned before Section 5.1, the fDAC 
algorithm significantly improves the efficiency.

Proof. By assumptions on 𝑆, it holds 𝐽 = 𝑂(log𝑁). By Lemma 5.1, 
we require 𝑂

(
𝑀𝑁∕2 log2𝑁∕2

)
operations to compute 

(
𝐀3 ⊗ 𝐁𝑀

)
𝑼 1

in (28). As the fast DAC algorithm repeats the dividing operations like 
(28), the total computational complexity of matrix-vector multiplica-
tions in the dividing procedure can be computed by

𝑀 ×𝑂

(
𝑁

2
log2

𝑁

2
+ 2 ⋅

𝑁

22
log2

𝑁

22
+⋯+ 2𝐽−1 ⋅

𝑁

2𝐽
log2

𝑁

2𝐽

)

=𝑂

(
𝑀𝑁

2

(
log2𝑁

(
1 +

1

2
+⋯+ 2𝐽−1 ⋅

1

2𝐽−1

))
=𝑂(𝑀𝑁 log3𝑁).

After the dividing procedure, we need to solve 2𝐽 subsystems, each of 
which requires 𝑂(𝑀𝑆+𝑆2) computations. Thus the total computational 
complexity is

2𝐽 ×𝑂(𝑀𝑆 +𝑆2) =𝑂(𝑀𝑁 log𝑁 +𝑁 log2𝑁).

Adding the above two results yields the total computational cost of the 
fDAC algorithm. □

6. Numerical experiments

We carry out numerical experiments to investigate the performance 
of the time-stepping finite element method (FEM) for solving (8) and 
the fast finite element method (fFEM) for solving (26) by the fDAC al-
gorithm. All numerical experiments are implemented on Matlab R2016b 
on a computer with Intel(R) Core(TM) i7-9700 and Ram 16 GB.

We choose 𝑇 = 1, Ω = (0, 1) or (0, 1)2, 𝐾 = 0.01 and use a uniform 
rectangular partition on Ω with the mesh size ℎ. The probability density 
function 𝜌(𝛼, 𝑡) is set in the form of Gaussian hump

𝜌(𝛼, 𝑡) =
1√

2.5𝜋 × 10−3(𝑡+ 1)
exp

(
−

(𝛼 − 0.5)2

2.5 × 10−3(𝑡+ 1)

)
,

and 𝛼 = 0.3 and 𝛼 = 0.7. We give the smooth or singular solutions in the 
following four cases:

(i) 𝑢(𝑥, 𝑡) = 𝑡2 sin(𝜋𝑥), (ii) 𝑢(𝑥, 𝑡) = 𝑡1+𝛼 sin(𝜋𝑥),

(iii) 𝑢(𝑥, 𝑦, 𝑡) = 𝑡2 sin(𝜋𝑥) sin(𝜋𝑦), (iv) 𝑢(𝑥, 𝑦, 𝑡) = 𝑡1+𝛼 sin(𝜋𝑥) sin(𝜋𝑦).

The right-hand side terms 𝑓 are evaluated correspondingly. For all ap-
plications of the composite middle rectangle formula, we set 𝐿 = 𝜎−1 =

⌊√𝑁⌋ + 1 to ensure the 𝑂(𝜏) accuracy. We set 𝑆 = 2⌊𝑒1.04 log𝑁∕log2⌋+1 to 
satisfy the Condition S.

Table 1
Errors and convergence rates for (i)-(iv).

𝜏 ‖𝑢− 𝑈̂‖𝐿̂∞ (𝐿2 ) 𝜄 ‖𝑢− 𝑈̃‖𝐿̂∞ (𝐿2 ) 𝜄̃

(i) 2−5 1.4217E-02 - 1.4217E-02 -
2−6 7.0730E-03 1.01 7.0730E-03 1.01
2−7 3.4950E-03 1.02 3.4950E-03 1.02
2−8 1.7418E-03 1.00 1.7418E-03 1.00

(ii) 2−5 6.2315E-03 - 6.2315E-03 -
2−6 3.2608E-03 0.93 3.2608E-03 0.93
2−7 1.6606E-03 0.97 1.6606E-03 0.97
2−8 8.5363E-04 0.96 8.5363E-04 0.96

(iii) 2−5 9.7524E-03 - 9.7524E-03 -
2−6 4.8879E-03 1.00 4.8879E-03 1.00
2−7 2.4503E-03 1.00 2.4503E-03 1.00
2−8 1.2559E-03 0.96 1.2559E-03 0.96

(iv) 2−5 4.2474E-03 - 4.2474E-03 -
2−6 2.2505E-03 0.92 2.2505E-03 0.92
2−7 1.1768E-03 0.94 1.1768E-03 0.94
2−8 6.3820E-04 0.88 6.3820E-04 0.88

Table 2
CPU times of computing {𝑐𝑛,𝑘} and com-
ponents of 𝑐𝑛,𝑘.

𝑁 𝐶𝑃𝑈𝑀 𝐶𝑃𝑈𝑀̃

29 16.3 s 4.8 s
210 1 min 33 s 14 s
211 8 min 26 s 38 s
212 45 min 52 s 1 min 47 s
213 4 h 30 min 5 min
214 / 14 min 10 s
215 – 39 min 46 s
216 – 1 h 52 min

6.1. Comparison of convergence rates

As the spatial discretization is standard, we measure the temporal 
convergence rates of the FEM and fFEM with ℎ = 1∕200 for (i)–(ii) and 
ℎ = 1∕100 for (iii)–(iv) by

‖𝑢− 𝑈̂‖𝐿̂∞(𝐿2) ≤𝑄𝑁−𝜄, ‖𝑢− 𝑈̃‖𝐿̂∞(𝐿2) ≤𝑄𝑁−𝜄,

and present the numerical results in Table 1. We observe that the fFEM 
has almost the same accuracy as the FEM. Moreover, both methods 
have first order temporal convergence rates, which is consistent with 
the theoretical analysis.

6.2. CPU times of generating coefficients

We record the CPU times 𝐶𝑃𝑈𝑀 for computing {𝑐𝑛,𝑘} and 𝐶𝑃𝑈𝑀̃

for computing the components of {𝑐𝑛,𝑘}, and present the numerical re-
sults in Table 2 and the left plot of Fig. 1. The symbol ‘/’ implies that the 
running time of generating {𝑐𝑛,𝑘} is more than 20 hours and we stop it, 
and the symbol ‘–’ implies that the storage is out of memory. From the 
numerical results we observe that the fast approximation (16) is much 
more efficient than (7) in generating the coefficients. For instance, when 
𝑁 = 214, more than 20 hours are needed to compute {𝑐𝑛,𝑘}, while only 7 
minutes are required for computing the components of {𝑐𝑛,𝑘} as proved 
in Theorem 5.1. For large 𝑁 like 215, the memory of the computer is 
not enough to store {𝑐𝑛,𝑘}, while the fast approximation still works.

6.3. CPU times of solving the linear systems

We record the CPU times 𝐶𝑃𝑈𝐶 of solving the time-stepping FEM 
and 𝐶𝑃𝑈𝐶̃ of solving (26) by fDAC algorithm by setting ℎ = 2−4 for 
(i)–(ii) and ℎ = 2−3 for (iii)–(iv). The numerical results are presented in 
Tables 3-4 and the right plot of Fig. 1 for case (i), which demonstrates 
that the fFEM is much more efficient in solving the linear systems than 
the FEM.
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Fig. 1. CPU times of computing the coefficients (left) and solving the linear systems (right).

Table 3
CPU times of solving FEM and fFEM for (i)–(ii).

𝑁 (i) (ii)

𝐶𝑃𝑈𝐶 𝐶𝑃𝑈𝐶̃ 𝐶𝑃𝑈𝐶 𝐶𝑃𝑈𝐶̃

29 0.096 s 0.21 s 0.098 s 0.14 s
210 0.38 s 0.40 s 0.38 s 0.30 s
211 1.53 s 0.71 s 1.54 s 0.66 s
212 6.31 s 1.32 s 6.28 s 1.39 s
213 26.1 s 2.69 s 25.5 s 2.78 s
214 / 5.65 s / 6.01 s
215 – 12.1 s – 12.0 s
216 – 25.2 s – 25.2 s

Table 4
CPU times of solving FEM and fFEM for (iii)–(iv).

𝑁 (iii) (iv)

𝐶𝑃𝑈𝐶 𝐶𝑃𝑈𝐶̃ 𝐶𝑃𝑈𝐶 𝐶𝑃𝑈𝐶̃

29 0.17 s 0.40 s 0.17 s 0.42 s
210 0.65 s 0.92 s 0.65 s 0.86 s
211 2.58 s 2.07 s 2.56 s 1.81 s
212 10.8 s 3.85 s 10.4 s 3.93 s
213 41.8 s 8.10 s 41.9 s 8.07 s
214 / 18.3 s / 17.1 s
215 – 35.6 s – 35.5 s
216 – 1 min 14 s – 1 min 16 s
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