
Journal of Scientific Computing (2022) 91:54
https://doi.org/10.1007/s10915-022-01820-z

Numerical Analysis of a Fast Finite Element Method for a
Hidden-Memory Variable-Order Time-Fractional Diffusion
Equation

Jinhong Jia1 · Hong Wang2 · Xiangcheng Zheng3

Received: 19 November 2021 / Revised: 23 February 2022 / Accepted: 4 March 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We investigate a fast finite element scheme to a hidden-memory variable-order time-fractional
diffusion equation. Different from the traditional L1 methods, a fast approximation to the
hidden-memory variable-order fractional derivative is derived to reduce the computational
cost of generating coefficients from O(N 2) to O(N log N), where N refers to the number of
time steps. We then develop different techniques from the analysis of L1 methods to prove
error estimates for the corresponding fast fully-discrete finite element scheme. Furthermore,
a fast divide and conquer algorithm is proposed to reduce the complexity of solving the linear
systems from O(MN 2) to O(MN log2 N)where M stands for the spatial degree of freedom.
Numerical experiments are presented to substantiate the theoretical results.

Keywords Variable-order time-fractional diffusion equation · Hidden-memory · Finite
element method · Optimal-order error estimate · Divide and conquer

Mathematics Subject Classification 35R11 · 65M15 · 65M60

1 Introduction

Time-fractional diffusion equations with constant fractional order have been widely applied
in various fields and have attracted extensivemathematical and numerical investigations [2–5,

B Xiangcheng Zheng
zhengxch@math.pku.edu.cn

Jinhong Jia
jhjia@sdnu.edu.cn

Hong Wang
hwang@math.sc.edu

1 School of Mathematics and Statistics, Shandong Normal University, Jinan 250358, Shandong,
China

2 Department of Mathematics, University of South Carolina, Columbia, SC 29208, USA

3 School of Mathematical Sciences, Peking University, Beijing 100871, China

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-022-01820-z&domain=pdf

 54 Page 2 of 17 Journal of Scientific Computing (2022) 91:54

10, 12, 14–17, 28]. However, the corresponding studies for their variable-order counterparts
are far from well developed due to the significant differences caused by the variable frac-
tional order. For instance, in numerical computations of time-fractional diffusion equations
of constant fractional order, the translation invariance property of the convolution in frac-
tional operators admits developing fast solution techniques, e.g., the Toeplitz-matrix-based
fast preconditioned methods [13, 21], the divide and conquer (DAC) method [7, 13], and the
exponential sum approximation methods [11, 32]. However, there are very few results for
fast evaluations of variable-order time-fractional problems.

In somevery recentworks, fast algorithms for time-fractional diffusion problems involving
the following variable-order fractional derivative [19, 29]

∂̄
α(t)
t g(t) := 1

�(1 − α(t))

∫ t

0

∂s g(s)

(t − s)α(t)
ds,

where �(·) represents the Euler Gamma function, have been developed. A fast finite dif-
ference method on a shifted binary block partition [6, 8] and an all-at-once method by
low-rankmatrix approximation andDACmethod [20] for a variable-order subdiffusion equa-
tion were also developed. A preconditioned fast DAC (fDAC) method was proposed in [9]
for a two-term variable-order time-fractional diffusion equation. In [32] an exponential-
sum-approximation, which approximates the weak-singular kernel directly by exponential
functionswithout using itsLaplace transform, has beenproposed and analyzed,which extends
the sum-of-exponential method in, e.g. [11], to treat the variable-order fractional derivative.
However, the corresponding investigations for the time-fractional problems consisting the
hidden-memory variable-order fractional operators [19, 24]

0 I
1−α(t)
t g(t) :=

∫ t

0

g(s)ds

�(1 − α(s))(t − s)α(s)
, ∂

α(t)
t g(t) := 0 I

1−α(t)
t g′(t) (1.1)

are rarely found in the literature.
Compared with ∂̄

α(t)
t , the hidden-memory fractional derivative operator ∂

α(t)
t has salient

features. For any fixed t ∈ [0, T], the convolution kernel in ∂̄
α(t)
t could be integrated in a

closed form as in the constant-order case, and the coefficients of its discretization schemes
such as theL1method [18, 25] retainsmonotonicity that is critical in error estimates.However,
∂

α(t)
t does not enjoy these benefits due to the impact of the hidden memory, which makes the
mathematical and numerical analysis intricate. In [34] the well-posedness and regularity of
a hidden-memory variable-order time-fractional diffusion equation were proved, based on
which a fully discrete numerical scheme incorporated with the L1 discretization in time was
proposed and analyzed. However, the corresponding fast algorithms remain untreated in the
literature to our best knowledge.

Motivated by the above discussions, we investigate fast numerical methods for the fol-
lowing hidden-memory variable-order time-fractional diffusion equation with 0 ≤ α(t) ≤
α∗ < 1 [27, 35, 36]

∂t u(x, t) + κ(t)∂α(t)
t u(x, t) + Lu(x, t) = f (x, t), (x, t) ∈ � × (0, T];

u(x, 0) = u0(x), x ∈ �; u(x, t) = 0, (x, t) ∈ ∂� × [0, T]. (1.2)

Here� ⊂ R
d (d = 1, 2, 3) is a simply connectedboundeddomainwith smoothboundary ∂�,

x = (x1, · · · , xd), L := −∇ · (K(x)∇),K(x) := (
ki, j (x)

)d
i, j=1 is a symmetric and coercive

diffusion tensor, κ(t) is the ratio of sub-diffusion particles versus normal diffusion and f (x, t)
is source or sink term. Model (1.2) is the variable-order analogue of the mobile-immobile
time-fractional diffusion equations proposed in, e.g., [22, 31], in which both the integer-order

123

Journal of Scientific Computing (2022) 91:54 Page 3 of 17 54

and fractional order time derivatives are involved in order to describe the dynamic mass
exchange between mobile and immobile phases. Compared with the subdiffusion equations,
which only have fractional time derivatives in the models, the time drift term ∂t u describes
the motion time and thus helps to distinguish the mobile and immobile status [30].

In this work we develop a fast approximation of the hidden-memory variable-order frac-
tional derivative to reduce the computational cost of generating coefficients from O(N 2) to
O(N log N), and then apply this to construct a fully-discrete finite element scheme. The key
ingredient of this fast approximation lies in expanding the temporal discretization coefficients
in terms of the variable order via the Taylor series, which differs from the methods like the
exponential-sum-approximation and the hierarchical matrix method (cf. [33]) that rely on the
exponential or Taylor expansions for the power function kernels. This is also the critical step
to treat the variable fractional order such that the scheme could be efficiently implemented as
in the constant fractional order casewithout loss of accuracy. By different techniques from the
analysis of L1 methods for constant-order and variable-order time-fractional problems, we
analyze this fast approximation method and prove error estimates for the corresponding fast
fully-discrete finite element scheme to model (1.2). We further develop an fDAC algorithm
to reduce the complexity of solving the linear systems from O(MN 2) to O(MN log2 N)

based on the Toeplitz-like matrices generated from the fast approximation scheme via the
fast Fourier transform (FFT).

The rest of the paper is organized as follows. In Sect. 2 we present some preliminaries
and review the standard finite element method for the proposed model. In Sect. 3 we develop
an efficient discretization for the hidden-memory variable-order fractional derivative and a
corresponding fully-discrete scheme for the model, as well as deriving a fDAC algorithm for
the resulting linear system. In Sect. 4 we prove optimal-order error estimates of the efficient
finite element scheme. We perform numerical experiments to test the performance of the fast
method in the last section.

2 Preliminaries

Let Cm[0, T] with m ∈ N be the space of continuous function with continuous derivatives
up to order m, equipped with standard norms [1]. For a Banach space X , let Cm([0, T];X)

be the space of continuously differentiable functions of order m on [0, T] with respect to the
norm ‖·‖X . Let {λi , φi }∞i=1 be the eigen-pairs ofL and Ȟ s(�) = {g ∈ L2(�) : ‖g‖2

Ȟ s (�)
:=∑∞

i=1 λsi (g, φi)
2 < ∞} be the subspace of Hs(�) [1]. Let Qm be fixed positive constants and

Q be a generic positive constant with different values at different occurrences. In particular,
Q is always independent from the mesh parameters of numerical schemes. For convenience,
we may drop the subscript L2 in (·, ·)L2 and ‖ · ‖L2 and the notation � is the Sobolev space
norms.

We refer the well-posedness and regularity of (1.2) proved by [34, 35].

Theorem 2.1 If u0 ∈ Ȟ2+γ , f ∈ H1(0, T ; Ȟγ) with γ > d/2 and lim
t→0+(α(t) − α(0)) ln t

exists, then (1.2) has a unique solution u ∈ C1([0, T]; Ȟγ) with

‖u‖C1([0,T];Ȟγ)
≤ Q

(‖u0‖Ȟ2+γ + ‖ f ‖H1(0,T ;Ȟγ)

)
. (2.1)

Here Q = Q(α∗, ‖κ‖C[0,T], T).

123

 54 Page 4 of 17 Journal of Scientific Computing (2022) 91:54

Theorem 2.2 If α, κ ∈ C1[0, T], f ∈ H1(0, T ; Ȟ2+s)
⋂

H2(0, T ; Ȟ s) and u0 ∈ Ȟ4+s for
some s ≥ 0, then u ∈ C2((0, T]; Ȟ s) with the following estimate holds for 0 < ε � T

‖u‖C2([ε,T];Ȟ s)
≤ Qε−α(0)(‖u0‖Ȟ4+γ + ‖ f ‖H1(0,T ;Ȟ2+γ)

+ ‖ f ‖H2(0,T ;Ȟ s)

)
.

Furthermore, if α(0) = 0, then the solution u ∈ C2([0, T]; Ȟ s) has the global estimate

‖u‖C2([0,T];Ȟ s)
≤ Q

(‖u0‖Ȟ4+s + ‖ f ‖H1(0,T ;Ȟ2+s)
+ ‖ f ‖H2(0,T ;Ȟ s)

)
.

Here Q = Q(‖α‖C1([0,T]), ‖κ‖C1[0,T], T).

Based on these theoretical results, we refer the numerical discretization of model (1.2)
from [34]. Define a partition on [0, T] by tn := nτ for 0 ≤ n ≤ N with τ = T /N and a
quasi-uniform partition on � with mesh diameter h. Let Sh be the space of continuous and
piecewise linear functions on � with respect to this partition. Denote un := u(x, tn), κn :=
κ(tn), αn = α(tn) and fn := f (x, tn). We follow [34] to discretize ∂t u and ∂

α(t)
t u at t = tn

for 1 ≤ n ≤ N by

∂t u(x, tn) = un − un−1

τ
+ 1

τ

∫ tn

tn−1

∂t t u(x, s)(s − tn−1)ds

:= δτun + En,

∂
αn
t u(x, tn) :=

n∑
k=1

bn,k(uk − uk−1) + R̂n + Rn

:= δ̂αn
τ un + R̂n + Rn,

(2.2)

where

bn,k : = (tn − tk−1)
1−αk − (tn − tk)1−αk

�(2 − αk)τ
, (2.3)

R̂n =
n∑

k=1

∫ tk

tk−1

[∂su(x, s)

�(1 − α(s))(tn − s)α(s)
− ∂su(x, s)

�(1 − αk)(tn − s)αk

]
ds, (2.4)

Rn =
n∑

k=1

∫ tk

tk−1

1

τ�(1 − αk)(tn − s)αk

[∫ tk

tk−1

∫ s

z
∂θθu(x, θ)dθdz

]
ds. (2.5)

Then the fully discrete finite element method for model (1.2) reads: find Ûn ∈ Sh for n =
1, 2, · · · , N with Û0(x) := �hu0(x), such that

(δτ Ûn, χh) + κn(δ
αn
τ Ûn, χh) + (K∇Ûn,∇χ) = (fn, χh), ∀χh ∈ Sh . (2.6)

We could directly follow [34] to show that, under the regularity of the solutions in Theo-
rems 2.1–2.2, the scheme (2.6) generates a numerical solution of O(τ +h2) accuracy. For the
implementation, due to the impact of the hidden-memory variable fractional order, the trans-
lation invariance property of the coefficients {bn,k} is lost and in the time-stepping procedure
of the scheme (2.6), we have to compute the coefficients {bn,k} by O(N 2) operations and
solve the linear systems in O(N 2M) operations (M refers to the number of spatial nodes),
which is computationally expensive.

3 Efficient Discretization and Fast Implementation

In this section, we propose an efficient discretization for model (1.2) and study its fast
implementation.

123

Journal of Scientific Computing (2022) 91:54 Page 5 of 17 54

3.1 An Efficient Finite Element Scheme

We use the (S + 1)-term Taylor expansion of the exponential function (n − k + 1)1−αk −
(n − k)1−αk for n − k ≥ 2 at 1 − α with α = (α∗ + α∗)/2 in bn,k to get

(n − k + 1)1−αk − (n − k)1−αk

=
S∑

s=0

(α − αk)
s

s!
[
(n − k + 1)1−α lns(n − k + 1)

−(n − k)1−α lns(n − k)
]

+ (α − αk)
S+1

(S + 1)!
[
(n − k + 1)1−ξn,k lnS+1(n − k + 1)

−(n − k)1−ξn,k lnS+1(n − k)
]
,

(3.1)

where ξn,k is a constant betweenαk andα, which depends on n and k. Insert this expansion into
bn,k and discard the local truncation errors to obtain an approximation of bn,k for n − k ≥ 2

cn,k =
S∑

s=0

(α − αk)
s

s!�(2 − αk)ταk

[
(n − k + 1)1−α lns(n − k + 1)

−(n − k)1−α lns(n − k)
]
,

(3.2)

and the local truncation errors rn,k := bn,k − cn,k (n − k ≥ 2) are given by

rn,k = (α − αk)
S+1

(S + 1)!�(2 − αk)ταk

[
(n − k + 1)1−ξn,k lnS+1(n − k + 1)

−(n − k)1−ξn,k lnS+1(n − k)
]
.

(3.3)

For the case n−k = 0, 1, we set cn,k = bn,k . We replace bn,k by cn,k in (2.2) to get a different
discretization of the time-fractional derivative ∂

α(t)
t u at t = tn

∂
αn
tn un : = δ̃αn

τ un + R̃n + R̂n + Rn

=
n∑

k=1

cn,k(uk − uk−1) + R̃n + R̂n + Rn,
(3.4)

where R̂n and Rn are given in (2.4) and (2.5), respectively, and R̃n is defined by

R̃n :=
n−1∑
k=1

rn,k(uk − uk−1). (3.5)

We substitute (3.4) and the first equation in (2.2) into (1.2) and integrate the resulting equation
multiplied by χ ∈ H1

0 (�) on � to get

(δτun, χ) + κn(δ̃
αn
τ un, χ) + (K∇un,∇χ)

= (fn, χ) − (κn(R̃n + R̂n + Rn) + En, χ).
(3.6)

Ignoring the local truncation errors we get the finite element scheme: find Un ∈ Sh for
1 ≤ n ≤ N with U0 = �hu0 such that for any χh ∈ Sh

(δτUn, χh) + κn(δ̃
αn
τ Un, χh) + (K∇Un,∇χh) = (fn, χh). (3.7)

123

 54 Page 6 of 17 Journal of Scientific Computing (2022) 91:54

Throughout the paper, we set the parameter S as

S = �3 ln N� (3.8)

and we will show in subsequent sections that the accuracy of the numerical scheme (3.7)
is not affected under this choice but the computational costs and storage are significantly
reduced. To be specific, we will find from the derivation of (4.6) that (3.8) is almost the
optimal choice to ensure that the summation in (4.6) is less than 1, which in turn leads to the
first-order accuracy in (4.7) and finally in the numerical scheme.

3.2 Fast Coefficient Generation

Let {ψ j (x)}Mj=1 be the basic functions of Sh satisfying ψ j (x j) = 1 and ψ j (xi) = 0 for
i �= j , where M is the number of degree of freedom of the finite element space. Let B,C ∈
R

M×M be the corresponding mass and stiffness matrices in (3.7), respectively, and F(n) =
[Fn

1 , Fn
2 , · · · , Fn

M]� with Fn
j = (f (·, tn), ψ j (·)) for 1 ≤ n ≤ N .Wedefine a lower triangular

matrix A = (an,k)
N
n,k=1 to store the discretization coefficients of operators δτ and δ̃

ρ
τ by

an,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

τ
+ κncn,n, k = n,

− 1

τ
+ κn(cn,n−1 − cn,n), k = n − 1,

κn(cn,k − cn,k+1), n − k ≥ 2.

(3.9)

Based on these notations, we obtain the matrix form of (3.7)

(
an,nB + C

)
U (n) = F(n) −

n−1∑
k=1

an,kBU (k) + κncn,1U (0) (3.10)

for 1 ≤ n ≤ N where U (n) := [Un
1 ,Un

2 , · · · ,Un
M]�.

Denote

D(s)
k = (α − αk)

s

s!�(2 − αk)ταk
, g(s)

k = k1−α lns k − (k − 1)1−α lns(k − 1),

then cn,k in (3.2) could be expressed by

cn,k =
S∑

s=0

D(s)
k g(s)

n−k+1.

Insert this expression into (3.9) to obtain that

an,k = κn

S∑
s=0

(
D(s)
k g(s)

n−k+1 − D(s)
k+1g

(s)
n−k

)
, n − k ≥ 2. (3.11)

Based on this decomposition we have the following conclusion.

Theorem 3.1 The coefficients {an,n}Nn=1, {an,n−1}Nn=2 and the components {κn}Nn=3, {Ds
k}N−2

k=1 ,

{g(s)
k }Nk=2 for 0 ≤ s ≤ S can be computed and stored in O(SN) operations and storage.

Here S is given in (3.8).

123

Journal of Scientific Computing (2022) 91:54 Page 7 of 17 54

Proof We could compute and store {an,n}Nn=1 and {an,n−1}Nn=2 in O(N) computations and
storage, and O(N) operations and storage are required for {κn}Nn=3. We also note that O(SN)

operations and storage are needed for computing and storing {D(s)
k }N−2

k=1 and {g(s)
k }Nk=2 for

0 ≤ s ≤ S. Thus we complete the proof.
��

3.3 Fast Divide and Conquer Algorithm

Although the linear system (3.10) can be solved inO(M)operations at each time step,we have
to compute the right-hand side term

∑n
k=1 an,kBU (k) inO(nM) operations. Therefore, totally

O(N 2M) operations are needed for all time steps, which leads to O(N 2M) computations of
solving the linear system (3.10). To derive a fast algorithm for solving (3.10) for 1 ≤ n ≤ N ,
we set U = [U (1)�,U (2)�, · · · ,U (N)�]� and F = [F(1)�, F(2)�, · · · , F(N)�]� to rewrite
(3.10) into the following all-at-once linear system(

A ⊗ B + IN ⊗ C
)
U = F, (3.12)

where IN is the N × N identity matrix.
By (3.11), we decompose the coefficient matrix A as

A = Ab + At := Ab + diag(κ)

S∑
s=0

[
T(s)
p diag(D(s)) − T(s)diag(D(s)

p)
]
, (3.13)

where Ab is a band matrix with (Ab)n,i = an,i for n − 2 ≤ i ≤ n and zeros otherwise,
diag(κ), diag(D(s)

p) and diag(D(s)) are diagonal matrices generated from the vectors κ , D(s)
p

and D(s) with (κ)n = κn , (D
(s)
p)n = D(s)

n+1 and (D(s))n = D(s)
n , respectively, for 0 ≤ s ≤ S.

T(s)
p = toeplitz(t(s)p , 0) and T(s) = toeplitz(t(s), 0) for 0 ≤ s ≤ S are Toeplitz matrices with

t(s)p and t(s), respectively, being the first columns, where (t(s)p)n = (t(s))n = 0 for n = 0, 1

and (t(s)p)n = g(s)
n+1 and (t(s))n = g(s)

n for n ≥ 2.
Base on (3.13), we divide A into four N/2 × N/2 blocks as

A =
[
A1 0
A3 A2

]
:=

[
Ab
1 0

Ab
3 Ab

2

]
+

[
At
1 0

At
3 At

2

]
, (3.14)

and accordingly divide U = [U�
1 ,U�

2]� and F = [F�
1 , F�

2]�. Then (3.13) is equivalent to
the following two sub-linear systems{ (

A1 ⊗ B + IN/2 ⊗ C
)
U1 = F1,(

A2 ⊗ B + IN/2 ⊗ C
)
U2 = F2 − (A3 ⊗ B)U1.

(3.15)

To develop a fast algorithm, we consider the fast matrix-vector multiplicationA3v for any
v ∈ R

N/2 in the following lemma.

Lemma 3.1 The matrix-vector multiplication A3v for any v ∈ R
N/2 can be carried out in

O(SN log N) operations. Here S is given in (3.8).

123

 54 Page 8 of 17 Journal of Scientific Computing (2022) 91:54

Proof By (3.14), we have A3v = Ab
3v + At

3v. As A
b
3 has only one nonzero entry on its up

and right corner, Ab
3v can be computed in O(1) operations. We then use the structure of At

in (3.13) to decompose At
3v as

At
3v = diag(κ̂)

S∑
s=0

[
T̂(s)
p diag(Ĉ

(s)
)v − T̂(s)diag(Ĉ

(s)
p)v

]
,

where κ̂ is the second half of κ , Ĉ
(s)
p and Ĉ

(s)
are the first half of C(s)

p and C(s), respectively,

and T̂(s)
p and T̂(s) are N/2× N/2 Toeplitz matrices given by the left and bottom parts of T(s)

p

and T(s), respectively. Therefore, The matrix-vector multiplication At
3v can be computed in

the following steps. First, w(s)
p = diag(Ĉ

(s)
p)v and w(s) = diag(Ĉ

(s)
)v are the multiplication

of diagonal matrices and vectors, which need O(SN) operations totally for 0 ≤ s ≤ S. Then
T̂(s)
p w

(s)
p and T̂(s)w(s) can be computed in O(N log N) operations by the FFT, and hence

q =
S∑

s=0

(
T̂(s)
p w p − T̂(s)w

)

requires O(SN log N) operations. Finally, diag(κ̂)q requires O(N) operations. Thus we
complete the proof. ��

ByLemma 3.1, (A3⊗B)U1 on the right-hand side of (3.15) can be carried out in O(SMN)

operations. Furthermore, as each sub-linear system in (3.15) has a similar structure as (3.12),
we could repeat this splitting procedure to obtain a fDAC algorithm by recursively solving
the sub-linear systems, the computational cost of which is analyzed in the following theorem.

Theorem 3.2 The all-at-once linear system (3.12) could be solved in O(SMN log2 N) oper-
ations by the fDAC algorithm.

Proof Let � be a positive integer satisfying 2� = N . By Lemma 3.1, O
(
SMN log N

)
oper-

ations are needed to compute
(
A3 ⊗ B

)
U1 in (3.15).Concerning the repeatedly splitting

procedure in the fast DAC algorithm, the total computational complexity of the right-hand
side terms is

O

(
SM

[
N log N + 2 · N

2
log

N

2
+ · · · + 2�−1 · N

2�−1 log
N

2�−1

])

= O

(
SMN log

N�

2�(�−1)/2

)
= O

(
SMN log N

�+1
2

)
= O(SMN log2 N),

which completes the proof. ��
Remark 3.1 In view of the proof of Lemma 3.1 and Theorem 3.2, we could indeed set cn,k =
bn,k for 0 ≤ n−k ≤ S rather than 0 ≤ n−k ≤ 1, with the same accuracy and computational
complexity.

4 Error Estimate

In this section we prove several auxiliary estimates to perform error estimates for the efficient
finite element scheme (3.7).

123

Journal of Scientific Computing (2022) 91:54 Page 9 of 17 54

4.1 Auxiliary Estimates

We first refer the estimates of R̂n and Rn proved in [34].

Lemma 4.1 Suppose α, κ ∈ C1[0, T], u0 ∈ Ȟ4, f ∈ H1(0, T ; Ȟ2)
⋂

H2(0, T ; L2), then
the following estimates hold

‖R̂n‖ ≤ QM0τ, ‖Rn‖ ≤ QM0N
α∗−1n−α∗

where M0 := ‖u0‖Ȟ4 + ‖ f ‖H1(0,T ;Ȟ2)
+ ‖ f ‖H2(0,T ;L2).

We then estimate the local truncation errors rn,k and R̃n in the following lemma.

Lemma 4.2 The local truncation errors rn,k in (3.3) for n − k ≥ 1 could be bounded by

|rn,k | ≤ 1

2S+1(S + 1)!�(2 − αk)ταk

×
[
(n − k + 1) lnS+1(n − k + 1) − (n − k) lnS+1(n − k)

]
.

(4.1)

Proof For a given constant a ≥ 1, define a function of β ∈ [0, 1] as
ya(β) = (a + 1)1−β lnS+1(a + 1) − a1−β lnS+1 a.

Therefore, rn,k could be rewritten as

rn,k = (α − αk)
S+1

(S + 1)!�(2 − αk)ταk
yn−k(ξn,k). (4.2)

As

y′
a(β) = −(a + 1)1−β lnS+2(a + 1) + a1−β lnS+2 a < 0,

ya(β) is a monotone decreasing function with

ya(β) ≤ ya(0) = (a + 1) lnS+1(a + 1) − a lnS+1 a.

We incorporate this with (4.2) under a = n − k and |α − αk | ≤ 1/2 to complete the proof.
��

Lemma 4.3 If α, κ ∈ C1[0, T], u0 ∈ Ȟ4, f ∈ H1(0, T ; Ȟ2)
⋂

H2(0, T ; L2). Then

n−1∑
k=1

|rn,k | ≤ 1, ‖R̃n‖ ≤ QM0τ, 1 ≤ n ≤ N . (4.3)

Proof We use (4.1) and the fact that 1/�(2 − α) ≤ 1.2 for α ∈ [0, 1] to get

n−1∑
k=1

|rn,k | ≤ 1.2τ−α∗

2(S+1)(S + 1)!
n∑

k=1

[
(n − k + 1) lnS+1(n − k + 1)

−(n − k) lnS+1(n − k)
]

≤ 1.2 × Nα∗
n lnS+1 n

2S+1(S + 1)! ≤ 1.2 × N 1+α∗
lnS+1 N

2S+1(S + 1)! .

(4.4)

123

 54 Page 10 of 17 Journal of Scientific Computing (2022) 91:54

We apply the Stirling’s formula 1/(S + 1)! ≤ eS+1(S + 1)−(S+3/2) to get

1.2 × N 1+α∗
lnS+1 N

2S+1(S + 1)! ≤ 1.2 × N 1+α∗
(e ln N)S+1

2S+1(S + 1)S+3/2

≤ N 1+α∗(e ln N

2(S + 1)

)S+1
.

(4.5)

By (3.8) we have

n−1∑
k=1

|rn,k | ≤ N 1+α∗(e
6

)3 ln N = N 1+α∗
e3 ln N ln e

6 ≤ N 4+α∗−3 ln 6 < 1, (4.6)

which proves the first statement in (4.3). By (3.5) we obtain

‖R̃n‖ =
∥∥∥
n−1∑
k=1

rn,k(uk − uk−1)

∥∥∥ ≤ τ‖u‖C1([0,T];L2)

n−1∑
k=1

|rn,k | ≤ QM0τ, (4.7)

which proves the second statement of (4.3). ��

Due to the lack of the monotonicity in the coefficients {cn,k}nk=1, which is key in error
estimates of standard discretizations such as the L1 methods for constant-order and even
variable-order fractional derivatives [23, 37], we prove the following lemma to circumvent
this difficulty.

Lemma 4.4 Under (3.8) we have

n−1∑
k=1

|cn,k+1 − cn,k | ≤ cn,n + Q1, 2 ≤ n ≤ N . (4.8)

where Q1 > 0 is a constant independent of n, N and τ .

Proof For 1 ≤ k ≤ n − 1, we decompose cn,k+1 − cn,k as

cn,k+1 − cn,k = (cn,k+1 − bn,k+1) + (bn,k+1 − bn,k) + (bn,k − cn,k). (4.9)

Define an intermediate variable b̂n,k by

b̂n,k =
∫ tk

tk−1

ds

�(1 − αk+1)(tn − s)αk+1
,

which satisfies bn,k+1 > b̂n,k and

n−1∑
k=1

|b̂n,k − bn,k | ≤
n−1∑
k=1

∣∣∣
∫ tk

tk−1

∂

∂z

(1

�(1 − α(z))(tn − s)α(z)

)∣∣∣
z=ι

ds
∣∣∣

≤
n−1∑
k=1

∫ tk

tk−1

∣∣∣α
′(z)�′(1 − α(z)) − �(1 − α(z))α′(z) ln(tn − s)

�2(1 − α(z))(tn − s)α(z)

∣∣∣ds

≤ Q
n−1∑
k=1

∫ tk

tk−1

ds

(tn − s)
1+α∗
2

≤ Q0.

123

Journal of Scientific Computing (2022) 91:54 Page 11 of 17 54

Thus the second term on the right-hand side of (4.9) can be bounded by
∣∣bn,k+1 − bn,k

∣∣ ≤ (bn,k+1 − b̂n,k) +
∣∣∣b̂n,k − bn,k

∣∣∣
= (bn,k+1 − bn,k) + 2

∣∣∣bn,k − b̂n,k

∣∣∣ .
Combining this with (4.3), we obtain

n−1∑
k=1

∣∣cn,k+1 − cn,k
∣∣ ≤ 2

n−1∑
k=1

∣∣cn,k − bn,k
∣∣ + 2

n∑
k=1

∣∣∣b̂n,k − bn,k

∣∣∣

+
n−1∑
k=1

(bn,k+1 − bn,k)

≤ 2 + 2Q0 + bn,n := Q1 + cn,n .

Thus we complete the proof. ��
Let I be the identity operator and �h : H1

0 → Sh be the Ritz projection operator defined
by

(K∇(g − �hg),∇χh) = 0, ∀χh ∈ Sh, for g ∈ H1
0 ,

satisfying the approximation property ‖g − �hg‖L2 ≤ Qh2‖g‖H2 for g ∈ H2 ∩ H1
0 [26].

Let un − Un = ηn + ξn with η = u − �hu and ξn = �hun − Un , and we estimate η in the
following lemma.

Lemma 4.5 Suppose α, κ ∈ C1[0, T], u0 ∈ Ȟ4, f ∈ H1(0, T ; Ȟ2)
⋂

H2(0, T ; L2), then

‖δτ η‖L̂∞(0,T ;L2)
+ ‖δ̃α

τ η‖L̂∞(0,T ;L2)
≤ QM0h

2, (4.10)

where ‖g(·, t)‖L̂∞(0,T ;L2)
:= max

1≤n≤N
‖g(·, tn)‖.

Proof We use Theorem 2.1 to bound δτ η by

‖δτ ηn‖ = 1

τ

∥∥∥(I − �h)

∫ tn

tn−1

∂t udt
∥∥∥ ≤ QM0h

2.

By (3.4), we rewrite δ̃
αn
τ ηn in the form of

δ̃αn
τ ηn = ∂

αn
tn ηn −

n−1∑
k=1

rn,k(ηk − ηk−1) − F̂n − Fn, (4.11)

where F̂n and Fn are given by

F̂n =
n∑

k=1

∫ tk

tk−1

(∂sη(x, s)

�(1 − α(s))(tn − s)α(s)
− ∂sη(x, s)

�(1 − αk)(tn − s)αk

)
ds,

Fn =
n∑

k=1

∫ tk

tk−1

1

τ�(1 − αk)(tn − s)αk

∫ tk

tk−1

∫ z

s
∂θθη(x, θ)dθdzds.

We estimate the first term on the right-hand side of (4.11) by

‖∂αn
tn ηn‖ =

∥∥∥(I − �h)

∫ tn

0

∂su(x, s)ds

�(1 − α(s))(tn − s)α(s)

∥∥∥
≤ Qh2‖u‖C1([0,T];Ȟ2)

≤ QM0h
2.

123

 54 Page 12 of 17 Journal of Scientific Computing (2022) 91:54

We use Lemma 4.3 to estimate the second term on the right-hand side of (4.11) by

∥∥∥
n−1∑
k=1

rn,k(ηk − ηk−1)

∥∥∥ ≤
n−1∑
k=1

|rn,k |
∥∥∥(I − �h)

∫ tk

tk−1

∂su(x, s)ds
∥∥∥ ≤ QM0τh

2.

The third right-hand side term in (4.11) can be bounded by

‖F̂n‖ ≤
n∑

k=1

∥∥∥(I − �h)

∫ tk

tk−1

∂

∂ y

(1

�(1 − α(y))(tn − s)α(y)

)∣∣∣
y=z

×(s − tk)∂su(x, s)ds
∥∥∥

≤ Qτh2‖u‖C1([0,T];Ȟ2)

n∑
k=1

∫ tk

tk−1

∣∣∣∣1 + ln(t − s)

(t − s)α∗

∣∣∣∣ ds

≤ QM0τh
2
∫ tn

0

1

(t − s)
1+α∗
2

ds ≤ QM0τh
2,

where z ∈ [s, tk]. We estimate the last term on the right-hand side of (4.11) by

‖Fn‖ ≤
n∑

k=1

∥∥∥(I − �h)

∫ tk

tk−1

∫ tk
tk−1

∫ s
z ∂θθu(x, θ)dθdz

τ�(1 − αk)(tn − s)αk
ds

∥∥∥

≤
n∑

k=1

∥∥∥(I − �h)

∫ tk

tk−1

∫ tk
tk−1

(
∂su(x, s) − ∂zu(x, z)

)
dz

τ�(1 − αk)(tn − s)αk
ds

∥∥∥

≤ 2Qh2‖u‖C1([0,T];Ȟ2)

n∑
k=1

∫ tk

tk−1

ds

�(1 − αk)(tn − s)αk

≤ QM0h
2
∫ tn

0

ds

(tn − s)α∗ ≤ QM0h
2.

Inserting these estimates into (4.11) completes the proof.
��

4.2 Optimal-Order Error Estimate

Theorem 4.1 If α, κ ∈ C1[0, T], u0 ∈ Ȟ4, f ∈ H1(0, T ; Ȟ2)
⋂

H2(0, T ; L2), the follow-
ing optimal-order error estimate for (3.7) holds under (3.8)

‖U − u‖L̂∞(0,T ;L2)
≤ QM0(τ + h2), (4.12)

where Q = Q(‖α‖C1[0,T], ‖κ‖C1[0,T]) is independent of τ , N and h.

Proof We subtract (3.7) form (3.6) with χ = χh = ξn to obtain the following error equation

(δτ ξn, ξn) + κn(δ̃
αn
τ ξn, ξn) + (K∇ξn,∇ξn) = −(

Gn, ξn
)
, (4.13)

where Gn = κn(R̃n + R̂n + Rn + δ̃
αn
τ ηn) + En + δτ ηn . We use ξ0 = Ũ0 − �hu0 ≡ 0 to

rewrite δ̃
αn
τ ξn as

δ̃αn
τ ξn = cn,nξn −

n−1∑
k=1

(cn,k+1 − cn,k)ξk,

123

Journal of Scientific Computing (2022) 91:54 Page 13 of 17 54

and use the coercive property of K to reformulate (4.13) to be

(1 + τκncn,n)‖ξn‖2 = (ξn−1, ξn) + τκn

n−1∑
k=1

(cn,k+1 − cn,k)(ξk, ξn) + τ(Gn, ξn).

We use Cauchy inequality to cancel ‖ξn‖ on both sides to obtain

(1 + τκncn,n)‖ξn‖ ≤ ‖ξn−1‖ + τκn

n−1∑
k=1

|cn,k+1 − cn,k |‖ξk‖ + τ‖Gn‖. (4.14)

For n = 1, we have

‖ξ1‖ ≤ τ‖G1‖ ≤ τ
[
1 + Q1τ‖κ‖C[0,T]

]‖G1‖.
where Q1 is given in (4.8). We assume that

‖ξm‖ ≤ τ
[
1 + Q1τ‖κ‖C[0,T]

]m m∑
j=1

‖G j‖, 1 ≤ m ≤ n − 1. (4.15)

Plug (4.15) with 1 ≤ m ≤ n − 1 into (4.14) and use the fact that
[
1 + Q1τ‖κ‖C1[0,T]

]m ≤[
1 + Q1τ‖κ‖C[0,T]

]n−1 to get

(1 + τκncn,n)‖ξn‖ ≤ ‖ξn−1‖ + τκn

(
τ
[
1 + Q1τ‖κ‖C[0,T]

]n−1
n−1∑
j=1

‖G j‖
)

×
n−1∑
k=1

|cn,k+1 − cn,k | + τ‖Gn‖

≤ τ
[
1 + Q1τ‖κ‖C[0,T]

]n−1[1 + τκn(Q1 + cn,n)
] n∑
j=1

‖G j‖,

then we obtain

‖ξn‖ ≤ τ
[
1 + Q1τ‖κ‖C[0,T]

]n−1
(
1 + τκnQ1

1 + τκncn,n

) n∑
j=1

‖G j‖

≤ τ
[
1 + Q1τ‖κ‖C[0,T]

]n n∑
j=1

‖G j‖.

Thus (4.15) holds for m = n and so for any n ≥ 2 by mathematical induction.
By Lemmas 4.1, 4.3 and 4.5 as well as Theorem 2.2, Gn can be estimated by

τ

n∑
j=1

‖G j‖ ≤ τ‖κ‖C[0,T]
n∑
j=1

(‖R̃ j‖ + ‖R̂ j‖ + ‖R j‖ + ‖δ̃α j
τ η j‖

)

+τ

n∑
j=1

‖δτ η j‖ + τ

n∑
j=1

‖E j‖

≤ QM0(τ + h2) +
n∑
j=1

∫ t j

t j−1

‖u‖C2([s,T];L2)(s − t j−1)ds

≤ QM0(τ + h2) + QM0τ

∫ t

0
s−α(0)ds ≤ QM0(τ + h2).

123

 54 Page 14 of 17 Journal of Scientific Computing (2022) 91:54

Table 1 Errors and convergence rates of (2.6) and (3.7) for Example 1

d = 1 d = 2

N ‖u − Û‖L̂∞ ‖u −U‖L̂∞ ‖u − Û‖L̂∞ ‖u −U‖L̂∞

25 1.3645e−2 1.3645e−2 9.5646e−3 9.5646e−3

26 6.5434e−3 6.5434e−3 4.6823e−3 4.6823e−3

27 3.1501e−3 3.1501e−3 2.3496e−3 2.3496e−3

28 1.5220e−3 1.5220e−3 1.2306e−3 1.2306e−3

Conv. rate μ = 1.06 ν = 1.06 μ = 0.99 ν = 0.99

Invoking this estimate in (4.15) and using the fact that
[
1+ Q1τ‖κ‖C[0,T]

]n ≤ Q, we prove
(4.12). ��

5 Numerical Experiments

We carry out numerical experiments to investigate the performance of the fast finite element
scheme (3.7) and the standard finite element scheme (2.6). We set T = 1, u0 = 0,� = (0, 1)
or (0, 1)2,K = 0.01 or diag(0.01, 0.01) for d = 1 or 2, respectively. The uniform rectangular
partition on � with mesh size h = 2−8 for d = 1 and h = 2−6 for d = 2 is used. As the
spatial discretization is standard, we only measure the temporal convergence rates by

‖u − Û‖L̂∞(0,T ;L2)
≤ QM0τ

μ, ‖u −U‖L̂∞(0,T ;L2)
≤ QM0τ

ν.

For convenience, we use ‖ ·‖L̂∞ instead of ‖ ·‖L̂∞(0,T ;L2)
. All experiments are performed on

Matlab 2016b on a computer with the following configuration: Intel(R) Core(TM) i5-6500U,
CPU 3.2GHz and 8.00GB RAM.

Example 1 We choose the exact solution u(x1, t) = t2 sin(πx1) for d = 1 or u(x1, x2, t) =
t2 sin(πx1) sin(πx2) for d = 2. The variable order α(t) is given by

α(t) = 0.1 + 1 + t

3
, t ∈ [0, T],

and the right-hand side term f (x, t) is computed accordingly. We present the errors and
convergence rates in Table 1, from which we observe that the fast finite element scheme has
the same accuracy as the standard finite element method.We also record the CPU timesCoef
for computing the coefficients {bn,k} of (2.6), f Coe f for computing components of {cn,k},
T S for solving (2.6) by the time stepping method and f DAC for solving (3.7) by the fDAC
algorithm. All these CPU times are measured in seconds and are presented in Table 2. The
symbol “-” represents the CPU time is more than 2 hours andwe terminate the program. Form
this table we observe that the fast finite element scheme is more efficient than the standard
finite element scheme. We also observe that Coef and T S increase quadratically, while
f Coe f and f DAC increase almost linearly, which is highly consistent with our theoretical
analysis.

Example 2 We set the right-hand side term as f = sin(πx1) for d = 1 or f =
sin(πx1) sin(πx2) for d = 2. The variable order α(t) is given by

α(t) = 0.1 + cos(t)

2
.

123

Journal of Scientific Computing (2022) 91:54 Page 15 of 17 54

Table 2 CPU times of computing coefficients and solving (2.6) and (3.7) for Example 1

d = 1 d = 2

N Coe f f Coe f T S f DAC Coe f f Coe f T S f DAC

28 0.90 0.46 0.75 0.28 0.92 0.47 2.58 1.87

29 3.32 0.84 1.30 0.52 3.36 0.80 4.82 4.01

210 13.3 1.63 6.67 1.05 13.9 1.70 13.8 8.75

211 53.0 3.37 17.8 2.09 55.3 3.33 39.3 18.0

212 210 6.77 36.9 4.05 220 6.64 132 38.3

213 845 13.5 80.6 8.23 884 13.3 484 81.3

214 3400 27.1 186 17.1 3524 27.0 1904 169

215 – 54.0 – 34.7 – 53.6 – 347

216 – 216 – 92.1 – 214 – 1010

217 – 433 – 213 – 426 – 2225

218 – 867 – 420 – 853 – 4845

Table 3 Errors and convergence rates of (2.6) and (3.7) for Example 2

d = 1 d = 2

N ‖u − Û‖L̂∞ ‖u −U‖L̂∞ ‖u − Û‖L̂∞ ‖u −U‖L̂∞

25 1.7550e−3 1.7550e−3 1.2688e−3 1.2688e−3

26 9.4872e−4 9.4872e−4 6.7856e−4 6.7856e−4

27 4.9952e−4 4.9952e−4 3.5181e−4 3.5181e−4

28 2.5761e−4 2.5761e−4 1.7645e−4 1.7645e−4

Conv. rate μ = 0.93 ν = 0.93 μ = 0.95 ν = 0.95

Table 4 CPU times of computing coefficients and solving (2.6) and (3.7) for Example 2

d = 1 d = 2

N Coe f f Coe f T S f DAC Coe f f Coe f T S f DAC

28 0.93 0.48 0.05 0.16 0.88 0.44 0.74 1.81

29 3.53 0.85 0.15 0.26 3.54 0.86 2.32 4.05

210 14.1 1.60 0.59 0.59 13.8 1.67 8.04 8.63

211 56.0 3.26 2.35 1.18 55.4 3.40 30.0 18.4

212 224 6.45 9.55 2.50 225 6.86 114 38.5

213 941 12.9 39.8 5.19 913 13.6 476 81.7

214 3598 51.6 158 16.0 3609 27.3 1877 168

215 – 103 – 33.1 – 54.5 – 348

216 – 208 – 75.7 – 213 – 995

217 – 424 – 156 – 426 – 2219

218 – 850 – 347 – 877 – 4884

123

 54 Page 16 of 17 Journal of Scientific Computing (2022) 91:54

As the exact solutions are not available, we set the numerical solutions by standard finite
element scheme with τ = 2−12, h = 2−8 for d = 1 and τ = 2−12, h = 2−6 for d = 2 as the
reference solutions, respectively. The errors and convergence rates are presented in Table 3,
and the CPU times are presented in Table 4. We draw the same conclusions as Example 1 that
the fast finite element scheme (3.7) is more efficient than the standard finite element scheme
(2.6) with the same accuracy and convergence rates.

Acknowledgements The authors would like to express their most sincere thanks to the referees for their
very helpful comments and suggestions, which greatly improved the quality of this paper. This work was
partially funded by the National Natural Science Foundation of China under Grants 11971272 and 12001337,
by the Natural Science Foundation of Shandong Province under Grant ZR2019BA026, by the ARO MURI
Grant W911NF-15-1-0562, by the National Science Foundation under Grant DMS-2012291, by the China
Postdoctoral Science Foundation 2021TQ0017 and 2021M700244, and by the International Postdoctoral
Exchange Fellowship Program (Talent Introduction Program) YJ20210019. All data generated or analyzed
during this study are included in this article.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, San Diego (2003)
2. Chen,M., Deng,W.: High order algorithms for the fractional substantial diffusion equation with truncated

Lévy flights. SIAM J. Sci. Comput. 37, A890–A917 (2015)
3. Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.: Algorithms for the fractional calculus: a selection of

numerical methods. Comput. Method. Appl. Mech. Engrg. 194, 743–773 (2005)
4. Du, R., Sun, Z., Wang, H.: Temporal second-order finite difference schemes for variable-order time-

fractional wave equations. SIAM J. Numer. Anal. (2021). https://doi.org/10.1137/19M1301230
5. Ervin, V.J.: Regularity of the solution to fractional diffusion, advection, reaction equations in weighted

Sobolev spaces. J. Diff. Equ. 278, 294–325 (2021)
6. Fang,Z., Sun,H.,Wang,H.:A fastmethod for variable-orderCaputo fractional derivativewith applications

to time-fractional diffusion equations. Comput. Math. Appl. 80, 1443–1458 (2020)
7. Fu, H., Ng, M., Wang, H.: A divide-and-conquer fast finite difference method for space-time fractional

partial differential equation. Comput. Math. Appl. 73, 1233–1242 (2017)
8. Jia, J., Zheng, X., Fu, H., Dai, P., Wang, H.: A fast method for variable-order space-fractional diffusion

equations. Numer. Algor. 85, 1519–1540 (2020)
9. Jia, J., Wang, H., Zheng, X.: A preconditioned fast finite element approximation to variable-order time-

fractional diffusion equations in multiple space dimensions. Appl. Numer. Math. 163, 15–29 (2021)
10. Jia, J., Wang, H.: Analysis of a hidden memory variably distributed-order space-fractional diffusion

equation. Appl. Math. Lett. 124, 107617 (2022)
11. Jiang, S., Zhang, J., Zhang, Q., Zhang, Z.: Fast evaluation of the Caputo fractional derivative and its

applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)
12. Jin, B., Li, B., Zhou, Z.: Subdiffusion with a time-dependent coefficient: Analysis and numerical solution.

Math. Comput. 88, 2157–2186 (2019)
13. Ke, R., Ng, M., Sun, H.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block

systems from time-fractional partial differential equations. J. Comput. Phys. 303, 203–211 (2015)
14. Le, K.,McLean,W., Stynes,M.: Existence, uniqueness and regularity of the solution of the time-fractional

Fokker-Planck equation with general forcing. Commun. Pur. Appl. Anal. 18, 2765–2787 (2019)
15. Li, B., Luo, H., Xie, X.: Analysis of a time-stepping scheme for time fractional diffusion problems with

nonsmooth data. SIAM J. Numeri. Anal. 57, 779–798 (2019)
16. Li, B., Ma, S.: Exponential convolution quadrature for nonlinear subdiffusion equations with nonsmooth

initial data. SIAM J. Numer. Anal. (2022). https://doi.org/10.1137/21M1421386
17. Li, D., Liao, H., Sun,W.,Wang, J., Zhang, J.: Analysis of L1-Galerkin FEMs for time-fractional nonlinear

parabolic problems. Commun. Comput. Phys. 24, 86–103 (2018)

123

https://doi.org/10.1137/19M1301230
https://doi.org/10.1137/21M1421386

Journal of Scientific Computing (2022) 91:54 Page 17 of 17 54

18. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J.
Comput. Phys. 225, 1533–1552 (2007)

19. Lorenzo, C., Hartley, T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29,
57–98 (2002)

20. Pang, H., Qin, H., Sun, H.: All-at-once method for variable-order time fractional diffusion equations.
Numer. Algor. (2021). https://doi.org/10.1007/s11075-021-01178-7

21. Lu,X., Pang,H., Sun,H.: Fast approximate inversionof a block triangularToeplitzmatrixwith applications
to fractional sub-diffusion equations. Numer. Linear Alg. Appl. 22, 866–882 (2015)

22. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport.
Water Resour. Res. 39, 1–12 (2003)

23. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded mesh for
a time-fractional diffusion equation. SIAM J. Numer. Anal. 55, 1057–1079 (2017)

24. Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations:
mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal.
22, 27–59 (2019)

25. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56,
193–209 (2006)

26. Thomée, V.: In: Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Mathematics,
vol. 1054. Springer-Verlag, New York (1984)

27. Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equa-
tions. J. Math. Anal. Appl. 475, 1778–1802 (2019)

28. Zayernouri, M., Karniadakis, G.E.: Fractional Sturm-Liouville eigen-problems: theory and numerical
approximations. J. Comp. Phys. 47, 2108–2131 (2013)

29. Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy
for variable-order fractional differential equations. SIAM J. Sci. Comput. 37, A2710–A2732 (2015)

30. Zhang, Y., Benson, D., Reeves, D.: Time and space nonlocalities underlying fractional derivative models:
distinction and literature review of field applications. Adv. Water Resources 32, 561–581 (2009)

31. Zhang, Y., Green, C., Baeumer, B.: Linking aquifer spatial properties and non-Fickian transport inmobile-
immobile like alluvial settings. J. Hydrol. 512, 315–331 (2014)

32. Zhang, J., Fang, Z., Sun, H.: Exponential-sum-approximation technique for variable-order time-fractional
diffusion equations. J. Appl. Math. Comput. 68, 323–347 (2022)

33. Zhao, X., Hu, X., Cai, W., Karniadakis, G.E.: Adaptive finite element method for fractional differential
equations using hierarchical matrices. Comput. Meth. Appl. Mech. Eng. 325, 56–76 (2017)

34. Zheng, X., Wang, H.: An error estimate of a numerical approximation to a hidden-memory variable-order
space-time fractional diffusion equation. SIAM J. Numer. Anal. 58, 2492–2514 (2020)

35. Zheng, X.,Wang, H.:Wellposedness and smoothing properties of history-state-based variable-order time-
fractional diffusion equations. Z. Agnew. Math. Phys. 71, 34 (2020)

36. Zheng, X., Wang, H.: A hidden-memory variable-order fractional optimal control model: analysis and
approximation. SIAM J. Control Optim. 59, 1851–1880 (2021)

37. Zheng, X., Wang, H.: Optimal-order error estimates of finite element approximations to variable-order
time-fractional diffusion equations without regularity assumptions of the true solutions. IMA J. Numer.
Anal. 41, 1522–1545 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s11075-021-01178-7

	Numerical Analysis of a Fast Finite Element Method for a Hidden-Memory Variable-Order Time-Fractional Diffusion Equation
	Abstract
	1 Introduction
	2 Preliminaries
	3 Efficient Discretization and Fast Implementation
	3.1 An Efficient Finite Element Scheme
	3.2 Fast Coefficient Generation
	3.3 Fast Divide and Conquer Algorithm

	4 Error Estimate
	4.1 Auxiliary Estimates
	4.2 Optimal-Order Error Estimate

	5 Numerical Experiments
	Acknowledgements
	References

