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Abstract

Training models with massive inputs is a significant chal-
lenge in the development of Deep Learning pipelines to pro-
cess very large digital image datasets as required by Whole
Slide Imaging (WSI) in computational pathology and analysis
of brain fMRI images in computational neuroscience. Graph-
ics Processing Units (GPUs) represent the primary workhorse
in training and inference of Deep Learning models. In order
to use GPUs to run inference or training on a neural network
pipeline, state-of-the-art machine learning frameworks like
PyTorch and TensorFlow currently require that the collective
memory on the GPUs must be larger than the size of the
activations at any stage in the pipeline. Therefore, existing
Deep Learning pipelines for these use cases have been forced
to develop sub-optimal "patch-based" modeling approaches,
where images are processed in small segments of an image.
In this paper, we present a solution to this problem by em-
ploying tiling in conjunction with check-pointing, thereby
enabling arbitrarily large images to be directly processed,
irrespective of the size of global memory on a GPU and
the number of available GPUs. Experimental results using
PyTorch demonstrate enhanced functionality/performance
over existing frameworks.

CCS Concepts: « Computing methodologies — Model-
ing methodologies; Machine learning; Neural networks; «
Software and its engineering — Software performance;
Compilers.
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1 Introduction

Deep learning has transformed many applications of image
processing. However, a few domains with massive image
data, such as digital pathology and brain fMRI analysis, face
significant challenges in developing deep learning models
due to memory limitations. Virtually all deep learning to-
day uses the computational power of GPUs, which offers
significant performance improvement as compared to CPUs.
But GPUs have much less memory (usually 32 GiB or less).
Training of these Deep Learning pipelines requires that the
activations computed at each layer in the forward pass are
used to compute the gradients in the backward pass, where
the layers are processed in reverse order. Therefore, popular
machine learning frameworks like PyTorch [16] and Tensor-
Flow [1] normally store the forward activations at all layers
until the backward pass commences, and thus the total set of
activations must fit within GPU global memory. While sav-
ing/reloading activations from host memory is possible, the
low bandwidth between host and GPU has a drastic impact
on performance and hence this option is not used in PyTorch
or TensorFlow. This memory-constrained usage limitation
has forced researchers in these domains to use sub-optimal
models, either by coarsening the input data (e.g., brain fMRI
analysis [3]) or by use of suboptimal “patch” based modeling
using smaller slices of data from full images (e.g., digital
pathology [14]). In this paper, we develop a static compile-
time analysis and transformation approach to overcome this
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Figure 1. Example of a sequential DNN pipeline with 6 layers.
For layer I, F; is the operator of the forward function, and
By is the corresponding backward function generated by the
ML framework; I' represents an input activation (I° is the
input) and G represents a gradient.

problem, along with a demonstration via a prototype im-
plementation using the popular PyTorch machine learning
framework.

Our approach to enable the training of deep learning
pipelines on memory-constrained GPUs is to combine check-
pointing and recomputation with tiled execution. When the
operators of a sequence of consecutive layers in a DNN
pipeline are amenable to compatible tiling and fused exe-
cution of tiles across the layers, the memory requirements
can be dramatically reduced. However, not all sequences of
consecutive DNN layers can be compatibly tiled and fused.
Therefore, we develop an approach to identify consecutive
operators in a DNN pipeline that are mutually compatible
for fused-tiled execution, which we term an FT segment in
the DNN pipeline. We develop compile-time analyses for the
identification of feasible FT segments, and the determination
of effective tile sizes for efficient fused-tiled execution of the
layers within an FT segment.

We use the name SFT for our approach: Segmented Fused-
Tiled execution. The main contributions of the paper are:

e An abstraction to characterize DNN operators and se-
quences of DNN operators with regards to compatibly
tiled and fused (FT) execution (Sections 3 and 4.1);

e A compile-time algorithm for partitioning the layers of
a DNN pipeline into a sequence of FT segments for tiled
execution with checkpoint/recompute (Section 4.2);

o A compile-time algorithm for identifying tensor slice sizes
for efficient fused-tiled execution of FT segments (Sec-
tion 4.3);

e A PyTorch-based implementation of the new SFT approach
to train deep learning pipelines on a memory-constrained
GPU (Section 5);

e An experimental evaluation demonstrating efficient execu-
tion of DNN training pipelines with massive input images
(up to 20K X 20K pixels) on a single GPU with only 11 GiB
memory (Section 6).

2 Background
2.1 Forward and Backward Propagation

Figure 1 shows an example of a DNN training pipeline. Dur-
ing the forward pass, the forward operators (F,, n = 1,2, ...)
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Figure 2. Checkpointing a network with 6 layers. The red
dashed lines represent recomputation of the activations that
were not stored. The backward pass therefore requires local
forward passes.

are evaluated in layer order. The input activation tensors
for each neural network layer (I", n = 0,1,2,...) must be
saved until they are used to compute the gradient by the
appropriate backward operator, as shown by the diagonal
edges between the forward and backward operators. After
the output layer (Fs in this example), a loss function is eval-
uated and the gradient of the loss (G°) is computed to start
the backward pass. In the backward pass, the operators (B,
n = 1,2,..) are evaluated in reverse order. Since all inputs
I must be saved until the start of the back propagation, the
memory requirement grows linearly with the number of
neural network layers.

2.2 Memory Reduction via Checkpoint/Recompute

The total memory required for DNN training can be reduced
by saving only a subset of activations during the forward
pass and recomputing the unsaved activations when they are
needed during the backward pass [7]. The nodes that save
input activations in the forward pass are called checkpoint
nodes, while the remaining "non-checkpoint" nodes release
the memory for their activations after their use in the for-
ward pass. Figure 2 shows a checkpoint strategy for the DNN
pipeline from Figure 1. There are two checkpoint segments;
vertical bars in the figure represent the checkpoint locations.
The first segment contains F; and F,, and the second seg-
ment contains all layers from F; to the end of the network.
During the backward pass within a segment, the activations
of the forward operators of all layers are recomputed for
all non-checkpoint nodes in the segment, and are kept in
memory until they are used during the back propagation for
that segment.

Several efforts have developed schemes for checkpoint/re-
compute execution during training; an overview is presented
by Rojas et al. [18]. However, none of these schemes can be
used when the size of a single activation is too large to fit in
GPU memory, i.e., the scenario we address in this paper.

2.3 Fused-tiled Execution

Tiling and fusion have been used in the design of accelerators
for inference in DNNs [2, 22]. Tiling and fusion allow a
subset (tile) of the input activation data to be moved into the
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Figure 3. Tile size computation in a convolutional network
with 2D convolutions using stride 1 with a kernel size R X S;
fill/padding values are f, = (R—1)/2 and f; = (S — 1)/2.

accelerator, and then the tile is processed through a series
of individual layers to generate the output tile. For such a
fused-tiled execution, additional “halos” must be available
for slices of input activations, as described below. Figure 3
shows a short network segment with a sequence of two 2D
convolutional operators. Let the kernel size be R X S with a
stride of 1. In a standard untiled 2D convolution, the input
is padded/filled such that the output activation size matches
the input activation size. The vertical fill size is f, = (R—1)/2
and the horizontal fill size is f; = (S — 1)/2, allowing the
application of the kernel to boundary activations. The dashed
box surrounding the entire activation represents the filled
shape of the input, accounting for the padding.

In a tiled execution, each computational tile produces a 2D
slice of the full activation. In order to produce a slice of size
Ty, X T,, at the output of the second conv2d stage, a slightly
larger input data slice of size (T, +2f;) X (T, +2f;) is needed.
Thus, in order to compute the T,, X T}, tile output of the fused
convolution (the pink shaded area in Figure 3), the input
to the second convolution must be (T, + 2f;) X (T, + 2f;),
which is represented by central pink tile with the blue fill
halo. Similarly, to produce the (T,,+2f;) X (Tp+2f,) output tile
after the first convolution, the input to the fused convolutions
must be (T, + 4f;) X (T, + 4f,) (the yellow, blue, and pink
areas).

The above example has only shown the expanding halo of
the data slices that must be computed by a sequence of stages
during forward propagation. For fused-tiled execution of the
combined forward/backward pipeline for DNN training, ad-
ditional inter-dependencies on tile sizes must be considered,
as elaborated later in the paper. Another challenge is the
identification of opportunities for fused-tiled execution for
arbitrary DNN pipelines.

3 Overview of Solution

In this section, we describe our solution to the problem of
training deep learning pipelines when GPU memory is in-
sufficient to hold large activations, as encountered in the
analysis of WSI (Whole Slide Imaging) in digital pathology.
We devise an approach (the first to our knowledge) for fused-
tiled execution of the combined operator graph comprised of
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Table 1. Description of convolution parameters.

Description Description
B Batch size K Output channel
H Height of Input R | Height of Kernel/Filter
w Width of Input S | Width of Kernel/Filter
Oy, | Height of Output || f Padding value in H
0O,, | Width of Output || fs Padding value in W
C Input channel P Stride size

Arbitrary Deep Neural
Network Graph X y
Network

Segmentation

Segmented

Deep Neural Network X "1
Graph '

Tile Size

Analyzer

Segmented Fused Tile

Deep Neural Network
Graph

rap Tiled

Execution
(PyTorch)

Figure 4. Overview of our approach: FT segmentation (Sec-
tion 4.2), tile-size analyzer (Section 4.3), and PyTorch execu-
tion management (Section 5).

the forward operators provided by the user and the backward

operators automatically generated by an ML framework like

PyTorch.

Figure 4 presents a high-level overview of our approach.

1. The first step in our analysis is the partitioning of an
arbitrary DNN graph into segments of consecutive layers
that can be compatibly fused and tiled. While the forward
function can represent an arbitrary DAG, a linear order of
execution of the layers (operators) of the forward graph is
assumed to be pre-determined by the user, as is common
in ML frameworks like TensorFlow and PyTorch. We find
maximal sets of consecutive DNN layers whose operators
are mutually compatible with respect to tiling and fusion.
The entire DNN graph is partitioned into such FT sets,
with saved activations (checkpoints) between segments
and fused-tiled execution within each FT segment. We
describe how we formalize compatibility of operators in
Section 4.1 and details of the algorithm for identifying
maximal FT segments in Section 4.2.

2. Within each FT segment, all operators can be executed in
a fused-tiled fashion, with an identical number of tiles for
all operators in the segment. However, the tile sizes for
these operators have inter-dependencies that have to be
analyzed to determine the minimal buffer sizes for correct
fused-tiled execution of that FT segment. This analysis is
described in Section 4.3.

3. Some details of our fused-tiled implementation in PyTorch
are discussed in Section 5. Experimental results for three
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Figure 5. Tiling dataflow in a segment with 4 layers. The
checkpoint-segment contains operator 1, 2, 3.

DNN pipelines (VGG-16, VGG-19 [19], and DarkNet[17])

are presented in Section 6, demonstrating the ability to

process large images as needed for whole-slide image
analysis in digital pathology [6] (results for 10K x 10K
and 20K x 20K images are presented).

Figure 5 shows a small three layer segment of a neural
network used to compare the dataflow for a baseline exe-
cution and the proposed segmented fused-tiled execution
(our scheme). The steps involved in training using each of
these implementations are given in Table 2. For the baseline
execution, all activations I"(n = 1, 2, 3) are saved in memory.
As a result, the input activations just go forward through the
network F1... F4, the loss is computed, and then back prop-
agation computes gradients G"(n = 1,2, 3). All activations
must be stored concurrently.

The fused-tiled execution first breaks up the input acti-
vation into some number of tiles (e.g., 16), denoted with a
subscript I;,i = 0,. .., 15, and then runs each tile through the
forward pass of an FT segment. In the example, the forward
and backward operation for all layers (including the loss) are
computed after all tiles have gone through forward layer Fs
in the network segment depicted. The back propagation for
layers 1 through 4 proceeds tile-by-tile as follows. Gradient
G (i.e., tile 0, layer 3) is computed using the checkpointed
activation I3 and the just computed gradient G* (i.e., a tile is
recomputed). In order to compute I, tile 0 is processed from
checkpoint 1 through checkpoint 2 (i.e., through F;, F,, and
F3). Note, during this forward recompute pass, all tile 0 acti-
vations are saved (I] and I? in this example). The recomputed
I} and I? are used to compute the gradients G} and GZ. After
all gradients are computed for tile 0, all of the temporarily
saved recomputed tile activations have been freed. Next, the
remaining tiles are processed (i.e., 1,..., 15 in this example)
sequentially.

In the fused-tiled execution each checkpoint activation
needs to be saved, along with the activations for each layer
of a single tile (which can be arbitrarily small). Fused-tiled
segments allow full intermediate activations to never be
fully saved (only tiles). Adding more layers to an FT seg-
ment reduces the number of full activations that must be
saved, but only increases the memory for a segment by a
tile. This provides a significant memory savings compared
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to checkpoint/recompute, especially in many popular net-
works where the large activations are between convolution
and pooling layers. In these networks, these large activations
never need to be fully saved and nearly arbitrarily large input
images can be processed.

4 Problem Formalization & Algorithm
Details

4.1 Problem Formalization

An example of fused-tiled (FT) execution was seen in Fig. 3,
where each of the 16 tiles of the second conv2d operator
could be executed by fusion with a corresponding tile for the
first operator. A chain of such conv2d operators can clearly
also be executed in FT fashion. For a DAG of operators to be
executable in a fused-tiled manner, each operator must be FT-
compatible with respect to one or more pairs of compatible
dimensions of input/output tensors, and the interconnected
operators must be mutually FT-compatible. We formalize
this below.

4.1.1 FT-compatible Operators. An operator is defined
as FT-compatible with respect to a pair of input/output tensor
dimensions if a slice of the output tensor with extent T; along
some dimension can be computed using only a slice of the
input tensor with extent 4T; + §4 along the input’s dimen-
sions, for constants ¢ and J. For example, consider the 2D
convolution operator (for simplicity without stride/dilation
parameters):
Out[n, k, h,w] = Z In[n,c,h+r,w+s] = Ker[k,c,r,s] (1)
c,r,s

Consider a slice of the output tensor Out[T,, Ty, Ty, T, ],
with slices of size T,,,Tk,Th, T\, respectively along the batch,
channel, height, and width dimensions. In order to compute
such a slice of the output tensor, only a subset of elements
of the input tensor will be needed. As previously illustrated
in Figure 3, the minimal slice of the input tensor will be of
size In[T,,,C, T, + R— 1, T,, + S — 1], where C is the number
of input channels and R and S are the stencil size along the
height and width directions. Thus, the conv2D operator is
FT-compatible with respect to the batch, height, and width
dimensions of the input/output tensors, but not with respect
to the channel dimension. The parameters relating the FT-
compatible dimensions are: 0, = 1,6, = 0; 0, = 1,0, = R—1;
ow=16,=8S-1

An operator with FT-compatible dimensions can be effi-
ciently executed in a tiled manner, where slices of the out-
put tensor can be produced using slices of the input tensor.
Although the set of slices of the input tensors required to
produce disjoint slices of the output tensors are not disjoint
(as was illustrated in Fig. 5), the amount of redundant compu-
tations will be relatively low when the slice sizes are chosen
to be large. We define FT-compatible segments as the group
of connected operators in a DNN pipeline with mutually
consistent FT-compatible dimensions.
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Table 2. Sequences for the computation for a baseline training and segmented fused tiled training. FI(I#) depicts the Ith
forward layer with an input I* for the i*" tile. BI(GY) is the backward operation for layer [ with input gradient G{. i in the
Tiling-Checkpoint method represents the number of the tiles that we partition the input into. Saved activations are denoted

with a bar on the top.

Base F1(I°) F2(I') F3(I?) F4(I®) B4(Loss) B3(G®) B2(G?) B1(GY
Tile-Checkpoint  F1(I}) F2(I}) F3(I) F4(I}) B4(Loss) F1(I)) F2(I})) B3(G}) B2(G) BI1(G))
i€0..15 i€0..15

4.1.2 FT-compatible Segments. Two connected opera-
tors in a DNN pipeline are FI-compatible if they are both
FT-compatible with respect to at least one common tensor
dimension. An FT-compatible segment is a set of adjacent
layers in a DNN pipeline for which all operators (we only
reason with respect to the forward operators since the back-
ward operators have the same FT-compatibility properties
as the corresponding forward operators) are all mutually
FT-compatible with respect to at least one common tensor di-
mension. The FT-compatible dimensions of an FT-compatible
segment are the common set of dimensions that are FT-
compatible for all the operators in the set of DNN layers
constituting the segment. A maximal FT-compatible seg-
ment is one that cannot be extended on either side without
violating FT-compatibility.

Figure 6 shows a sequence of four operators (grey colored
oval shapes) and the input/output tensors (yellow colored
rectangles). Each operator’s computation can be represented
as a single perfectly nested loop or a sequence of perfectly
nested loops that can be tiled with hyper-rectangular tiles.
Further, i) any dimension of any tensor operand (input or
output to the operator) can only have a single tileable loop in-
dex in its access expression, and ii) any loop index is used to
index at most one dimension of any tensor. The above proper-
ties define a map from each tensor operand’s data dimension
to the operator’s loop iteration space index, as illustrated
in Fig. 6. Consider the conv2D operator defined in Eq. 1. It
represents a 7D loop nest that has five tileable loops (we do
not consider the small kernel stencil loops as tileable) cor-
responding to batch, input channel, output channel, image
height, and image width. These five tileable iteration space
dimensions are represented as 5 vertices within each conv2D
operator in Figure 6. Each input/output multi-dimensional
tensor has a vertex for each distinct dimension, within the
yellow rectangles representing the tensors (we do not ex-
plicitly model the conv2D operators’ weight matrix (Ker) in
this graph, but only the tensors that “flow” on the edges of
the forward operator graph). The maps between each tensor
dimension to the corresponding iteration-space dimension
of the operator are also marked as edges connecting the cor-
responding vertices in the figure. It may be seen that the
composition of these tensor-dimension-to-loop-index maps
results in connected components in a graph comprised of the
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Listing 1. Data Structures

class EdgeMeta{
Vector<int>
Vector<int> inpTolter;
Vector<int> iterToOut;
Vector<float> delta;
Vector<float> scale;
OpMeta* src;
OpMeta* target;

size;

3

class OpMeta{
int id;
int readyCnt;
Vector<int> iterSpace;
Vector<int> fulllterSpace;
Vector<kEdgeMeta> inEdges;
Vector <EdgeMeta> outEdges;
OpMeta *dominator;
OpMeta #*postDominator;
Map<pair<EdgeMetax,int>,vector<pair<EdgeMetax,

int>>> connection;

union of vertices from all operators in the graph. In the exam-
ple of Fig. 6, there is a maximal FT-segment that includes all
four operators, with respect to the batch (B) index. However,
the minimal tile sizes for such an FT-segment would require
the full extents along H and W, which would be infeasible
for the massive images in digital pathology WSI (Whole
Slide Imaging). But a smaller FT-segment exists, comprised
of the first three operators (first two convolutions and one
maxpooling), which is FT-compatible with respect to three
indices (B, H, W), where much smaller tile sizes can be used
because the H and W dimensions are also tileable for this
smaller FT-segment.

A set of operators that form a connected component rep-
resents a set of loop indices in the iteration spaces of those
operators that are FT-compatible. Listing 2 shows the al-
gorithm that identifies dimensions in the operator graph
that are compatible with fused-tiled execution (connected
components) and Listing 1 shows the corresponding data
structures. First, we iterate through each node in the graph
(Line 2). In Line 3, we set the connection map of a given
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Listing 2. Generate Graph IR

constructGraph(Vector g,
for(i=0, i < len(g), i++)
gli].connection[] = {}

for parent in g[i].inEdges
tmpIterToInpMap[]l = {}
//connect input space to iteration space
for d in @ to len(parent.inpTolter)
tmpIterToInpMap[parent.inpTolter[d]] = d
for outMeta in g[i].outEdges
//using iter. connect inp.
space
for inpDimId,
gli].connection[<parent,inpDimId>].insert(
<outMeta,outMeta.iterToOut[iterId]>)

int memCapacity){

O 0 N N U R W N =

=
(=]

space, to out.

—_
—_

iterId in tmpIterToInpMap

Ju—
Do

13 3

node to the empty set. Then, for the given node, we iterate
through each input edge (Line 4). In Lines 7 and 8, we map
each dimension of the input edge to the iteration space in
tmplterTolnpMap, i.e., we construct an iteration space to in-
put dimension map. In Line 9, we iterate through each output
edge. Note that iterToOut contains the iteration space to out-
put dimension map. Using iterTolnp and iterToOut, we map
each input edge dimension to the corresponding output edge
dimension (Lines 11 and 12). Thus, after execution of the
algorithm in Listing 2, we have an internal representation of
a graph with the information illustrated in the example of
Figure 6.

Conv2d

Convad Pooling FC

Figure 6. [llustration of FT-compatible segments

4.2 Partitioning of DNN Pipeline into FT-compatible
Segments

In this subsection, we explain how we partition the DNN
pipeline into segments separated by checkpoints. The opera-
tors within a segment can be executed in a fused-tiled man-
ner. Listing 3 shows the corresponding algorithms. Any node
whose output size is less than the memory capacity (mayTile)
can be checkpointed, whereas a node whose output does not
fit in memory (mustTile) must be executed using the fused-
tile strategy. Lines 2 to 4 classifies each operator as “must
tile (mustTile == True)” or “may tile (mustTile == False)”
based on the output tensor size and memory capacity. The
loop in line 5 iterates over each node in the operator graph.
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Listing 3. Partition DNN pipeline into Fused-Tileable seg-
ments

1 findSegments(Vector g, int memCapacity){

2 for n in len(g)

3 mustTile[n] =

4 ([TC(gln].outEdges.size[:]) < memCapacity)

5 for(i=0, i < len(g), i=end)

6 if(!mustTile[i]) continue

7 start = i; end = i + 1

8 //include all post dominators

9 // in the current segment

10 Queue g{i}

11 while(!q.empty())

12 prev_end = end

13 n = q.pop

14 if(gln].postDominator.id >= end)

15 end = gln].postDominator.id

16 while (end<len(g)&&mustTile[end])

17 end++

18 g.enque(prev_end:end)

19 FTdims = FTdimsIntersect(g,start, end)

20 bool success = checkMemCapacity(start, end,

21 FTdims);

22 if(!success) return(OUT_OF_MEMORY)

23 %

24

25 FTdimsIntersect(Vector g, int start, int end){

26 Map<<InTensorMetax,int>,bool> FTdims

27 for parent in g[start].inEdges

28 for i in @ to len(parent.size)

29 queue q({glstart],parent,i})

30 while(!qg.empty())

31 node, inpTensor, dim = qg.pop()

32 if(!len(node.connection[<inpTensor ,i>]) !=
len(node.outEdges))

33 FTdims[<parent,i>]=False

34 break

35 else

36 for (outMeta, odim) in node.connection[<

inpTensor ,i>]

37 if(outMeta.target < end)

38 g.enque ({outMeta.target, outMeta, odim})

39 FTdims[<parent,i>]=True

40 return FTdims

41 )

We ignore “may tile” nodes in Line 6. For each “must tile”
node, we try to find a fused-tileable path containing the cur-
rent node that starts at a checkpoint and ends at a checkpoint
(each checkpoint node must be “may tile”). For any such valid
segment, the dominators of all nodes in the segment should
either be a checkpoint (“may tile”) or be present in the seg-
ment. Moreover, all post dominators of a given node, except
the post dominator of the end node, must be present in the
partition. Lines 10 to 17 ensure these properties. Initially, we
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add the start node to a queue (Line 9). For each node in the
queue, we check whether its post dominator is present in
the current segment. If not, we move the endpoint of the
current segment to a node that can be checkpointed and is
topologically greater than or equal to the current post domi-
nator (Lines 14-17). All nodes between the old endpoint and
new endpoint are added to the queue in Line 18. As they are
processed, their post dominators are also included in this
segment.

Once a valid partition is segment, we identify all the com-
patible fused-tiled dimensions in function FTdimsIntersect
(Lines 25 to 40). This is done by taking each dimension of the
start operator of the segment and checking whether there is
a fused-tileable path from start to end. For each operator, we
check if the corresponding input dimension is fused-tileable
(Line 32 to 33). If not, we mark the dimension as not fused-
tileable compatible (False) and move to the next dimension.
If it is fused-tileable compatible, we enqueue all operators
that use the current operator’s output and are a part of this
segment, along with the corresponding dimension to the
queue (Line 36 to 38). Once all dimensions are processed
FTdims is returned, which indicates whether each dimen-
sion is fused-tileable compatible. In Line 20, we check if the
current partition can fit in memory and if not, we throw
an "OUT_OF_MEMORY" error (as a suitable SFT was not
possible).

4.3 Determination of Buffer Sizes for SFT Execution

Given a graph segmentation generated using Listing 4.2 and
a minimal number of tiles, the exact required tile size of each
operation must be computed. The checkpoints required to
support a segmentation define the output tensors that must
be stored and the dimensions that can be tiled. However,
the exact tile sizes will vary for each operator due to the
relationship of the input tensors to the iteration space and
output tensors for a given operation. For instance, a 2D max
pool with a stride of 2 results in a reduction in the output
width and output height by a factor of 2. In contrast, the
[B,C,K, T, Tp] iteration space for a 2D convolution opera-
tion generating a tensor tile of size [ B, K, Ty, T,,] must have a
valid input tensor of size [B, C, Ty, + 2f;, T,, + 2f5] (see Table 3
for definitions for some common neural network operations).
The computeTileSize function in Listing 4 calculates the
required iteration space and tensor tile size for every node
in a segment’s autograd network graph. The required tensor
dimensions are deduced from the characterization of each
operation, as per the tensor dimension dependencies from
Table 4. The iteration space is deduced using a mapping of
the tensor dimensions to the iteration space dimensions.
Table 4 defines the tile size required for each input ten-
sor to process a tiled iteration space for two common op-
erations (convolution and maxpool) using the tiled tensor
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Figure 7. Example neural network segment with two con-
volution and two max pooling layers. The numbers on each
edge represent the Tj, and T,, iteration space required as-
suming a global (fulllterationSpace) output tensor tile size
of [1,C, 64, 64], a global (fulllterationSpace) input iteration
space of [1, C, 1024, 1024], and the creation of 4 tiles in each
dimension (16 total tiles), i.e., IN[1,C, T;, = 256, T,, = 256]
and OUT[1,K, T, = 64,T,, = 64]. Edge annotation denote
the Tj, (and T,,) tile size required for the tensor.

dimension requirements in Table 3 and inherent opera-
tion characteristics. Each input tensor has a set of vec-
tors that define the required input size during the com-
putation of an iteration space tile. Each vector represents
an entry for each dimension in the tensor or iteration
space (e.g., [Batch, Channel, Height, Width]). These meta-
data vectors support the tile size propagation for each in-
put tensor (i) through each operation’s iteration space via
i.size[i]=n.iterSpace[idx]*i.scale[:]+i.delta[:] in Line 20 to
22. The delta (6) and (o) vectors contain the parameters
described in Section 4.1.1. inpTolter defines the mapping
between an input tensor’s dimensions and the operation’s
iteration space, e.g., [0, 1, 2, 3] for max pool and [0, 1, 3, 4]
for convolution where iteration space dimension 2 (K) is
not included in the input tensor (which has dimensions
[B,C, H,W]). Using these propagation functions, the re-
quired tile sizes for the source tensors of each edge can be
computed and updated.

Figure 7 depicts an example autograd graph segment for
a series of convolution (with kernels of size R X S ) and max
pooling (with a stride of p = 2) stages. The segments IN
and OUT tensor are checkpointed in memory. The forward
graph is shown by red arrows, and the backward graph for
gradient (grad) and delta kernel (Aker) operations are shown
with green arrows. Pooling layers do not have any learned
parameters and hence do not have a A kernel update oper-
ation. The edges are annotated with the width and height
tile size (T,=T,,) (assuming the batch size T, = B = 1 and
the channel dimension is not streamable due to the convo-
lutions), as computed by Listing 4. The Aker nodes are leaf
nodes that update the kernel, but have no subsequent output
tensors. Therefore, these nodes base their input iteration
space requirements solely on the initial iterSpace. Note that
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Table 3. Input tile shape required to process an iteration space tile and the corresponding output tensor shape for some

common neural network forward operators.

IN Iter. Space ouT
Linear [Ty, C] [Ty, C, K] [Tp, K]
Convolution [Ty, C, Ty +2f5, Ty +2f3]  [T5. C. K, Ty, Toy] [T, K, Ty, Toy |
Max Pool [Tb, Te, Ty X P T,, X p] [Tb, Te, Ty, Tw] [Tb, Te, Ty, Tw]
Avg Pool [Ty, C, H, W [Ty, C, H, W [Ty, C]
ReLU [Ty, Tc, Th, Tw] [Ty, Tc, Th, Tow] [Ty, Tc, Th, Tw]
Softmax [Ty, Te, H, W] [Ty, Tc, H, W] [Ty, Tc, H, W]

Table 4. Tile propagation functions from the tile iteration space to the corresponding input tensor tile range for two common
neural network operations. The § and ¢ vector define the required input tensor dimensions to compute the iteration space
dimensions (referenced through the inpTolter), corresponding to the tensor shape requirements in Table 3.

Operation Convolution Max Pool

Function Forward Grad A Ker Forward Grad

Input Tensor actin ‘ gradin gradin ‘ actin ‘ actin gradin ‘ actin
Delta (3) [0,0.2/-2f5) | 10.0.2f2f5] | [0,0.0,0] | [0,0.2/-2f5] | [0,0,0,0] | [0,0,0,0] | [0,0,0,0]
Scale (o) [1,1,1,1] [1,1,1,1] [1,1,1,1] [1,1,1,1] [1.1p,p] | [LLpp] | [L1p.p]
inpTolter [0,1,3,4] [0,2,3,4] [0,2,3,4] [0,1,3.4] [0,1,2,3] | [0,1,2,3] | [0,1,2,3]

while the output tile size being generated is 64, the grad
operation requires a halo of size 2 * f; and thus, the forward
pass must generate a tile of size 66.

The computeTileSize function in Listing 4 computes the
required iteration space (n.iterSpace) and initialize it for
each terminating node in Line 5, and tensor (tensor.size)
tile sizes for the operations in the auto_grad graph segment
based on the number of tiles required for each dimension
(e.g. numTiles) in Line 7. The function performs a reverse
traversal of an autograd computation graph (see an example
graph Figure 7) to calculate the tile sizes. The reversal traver-
sal adds all leaf nodes, like Aker (with no input edges in the
segment) to a ready queue (readyNodes) in Line 2. Once all
output edges are ready, the required tile sizes can be updated
and the node can be added to readyNodes. Note that a node
will become ready when its last output neighbor marks itself
as ready in Line 26 to 27.

The required input tensor tile sizes can be computed it-
eratively using the propagation functions in Table 4 (for
simplicity without stride/dilation parameters). The iteration
space tile size can be computed by using a max reduction
over all output tensors Line 13 and 14. When the readyQueue
is empty, all nodes have been processed and the required tile
sizes have been updated (this ends the while loop in Line 9).

5 Implementation

We implement SFT in PyTorch’, because it is a prevalent ma-
chine learning framework that has support for checkpoint/re-
compute using nn.Sequential and checkpoint_sequential.

IThe software is available at https://github.com/HPCRL/SFT-CC2022-AE
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Listing 4. computeTileSize

computeTileSize (Graph auto_graph, Vector

initialReadyNodes, int numTiles){
readyNodes.add(initialReadyNodes)
//Initialize the default iteration space
for n in auto_graph

n.iterSpace[:] = n.fulllterSpacel[:]
for n in initalReadyNodes
n.fulllterSpacel[:]/numTiles

"ready"

n.iterSpacel[:] =
//Process all nodes whose outputs are
while(readyNodes.notEmpty())
readyNodes . pop ()
//Aggregate output tensor sizes to determine

n =

//iteration space required for node n
{0} //reduced output tensor size
for outMeta in n.outEdges
rs[:] = max(rs[:], outMeta.size[:])
for (i, idx) in enumerate(n.iterToOut)
n.iterSpacel[i] = rs[idx]
//Update required input tensor sizes

rs =

for iMeta in n.inTensors:
for (i, idx) in enumerate(iMeta.inpTolter)
iMeta.size[i] = n.iterSpacel[idx]x*
iMeta.scale[: 1+
iMeta.deltal:]
iMeta.src.outEdges[i].size[:] = iMeta.size
[:1
//Identify ready neighbors
iMeta.src.readyCnt++
if iMeta.src.readyCnt==len(iMeta.src.
outEdges)
readyNodes.add(iMeta)
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Our SFT PyTorch implementation includes custom tiled for-
ward operators, custom tiled autograd functions (i.e., back-
ward functions), static analysis, memory management for
tiling, and training.

The tool works in two phases: static analysis and regular

training execution. The static analysis is performed only
once, before the start of the tiled training execution. The
primary PyTorch modifications include:
o Customized tiled autograd functions: The tiled forward
functions are not symmetric to the backward functions,
we do not rely on auto-generated gradient functions in
PyTorch. The autograd functions must compute the "ghost"
cells (determined statically), and the ghost cells may differ
during the forward and backward operations. Further, the
updates by the Akernel must correspond to the correct
tile despite the overlap "ghost" cells. These details require
modifications to the existing autograd functions.
Optimized PyTorch internal context manager for recom-
putation in checkpoint segments across different tiled ex-
ecutions: By default PyTorch uses a naive context man-
agement strategy to save activations and meta-data for
recomputation. There is no memory buffer reuse crossing
multiple tiled executions, which wastes GPU memory and
eventually results in out-of-memory errors. Also, redun-
dant buffer allocations slow down the training process. We
optimize the current context manager by using caching to
share the same buffer across different tiled executions.

e Two new operators to handle our SFT checkpoint seg-
ments. The split node starts the segment and fetches the
tiled-input data. The join node marks the end of the seg-
ment, collects all tiled-output pieces, and merges them
into one tensor for further computation. We also extended
the nn.Sequential container to support tiled execution
with checkpointing. The existing nn.Sequential in Pytorch
only accepts a tensor as input and produces an output
tensor. However, SFT execution requires additional meta-
information such as tile size, tile position, and padding
size, which is obtained from our static tile size analyzer
(Figure 4). This information is propagated along the chain
of operators to provide the required metadata for forward
and backward propagation.

We have intentionally created our APIs to be very close
to the existing PyTorch API so that the users can easily port
existing code to use the SFT framework.

6 Evaluation
6.1 Experimental Setup

All experiments presented in this paper are performed us-
ing PyTorch v1.8.0a0 and Python v3.9.5. We used the Nvidia
CUDA compiler version v11.3.109 and the Nvidia deep neu-
ral network library — CUDNN v8.2. The experiments were
carried out on two Nvidia GPU systems. An Nvidia 2080 Ti
GPU was paired with an AMD Ryzen Threadripper 3990X
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64-Core CPU and CPU RAM is 128 GiB in the first platform.

The second platform has an Nvidia A100 GPU paired with an

Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz 56 core CPU

and CPU RAM is 384 GiB. Both of the machines run Ubuntu

20.04. These machines represent different GPU generations

(Turing and Ampere). We evaluate VGG-16, VGG-19[19]and

DarkNet[17] networks to demonstrate the efficacy of our

approach.

We evaluate three strategies to perform a training epoch
for a single input image (one forward and one backward pass
using a batch size of 1) using a Mean Squared Error (MSE)
loss function:

1. Pytorch-Base: A standard PyTorch[16] implementation
of the training computing the forward and backward op-
erations, where all intermediate activations are stored.

2. Pytorch-CheckPoint: A sequential checkpoint strategy
using the checkpoint_sequential function [8] in PyTorch.
This strategy splits the network into a given number of
segments s. We evaluated s values from 2 (always included)
to 2VL, where L is the length of the chain (and the total
number of activation tensors stored is minimized).

3. SFT: The Segmented Fused-Tiled training strategy out-
lined in the paper. We split the original input along the
height and width dimensions and execute the input in
segmented tiles with our checkpoint/recompute PyTorch
implementation.

For each model, we vary input image sizes from 512 to
20480 (20K) square (IXI). Image sizes of 10K and 20K rep-
resent X4 and X2 magnification for WSI used in pathology.
The number of tiles along H and W dimension are varied as
2", where n = 1,2,3,4,5 (i.e., 5 different configurations are
evaluated).

We measure the execution time for each of the three strate-
gies and get the mean time over 5 runs. The execution time
for our method is selected by the best value among the 5
tile size configurations. The execution time is stable for all
three strategies over multiple executions. The input image
and model use float32 precision and the image data layout
is NCHW.

6.2 Experimental Results

Figure 8 shows the experimental results. The square red
cross represents the execution time obtained by the stan-
dard Pytorch-Base strategy, and its absence from the graph
means that an out of memory error was encountered when
attempting to train an image of the given size. Yellow
crosses represent the results obtained with the Pytorch-
Checkpoint strategy for the shortest execution time among
all possible number of segments (from 2 to 2VL). If both
Pytorch-Base and Pytorch-Checkpoint strategies are
available, we only show the execution time of Pytorch-
Base (as checkpoint/recompute is not required). The blue
dot shows the result obtained with our SFT strategy. The
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Figure 8. Experimental results VGG16, VGG19 and darknet on NVIDIA A100 and 2080Ti.

image size (H == W) is plotted on the X-axis and the execu-
tion time (in seconds) is on the Y-axis. Since A100 has more
device memory than 2080Ti (40GiB compared to 11GiB), the
non-tiled strategies can process a larger input image size
on the A100. Since VGG-16, VGG-19 and DarkNet networks
do have a huge number of trainable parameters (59 MB for
VGG-16, 78.4MB for VGG-19 and 79.7 MB for DarkNet), the
GPU device memory is mainly consumed by inputs and in-
termediate activation required during training. For example,
an input image of size 10K X 10K stored in single precision
(float32) would need a total GPU memory of 118GiB, 129GiB
and 43GiB respectively for VGG-16, VGG-19 and Darknet to
store all activations and models.

In all six plots, we observe that SFT training is able to
process much larger input images than either the standard
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PyTorch-Base strategy or the PyTorch-checkpoint strat-
egy. The vertical grey dashed line depicts the first image
size that neither Pytorch-Base nor Pytorch-Checkpoint
can handle for a given network and GPU pair. SFT has a
small runtime overhead (as compared to Pytorch-Base or
PyTorch-checkpoint) when the input activations fit in
memory. However, the runtime continues to scale linearly
with the image size.

7 Related Work
7.1 Operator Fusion

Considerable efforts have been directed at operator fusion,
where two or more operators in a DNN pipeline are merged
together to create a single combined kernel. The benefits of
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operator fusion include a reduction in kernel launch over-
head. For example, this is a key optimization performed by
the XLA [20] compiler. Several other efforts have also ad-
dressed such operator fusion [4, 15].

We note that the way “fusion” is used in this work is rather
different from the operator-fusion described above, where
two or more operators in a DNN pipeline are fused together
to create a single combined kernel. In contrast, we fuse the
execution of corresponding tiles in a sequence of stages by
invoking each operator’s kernel on small tiles of data. Thus,
we do not generate any fused kernel code, but simply reuse
existing kernels by changing the size of the input/output
activations and the order of execution, as compared with
standard execution of the operators.

7.2 Out-of-core Training

KARMA [21] is a system that combines out-of-core training
with checkpointing. Out-of-core training involves swapping
out large activations from the GPU to the CPU memory to
alleviate the memory bottleneck. Using a novel performance
model, KARMA automates this decision-making of swapping
versus recomputing activations for a given neural network.
However, KARMA does not enable processing large-scale
images where a single activation layer does not fit on a GPU.

7.3 Multi-GPU Model Parallelism

Recent work leverages “model parallelism” [5, 23] to distrib-
ute the activations required during training across multiple
GPUs. For instance, GEMS [12] provides a system for hybrid
model and data parallelism, along with relaxed synchronisa-
tion. While they mention whole slide imaging in the poten-
tial applications, their approach uses a well known "patch"
based analysis. Specifically, the experiments are conducted
on 1K X 1K input size. Other prior approaches based on
model parallelism also require this sub-optimal technique to
handle large WSI images.

7.4 Unified Memory

Tensorflow Huge Model Support [6] incorporates Nvidia
unified memory (UM) [13] along with several GPU memory
optimization techniques to train standard CNNs. This work
can support whole slide imaging (albeit they only demon-
strate X4 resolution and requires 100s of GPU days for train-
ing). However, the open-source implementation is not stable
enough to run common neural networks like VGG16. There-
fore, we could not compare this against SFT. For a single
GPU setting, swapping the sections of the image back and
forth across host memory and device memory would make
the entire training process bandwidth bound. The PCle band-
width is about 5 orders of magnitude lower than the GPU
peak performance at 32-bit precision. As a result, as reported
by Chen at al. [6], HMS gets 30X slower as the image size (in
pixels) quadruples (from 11K X 11K image to 21.5K X 21.5K
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image), while SFT time just increases by 4X, i.e., proportional
to increase in image size.

7.5 Convolutions Over Distributed Memory

DistConv [9] is an extension of LBANN toolkit [10] that
performs distributed convolutions over a cluster of GPUs.
Given the size of the image, distributed convolutions place
a lower bound on the number of GPUs that are required to
train the network. For a 100K x 100K image, for example,
twenty 32GB GPUs will be required to simply hold the input
image. The first stage of an image DNN pipeline typically
increases the size of the output activations by a factor of 5-10
(the number of channels increases from 3 to at least 32, while
the image height/width gets halved); further increasing the
number of GPUs required. We were also not able to set up
LBANN as per the documentation given. The version incom-
patibility among dependencies causes multiple compilation
and linkage errors.

DistDL [11] shows performance improvement over Dist-
Conv and provides a PyTorch extension to partition a large
image into multiple smaller disjoint images over a cluster of
CPUs. However, the current implementation does not have
a GPU backend support, making an empirical comparison
impossible.

8 Conclusion

This paper develops a segmented fused-tiled (SFT) approach
to enable the training of Deep Neural Networks using very
large images, overcoming a significant current limitation in
popular ML frameworks like PyTorch and TensorFlow. We
develop algorithms to generate fused-tiled-compatible seg-
ments and for determination of the memory requirements for
the fused-tiled segments. Fused-tiled execution was enabled
in the PyTorch framework and was evaluated experimentally
with VGG-16, VGG-19, and Darknet DNN pipelines on an
Nvidia 2080Ti and an A100 machine. The implementation
shows that there is minimal overhead for the tiled implemen-
tation and that the tiled implementation scales to large input
image sizes well. Our developments enable arbitrarily large
input image sizes to be used directly for training machine
learning models instead of the current practice of using im-
age pre-coarsening or patch-based processing in domains
like digital pathology and computational neuroscience.
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A Artifact Appendix
A.1 Abstract

The artifact contains all the scripts and data required to

reproduce the experimental results in the CC 2022 paper

titled “ Training of Deep Learning Pipelines on Memory-

Constrained GPUs via Segmented Fused-Tiled Execution”.

The git repository contains:

e The SFT source code;

o The scripts to measure execution time of default PyTorch,
PyTorch checkpoint, and SFT;

e Raw data that we used to plot Fig. 8 (for comparison).

A.2 Artifact check-list (meta-information)

e Program: A Pytorch based Python module(uu) to facili-

tate Segmented Fused-Tiled Execution (SFT).

Compilation: Detailed instructions to compile different

frameworks and scripts to run each framework is provided

below. A copy of these instructions can also be found at:

https://github.com/HPCRL/SFT-CC2022-

AE/blob/main/README.md.

e Run-time environment: GCC >= 8.5; CUDA 11.3.0;

cuDNN v8.2.0; Linux platform such as Ubuntu or CentOS.

Hardware: Nvidia 2080Ti or Nvidia A100.

Execution: All scripts to reproduce the results are pro-

vided in uu/benchmarking folder.

Output: The script reports forward, backward and total

execution time for 1 input image per row, separated by

comma. We use total execution time to plot Fig. 8.

How much disk space required (approximately)?: >

50 GB.

¢ How much time is needed to prepare workflow (ap-
proximately)?: Creating conda virtual environment and
install dependency should be less than 5 mins. Building
Pytorch from source code takes around 1 hour.

¢ How much time is needed to complete experiments
(approximately)?: Should be less than 30 mins.

e Publicly available?: Yes

A.3 Description

A.3.1 How Delivered. Our artifact is available on a public
git repository:
https://github.com/HPCRL/SFT-CC2022-AE

A.3.2 Hardware Dependencies. Nvidia 2080Ti or Nvidia
A100.

A.3.3 Software Dependencies . Conda, CUDA 11.3.0;

cuDNN v8.2.0, Pytorch-v1.8, Linux

A.4 Installation

Clone the repository (recursively):
https://github.com/HPCRL/SFT-CC2022-AE

See the below file for instructions:
https://github.com/HPCRL/SFT-CC2022-AE/blob/main/
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README.md.
Pytorch and uu module should be built before evaluation.

A.5 Experiment Workflow

Scripts are provided to run two different CNN models(VGG-
16 and Darknet-19).

For VGG16 network:

$ cd uu/benchmarking

$ bash run-vgg.sh

For Darknet network:

$ cd uu/benchmarking

$ run-darknet.sh

For large image 10kx10k and 20kx20k:
$ cd uu/benchmarking

$ bash large.sh

A.6 Evaluation and Expected Result

We expect the performance results to be close to those re-
ported in the paper (Fig. 8). The results of the benchmark will
be printed out in text files. We suggest using 2080Ti or A100
and the exact same CUDA and cuDNN versions to reproduce
the results presented in the experimental section. Different
generations of GPU devices and different versions of the
CUDA/cuDNN might produce different execution times and
memory behaviors. We have included the raw data from our
experiments in the uu/data-file/ folder.

As the image size (H, W) increases, the default PyTorch
and PyTorch checkpoint will fail after a threshold and report
an Out-of-Memory error. In contrast, in SFT, we can increase
the number of tiles for big images, which will guarantee
successful execution. We tested on two CNN networks on
2080Ti and A100 machines. For 10kx10k image, we can use
16x16 tiles, and for 20kx20k image, we can use 32x32 tiles(See
uu/benchmarking/large.sh).
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