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Abstract. We prove the wellposedness of a nonlinear hidden-memory variable-order
fractional stochastic differential equation driven by a multiplicative white noise, in which
the hidden-memory type variable order describes the memory of a fractional order. We
then present a Euler-Maruyama scheme for the proposed model and prove its strong
convergence rate. Numerical experiments are performed to substantiate the theoretical
results.
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1. Introduction

Stochastic differential equations (SDEs) provide a prominent modeling tool for many
stochastic phenomena in sciences and engineering like biology, physics, chemistry and fi-
nance [6-8, 11,15, 16, 19, 20, 24, 32]. In the processes containing nonlocal or memory
effects, fractional derivatives provide a better description than integer-order derivatives
do, which leads to the fractional SDEs (fSDEs). However, there is a large class of physical,
biological and physiological diffusion phenomena that relate processes exhibiting acceler-
ating or decelerating diffusion behaviors that cannot be characterized by the constant-order
fractional diffusion equations. Typical features of these phenomena are that they are com-
plex to analysis and the diffusion behavior depends on the time evolution, space variation
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or even system parameters. Since the orders of fractional derivatives in fSDEs are closely
related to the fractal dimension of the media determined via the Hurst index [22], the vari-
able fractional order derivatives are introduced to accommodate the structure change of the
surroundings, which in turn leads to the variable-order (VO) fSDEs [12-14,31,33,36,37].
Works [9, 17, 27] introduced the space dependent VO into differential equations under
the assumption that the probability density function is space dependent in the continu-
ous time rand walk, which indicates that the memory rate depends on the space location
in the considered system. Papers [27-29] proved that the mean square displacement is
(x2(t)) o< t*1) where a(t) is the order of the fractional diffusion equation. Measure-
ment data also show that the diffusion behavior changing with the time evolution can be
modeled by a time dependent VO fractional model. Thereby, it is more reasonable to inves-
tigate the VO fractional equations, and so further theoretical and numerical investigations
of variable-order fSDEs are required for describing more complicated stochastic diffusion
process.

Motivated by the preceding discussions, we study the following nonlinear Caputo frac-
tional SDE with a hidden-memory variable order:

du=(—25DMOu+ f(t,u))dt + b(t,u)dW, t€(0,T], u(0)=uq. (1.1)

Here A >0, 0 < a(t) < a* < 1/2, and the hidden-memory variable-order fractional differ-

ential operator ng‘ () is defined in terms of the corresponding fractional integral via the
Gamma function I' [21,28,34,35]

C~a(t) 1—a(t) s/ 1—af(t) ‘ (t 3) ols)
D t) =l t), 1 t) = - -7
oD g(t) :=ol, g'(t), ol g(t) . TQ o)

Note that in the fractional integral, the power a assumes its historical state at the historical
time instant s, which represents the memory of the order history and is named as hidden
memory in order to distinguish it from the fading memory property of the fractional oper-
ators [27,28].

FSDEs have attracted extensive attentions mathematically and numerically [1,3-5, 10,
23,25,26,36], while the corresponding investigations for variable-order FSDESs are meager.
In a very recent work the well-posedness of a variable-order FSDE was analyzed, in which
the variable-order fractional derivative is defined by (1.2) with a(s) replaced by a(t). Note
that in such definition, the kernel becomes (t —s)~*®) /T(1—a(t)), which can be integrated
into a close-form expression that significantly facilitates the mathematical analysis. How-
ever, the definition (1.2) does not enjoy this benefit, which shows the salient feature of
the hidden-memory variable-order fractional problems and complicates the corresponding
mathematical and numerical analysis.

We aim to prove the existence and uniqueness of the strong solution for (1.1), based on
which we propose a Euler-Maruyama approximation and prove its optimal error estimates.
The rest of this paper is organized as follows. In Section 2 we present preliminaries and the
reformulation of the problem be used subsequently. In Section 3 we prove the wellposed-
ness and moment estimate of the governing equation (1.1). In Section 4 we establish the

g(s)ds. (1.2)
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Euler-Maruyama scheme and prove its strong convergence results. Numerical experiments
are presented to substantiate the theoretical results in the last section.

2. Problem Formulation

2.1. Preliminaries
We first present assumptions on the data of the problem (1.1).

Al. E[u%] < 0o and a belongs to the space C![0, T] of continuously differentiable func-
tions on [0, T].

A2. There exist L > 0 and f3,y € [0, 1] such that
If (t,v1)) = f(t,vo))l S Llvy —vyl,  [b(t,v1)—b(t,vy)l < Lvy — vy,

f (b1, w) = f (e, Wl < Lty — 1%, (b, 1) = blta, w)] < Lolty — 6],
If (&, < LA+ v]), |b(t,v)| < L(1+|v])

for v,v;,v5 € Rand for t,t,,t, €[0,T].
Let us recall useful auxiliary results.
Lemma 2.1 (The Burkholder-Davis-Gundy Inequality, cf. Refs.[18,32]). IfY is a continuous

martingale on [0, T], there exists a positive constant Q; such that

]E[( sup |Y(t)|)2]SQ1JE|:|Y(T)|2:|. 2.1)

t€[0,T]
Lemma 2.2 (Jensen Inequality, cf. Le Gall [18]). If a;,p € R with p > 1 and m € N, then

m
2.

i=1

p m
< mP1 Z la;P. (2.2)
i=1

Lemma 2.3 (Generalized Gronwall Inequality, cf. Ye et al. [30]). Let Q,(t) be a non-negative
and non-decreasing locally integrable function on (a, b] and Q5 be a non-negative constant.
Suppose g(t) is a non-negative locally integrable function on (a, b] with

g(t) <Qy(1) +Q3Ja %ds, Vte(a,b], 0<p<1,
then
g(t) < Qu()Ep1(QsT(B)t —a)f), Vte(a,bl. (2.3)

Here E, 4(2) is the Mittag-Leffler functions defined by [25]

el k

zZ
E =» ————— ze€R, peR", geR.
p.q(%) kE:o: kv ° p q
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Lemma 2.4 (Generalized discrete Gronwall Inequality, cf. Brunner [2]). Suppose that
a non-negative sequence {zn}N 1 and a non-negative non-decreasing sequence {y, }N | satisfy
the following relation:

<y 40> —ZL 1<n<N, 0<wv<l, (2.4)
where T = T /N and Q, > 0. Then the sequence {z, }N 1 can be bounded by
< YnEy1(Q(0)(n7)”), 1<n<N.

2.2. Reformulation of (1.1)

Let (2, #,P) be a probability space, W be a Brownian motion and u, be a second-order
random variable that is independent of W. Let Z(t) := Z(W(s)(0 < s < t),uy) denote
the o-algebra generated by u, and the history of the Brownian motion up to time t. We
integrate problem (1.1) from O to ¢t to get

u(t) =ugp+ J gDa(s)u(s)ds + f(s, u(s))ds + f b(s, u(s))dW(s). (2.5)
0 0 0

The second term in the right-hand side of (2.5) can be rewritten by integration by parts

such that
als u'(x)dx
J D ©u(s)ds = J J T = a())G — )@ ds

_((_ve [ fe=9)'

‘fo f—a) J, e ) Te—aen O

B (t_s)l—a(s)u(s) t _ t : )i ((t_s)l—a(s))d

T TTe—a®) b= ), as\Te=at) )7

B tl—ot(O)u0 t

= —m —JO k(t,s)u(s)ds, (2.6)
where the kernel k(t,s) is defined by

o ((t —s)tak)
k(t,s) := a (m) . 2.7)

We apply (2.6) to formally reformulate the proposed model as follows [8,24]: Find a sto-
chastic process u on [0, T ] that is progressively measurable with respect to % (-) such that

Atl—a(o) t
u(t) = (1 + m)uo + Afo k(t,s)u(s)ds

+ f f(s, u(s))ds + J b(s, u(s))dW(s). (2.8)
0 0
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3. Wellposedness and Moment Estimates

In this section, we prove the wellposedness of problem (1.1) and establish moment
estimates for its solutions.

3.1. Auxiliary lemmas

Lemma 3.1. Let 0 < 8 < 1, then the following estimate holds:

sup | (x—s)P|E(s)Ids SJ (t—s)P sup |E(r)Ids.
0

0=<x<t Jo 0<r<s

Proof. By the substitution s = O x, direct calculations yield

X

1
sup | (x—s)P|E(s)|ds = sup J xP(1—06)P|E(Ox)|xd6
0

0=<x<t Jo 0<x<t

1 t
Stl—ﬁJ (1—0)" sup |E(r)IdO= | (t—s)P sup |E(r)lds,
0

0<r<ot 0 0<r<s

which completes the proof. O

Lemma 3.2. Suppose assumption Al holds, then forany0<s <t <T
|k(t,)] < Qolt—s)™ (3.1)
for some constant Q, > 0 depending on ||a||c1fo,77, @* and T.
Proof. By the definition of k(t,s) in (2.7), we have

Q—a(s))+(t—s)d'(s)In(t—s) ad'()T'(2—a(s))

— )1—als)
I'(2—a(s))(t —s)*e) I2(2—af(s)) (£=s) '

k(t,s) =—

Since
[(t —s)In(t —s)| < max{e_l, TlnT} s

we estimate k(t,s) as
|k(t,5)] < Q(t =)™ =Q(t —s) ™ (t —)* ~*®) < Qmax{1, T}(t —s)™*,

which completes the proof. O
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3.2. Analysis of variable-order fSDE
Theorem 3.1. If the assumptions Al and A2 hold, then the problem (1.1) has a unique

solution u such that

E[ sup [u(s)?] € QE1p1(Qr(1— ")t ™) < 00, te[0,T]. (3.2)

0<s<t
Here, constants Q, and Q) are given by

422QeT

——+ 8Q,L*T%

Q, =4C2E[u3]+8Q,L%T, Q,=
with Qy, Cy and Q are the constants defined in Lemma 3.2, (3.8) and Lemma 2.1, respectively.

Proof. We define a functional sequence {v,} .2 by

Atl—a(o)
Vo(t) = (1 + m) Ug,

v (t) = vo(t) + kJ k(t,s)v,_1(s)ds + J f(s,v,_1(s))ds (3.3)
0

0

+ J b(s, Vo1 (s))dW(s).
0

Then for x € [0, T ], we have

X

(vn+1 - Vn)(X) = }'J k(X,S)(Vn - vn—l)(s)ds + J (f (5, Vn(S)) —f(S, Vn_l(S)))dS
0

0

X
+ f (b(s, vn(s)) — b(s, vn_l(s)))dW(s).
0
Applying the Jensen inequality (2.2) yields

E[ sup [ () = v,(x)]
0<x<t
2

<3E |:AZ sup J k(x,s)(vn+1(x) — vn(x))ds
o<x<t|Jo
X 2
+ 0sup J (f (s, vn(s)) —f(s, Vi1 (s)))ds
<x<t|Jo
X 2
+ sup J (b(s,vn(s)) — b(s, vn_l(s)))dW(s) ] =L +1,+15.
o<x<t|Jo
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By the Cauchy inequality (3.1) and Lemma 3.1, I; can be bounded by

I SSAZ]E[ sup (J Ik(x,s)ldsf |k(x,s)||vn(s)—vn_l(s)lzds)]
0 0

0<x<t

SAZQZtl—a* X .
< +E[ sup [ (x—s)™ |Vn(5)—vn_1(5)|2d5]
1—a* o<x<t Jo
SAZtal_a* t .
<0 | (= VE[ sup [vu(r) = v,_a (1) ]ds. (3.4)
1—a* 0 0<r<s

Apply the Cauchy inequality and assumption A2 to bound I, with

X X
I, <3L%E |: sup f 12dsJ v, (s)— vn_l(s)lzds]
0 0

0<x<t

t
33L2Tf E[ sup [v,(r)— v, (1) ]ds.
0

0<r<s

The term I3 can be bounded by the Burkholder-Davis-Gundy inequality (2.1), assump-
tion A2 and Itd’s isometry as
2]

J b(s, v, (s)— b(s, vn_l(s)))dW(s)
0

I =3JE|: sup

0<x<t

2
<3Q,E

f (b(s, vn(s)) — b(s, vn_l(s)))dW(s)
0

2

<3Q,L%E J [V, (8) — vy 1 (8)|dW (s)
0

t
SBQlef E[ sup |Vn(r)_vn—1(r)|2]d5- (35)
0

0<r<s

Combining (3.4)-(3.5) gives

E[ sup [vp()—va(0)?] <@ ds  (3.6)

0<x<t

B[ sUpo<; < Valr) = Va1 ()]
0 r(l—a*)(t—s)>
with y o1
22Q3T1-%

1—a*

Q =3F(1—a*)T“*( +L2T+Q1L2).

For n > 1, (3.6) can be rewritten as

%)

0
Un(t) := JE[ 021)1(}; [Vpp1(x)— Vn(X)|2] <Q JO o a*)l(t 9 ds. (3.7)
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By the definition of v, in (3.3), we have

ATl—a(O)

[vo(t)] < Colugl, Co=1+ r2—a(0)’

(3.8)

which indicates that ]E[vg] < C(%E[ug]. In a similar way, we can bound u(t) by

po(t) =E[ sup |v;(x)—vo(x)?]

0<x<t

X 2 x 2
SS]E[AZ sup (J k(x,s)vo(s)ds) + sup (J f(s,vo(s))ds)
0<x<t 0 0<x<t 0
b 2
+ sup (f b(s,vo(s))dW(s)) :|
o<x<t \ Jo

2n272(1-a*) ~2
_3A Q2TH1=*) (2
- (1—a*)?

E[u2]+6L2T(T +Q;) (1+ C2E[u2]) =: Q}. (3.9)
Combining (3.7)-(3.9), we obtain

t (t —s)_a*
r1—oa*)

t (t _S)_a* B QlQlltl—a*
Tl—a) " T((A—a)+1)

u(t) <Qq
0

po(s)ds < Q,Q}
0

for t € (0, T]. Suppose for any n > 1, u,(t) can be bounded by

Q/1 Ql} tn(l—a*)

un(t) < T —a)+ 1)’ te(0,T]. (3.10)
Substituting (3.10) into (3.7) gives
L ()
t) < =
‘u'n+1( ) —QIL F(l_a*)(t_s)tp(
QQttt ‘ gn(1-a’)

< —-ds
r1—a’)r(n(l—a*)+1) J, (t—s)*
Q/lQr11+1 t(n+1)(1—a*)B(n(1 —a)+1,1—a%)
B I'(n(l—a*)+ 1)r((1 —a*)
1 1(1—a*
Q/1Qq+ t(n+1)(1—a*)

T+ DA—a9+ 1)

By mathematical induction, (3.10) holds for any n € N. The series defined in the right-hand
side of (3.10) converges to the Mittag-Leffler function

> QjQjeni—)

—0 1—a*
M —ay D~ Qe (@) <eo, ce@T],

n=0
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which implies that

oo
DUE[ sup v ()= vy (0] < oo,
=0 O<t<T

By Chebyshev’s inequality, we conclude that

P( Sup [vps1 ()= va(O)2 = 2—")
te[0,T]

<22E[ sup [vpuy(0) = v, ()]
t€[0,T]

Q) (4Q ) - Q,(4Q, T )" B
“TTI(n(l—a®)+1)  T'(n(l—a*)+1)

By the Borel-Cantelli lemma, the sequence

n— 090,

b

n

va(t) = > (vj(t) = vjr (£) + vo(t)

Jj=1

converges uniformly to a continuous function u(t) that solves (2.6).
Let i1 be another solution to (2.6) and e(t) = it — u. Then a similar derivation to (3.6)
yields for all t € [0, T]

E| sup le(x)I*] <

0<x<t

Jf IE[ SUPg<y<s |€(r)|2:|
0

T —s)w &

We apply Gronwall inequality to conclude that e(t) = 0 a.s., which proves the uniqueness
of the solution.
Using (3.3), the second moment of v,(t) for n > 1 can be bounded by

X 2
IE[ sup |vn(x)|2] < 4]E[v02] +412E|: sup (J k(x,s)vn_l(s)ds) :|
0

0<x<t 0<x<t

b'e 2
+4IE|: sup (J f(s,vn_l(s))ds) :|
0<x<t
ox ,
+4JE|: sup (J b(s,vn_l(s))dW(s)) ]
o<x<t \Jo

, t E[ SUPp<r<s |Vn—1(r)|2]
SQ2+Q2 (t_s)a*

ds,
0

here
22 pl—a*
AA“QT ¢
l1—o*
Passing to the limit as n — oo and applying Gronwall inequality (2.3) we obtain (3.2) and
thus finish the proof. O

Qo =4C2E[W2]+8(1+Q))L*T, Q)= +8(1+Q LT
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4. Euler-Maruyama Approximation and Its Strong Convergence

4.1. Derivation and stability of scheme

Define the uniform partition of [0, T] by t, :=n7 for 0 <n < N with 7 :=T/N. At t,
we discretize the last three right-hand side terms in (2.8) by

th n—1 ti+1
J k(t,, s)u(s)ds ~ ( J k(tn,s)ds) u(t;)
=0 3]

: (tn — tl+1)1_a(fl+1) (tn _ tl)l—a(tl) B n—1
( r2—alty1)  T2—alf)) )“(“) =: D cpuu(tr),

| o
—

[

=0 =0
tn ti1 n—1
f@mma~z F(tpue))ds =y ft,u(ty)),
=0
iy n—1
J b(s, u(s))dW(s) ~Z f b(t,u(t))dW(s) = > bt u(t)) AW,
0 =0

where AW, := W (t;41) —W(t;) ~ N(0, 7) is a Gaussian random variable.

We invoke these discretizations into Eq. (2.8) to obtain a Euler-Maruyama scheme to the
variable-order fSDE (1.1): Given the initial data u in problem (1.1), find y,, for1 <n <N
such that

ktl—a(o) n—1 n—1 n—1
Yn=|1+o"— Uo+lZCn,ZJ’1+TZf(tz,J’z)+Zb(tz,J’z)AWz- (4.1)
(2= a(0) 1=0 1=0 [=0

Theorem 4.1. Under the assumptions A1-A2, the solution y, to the Euler-Maruyama scheme
(4.1) satisfies the moment estimate for 1 <n <N, i.e.

E[y3] < QsE1ge1 (QualT(1—a)e ™)
<Q3E1_ge (Qqal(1—a)T'™ a*) =: M, 5, (4.2)
where Q3 and Q4  are the following constants:
Qs = 4CoE[ud ] +8L*T(T + 1),
AA2Q% (2% +1/(1—a®)) T
Qup =8LYT+1)+ o — ) : (4.3)
Proof. We apply Jensen inequality (2.2) with m = 4 and Cauchy inequality to bound
the moment of y, in (4.1) by

n—1 2 n—1 2
]E[y,%] < 4C§]E[u(2)] +4A°E [(ch,lJ’l) ] +47°E [(Zf(tl,yl)) ]
[=0

=0

n—1 2
+4E [(Z b(tl,yl)AWl) ] . (4.4)

[=0
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For 0 <[ < n— 2, the coefficients c, ; can be bounded by

b1 a*
T 2 .
el sJ Kty s < — 2 < 2B 1o
: (b= t2)* ~ (=D

l

where we used the factn—1 <2(n—1—1)forn—1> 2. For | =n—1, we have

t, Q
a1l = J |k(tp,s)lds < T 0 *Tl_“*.
th—1 —a
Therefore, c,; for 1 <1 < n—1 can be bounded by
Q 2a* +1 1_a>k) Tl—a*
0( [ ) 0<l<n-1.

Chil < >
| n,l| (n_l)a*

Lemma 3.2 yields

*

1—-a

n—1 t

n Q t
§:|cn,z|sj k(£ )lds < 2.
1=0 0 a

Combining these estimates with the Cauchy inequality, we estimate the second term in the
right side of (4.4) as follows:

n—1 2 n—1 n—1
o (Soewn) | < St E
[=0 [=0

=0

2 2(1* 1/(1—o* Tl—a n—1 ]E 2
- Q3(2* +1/(1—a") o ST ELL 4.5)
1o (- Z)a

By the Cauchy inequality and assumption A2, the third term in the right-hand side of
(4.4) can be bounded by

S 2 ol n—1
TZE[(Zf(tl’yl)) ] Tt E[f(t,3)?] <212T7 Y E[(1+y2)]
0 (=0 1=0
n—1

<212T?+21°T7 ) E[y?2].
[=0

We use Itd’s isometry and assumption A2 to bound the last term on the right-hand side of
(4.4) by

n—

1 n—1
E[b(t;,,)*] < 212t Z]E 1+y?]
1=0 =

n—1
E[(Z b(tz,yz)sz) ] g
[=0
n—1

<2L°T +2L%7 > E[y?]. (4.6)
=0
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We invoke the estimates (4.5)-(4.6) into (4.4) to obtain
n—1
E[y2] < 4C3E[u2]+8L2T(T +1)+8L3(T + 1)t »_E[y?]
1=0
42'2Q(2)(2a 1— a* )Tl « Tl_a* nil: ]E[yl]z
(1-a?) Sin-0

Ely,J*
n—1)*

<Q3+Quut Z(

with Q3 and Q4 being given in (4.3). Applying the generalized discrete Gronwall’s in-
equality (2.4) with v =1 —a* leads to the estimate (4.2). O

4.2. Auxiliary equation estimates

To analyze the strong convergence of the Euler-Maruyama scheme, we define an auxil-
iary continuous time stochastic process y(t) on [0, T'] using the step function § = §(s) such
that§:=t, fors e [t,,t,y;)and0<n<N-1

2 t1—0) t R
y(t)= (1 + m)uo + AJO k(t,s)y($)ds

+ J f(s,y($))ds + J b(s, y(8))dw. (4.7)
0 0

Lemma 4.1. Under the assumptions A1-A2, the error between { yn}N

bounded by

o and y(t) can be

E[(y(t))—yn)'] < 4L2T*(z% +1%), 0<n<N. (4.8)

Proof. It is clear that y(0) = yy = uy. For 0 < n < N we decompose the integrals on the
right-hand side of (4.7) by

Atl=el0)
y(t”):(l-'_l“z——a(o)))uo_’_lz nmy(tm)+TZf tms ¥ (tm))

m=0

(
f T (Floyten) - F(tw ¥ () )ds + Z b(tm, ¥ (tm)) AW,
0J ty

m=0

1
+ Zf (5 (tn)) = b(tms Y () )AW(s)

=Ynt ZJ h (f(s’ y(tm)) —f(tm,y(tm)))ds
m=0 tp

n—1

+ ZJ "~ (b5, ¥ () = bt ¥ (£)) ) AW (s).

m=0J tp
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By the assumption A2 and the It6 isometry, we get

E[(y(ta)—¥,) ] < 2E (Zl J (£ (s, ¥(tm) —f(tm,y(tm)))ds)

Tl

2
+2E J (b(s, ¥(t)) = b(tms y(tm)))dW(s))

m=0v ty
n— tmt1 fm+1
L? |s—tm|2/5ds+f s —t,,|*"ds
tm
<4 2 T P4 TzV
Thus we finish the proof. O

Lemma 4.2. Under the assumption Al, it holds for t € [t,, tp4+1)

tn 9
(f |k(t,5)—k(tn,5)|d5) SQSTZ(I—a*),
0

where

2
1 lallegoy | T*lali?
Q5=3{max{1,T2}( piziclon ), - )

1—oa* a* (1—a*)?

) 17201* Tl_a* 2
+4”a”C1[OT max{l,T } 0o )e + e .

Proof Using the mean value theorem and the inequalities 1/T'(8) < 1, |IV(1+8)|/T?(1+
B)<1for1/2<p <1, we estimate |k(t,s)— k(t,,s)| as follows:

(t _S)l—a(s) _ (tn _S)l—a(s) )‘

|k(t,s) = k(tn,s)| = ‘%(

I'(2—a(s))

< | als)((e —5) O — (£, —s)™O)
- r2—af(s))

@/ (s)((t =)' n(t —s) = (£, =)' " In(t, —s))

+
I'(2—a(s))
I'(2— a(s))a’(s)((t =)0 — (¢, —s)' 7))
I2(2—a(s))

< I(tn —5)7) — (£ =) O| +[lallcio,r (£, —5) 7
+2llallcipo,r| (£ =)@ In(t —s) — (£, — )"~ In(t, —s)).
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By the Jensen inequality we get

ty 2
U |k(t,s) —k(tn,s)|ds)
’ tn 2
[ o)
0

tn
+12)lall?1p0 1y U |(t—5)1_“(s)ln(t—s)—(tn—s)l_“(s)ln(tn—s)|ds)
0

2

2
+3||a”C10T] (J (t,—s)~ a(s)dg) T2 = 3J2+12||a||2 J2+3||a||2 J2 4.9)

We are now in the position to estimate J;-J5. If s € [0, t,,_; ], the mean value theorem yields

(t =5y = (=)™
< a(s)(ty =)™ e < max{1, THlallepo.r1(6n =)™ 7',

so that

th
J |(tn =)™ — (¢ —5)7)|ds
0

||a||cl[0,T] (T_a*
a*

”a”C[O,T] -
a*

<max{1, T} —t;“*)f < max{1,T}

If s € (t,_1,t,), then

trl
f |(tn— )7 — (¢ —5)7)|ds
t

n—1

tTl

* * T

< J (t,—$)* (¢, —s)* ds < max{1, T} il
th—1

We incorporate these estimates to bound J; by

1 llall \
1] < max{l,T}( 4o —cloT] ) 1
1—a* a*

We apply the mean value theorem to bound J, by
tyh
Wyl = J |0.(z =)' @ In(z —9)||,_. (t — t,)ds
0

= J | (1= a(s)(E =) DIn(g —s) + (£ —s)*)|dst
0
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< max{1,T} (ﬁj H(E —sy " ds +J n(& —s)_“*ds)
0 0

1—a*

4T 2 =%
Smax{l,T}( + )T

(1—a*)2e 1—ax

Similarly, J5 can be bounded by

t
* " * T
] < T (J (tn—s)_“ds)’rﬁl .
—Qa
0

Applying the preceding estimates in (4.9) finishes the proof. O

Theorem 4.2. Under the assumptions A1-A2, the following estimate holds for t € [t,, t,11):

2
]E[(y(t) —y(ty)) ] <M,;7, 0<n<N-1,
where M, , is given by

4AE[u2 ]

My) =" %
227 12(2 — a(0))

+ Slel,A (m +Q5) + 16L2(1 +M1,)L)'

Proof. For t € [t,, t,41) with 0 < n < N —1, we subtract Eq. (4.7) at time ¢, from (4.7)
and apply the Jensen inequality to obtain

ap2($1-a0) _ ¢1-a(0) 2 t 2
E[(v0=y)] < (F2(2—a(5)) el Utnf(s’y(g))ds)

t 2 t 2
+4E U b(s,y(§))dW(s)) +8A%E U k(t,s)y(§)ds)

n

tn 2
+8/12]E[( J (k(t,s)—k(tn,s))y(§)ds) ] (4.10)
0

The first term in the right-hand side of (4.10) can be bounded by

_ _ 2
42'2(151 a(0) __ ti a(O))
I2(2—a(0))

) 4AZ]E[u%]
Elw] = e a0y

720—a(0)).

The assumption A2 and Theorem 4.1 allows to estimate the second term as follows:

t 2 t
E (J f(s,y(s“))ds) < 2L2TJ (1 +]E[y3])ds <2L%(1+ Ml,A)Tz.

n
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We use It6 isometry and assumption A2 to bound the third right-hand side term by

¢ 2
E (J b(s,y(§))dW(s))

= f E[b(s,y(§))2] dt < 21%(1+E[y?])r < 2L2(1 + My ;).

We employ the Cauchy inequality to bound the fourth term as
t 2 t t
E ( f k(t,s)y(s“)ds) < J |k(t,s)|E[ y(5)*]ds f |k(t,s)|ds
tTl tYl tYl

t 2 2,2(1—a*)
Ml,AQQT
SMI,A (Jt |k(t,s)|ds) < (1——(1*)2

Finally we apply Lemma 4.2 to estimate the last term in the right-hand side of (4.10)

E [(J ' (k(t,s) — k(tn,s))y(§)2ds)]
0

tn

sJ n|k(t,s)—k(tn,s)|]E[y(§)]2dsf |k(t,s) —k(t,,s)|ds
0 0

tn 2
<M, (J |k(t,s) — k(tn,s)|ds) < Q5M1,ATZ(1_O‘*).
0

We incorporate the preceding estimates to complete the proof.

O

Remark 4.1. We remark that the strong convergence order is @(t1~% + t%3), accurately,
where the error @(t1%") comes from the fractional term and €(7°%>) comes from the
Brownian motion term. Since it is assumed that 0 < a(t) < 0.5, the error is dominated by

0(7%®) as expressed in Theorem 4.2.

4.3. Errors of Euler-Maruyama scheme (4.1)

We now prove the strong convergence of Euler-Maruyama scheme (4.1).

Theorem 4.3. Suppose the assumptions A1-A2 hold. Then the following error estimate holds

2 20 (2 2
Orgrhas);]]E[Iu(tn)—ynl ] < M3 7 +4L%T (7 ),

where

Ms = QeE1—41 (Q7F(1 — a*)Tl_a*) M; 3,
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622Q>2 T2(1—a")
= 0 +6L%T(T + 1),

6T (1—a)?
67LZQ2T1_°‘* .
r=— S +6L°TY (T +1). (4.11)
—a

Proof. Let t € [t,,t,.1) for some 0 < n < N —1. We subtract Eq. (4.7) from Eq. (2.8)
to obtain

t 2
E[(u(t) — y(t))z:l < 3A°E [( f k(t,s)(u(s)— y(s“))ds) ]
0

+3E [( JO tf(s, u(s)) —f(s,y(s“))ds)z]
+3E [Uot b(s,u(s)) — b(s,y(§))dW)2] =: le. (4.12)

Using the assumption A2, Cauchy inequality, It6 isometry, Theorem 4.2 and u(s)—y($) =
(u(s)—y(s)) + (y(s) — ¥(8)), we estimate I, and I3 as follows:

I, <6TL? fo t (E[Ju(s) - y&)IP]+E[ly(s) - y($)I*])ds
< 6TL2ftJE|:|u(s) —y(s)I*]ds +6T2L*M, , 7, (4.13)
and 0
I; <612 fo t (E[Ju(s) — y&)P] + E[ly(5) — y&)2])ds
<6L2 f tJE[lu(s) —y(s)I*]ds + 6TL2M, 5 7.
0

Considering I;, we represent it in the form

¢ 2
I; <6A%E [(J k(t,s)(u(s) —y(s))ds) :|
0

t 2
+6/12]E[U k(t,s)(y(s)— y(s“))ds) ]
0

= 11,1 +IL2

and use the Cauchy inequality and Theorem 4.2, thus obtaining

11,1=6AZJ ]E[|u(s)—y(s)|2:||k(t,s)|dsJ |k(t,s)|ds
0 0
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212 l—a* t _ 2
_ 25T J E{lus) = y©P]
0

= S,
1—a* (t—s)*

Ly < 67LZJ ]E[Iy(S)—y(§)|2]Ik(t,S)Ide |k(t,s)lds
0 0

625 TN, 5
- (1—a*)?

(4.14)

Combining (4.13)-(4.14) and (4.12) yields

CE[(u(s) — y(5))?]

(t—s)

E [(u(t) —y(t))z:l < QeM; ;T + Q7J ds,

0

where Qg and Q- are given by (4.11). We apply the generalized Gronwall’s inequality (2.3)
and set t = t,, to obtain

El |u(t) = y(O)I?P | < M4 ;7.
gl&)T(] [lu(t) =y (O] < M3t

tel

This and the estimate (4.8) complete the proof. O

5. Numerical Experiments

We carry out numerical experiments to investigate the performance of the Euler-Maru-
yama scheme (4.1).

5.1. Strong convergence of the Euler-Maruyama scheme

Let u(t,, ;) be the j-th independent sample path of the fSDE (1.1) evaluated at ¢,
with the numerical approximation y,(w;) by the Euler-Maruyama scheme (4.1) for n =
0,1,2,...,N and j =1,2,...,M. The sample mean of the error and the convergence rate
k are defined by

210 2
1 2 —
e "&%(ﬁ ]Ezlllu(tmwj)—yn(wﬂl ) =QN

with k = log,(e;/e;/2). In numerical experiments we let [0,T] =[0,1], A = 1, and the
variable order a is chosen as

(5.1)

a(t) = a(1) + (a(0) — a(1)) ((1 ) M) _

27

Since the true solution is not available, we use the fine mesh size of N,.; = 219 to compute
reference solutions.
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Example 5.1 (Linear VO fSDE). We choose f(t,u) = b(t,u) = —tu and uy = 0.1 in the
problem (1.1). The errors e, for different mesh sizes N and difference choices of a(0) and
a(1) are shown in Fig. 1. Note that the numerical scheme (4.1) converges strongly with
the order @(7%°), consistent with Theorem 4.3.

Error
Error

— % —(a(0),a(1)=(0.1,0.3) _-
— — —Slope=0.5

— % —(a(0),a(1))=(0.1,0.3)

- — — —Slope=0.5

2 4 6 8 10 12 14 2 4 6 8 10 12 14
T %103 T %1078

Figure 1: Example 5.1. Errors. Left: (a(0),2(1)) =(0.1,0.3). Right: (a(0),a(1))=(0.5,0.2).

Example 5.2 (Nonlinear VO fSDE). Let f(t,u) = b(t,u) = —tsin(u) and u, = 0.1 in
problem (1.1). The numerical results presented in Fig. 2 lead to the same conclusion as in
Example 5.1.

Error
Error

— % —(a(0),a(1)=(0.1,0.3) _-
— — —Slope=0.5

— % —(a(0),a(1))=(0.1,0.3)

- — — —Slope=0.5

2 4 6 8 10 12 14 2 4 6 8 10 12 14
T %10 T %1078

Figure 2: Example 5.2. Errors. Left: (a(0), (1)) =(0.1,0.3). Right: (a(0),a(1))=(0.5,0.2)

5.2. Performance of the variable-order fSDE

We compare the performance of the variable-order fSDE (1.1) and the conventional
SDE — i.e. the model (1.1) with A =0. Let [0, T]=[0,1], f(t,u) = b(t,u) = —tu, ug =1,
and variable « is given by (5.1). We use the Euler-Maruyama scheme (4.1) with N = 210
to compute the solutions for different (a(0), a(1)) and present the results in Figs. 3 and 4.
Note that:
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fSDE A = 0.1

09

0.8

0.7

0.6

05 L L L L L L L L L
0 0.1 02 03 04 05 06 07 08 09 1

Figure 3: Solution curves for the same sample. Blue: Integer-order SDE. Red: Variable-order fSDE,
(a(0),a(1)) =(0.1,0.3). Left: A =0.1. Right: A=1.

"

D 1 L D |

12l fSDE A = 0.1 f ] 1.4 fSDE A = 1 I
LA

09

0.8

0.7
0.7

oer 0.6

05 L L L L L L L L L 05 L L L L L L L L L
0 0.1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

t t

Figure 4: Solution curves for the same sample. Blue: Integer-order SDE. Red: Variable-order fSDE,
(a(0),a(1)) =(0.5,0.2). Left: A =0.1. Right: A=1.

(i) The solutions to model (1.1) with small A are close to the solutions to integer-order
SDE, while there exhibits considerable differences between them if A is not small
enough.

(i) Due to the history memory property of the fractional derivative, the discrepancy of
solutions of VO fSDEs to SDEs are accumulated.

In order to show the effect of a(t) on the solutions, we choose two more functions
a(t) = 0.2+ 0.2¢"¢ and a(t) = 0.5t2 as our variable-order functions in Fig. 5. Note that
different variable-order functions will lead to drastic change in the image of the solutions.

6. Conclusion

In this paper, we focus on time-dependent VO fSDEs. We prove the wellposedness of
a hidden-memory VO fSDE and establishe the following error estimate @(t'~% + 7%%) =
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SDE SDE ]

141 SDEA =1 I 1 14 SDE A =1 i
|
|

0.1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
t t

Figure 5: Solution curves for the same sample. Blue: Integer-order SDE. Red: Variable-order fSDE.
Left: a(t)=0.2+0.2¢*. Right: a(t)=0.5t2.

0(7%3) for a* < 0.5 for the Euler-Maruyama scheme, with 7'~% determined by the ap-
proximation of the fractional term and with dominated term @(7%°) is defined by the dis-
cretization of Browian motion. In the future work, we will investigate the stochastic partial
differential equation with space dependent variable order a(x) or space-time dependent
variable order a(x, t).
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