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Abstract

In this paper, we generalize White’s regularity and structure theory for mean-
convex mean curvature flow [45,/46,48] to the setting with free boundary. A
major new challenge in the free boundary setting is to derive an a priori bound
for the ratio between the norm of the second fundamental form and the mean
curvature. We establish such a bound via the maximum principle for a triple-
approximation scheme, which combines ideas from Edelen [9], Haslhofer-Hersh-
kovits [[16], and Volkmann [43|]. Other important new ingredients are a Bernstein-
type theorem and a sheeting theorem for low-entropy free boundary flows in a
half-slab, which allow us to rule out multiplicity 2 (half-)planes as possible tan-
gent flows and, for mean-convex domains, as possible limit flows. © 2021 Wi-
ley Periodicals LLC.
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768 N. EDELEN ET AL.

1 Introduction

A family of closed embedded hypersurfaces { M, };>¢ in a Riemannian manifold
(N1 ¢) moves by mean curvature flow if the normal velocity at each point on
the (hyper)surface is given by the mean curvature vector at that point. If the initial
surface is mean-convex, i.e., if everywhere on the surface the mean curvature vector
points inwards, then the flow can be continued uniquely through all singularities
[1145]]. This evolution can be described both in the language of partial differential
equations as a level set flow [8,11]] and in the language of geometric measure theory
as an integral Brakke flow [3].

White and Huisken-Sinestrari developed a far-reaching structure theory for the
mean curvature flow of such mean-convex hypersurfaces. Their papers [21}22]
45,146, 48| provide a package of estimates and structural results that yield a pre-
cise description of singularities and of high curvature regions (more recently, an
alternative treatment of this theory has been given by Haslhofer-Kleiner [18]]). In
particular, their work implies that the parabolic Hausdorff dimension of the singu-
lar set is at most n — 1, and all blowup limits are convex, noncollapsed, and smooth
until they become extinct

The goal of the present paper is to generalize this theory to hypersurface with
free-boundary, i.e., hypersurfaces satisfying a Neumann-type boundary condition.
In the smooth setting, mean curvature flow with free-boundary has been studied in
important work by Stahl [41,42] and Buckland [7]. In the singular setting, in anal-
ogy to the flow of closed hypersurfaces, the free-boundary flow can be described
as a level-set flow [[13]] or as a Brakke-type flow [10]. We prove here the existence
of a unique mean-convex free boundary flow for all time and establish sharp results
on the size and structure of singularities for this flow. Recent work of White [49]
has developed an existence and regularity theory for flows with prescribed (Dirich-
let) data, and in particular showed that the resulting flow is always regular near its
Dirichlet data. This is very different from the free-boundary setting, where one
expects singularities on the boundary to be modelled on interior singularities.

1.1 Mean convex free boundary flow
To describe the setup, fix a smooth compact domain D C N"T!. A smooth

domain K C D has free boundary if 0K := K \ Intp (K) meets D orthogonally
in other words,

(1.1 (N(x),v(x)) =0 forall x € dK NaD,

where v denotes the outward unit normal of dK and N denotes the outward unit
normal to dD. These notions are illustrated in Figure [I.1] We assume that K

1 By Brendle [5] and Haslhofer-Hershkovits [16] this applies without dimensional restrictions and
in general ambient manifolds.

21t is more convenient to phrase everything in terms of compact domains K instead of hypersur-
faces M = 0K. These points of view are of course equivalent.
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FIGURE 1.1. Mean curvature flow with free boundary

is mean-convex, i.e., that the mean curvature vector everywhere on dK points in-
side K.

Given K, there is a unique evolution by the free boundary level set flow F;(K)
from Giga-Sato [[13]]. This has been described originally in terms of viscosity so-
lutions of degenerate partial differential equations. Using the more geometric in-
terpretation from Ilmanen [24], K; := F;(K) C D simply is the maximal family
of closed sets starting at K that does not bump into any smooth free boundary sub-
solution (see Section [3|for more detailed definitions). Mean convexity is preserved
under the free boundary level set flow (see again Section[3), i.e.,

(1.2) K, CIntpK,;, forallf >t > 0.

We denote by

(1.3) IC::UKtx{t}CDxRJr
t>0

the space-time track of the free boundary level set flow. Moreover, it can be
checked (see Theorem[1.6/and Remark [I.7]below) that
(1.4) M = {H"[0K:}i>0

is a free boundary Brakke flow as defined in [10] (see also Section [5). The pair
(M, K) is called a mean-convex free boundary flow.

1.2 Size of the singular set

Given a mean-convex free boundary flow (M, K) in a domain D C N*T1 its
singular set S C D x R4 consists by definition of all points X = (x,¢) in the
support of the flow such that there is no two-sided space-time neighborhood of X
in which evolution can be described as smooth free boundary flow. The parabolic
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Hausdorff dimension of a subset of spacetime is the Hausdorff dimension with
respect to the parabolic metric

(1.5) d((x,1),(y,s)) = max{|x — y|, |t — s|'/%}.

For example, the parabolic Hausdorff dimension of D x Ry is n + 3. Our first
main theorem shows that the singular set in any mean-convex free boundary flow
is quite small:

THEOREM 1.1 (Size of the singular set). Let (M, K) be a mean-convex free bound-
ary flow in D C N"T1. Then the parabolic Hausdorff dimension of its singular
set S is

e at mostn — 1 if the domain D is mean-convex, and
e at most n if the domain D is arbitrary.

Simple examples show that the result is sharp. Indeed, rotationally symmetric
thin shrinking tori or half-tori in a ball D C R”*! show that an (n —1)-dimensional
singular set can occur both in the interior and at the boundary. Likewise, the num-
ber n is sharp for general barriers, since the surface can pop when it hits dD,
cf. [10]. For example, if D = B4\ By € R"*!is an annulus and K = B; \ By,
then the shrinking sphere pops when it hits the inner boundary of the annulus and
produces an n-dimensional singular set.

1.3 Structure of singularities

Let (M, K) be a mean-convex free boundary flow in a mean-convex domain D.

Given X; = (x;,4;) — X = (x,t) in the support of the flow and A; — oo, we
consider the blowup sequence (M?, K') that is obtained from (M, K) by translat-
ing X; to the origin and parabolically rescaling by A;. It is always possible to find
a convergent subsequence where M! converges in the sense of (free boundary)
Brakke flows [10,25] and K converges in the Hausdorff sense. Any subsequential
limit (M, K') is called a limit flow at X. Here, (M’, K') is either a flow without
boundary in R”*! or a flow with free boundary defined in a half-space H c R”*+!.
If X; = X, we call it a rangent flow at X. Tangent flows are always backwardly
self-similar [[10,]20].

THEOREM 1.2 (Structure of singularities). Let (M, ) be a mean-convex free
boundary flow in a mean-convex domain D C N"t1. Let (M’,K') be a limit
flow, and denote by T,y = Toq(M',K') € (—00, +00] its extinction time, i.e., the
supremum of all t with K, # &. Then:

o M/’ has multiplicity 1 and its support equals oK.

o (M',K"YN{t < T,y} is smooth.

o K’ has convex time slices, i.e., K ; is convex for every t.

e K’ is either a static half-space or quarter-space, or it has strictly posi-
tive mean curvature and sweeps out the whole space or half-space, i.e.,
U, 3K, = R** 1 or |, 0K, = H, respectively.
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FIGURE 1.2. Neckpinches at the boundary

o K is 1-noncollapsed, i.e., every p € 0K admits interior and exterior balls
of radius 1/H(p, ).

Furthermore, if (M',K') is backwardly self-similar, then it is either (i) a static
multiplicity 1 plane or half-plane, (ii) a round shrinking sphere or half-sphere, or
(iii) a round shrinking cylinder or half-cylinder.

Examples where half-cylinders occur as tangent flows are neckpinches at the
boundary. Note that there are two types of half-cylinders with free boundary, de-
pending on whether the axis is contained in dH or perpendicular to it. An illus-
trative example where a limit flow is not backwardly self-similar is a degenerate
neckpinch at the boundary, in which case some limit flow (M’, ') would be a
half-bowl. These examples are illustrated in Figure|1.2

Together with the recent breakthroughs by Brendle-Choi [[6] and Angenent-
Daskalopoulos-Sesum [2], we obtain for n = 2:

COROLLARY 1.3 (Classification of limit flows). Let (M, K) be a two-dimensional

mean-convex free boundary flow in a mean-convex domain D C N3. Then any
limit flow (M, K') is one of the following:

a static multiplicity 1 plane or half-plane,
a round shrinking sphere or half-sphere,

a round shrinking cylinder or half-cylinder,
a translating bowl or half-bowl,

an ancient oval or half-oval.
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In any dimension, Theorem [I.2](structure of singularities) in particular implies
the following estimates for the flow (M, K) itself.

COROLLARY 1.4 (Estimates for mean-convex free boundary flow). Let (M, K) be
a mean-convex free boundary flow in a mean-convex domain D C N"T1,

e Sharp noncollapsing. Forany « < 1 and T < oo, there exists an Hy < 00
with the following significance. For any t < T, at any point p € 0K;
with H(p,t) > Hy there exist interior and exterior balls of radius at least
a/H(p,1).

e Convexity estimate. For all ¢ > 0 and T < oo, there exists an Hy < 00
with the following significance. For any t < T, at any point p € 0K, with
H(p,t) = Hy, we have A1(p,t) = —eH(p,1).

e Gradient estimate. For all T < oo there is a C < oo such that at all times
t < T and at all points we have |VH| < CH?.

We mention that a related convexity estimate was proved in [9]. On the other
hand, the gradient estimate for mean-convex free boundary flows only follows after
establishing our main structure theorem (Theorem [I.2)), and we are not aware of
any shorter path towards establishing such a gradient estimate directly. This is
similar in spirit to the fact that Perelman obtained the gradient estimate for 3-D
Ricci flow as a corollary after establishing his canonical neighborhood theorem
[36437].

1.4 Long-time behavior

Mean curvature flow of closed surfaces in Euclidean space always becomes ex-
tinct in finite time, since there are no closed minimal surfaces it can converge to.
The mean curvature flow with free boundary can have more interesting long-time
behavior even for D C R"*1:

THEOREM 1.5 (Long-time behavior). Let (M, K) be a mean-convex free boundary
flow in a mean-convex domain D C N n+1and set

(1.6) Koo := () Ki.
t

Then either Koo = & or K has finitely many connected components. The bound-
ary of each component is a stable free boundary minimal surface whose singular
set has Hausdor{f dimension at most n — 7. Furthermore, 0K converges smoothly
(either locally one-sheeted or two-sheeted depending on whether or not the com-
ponent has interior points) to 0K ~o away from the singular set of 0K so.

For example, consider the case where D looks like a dumbbell, which contains
a strictly stable free boundary minimal disc X. Fix ¢ > 0 small enough. If K =
{x € D :d(x,X) < ¢}, then we get two-sheeted convergence to X. On the other
hand, letting C be one of the components of D \ ¥ and setting K = {x € D :
d(x,C) < ¢}, we get one-sheeted convergence.
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1.5 Some remarks on the proofs

As the reader will expect, one of the key steps is of course to rule out blowup
limits of higher multiplicity. In the case of mean-convex surfaces without boundary
there is a short maximum principle argument by Andrews [1]. Unfortunately, we
have not been able to generalize the argument by Andrews to the free boundary
setting (related to this, Brendle’s proof of the Lawson conjecture [4] does not seem
to generalize in any obvious way to establish uniqueness of the critical catenoid).
We thus follow White’s original approach from [45]. To this end, we prove free
boundary versions of the expanding hole lemma, the Bernstein-type theorem for
low entropy flows in a slab, and the sheeting theorem, and use them to rule out static
and quasi-static planes or free boundary half-planes with density 2 as potential
tangent flows or limit flows (see Section [6).

Another major issue is to rule out nontrivial minimal cones, such as the Simons
cone, as potential blowup limits. This requires an a priori bound for the ratio
between the norm of the second fundamental form and the mean curvature, which
turns out to be substantially more involved than in the case without boundary. The
technical heart of the present paper is the following:

THEOREM 1.6 (Elliptic regularization and consequences). Let K; := F;(K) be a

free boundary level set flow with smooth strictly mean-convex initial data K C D.
Then:

o {K; x R}, arises as a limit of smooth free boundary flows.
o > H"|0*K; is a free boundary Brakke flow.
e K, is one-sided minimizing, i.e., H"(0*K;) < H"(0* F) whenever K; C
F CK.
e There exist constants ¢ = ¢(K, D) > 0 and p = p(K, D) < oo such that
forallt > 0 we have
inf H > ce L.
K
e For every § > 0 there exist constants C = C(K,D,§) < oo and p =
o(K, D, 8) < oo such that for every t > § we have
A
sup 14 < Ce”'.
DK™

Remark 1.7. A priori, one has to work with the reduced boundary *K;. A pos-
teriori, Theorem |1.1] will imply that H" L 0K; = H" L 0* K, for all t > 0. The
distinction is immaterial for the argument itself.

To prove Theorem|1.6|(elliptic regularization and consequences) we use a triple-
approximate elliptic regularization scheme. We use a capillary parameter to deal
with the lack of an L.°°-estimate in case the flow does not become extinct in finite
time (cf. Haslhofer-Hershkovits [16]]). Next, we bend the corners of K to deal with
the mixed Dirichlet-Neumann problem (cf. Volkmann [43]]). Moreover, we have to
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perturb the second fundamental form to get a reasonable normal derivative at the
barrier (cf. Edelen [9]). Finally, we need an additional weight function to force the
extrema away from the barrier (cf. Edelen [9]). We carry this out in Section
Once Theorem (free boundary level set flow) and multiplicity 1 (see Sec-
tion [6) are established, all the remaining steps proceed broadly following the proof
strategy of [45,46], the main point being to rule out density 2 (planar) limit flows.
In addition to multiplicity 2 planes and free boundary half-planes, there is the new
possibility of a (quasi)static limit flow defined in a half-space and coincident with
the barrier plane, which is not directly analogous to the case without boundary. We

rule out this potential scenario if the barrier is mean—convexﬂ

2 Notation and Conventions

Let us fix a Riemannian manifold (N”*!, g) and a compact domain D C
(N"+1 g) with smooth boundary dD. For any domain K C D we write K for
the interior of K viewed as a subset of N, and Intp K for the interior of K viewed
as a subset of the topological space D. We call dK := K \ Intp K the Dirichlet
boundary of K, and 6K := K \ (]2 U dK) the Neumann boundary of K. We let v
be the outward unit normal of dK and use the sign convention that H = —Hv. We
write N for the outward unit normal to dD.

3 Free Boundary Level Set Flow

A smooth family of closed domains {L; C D};¢[4,p] is @ smooth free boundary
subsolution if 9L, moves inwards at least as fast as the mean curvature flow and
hits dD in a convex fashion, i.e.,

3.1 (vel,v) < (H,v), N-v=>0,

where vel denotes the normal velocity of dL;. A family of closed sets {K; C
D}tefa,p] 18 a set theoretic subsolution of the free boundary mean curvature flow if
it avoids any smooth free boundary subsolution, i.e., whenever {L; C D};e[1.1,]>
where a <ty < t; < bisasmooth free boundary subsolution with K;,NL;, = &,
then K; N L; = @ forall ¢ € [tg,t1]. The free boundary level set flow F;(K) is
the maximal set-theoretic subsolution with initial condition Fo(K) = K. By the
work of Giga-Sato [13] the free boundary level set flow has the following basic
properties:

(1) Consistency with smooth flows: If {M;};c[o,7 is a smooth free-boundary

mean curvature flow, then M; = F;(My).
(2) Avoidance: If K and L are disjoint, then F;(K) and F; (L) are also disjoint
(3) Inclusion: If K C L, then F;(K) C F;(L).

3 This assumption on the barrier is indeed necessary. For general barriers, the flow can “pop,”
which is captured by quasi-static density 2 tangent flows.
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(4) Semigroup property: Ft, 1,(K) = Fr,(Ft, (K)).
(5) Strictinclusion: If K C Intp L, then F;(K) C Intp F;(L).
A closed subset K C D is said to be mean-convex if for some § > 0, F;(K) C

Intp K forall 0 < ¢ < §. If K is smooth, this is equivalent to the condition that
H > 0 everywhere and not identically zero.

PROPOSITION 3.1. Let K C D be mean-convex. Mean convexity is preserved
under the free boundary level set flow, i.e., Fy,(K) C Intp Fy (K) for all t; >
t1 = 0. Moreover, the boundaries 0F:(K) form a possibly singular foliation of
K\ N?2oF(K), and it holds that F;(0K) = 0F(K). In particular, the flow
t — F;(0K) is nonfattening.

PRrROOF. This follows from the above basic properties, arguing as in [45] sec. 3].
Namely, using the definition of mean-convex and the basic properties (4) and (5)
we infer that

(3.2) Frin(K) € Intp Fy(K)

forall# > Oand all 0 < & < §. By induction we conclude that (3.2) holds
forallt > Oand all 0 < h < j§, where j = 1,2,...; hence mean convexity
is preserved. In particular, the sets {0F;(K)};>0 are disjoint. Next, given any
x € K\ N?2,F;(K), denoting by u(x) the last time such that x € Fy(x)(K), we
have x € 0Fy(x)(K). Hence

(3.3) K\ NP2 F(K) = | ) 0F:(K).
t>0
Next, it follows from (2) and (5) that ¢ — dF;(K) is a set-theoretic subsolution.

Also, note that F;(dK) C F;(K) is property (3). Together with the observation
that £, (9dK) is disjoint from

(3.4) | Frsn(K) = Intp F;(K)
h>0

by (5), we infer that F;(dK) C 0F;(K). Recalling that t > dF;(K) is a set-
theoretic subsolution with initial condition dK, while F;(0K) is the maximal set-
theoretic subsolution with initial condition dK, we conclude that F;(0K) =
dF;(K). Since Intp 0F;(K) = @, this finishes the proof of the proposition. O

4 Elliptic Regularization and Consequences
In this section, we prove Theorem|[I.6|(elliptic regularization and consequences).

4.1 Triple approximation scheme

The aim now is to construct solutions of a mixed Dirichlet-Neumann problem:
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THEOREM 4.1. Given a strictly mean-convex domain K C D, and constants
e,0 > 0, there exists a unique solution ug, € C®(K\K) N C%1(K) of the
problem

. Duso‘ 1 . o
div . + =ouUgs inK,
Ve2 + |Dugg|? V2 + |Dug|?
4.1) (N,Dug o) =0 on §K,
Mg’o- = O on aK.

To solve problem (4.1)), we need some additional approximations. Namely, to
deal with the mixed Dirichlet-Neumann boundary we approximate the initial do-
main K by domains K (tr > 0) as in Volkmann [43] p. 74], which in particular
satisfy the strict angle condition

(4.2) {(vog=, N) = —7/2.
Given ¢, 0, T > 0, we then consider the triple approximation problem
D 1 o
div( Mooy ) + = GlUgo, inKT,
Ve + | Dugorl? Ve2 + | Dug o |?
(4.3) (N, Dug ) =0 on §K°,
ug,o“’r == 0 on aK‘C.

To solve (4.3) we use the continuity method; i.e., we introduce yet another pa-
rameter ¥ € [0, 1] and consider the problem

Du K o
le( £,0,T,K ) + — O—ug’(f,t,lc in K‘E’
\/82 + |Du£,0,r,lc|2 \/82 + |Dus,0,r,x|2
(4.4) (N, Due,g,r’x> = O on SK‘C,
Ug,o,1,6 = 0 on 0K°.

For k = 0 the problem (4.4) has the obvious solution u. 4,0 = 0. We will now
derive the needed a priori estimates for k € (0, 1]. Note first that we have the
sup-bound

K
4.5) 0< Ugote = —»

oe
which follows directly from the maximum principle. To proceed further, we con-
sider the graph
(4.6) M®% = oraph(ueg,ric/€) C N X Ry.

We write n = % for the unit vector in the R4 direction, and v for the upward
pointing unit normal of M (here and in the following we drop the dependence
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on (g, 0, 7, k) in the notation when there is no risk of confusion). Written more
geometrically, problem (4.4) takes the form

M satisfies H + ou = «V with free boundary on
dD x R4 and Dirichlet boundary on dK*® x {0},

where H is the mean curvature of M C N x R4, and
1 1

V(o) ——
£ V&2 + |Du|?

We recall from [|16, lemma 2.5] that
(4.9) AV = (0. VH) — (JA]* + Re(v, ) V.

“.7

4.8)

Letd : D — Ry be a C2-function satisfying
(4.10) dlop =0, N(d)=-1. |Dd|<1. |D?d|=10Cyp.

where Cyp denotes the maximal curvature of the barrier. We will sometimes tacitly
view d as a function on M that is independent of the z-coordinate.

LEMMA 4.2. The weight function w = eMz=bd \uhere m and b are constants,
satisfies

4.11) Vliogw = mn' —bVd
and
(4.12) Aw = (|mn" —bVd|* —btrrpy D*d — (meV —bv(d))H)w.

PROOF. The first formula is immediate. To prove the second formula choos-
ing an orthonormal frame {e;} with V¢, e; = 0 at the point in consideration, we
compute

Aw =V, ({mn—bDd, e;)w)
= (mn—>bDd,e;)(mn—>bDd,e;)w
—b(D?d,e; ® e;)w — H{mn —bDd,v)w.
This implies the assertion. g
LEMMA 4.3. The function Vw : M2t — R satisfies
(4.13) N(log(Vw)) =b + Ayp(v,v)
and
A(Vw) =2(Vlogw,V(Vw)) + %(n,KVV —oVu)w

(4.14) — (|mnT —bVd|* + |A* + Re(v,v) + btrry Dzd)Vw

— (kV —ou)(meV —bv(d))Vw.
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PROOF. Differentiating (v, N} = 0 and using one obtains that
4.15) NWV) = Aypv,v)V.
Together with N(log w) = b, this yields (4.13). Using that
A(Vw) = wAV + VAw + 2(Vlogw, V(Vw)) — 2Vw|V log w|?,
the second formula follows from and (4.12). O

PROPOSITION 4.4. Let b = 2Csp and m = max(20Cyp, 2 maxp | Rc [/2). Then
the function V : M&%%K — R satisfies

(4.16) V(x,z) > e omaxd min(l, min V)e_’”z.
2e 3KT

PROOF. By equation (4.13), the normal derivative of Vw is positive at the bar-
rier for b = 2Cyp. Therefore, the minimum of Vw is attained in K \ §K*. If the
minimum is attained on dK® or if the minimum is at least ziee_b max d , then we are
done. .

Suppose now towards a contradiction that the minimum of V w is attained in K*
and is less than ziee_b maxd By | emma and Lemma at such an interior
point we get

(4.17) ViogV = bVd —mn",
and
“.18) 0> |mn" —bVd|* + |A|* + Re(v,v) + btrrayr D%d
. + (kV —ou)(meV — bv(d)) + g(mnT—de,n),
where we also used that (Vu,n) = ¢|n'|?> > 0. Furthermore, taking also into
account the graphical identity
4.19) (Vd,n) = —eVv(d)
implies
0>m?n" 12+ m(Xn"|? — oueV
4.20) >m*|n'] (ln'l )
+ Re(v,v) —b(2meV + ou + 10Cyp).
Since ¢V < % we have [n']% > %. Hence, m > 2m51x | Rc|'/2 yields
m?  mk K
4.21) 02 == + 2 =2Cyp(m + = +10Cap ),
2 4e €
but this contradicts m > 20Cjp. O

Note that a lower bound for V is equivalent to an upper bound for |Du|. The
next lemma provides a uniform lower bound for mingg- V.

LEMMA 4.5. There exists a constant C = C(g, 0, K) < o0 such that

(4.22) sup [Duggri| < C.
KT
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PROOF. We argue as in the proof of [43] lemma 3.9] and seek a supersolution
of the form

(4.23) v=ar-g(s),

where r is the distance from dK7 and s is the distance from dD. Here, g(s) =
1 4+ f(Bs), with f(¢) denoting a smooth mollification of max(0, 1 — ¢). We work
in the region 7, := {x € K* : r(x) < p}, where p > 0 is in particular small
enough to ensure that r is smooth on 7. Due to the sup-bound we have
U > Ug g,z ON 07T, provided

(4.24) o> —.
Let y = y(D,K) > 0 be a constant such that for any t € [0, 1] we have

N(logdist(-, dKT)) > —y on 6KT. Then the normal derivative of v on the Neu-
mann-boundary §7, satisfies

(4.25) N@w) = ag(s)N() + arg’(s)N(s) > 0
provided
(4.26) B > 4y.

By the maximum principle, it is thus enough to show that

Dv K
+ —ov <0
+1Dv2) e 1 [DuP?

in YO”p (once this is done, one concludes that u¢ g r < v in T, which yields the
assertion of the lemma).

Let us now show that (4.27) indeed holds for a suitable choice of constants
a, B, p. To this end, we start by estimating

1
(4.28) Dv <

1
< (Av+1——
\/82+|Dv|2( 2(e2 + | Dv]?)

If p is small enough, then by the Riccati equation we have

(4.29) Ar<-1 naﬁn H.
K

4.27) Dy:= div( 7o

(D|Dv|2,Dv)).

Thus, we obtain

Av = agAr +2a(Dr,Dg) + arAg
(4.30) < —% min H + 2af'(Dr. Ds) + C(B)ap.
Next, we calculate

1
4.31) —~Dv =gDr + Brf’'Ds
o
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and
1
(4.32) $|Dv|2 = g2 + B%r2 f'? 4 2Brf'g(Dr, Ds).
In particular, we see that
2
(4.33) IDof? > “7

for p small enough. Taking another derivative of (4.32), we get
1
(4.34) — D|Dv|* = 28f'gDs + 2B 'g(Dr. Ds)Dr + R,
o
where the remainder satisfies |R| < C(8)p. This yields

4.35) L (DIDUP, D)~ 48f'2(Dr. Ds)| = C()p.

Finally, using again (4.32) we see that
40°B'g*(Dr. Ds) _ B
2(s2 + |Dv|?) T«

Putting everything together we conclude that

(4.37) \/82+|Dv|2Dv5—%%1Ii{nH+l+é+C(ﬂ)ocp<0,
a

provided we first fix 8 large enough, and then choose « very large and set p =
This proves the lemma.

(4.36) 2aBf'(Dr, Ds) — + C(B)ap.

1
oea’

We can now prove existence for our triple approximate problem.

THEOREM 4.6. There exists ug s, € CP(K® \ 0K¥) N CL¥(KT), where
a(t) > 0, which solves problem (4.3).

PROOF. Asin [29133,43]] we work with the weighted Holder space

(4.38) H{ (KT = s )50 < oo,
equipped with the norm

(4.39) S0 = ;g}gé‘ 4]l 2.0 (s K7
where

(4.40) Ints K* := {x € K* : d(x,0K") > §}.

It follows directly from the definitions that

(4.41) HY (KT € 622 (ntp KT) N C LK),

Fix ¢, 0, t > 0, and consider

(4.42) I := {x € [0, 11| @4) has a solution in H{ ' ~* (K7)}.
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We want to show that 1 € [, provided @« = «(t) > 0 is sufficiently small. Since
0 € [, it suffices to show that / C [0, 1] is open and closed.

Note that by equation (4.5)), Proposition|4.4] and Lemma.5] we have the a priori
estimate

(4.43) sup(u + |Du|) < C,
KT

where C < oo is independent of k. Since by the corners of the domain K*
have angles strictly less than 7/2, for « = a(7r) > 0 small enough, we can now
apply Lieberman’s estimates for mixed boundary value problems [29}30], to get
the a priori estimate

(4.44) luls.~® < c.

where C' < oo is independent of «. It follows that / is closed.
Next, observe that the linearization of (4.4) is given by

Dv _ (Dué‘,()',‘[,le Dv>Du8,U,t,K
\/82 + [Dite g,z (82 + |Du8,U,t,K|2)3/2
k{Dug i, Dv)

3/2
(82 + |Du8,0’,t,K|2) /

By the maximum principle and the Hopf lemma the only solution of L(v) = 0
with zero boundary conditions is v = 0. Together with the Fredholm alternative
for mixed boundary value problems [29,30] and the inverse function theorem, it
follows that / is open.

Finally, by standard elliptic estimates, the solution is smooth away from the
corners. 0

L(v) = div(
(4.45)

ov.

PROOF OF THEOREM i1l Existence of solutions ug o for the problem (4.1)
now follows by taking the solution u, ¢,; of problem from Theorem 4.6/ and
sending v — 0. Uniqueness is a consequence of the maximum principle and the
Hopf lemma. U

4.2 Double approximate estimate for H

The goal of this subsection is to prove a lower bound for V' = H + ou.,. We
start by giving a uniform sup-bound for u, » in a neighborhood of 9K .

LEMMA 4.7. There exist constants 6, = 8x(K, D) > 0and C = C(K, D) < o0
such thatug s < C in K \ Ky, .

PROOF. We will construct a suitable supersolution. Let u# be the arrival time
function the free boundary mean curvature flow {dK;}. Thenu : K \ K5, — R for
8o sufficiently small is smooth and satisfies

(4.46) av( 2+ L o v.puwy =0
. 1v = U, ) u) =Vv,
| Du| | Du|



782 N. EDELEN ET AL.

and
(4.47) c~'<|pul<C, |D%|<C,

for some C < oo. For § € (0,8p) consider the function ¢(¢) = ﬁ — % A
straightforward calculation as in [[16, lemma 3.8] shows that ¢ (1) is a supersolution
of (4.1)) provided 6 is small enough. Hence, by the maximum principle we conclude
that

(4.43) Ueo < P(u) < in Ko \ K%

1
)
This proves the lemma. g

PROPOSITION 4.8. Let b = 2Cyp. Then for a = a(K, D) < oo sufficiently large,
the function V : M®%" — R satisfies

1
(4.49) V(x,z) > e bmaxd min(—, min V)e—W.
2 9Kt

PROOF. Consider the function Vw where w = exp(saz — bd). Suppose to-

wards a contradiction that the minimum of Vw is attained in K and is less than

%e‘b maxd Setting k = 1 and m = ea, equations (4.18) and #.19) imply
(4:50) 0> (a+&%a®)n'|* + |A]* + Re(v, v)
' — b(ou +2ag’V —trryy Dzd) — &2acuV.

Using min V' < % we get [n|? > % and |ou| < % + +/n|A|. Hence, for a

sufficiently large, the positive term (a + £2a?)|n"|?> + |A|?> dominates all other
terms in (4.50), and we obtain a contradiction. U

THEOREM 4.9. There exist constants a = a(K,D) < ocoand ¢ = ¢(K,D) > 0
such that for all e, > 0 we have the estimate

(451) H(X, %ug’o'(x)) + ()'ue,a(x) > ce_aus.o(x)
forall x € K \ 0K.

PROOF. Fixeando. In Section we have proved that | Du, o | < C(e, 0, K)
in K and that u, converges uniformly in K to the unique solution ¢ » of
as v — 0. Hence, by Lemma we getue o < 2A in K*\ K, for t sufficiently
small. Now due to this new (e, g, 7)-independent sup-bound, we can choose the
constant « in the proof of Lemma4.5](for k = 1) to be also independent of ¢, 0, 7.
This in turn implies an (e, 0, 7)-independent gradient bound for us s on dK°.
Hence, by Proposition 4.8|we get

(4.52) H (X, §us,0,0(X)) + Op0,0(x) > c(K, D)e@Me.o.x(x)

for all x € K*. Taking t — 0, this estimate passes to the limit in K \ dK. g
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4.3 Double approximate estimate for |4 |/H

The goal of this section is to prove the following estimate:

THEOREM 4.10. There exist constants a = a(K, D) < oo and C = C(K, D) <
oo such that for any § € (0, 8«) we have

|A|(x, %Me,a(x))
(4.53) H(x, Lue o (%)) + ottpo (x)
< C(1 + max |A|(y,%us,a(y)))eaus.o(x)
yeaKg

forall x € Kg.

To prove Theorem {.10 we will apply the maximum principle to the function
|B| + Aou + ©

Vw ’
where w = e and a,b, A, ® < oo are constants to be chosen below. Here
B denotes a certain perturbation of the second fundamental form; cf. Edelen [9].
To define B, fix some smooth extensions k and N of the second fundamental form

and the unit normal vector of the barrier 3D x R4 to D x Ry. The perturbed
second fundamental form is then defined by

(4.55) Bij = Aij + Tijv,

(4.54) fi=

eaz—bd

where A is the second fundamental form of the graph of . s /¢, and T is a 3-tensor
on D x R defined by

(4.56) T(X.Y,Z) = k(X. Z){Y.N) + k(Y, Z)(X, N).

Since the graph of u is perpendicular to dD x R, we have (N, v) = 0. Thus, we
get A(X, N) = —k(X,v) for any tangent vector X perpendicular to N, which in
turn implies

(4.57) B(X,N)=0

whenever X is perpendicular to N.

LEMMA 4.11. The perturbed second fundamental form satisfies
N|B| <C(|B|+ou+1).

PROOF. Let {¢;} be an orthonormal frame field for 70M with e; = N. A cal-
culation as in [9, lemma 6.1] shows that

(4.58) Vyhij = O(|A| +1) Vi, j>1,
(4.59) Vnhir = k(v,v)V + O(A4| + 1).

Together with the fact that by; = 0 for j > 1 by (4.57), and the formula VT =
DT + A% T (cf. [9, p. 13]), this implies the assertion. U
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Moreover, the perturbed second fundamental form controls the second funda-
mental form. Namely, at any point with | B| > 1 we have

(4.60) |A| < C|B]
and
4.61) [VA| < C(|B| + |VB)).

Indeed, (4.60) follows from the fact that 7" is bounded, and (.61) follows from the
formula VI' = DT + AxT.

PROPOSITION 4.12. Whenever |B| > 1, then

(4.62) (év,ﬂ - A)|B| - |vBP |_B||V|B||2 + B + C( + ou)|B].
PROOF. To begin with, by [16} egs. (4.8), (4.9)] we have

(4.63) IVyA=V2H + (4*> — 04 + Rm(v, -, v, -))(H + ou).

Together with Simon’s identity

(4.64) AA =V?H + A2H — |A]?A + 0(1 + |A)),

this yields

(4.65) (V7 — A)A <|B|*B + C(1 + ou)|B|*.

Next, the tensor T satisfies the identities

(4.66) SV Tijy = 9V Tijk — 8V Tujv — 8;V Trww + O(|BJ?),

4.67) ATijy = O H Tyj — 8i H Tyjy — 8, H Try + O(| BJ?):;

cf. [9, p. 14]. Taking the difference and using Vu = en' = O(1), we infer that
(4.68) (Av,r—A)T < C|B.

Combining (4.65) and (4.68), we conclude that

(4.69) 1AV, — A)BI? < VB> + |B|* + C(1 + ou)|B].

From this the claim follows. g
LEMMA 4.13. There exists a constant y = y(n) < 1 such that

(4.70) \VIB|| <y|VB| +2|VH| + C(1 + |A)).

PROOF. The proof is essentially the same as the one for [16, prop. 4.12]. The
only change is that due to |VT'| = O(1 + |A|), we need to add O(1 + |A]) to
the right-hand sides of [16, eqs. (4.16), (4.18)]. The rest of the argument remains
intact. Il
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PROOF OF THEOREM 4.10. Consider the function f as defined in (4.54). The
constants a, b, A, ® will be chosen below. Throughout the proof, we tacitly assume
that ¢ and o are small enough such that
4.71) ea <1, oA <.

Using Lemmal4.11 we see that

C(|B|+ou+1)
472 N(lo < —k(v,v)—b <0
@72 og ) = Tpmpo g —kww)

provided b is large enough. Hence the maximum of f over Ky is either attained in

the interior K or on the Dirichlet boundary dKg. Suppose now the maximum is
(o]
attained at xo € Kg, and let zg = %ug,g(xo).

CLAIM 4.14. There exists § = §(n) > 0 such that at (xg, Zg) we have

4.73) (V= A) Bl < MBI 1 [B]? + C(1 + ou)| B2

provided that | B| > max{l, %V} at (xo, 20).

PROOF. At (x9,Zzo) we have Vlog f = 0, or equivalently
V|B| + Aoen'
|B| + Aou + ®
Using @.71) and | B| > max{1, % V} we deduce that

(4.74) VH = ( —ean' + de) V —eon'.

(4.75) |VH | EITTV|VB|+C|B|.

Therefore, in view of Lemma4.13 we get the estimate

(4.76) IVB|?> —|V|B||*> = §|V|B||> - C|BI?,

where § = §(n) > 0. Together with Proposition|4.12 this implies the claim. g

Continuing the proof of the theorem, we compute

“4.77) (%VHT . A)u <1

and

wrg  EVr A0 = (BP +a=COBl+ow)ve
—2(Vlogw, V(Vw));

cf. Lemmal4.3l

Since 0 < (%V,’T — A)f —2(Vlog(Vw),V f) at (xg,z0), combining the in-
equalities (4.73), (4.77), and (4.78) we obtain

1 >
_slviB| 3 >
4.79) 0= ( 37 +IBI" + CoulB] )+Cf(|B|+ou)

w
— f(1B]? +a—2(Viogw, Viog(Vw)))
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provided that |B| > {1, %V}. Due to |Vu| < 1, the gradient term can be

estimated by
2
2f{Vlogw,Vlog(Vw))| = V—|(V10g w, V(|B| + Aou))|
w
1 2
[VIB]]
(4.80) <V (8 5] +C|BI)-

Using this, and assuming | B| > max{l, ﬁ V. 2-u}, we infer that

(4.81) 0 < (C — A)ou|B|? + (CA —©)|B|*> + (CO —a)|B],

which yields a contradiction, provided A > C,® > CA anda > CO.
So far we have shown that there exist constants @, b, A, ®, depending only on
D and K, such that at any interior maximum of f we have

4 o
(4.82) |B| fmax{I,—V,—u}.
l—y 2n

The last part of the proof is to show that f(x¢, Z¢) is uniformly bounded. To this
end, let us point out first that (4.82) obviously implies

4 o
(4.83) | B] §max{l+2|trT|,—V,—u}.
1—y 2n
If the maximum on the right-hand side of (4.83) equals 1 + 2|tr T'|, then we get

(4.84) Flro ) < LF2NALATD 26

since Vw is bounded below by Theorem If the maximum on the right-hand
side of (4.83) equals ﬁ V, then

C.

4+ 8n C
4.85 Xo, < — <C,
(4.85) f(OZO)_(l—y)w+Vw_
since w and Vw are bounded below. Finally, if the maximum on the right-hand
side of (4.83) equals 5 u, then |tr 7| < %au and |H + tr T'| < Ju. This implies
V > Su; hence again

4(A+1 G
(436 frozo < LD L D ¢
Vw
Since ou < C on K \ K3, by Lemma this finishes the proof of the theorem.

g

4.4 Passing to limits and one-sided minimization

We will first send 0 — 0, then prove one-sided minimization, and then send
e — 0.
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LEMMA 4.15. There exists a relatively open set Q° C K containing 0K such that
the following holds. The (improper) limitﬁ' Ugo —> Ugaso — Oisin Clg’cl Q5N
Coo(Q2° \ 0K) and solves

D 1 o
div( e ) n —0 in9e,
Ve2 + |Dugl? Ve2 + |Dug|?

(N,Dus) =0 onéQ°t,

(4.87)
Ug =0 on 0K,

Ug(x) > 00 x — Q% \ K.
Moreover, for x € K \ 0K we have estimates
(4.88) H(x, Lug(x)) = cem@4e),
where ¢ = ¢(K,D) > 0and a = a(K, D) < oo, and for any 5 € (0,8%) for

x € Kg we have the estimate
4|

A
(4.89) 7()6, %Me(x)) < C(l + sup | |(y, %ug(y)))e""g(x),
0K

H
where C = C(K, D) < oo and p = p(K, D) < oc.

PROOF. Suppose 01 < 03. Since U, o, is a supersolution of (4.1) for o = 02, by
the maximum principle we have u, 4, > U ,. Therefore we can take a pointwise
(improper) limit ug(x) = limg_sg Ug,o(x) € [0, 00] for each x € K. Obviously
Ue = 0 on 0K. Define

(4.90) Qf ={x € K :u.(x) < 00}.
By Theorem 4.9} we have the uniform Lipschitz estimate
(4.91) |De %Me0| < C;

hence Q2% C K is open, ug(x) — oo as x — dQ°\ 9K, and (4.88) holds. Fi-
nally, by standard elliptic estimates (cf. the proof of Theorem[4.6), the convergence
Ueo — Ug is in C52(2° \ dK), and passing the estimates from Theorem and

Theorem4.10 to the limit yields (4.88) and (4.89). U
Consider
(4.92) LY :={(x,2) € Q°* xR : ez < ug(x) —t}.

The geometric meaning of (4.87) is that {L%} is a smooth self-similar solution of
the free boundary mean curvature flow, translating downwards with speed 1/¢.

4 Here, the word improper just indicates that u.(x) = oo for x € K \ Q°.
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PROPOSITION 4.16. The sets LS are one-sided minimizing. Namely, given any
compact set E C Intpxr Lg we have the estimate

(4.93) H'HLOLE N E) < H"THOF N E)
whenever L; € F and F \ L C E.

PROOF. Since {L{};>0 is mean-convex, we can use the unit normal v as cali-
bration and evaluate

(4.94) 0< / divv dH* 2
F\L¢

using the divergence theorem. In general, the boundary of F'\ L consists of three
parts. By the free boundary condition, the part contained in dD x R does not
contribute to the flux integral. From this, the assertion follows. (|

PROOF OF THEOREM Let u, : Q% — R be as in Lemmal4.15. By (4.88),
we have

(4.95) |De~%"| < C.

Thus, for any sequence g, — 0 there is a subsequence ¢, — 0 and a relatively
open set 2 C K containing a neighborhood of dK such that u.,, — i locally
uniformly in € and u,,,(x) — oo as x — 9 \ dK. Since i arises as a limit of
locally uniform Lipschitz functions, it solves
div( DLA‘)JF ' _0 i,
[Du| [ Du|
(N,Dit) =0 onéQ,

#=0 onodk,

in the viscosity sense. By the definition of viscosity solutions, the family of closed
sets M; = {x € K : u(x) = t} satisfies the avoidance principle, and thus is a
set-theoretic subsolution of the mean curvature flow with free boundary. Hence,
by the same argument as in [[16, p. 1154] the limit # agrees with the arrival time
function u of the free boundary level set flow. In particular, @ = K \ (),~¢ K¢,
and the subsequential convergence entails a full limit. B
Recall that {L%} as defined in (4.92) is a smooth self-similar solution of the
free boundary mean curvature flow in D x R, translating downwards with speed
1/e. The arrival time function of {L} is given by Ug(x,z) = ug(x) — ez and
converges locally uniformly to U(x, z) = u(x), which is the arrival time function
of {K; x R}. Hence, for any § > O the flow {L7},>s converges to {K; x R};>s in
the strong Hausdorff sense as defined in [18, def. 4.10], i.e., the space-time track

(4.96) f=Jd(x.2) e DXR: Uplx.2) = 1} x {1})

t>4
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Hausdorff converges to
(4.97) Ks = JU(x.2) € D xR :u(x) =t} x {1}),
t>6

and the closure of the complement of the space-time track, namely

(4.98) (L5 = | JU(x.2) € D xR : Uglx.2) < 1} x {1}),

>4
Hausdorff converges to

(4.99) Ks)¥ = | J({(x.2) € D xR :u(x) <t} x {t}).

t>6

Next, we will pass to a limit in the sense of free-boundary Brakke flows and
relate this to the strong Hausdorff limit from above. The following argument uses
some basic definitions and facts about free-boundary Brakke flows that will be
reviewed in Section [5]below.

By the compactness theorem for Brakke flow with free boundary [[10]], which
can be applied thanks to the uniform area-ratio bounds implied by Proposition @,
for any sequence ¢; — 0 we can pass to a subsequence so that ME = wi =
H" L JLE*} 50 converges in {t > 0} in the sense of free-boundary Brakke flows
to an (n + 1)-dimensional unit-regular free-boundary Brakke flow M= {L¢}e=0
in D xR.

We now want to relate the Dirichlet boundary of

(4.100) K= J&, x{t})

t>0

with the support of M. Convergence as free-boundary Brakke flows implies that
spt(/\/lk) Hausdorff converges to spt(/\7l). On the other hand, L% Hausdorff
converges to d/C thanks to the strong Hausdorff convergence from above. Since
spt(M¥) = 38, we infer that

(4.101) spt(M) = oK.

Next, we can pass the one-sided minimization property from Proposition 4.16
to the limit (cf. [38} sec. 5]), which yields

(4.102) 0* K, is one-sided minimizing for every ¢ > 0.
Together with (4.101), by the same argument as in [38], sec. 5] this implies
(4.103) e =H'"TU L (0% K, xR)  forace. 1.

Furthermore, thanks to our Lipschitz estimate for the arrival time, comparing the
co-area formula for the reduced boundary and the topological boundary (cf. again
[38l sec. 5]) gives

(4.104) HTLL (0% K, x R) = H"T1 L (0K, xR) forae. t.
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In fact, we can improve (4.103) as follows. Given any ball B,(x) C Intp Ky,
for every s > t > 0 we get by one-sided minimization

HM(3* Ky N Br(x)) < H'(9* K, N By (x)) + H* (0B, (x) N (K; \ Ks)).

Since K; 4, — K, in L' as h — 0 (a consequence of nonfattening), we deduce
that for every 1 > O we have the inequalities
(4.105) dim H" L 0" K, qp, < H" LKy < lim H" L0 Ky,
1—>00 1—>00
whenever the limits on the left/right-hand side exist (here #; > 0). On the other
hand, by standard semidecreasing properties for free-boundary Brakke flows (|10}
prop. 4.13]), the limits lim_,,+ [l exist for every t > 0, and agree on a co-
countable set of times. Hence,
lim fiy < H"™' L (0*K, xR) < lim [is.
s—>tt §—>1
Therefore, we can replace fi; with H"*T1 | (9* K; x R) whenever they don’t agree
(which is only a countable collection of times), and still have a unit-regular free-
boundary Brakke flow. Moreover, the support spt M does not change.

Splitting off a line, the above shows that M = {; := H" L 9* K, };>0 is a unit-
regular free-boundary Brakke flow with spt M = 9/C on {t > 0}. Since {dK;};
is a smooth free-boundary flow for short time ¢ € [0, 5*), we have lim;—o u; =
H" L 3* Ko = H" L 0K and spt M = 9K.

Finally, passing the estimates (4.88) and (4.89) to the limit at smooth points via
the local regularity theorem [|10L{47]], we infer that

(4.106) inf H>ce ™ (t>0),
IK'eE

and, taking also into account that 3K is smooth with bounded curvature for § > 0
small enough, that

4]

(4.107) sup — < CeP' (¢t > §).
IK
This finishes the proof of Theorem|1.6 0

S Free Boundary Brakke Flow and Limit Flows

For ease of notation let us pretend that (N"™1, g) = (R"*! §) (everything
generalizes in a straightforward way to other ambient manifolds).

Let K; = F;(K) be a free boundary level set flow with smooth, strictly mean-
convex initial data K C D. As before, we write

(5.1) K=[JKix{t}cDxRy

t>0
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for its space-time track. By Theorem|I.6](elliptic regularization and consequences),
we can also consider the associated free boundary Brakke flow

(52) M == {Hnl_a*Kl};Zo.

We recall that the pair (M, K) is called a mean-convex free boundary flow.

5.1 Free boundary Brakke flow

As in [10, sec. 3], for any Borel-measurable vector field X, define the vector
field

(5.3) X, =X —1yp (X, N)N.

We recall from [10, sec. 4] that in general a free boundary Brakke flow M =
{1t }r>0 is given by a family of Radon measures in D that are integer n-rectifiable
for almost all times such that

d
(5.4) 5/4561#: = /(—¢Hf +(Vo, Hy) + 3:d)dp,

for all nonnegative C !-functions ¢. Here % denotes the limsup of difference quo-
tients, and it is assumed that for almost every time the first variation of the associ-
ated varifold V), is represented by a function H € L2((D, j1;); R"*1), namely,

(5.5) SV, (X) = —/H* X dps

for all C!-vector fields X that are tangential along BDH

Remark 5.1. Thanks to Theorem (elliptic regularization and consequences)
all free boundary Brakke flows that we encounter in the present paper, or more
precisely their stabilized version obtained by crossing with a line, are limits of
smooth free boundary flows.

Let (M, K) be a mean-convex free boundary flow. The support of M consists
by definition of all points X = (x, 7) that have Gaussian density (see Section [5.3|
below) at least 1. We write dKC := K \ Intpxr K for the Dirichlet boundary of }C
as a subset of space-time.

PROPOSITION 5.2 (support). If (M, K) is a free boundary Brakke flow, then the
support of M is equal to IK fort > 0.

PROOF. This already has been shown in the proof of Theorem (1.6 |

Sn particular, by (5.5), V;;, has free boundary in the sense of integral varifolds.
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5.2 Blowup sequences and limit flows

Let (M, K) be a mean-convex free boundary flow in D. Given X; = (x;,t;) €
dIC (with liminf; o #; > 0 and limsup;_, . #; < oo) and A; — oo, we consider
the blowup sequence (M*, K'), which is obtained from (M, K) by translating X;
to the origin and parabolically rescaling by A;. After passing to a subsequence, we
can assume that either

(5.6) lim A;d(x;,0D) = oo (interior case),
1—>00

or

5.7 lim A;d(x;,dD) < oo (boundary case).
1—>00

Note that (M, K?) is defined in the domain D*, which is obtained from D by
shifting x; to the origin and rescaling by A;. Fori — oo the domains D’ converge
locally smoothly to R”*! in the interior case, and to a half-space, which we denote
by H, in the boundary case. By the area bounds from one-sided minimization
(Theorem and the compactness theorem for free boundary Brakke flows [[10}
theorem 4.10] after passing to a subsequence, we can assume that M’ converges
to a limit M’, which is a Brakke flow in the interior case and a free boundary
Brakke flow in the boundary case. After passing to a further subsequence we can
also assume that K’ converges in the Hausdorff sense to a limit X’. Any such pair
(M, K’) is called a limit flow.

In the boundary case, when (M’, K') is a free boundary flow in H, then one can
reflect (M’, K') around the planar barrier to obtain a boundaryless flow (M’, K)
(cf. [10, prop. 4.4]), called the reflected limit flow.

PROPOSITION 5.3 (Characterization of planar limit flows). Let (M, K) be a mean-
convex free boundary flow in D, and let (M, K') be a blowup sequence converg-
ing to a limit flow (M’,K'). Suppose spt M is contained in some static plane.
Then one of the following six cases occurs:

(1) K’ is a static half-space in R" 1, and M’ is the static plane 3KC'.

(2) K is a (quasi)static plane in R" T, and M’ is the (quasi)static plane 9K’
with multiplicity 2.

(3) K’ is a static quarter-space in H, and M’ is the static half-plane 0K’ with
multiplicity 1.

4) K’ is a (quasi)static half-plane in H, and M’ is a (quasi)static half-plane
K’ with multiplicity 2.

(5) K’ is a static slab in H containing 0H, and M’ is the static plane 0K’ with
multiplicity 1.

(6) K’ is the (quasi)static plane coincident with 0H, and M’ is the (quasi)static
plane coincident with 0H having multiplicity 1.
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PROOF. We adapt the proof from [45] theorem 5.4] to our setting. The hypoth-
esis implies that

(5.8) spt M’ = P x (—oo, T¥]

where P is either a plane or a free boundary half-plane, and T* < oo. Since
spt M* = dK" it follows that &' = lim K* must be either

(a) Q x(—o0, T*], where Q is either a half-space bounded by P, or a quarter-
space or slab bounded by P and dH, or

(b) P x (—o0,T*].
Let us first suppose that our limit flow is defined in entire R”*!. Then, in scenario
(a) the only possibility is that Q is a half-space and T* = oo, and by one-sided
minimization the multiplicity of P = 9Q must be 1; i.e., we are in case (I). In
scenario (b) by one-sided minimization the multiplicity of P is at most 2. If the
multiplicity was equal to 1, then by the local regularity theorem [47] the conver-
gence would be smooth and X’ would have nonempty interior, contradicting (b).
Hence, the multiplicity must be 2 and we are in case (2).

Suppose now our limit flow is defined in a half-space I and P is a free boundary
half-plane. Then, arguing as above, with the only difference that we now also use
the free boundary version of the local regularity theorem [10], we see that we are
in case (3) or ().

Suppose now our limit flow is defined in a half-space H and P is a plane, which
must be necessarily parallel to dH.

If P # 0H, then a priori there are the following three possibilities:

(1) K' = Q x (—o0, T*], where Q is the slab between P and 0H.
(ii) K" = Q x (—o0, T*], where Q is half-space bounded by P.
(i) K' = P x (—o0, T*].
In scenario (i) by one-sided minimization the multiplicity of P must be 1, and
we are in case (3). In scenario (ii) by one-sided minimization the multiplicity of P
would be OEI contradicting the fact that the multiplicity is at least 1. Hence, scenario
(ii) cannot occur. In scenario (iii) by one-sided minimization the multiplicity of P
would be 1. But then by the local regularity theorem [10,47] the convergence
would be smooth and X’ would have nonempty interior; a contradiction. Hence,
scenario (iii) cannot occur either.
If P = 0H, then the above possibilities (i) and (iii) degenerate into the same
possibility; i.e., a priori we have the two following possibilities:
(i) K' = P x (=00, T*].
(ii") K' = Q x (—o0, T*], where Q is a half-space bounded by P.
In scenario (i) by one-sided minimization the multiplicity must be 1, and we are
in case (6). Finally, scenario (ii’) can be ruled out similarly as scenario (ii). This
concludes the proof of the proposition. U

6 After doubling, this corresponds to the case k = 2 in [45, theorem 3.9].
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(1) (2)
(3) (4)

(5) (6)

FIGURE 5.1. Planar limit flows of Proposition[5.3]

THEOREM 5.4 (Properties of limit flows). Let (M, K) be a mean-convex free
boundary flow in D, and let (M’ ,K") be a blowup sequence converging to a limit
flow (M, K"). Then:

(1) K’ is weakly mean-convex; i.e., K;z C K;l whenever ty > 1.

(2) The support of M’ equals IK'.

(3) The sets dK' Hausdorff converge to 3K

4) (M',K') is one-sided minimizing.

PROOF. The first assertion is trivial. Assertions (2) and (3) follow as in [45,
proof of theorem 5.5], using Proposition [5.3]in place of [45] theorem 5.4]. Asser-
tion (4) follows from the one-sided-minization of K" as in [45, theorem 6.1]. [

5.3 Tangent flows and Gaussian density

For x € D close enough to dD there is a well-defined projection £(x) to the
nearest point in dD. Denote by

5.9 X=2§(x)—x

the point that is obtained by reflection across dD. Using this, one can define the
almost monotone quantity

(5.10) Oren(ap) (M. X, 1)

as in [ 10, def. 5.1.1], which interpolates between Huisken’s monotone quantity in
the interior [20] and an almost monotone reflected quantity close to the boundary.
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Let X in the support of (M, K) be fixed, and A; — oo. Let (M, ) be the
sequence of flows that is obtained from (M, KC) by translating X to the origin and
parabolically rescaling by A;. Any subsequential limit (M’, K') is called a rangent
flow at X. By the almost monotonicity formula from [10, theorem 5.1], tangent
flows are always backwardly self-similar, i.e., (M’,K’) N {t < 0} is invariant
under parabolic dilation. In particular, they have a well-defined reflected Gaussian
density

(5.11) Oren(ap) (M. X) 1= lim Orenyp) (M. X, 7).

Tangent flows are either shrinking, static, or quasi-static; see [44].
If (M’,K’) is a limit flow at X € 3D, which is defined in a half-space, and
(M, K’) is the doubled flow, then by [10, theorem 6.4 and lemma 7.1] we have

(5.12) Ent[M'] < Oren(ap) (M., X).
with equality in the case of tangent flows. Here,
~ 1 x|2
M= 1 — e ATdy
(5.13) Ent[M’] t_llr_noo (47r|t|)”/2€ Tdp,(x)

denotes the entropy (aka density at co) of M.

6 Multiplicity 1

The goal of this section is to prove that static and quasi-static density-2 planes
and half-planes cannot occur as tangent flows or limit flows (note also that planes
and half-planes of density > 3 are immediately ruled out by one-sided minimiza-
tion).

6.1 Limit flows with entropy at most 2
In this section, we consider the following class of limit flows.

DEFINITION 6.1 (Class of limit flows). Let (M, K) be a mean-convex flow in D.
Let C be the class of all limit flows (M’, K') such that

(1) Ent[M’] < 2 in case (M’, K') is defined in entire space, and Ent[M] < 2
in case (M, K’) is defined in a half-space.
(2) (M’,K') is not a static or quasi-static multiplicity-2 plane or half-plane.

We recall that all limits flows are either free boundary flows in a half-space or
flows without boundary in entire space. In the above definition, in case (M’, K')
is defined in a half-space, (M’, K') is reflected flow R” 1,

PROPOSITION 6.2 (Partial regularity). If (M’,K’) € C, then no tangent flow at a
singular point can be static or quasi-static. In particular, the parabolic Hausdorff
dimension of the singular set is at most n — 1.
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PROOF. In case (M’,K’) is defined in a half-space, we consider its double
(M',K’). By the equality case of the monotonicity formula and the definition
of the class C, no tangent flow can be a static or quasi-static plane of multiplicity 2.
Hence, by the stratification of the singular set from [44} sec. 9], each time slice of
the singular set has Hausdorff dimension at most n — 1.

Now, if a tangent flow is a stationary cone, then arguing as above we see that
its singular set has dimension at most n — 1. Since our flow arises as the limit
of smooth flows with |A] < CH by Theorem (elliptic regularization) using
the local regularity theorem, we infer that A vanishes identically on the regular
part; i.e., the cone is flat. Furthermore, the cone cannot be a union of three or four
half-planes by one-sided minimization (Theorem [5.4). Hence the cone is a static
multiplicity 1 plane, and by the local regularity theorem the point is regular.

Summing up, all tangent flows at singular points are shrinking. Hence, again
by [44} sec. 9], the parabolic Hausdorff dimension of the singular set is at most
n—1. O

COROLLARY 6.3 (Static limit flows). If (M',K’) € C is static (or quasi-static),
then one of the following five cases occurs:

(1) K is a static half-space in R" 1, and M’ is the static plane 3KC'.

(2) M is a pair of two static, parallel, multiplicity 1 planes in R* ™1, and K’ is
the region in between.

(3) K’ is a static quarter-space in H, and M’ is the static half-plane 0K’ with
multiplicity 1.

(4) M’ is a pair of static multiplicity 1 half-planes in H with free boundary, and
K' is the region in between.

(5) M’ is a static multiplicity 1 plane in H parallel to the barrier plane 0H,
and K' is the region in between.

PROOF. The argument above shows that (M’, ') must be smooth and flat.
Hence, it is the union of one or two planes or half-planes. Together with the one-
sided minimization (Theorem [5.4) and unit regularity, the assertion follows. U

THEOREM 6.4 (Separation theorem). Let (M’, K') € C. In case the flow is defined
in a half-space, suppose there is a half-plane H perpendicular to the barrier plane
such that

(6.1) H <K,
t

and suppose the complement of (), K} contains points on each side of H. Then
(M, K') is static, and K’ is the region between two parallel half-planes perpen-
dicular to the barrier (a similar statement holds in case the limit flow is defined in
entire space and contains a plane).

PROOF. Consider the doubled flow (/\71’ K ). Using the partial regularity result
(Proposition and one-sided minimization (Theorem [5.4)), the same argument
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(1) (2)

(3) (4)

(5)

FIGURE 6.1. (Quasi-)static limit flows in C.

as in [45] proof of theorem 7.4] shows that M splits into two components. Since
the entropy is at most 2, and each nonplanar component contributes strictly more
than 1, this implies the assertion. U

6.2 Bernstein-type theorem

Foraset S € D,apoint x € D, and aradius r > 0, the relative thickness of S
in B(x,r)is

(6.2) Th(S, x,r) = |i|r1f Thy (S, x, 1),
v|=1
where
1
(63) ThU(S’x’r): - sup |<vay_x>|'

I yeSNB(x,r)

LEMMA 6.5 (Expanding hole lemma). For every A < oo there exists § = 84 > 0
with the following significance. Suppose K is a set-theoretic subsolution of the free
boundary mean curvature flow in our compact domain D or in a half-space H,
or a set-theoretic subsolution of the mean curvature flow in R"T1; suppose that
R > 0 is less than diam(D) in the former case and arbitrary in the other cases. If
there exists (x,t) such that

(6.4) Th(K¢, x,r) <8 forr <R
and

(6.5) x ¢ K,
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then
(6.6) dist(K,y,2,x) = Ar for0 <r < 6R.

PROOF. We follow the strategy of the proof of [45) theorem 4.1]. By translation
we may assume (x,¢) = (0, 0). Suppose that the result is false for some A. Then

for every §; = 1/j there is a set-theoretic subsolution X/ satisfying the first two
conditions but not the last. Let
6.7) pj = int{r | dist(K/,.0) < Ar}.

Since 0 ¢ K/, we certainly have pj > 0, and the failure of the last condition
implies that p; < §; R;. In particular, in the case where C7 is defined in D, we get
Parabolically rescale by ,oj_1 and pass to a subsequential limit. The limiting

domain is either R” ! or a half-space IH, and the limiting set-theoretic subsolution
K’ satisfies Th(K,,0,r) = 0 for all r, as well as dist(K;Z, 0) > Ar forr < 1, and
dist(K},0) = A.

Since its thickness is 0, K; must be contained in a plane P, and in the case the
domain is H the half-plane H = P N H must meet dH orthogonally. In either
case, the distance condition implies that K| /2 is a proper subset of the static plane
or half-plane solution, and must therefore vanish instantly. In particular, K| = @,
which is a contradiction. g

Similarly as in [45] sec. 4] the expanding hole lemma (Lemma[6.5]) implies the
following two corollaries.

COROLLARY 6.6. Let IC be as above and assume in addition that it is weakly
mean-convex. If (x,t) is a point such that
(6.8) limsup Th(K;, x,7) < 84

r—0

and such that x ¢ K, for all h > 0, then

6.9) lim inf 3K 42 2)
r—0 r

COROLLARY 6.7. If K is a weakly mean-convex set-theoretic subsolution of the

free boundary mean curvature flow in a half-space H or of the mean curvature

flow in R™ 1 and there is a point x such that

(6.10) lim sup Th(Ky, x,r) < 64,

r—0o0

A.

then either
dist(K,2, x) -

6.11) liminf A
r—00 r

or

(6.12) (K # 2.

t>0
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The following generalizes White’s Bernstein-type theorem [45) theorem 7.5] to
limit flows defined in a half-space. Importantly, we do not assume a priori at which
angle the thin slab meets the barrier.

THEOREM 6.8 (Bernstein-type theorem). There exists an ¢ > 0 with the following
significance. If (M',K') € C is defined in a half-space H and there is a point x
such that

s /
dist(K7,. x) -

(6.13) lim inf
r—00 r
and
(6.14) lim sup Th(K’_rz,x,r) <e,

F—>o0

then M’ is either a pair of static, parallel, multiplicity 1 half-planes with free
boundary in H, or a static multiplicity 1 plane parallel to the barrier in H. In
either case K' is the region in between the planes of M’ and the barrier.

Similarly, if (M, K') is defined in R"T1, then under the same assumptions M’
is a pair of static, parallel, multiplicity 1 planes, with K' the region in between.

PROOE. The statement for flows in R”?11 follows from the proof of [45, theo-
rem 7.5], so we focus on the case of free boundary flows in H.

Take ¥ = (1), K}, which for small enough & must be nonempty by Corollary
Consider the flows obtained by translating (M’, K) by (0, —7') and let (M"”, K")
be a limit as T — oo. Then (M”, K") is a static flow, and K” = X at any time ¢.

By the classification of static limit flows from Corollary we see that K is
either a static multiplicity 2 half-plane; the region in between a pair of multiplic-
ity 1 free boundary half-planes and the barrier; or finally the region bounded by
the barrier plane and a parallel multiplicity 1 plane. In the first two cases, Theorem
(separation theorem) immediately implies the result. For the final case, the re-
flected flow K will be the static flow in R”*! between two parallel multiplicity 1
planes, so applying the entire case of Theorem [6.4] (separation theorem) shows that
the reflected flow (/6’ M ) consists of the region between two multiplicity 1 planes
parallel to the barrier, which implies the result. g

6.3 Sheeting theorem

The goal of this section is to prove a sheeting theorem (Theorem|[6.10, Corollary
6.12, and Corollary [6.13).

Let (M, K) be a mean-convex free boundary flow in a compact domain D.
Recall that for any X = (x,¢) € R”T! x R and any r > 0 we denote by

(6.15) B(X,r)=B(x,r)x (t —r%t+r?)

the two-sided parabolic ball with center X and radius r.
The following lemma shows that if a blowup sequence Hausdorff converges to
a multiplicity 2 plane or half-plane, then we can find some sequence of rescaling
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factors for which one has smooth convergence to a pair of parallel planes or half-
planes.

LEMMA 6.9. Let (M, K') be a blowup sequence (see Section , and suppose
that

(6.16) d(K' N B(0,2), (P xR) N B(0,2)) — 0,
where P is either a plane or a half-plane. Then, there exists some sequence p; > 0
converging to O such that the parabolic dilates DpflMl converge smoothly to
either

(@) a pair of parallel planes in R"*1, or

(b) a pair of parallel half-planes with free boundary in a half-space H, or
(c) a multiplicity 1 plane parallel to the boundary of Hl.

Furthermore, in all cases D p.—llC" converges to the enclosed region.
1

PROOF. Fix ¢ > 0 small enough. Take p; to be the least number such that for
all r € [p;, 1] we have

(6.17) Th(K’ ,.0.r) <& and dist(K',.,0) <r.
By Corollary (expanding holes), we have p; > 0 for each i. Moreover, as-

sumption (6.10) easily implies that p; — 0.
Consider the dilates D ,-1(M", K') and take a subsequential limit. Any such

limit (M, K') satisfies

(6.18) Th(K' ,.r) <& and dist(K/,,0) <r forallr > 1,
with at least one inequality being nonstrict for r = 1, namely,

(6.19) Th(K' ;,1) =¢ or dist(K},0) = 1.

Moreover, by one-sided minimization (Theorem the (reflected) density at in-
finity of M’ is at most 2. Now due to (6.19) we can apply Theorem|6.8|(Bernstein-
type theorem) to deduce that M’ consists of separate multiplicity 1 (half-)planes,
and then the local regularity theorem [[10/47]] gives smooth convergence of D o ! M

to M. This proves the lemma. O

The above lemma essentially gives that the M’ are eventually smooth, but to get
smooth convergence at the original scale the strategy is to find a separating surface
as follows. Recall that D’ denotes the domain of the rescaled flow (K?, M?). If
we are in case (a) or (b) of the above lemma, then we let Sf be the set of centers
of open balls B such that B N D* C K! and B N D' touches dK? at two or more
points. Set

(6.20) S=|JsinD".
t
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THEOREM 6.10 (Sheeting theorem). Let (M?, K?) be a blowup sequence (see Sec-
tion and suppose that

(6.21) d (K" N B(0,4), (P xR) N B(0,4)) — 0,

where either im D! = R"*! and P is a plane, or lim D! = Hand P is a
free boundary half-plane. Then, for all i large S* N B(0, 1) is a C '-hypersurface
that divides 3C* into two nonempty components E)IC’i and GICé. In particular, any
convergent subsequence of M' in B(0, 1) converges smoothly to a plane or half-
plane with multiplicity 2.

PROOF. We claim that S N B(0, 1) is a C! properly embedded hypersurface
of B(0,1), which therefore divides B(0, 1) into two disjoint open subsets each
bounded by S (once this is shown, BlCi1 and BICQ can be defined as the respective
portions of K in each open subset).

Suppose the claim is false, so that there are points X; € S' N B(0, 1) about which
S? fails to be a C! embedded hypersurface. Then we may consider the translates
(MK = (M — X, KF = X5). Up to taking a subsequence, the K N B(0, 2)
will Hausdorff-converge locally to a translate of P x R.

Now, Lemma (note that outcome (c) is excluded by the hypotheses on P)
implies that for large i there are radii r; > 0 for which K/ N B(Xj, r;) splits as the
region in B(X;,r;) bounded either by two smooth, disjoint hypersurfaces S, 8;
(without boundary), or by smooth disjoint hypersurfaces Si, 85 (with boundary
on dD?) together with the barrier dD*. In either case, each S];l is graphical over
(the plane containing) P, with uniformly small C '*! norm, and with the C° norm
tending to 0 as i — oc.

But the distance function from a smooth submanifold S with boundary is C ! in

a small neighborhood U/\ S, indeed with nonzero gradient Vds(x) = %ﬁ(x); see,

e.g., [35]. Since S* N B(X;,r;) is clearly given by the locus d(-, S{) =d(-, S;)
and both S];l Hausdorff-converge locally to P x R, the implicit function theorem
then implies that S’ N B(X;,r;) is in fact a C! embedded hypersurface. This
provides the desired contradiction, and thus proves the claim.

It remains to show that the 8/Cfx converge locally smoothly and separately to
P xR. Foreach o = 1,2, by the assumption we have that BICfx N B(0, 1) Hausdorff
converges to (P xR)N B(0, 1) with some multiplicity. But one-sided minimization
(Theorem|[1.6) implies that the sum of (reflected) densities is at most 2. Therefore
each must converge with multiplicity 1, and the partial regularity theorem [[10,{47]]
then implies the smooth convergence. U

To reformulate Theorem [6.10 (sheeting theorem) in a more geometric way, it
will be convenient to fix certain boundary-straightening maps &, centered about a
point y € dD, as in [10]]. Locally these maps may be described as follows: Up to
a translation we may take y = 0, and up to a rotation and reflection we may take
Ty,3D to be {0} x R”, with the inward normal of dD at 0 pointing in the positive
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x1-direction. Near y the barrier dD is then locally given by a graph u over 70D,
and we define a map ®y, : [0, p) x B"(p) — D by

622) By (5.x") = (u(x'). x') + sv9p (u(x'). x').
The key properties are that for every small enough p, we have uniformly
(6.23) @ —id| < Cp*. [D®—id] < Cp. |DFO| < Crp>*.

In particular, define D! = A;(D — x;) to be a sequence of rescalings of D, with
Aid(x;i,dD) < oo so that D' converges to a half-space H. Let y; be the nearest-
point projection of x; to dD*; up to translation we may assume y = limy; =
0. Then the boundary-straightening maps for D’ are given by ®; : [0, 1;p) x
B"(A;p) — D' < R**+1 by

(6.24) @i (p) = Ai(Dy, (p/Ai) — xi).
Hence,
(6.25) ®; — idg locally smoothly.

Finally, for a function f defined in B(0, r), define the scale-invariant C %! -norm
of f to be the usual C?>!-norm of the function

(6.26) (x,1) € B*Y(0,1) — rf(x/r,t/r?).

Remark 6.11. If for some r, M; N B™1(y,r) is parametrized by

(6.27) B™(y.r) 3 (x,1) = D(f(x.1). %),

then f(x,t) satisfies the graphical mean curvature flow equation (with respect to
®*§), given by

(6.28) 0, f =y (Df. f.x)D}, f + E,

where y is the pullback of § under the map x +— ®( f(x, ), x), and E is an analytic
function of f, Df, D®, D?>®, and D3® such that £ = 0 when ® = id.

Using the above notions, the sheeting theorem (Theorem [6.10) implies the fol-
lowing two corollaries.

COROLLARY 6.12 (Sheeting at the boundary). Let D be a compact domain or the
half-space H = {x1 > 0}. Assume that O € 0D, and that the inward unit normal
at 0 points in the positive x1-direction. Let ® = ®g be the boundary-straightening
map of D centered at 0. Then, for any n > 0 there exists an & > 0 with the
following significance.

Let (M, K') be a free boundary flow in D, which is either a mean-convex flow
in a compact domain D, or a limit flow in D = H. Set

(6.29) Ho={(x.1) e R"T1Yx, 1 =0, x1 >0},
and suppose that
(6.30) d(K' N B(0,4r),H N B(0.4r)) < er
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for some v > 0. Then, there exist functions
(6.31) f.g: B™Y0,3r) N {x1 = 0} > R,
such that:
M f=g
(2) f and g have scale-invariant C*' norms < .
(3) Inside B(0,2r) N D, the set K' coincides with the region that is 0 between
®(graph(f)) and ®(graph(g)).
(4) f, g satisfy the graphical mean curvature flow equation (6.28).
(5) f. g satisfy the Neumann boundary condition dx, f = 0x,& = 0 on

B™1(0,7r) N {x; = 0}.

(6) For any fixed x, the functions t +— f(x,t) andt — g(x,t) are increasing
and decreasing, respectively.

Note that for a mean-convex flow, in order for (6.30) to hold for some scale r, it
must be the case that r < ro(g), where lim,_.o ro(¢) = 0. With this observation
the above corollary follows after scaling from the second case of Theorem [6.10.
The first case immediately yields the following:

COROLLARY 6.13 (Sheeting in the interior). Let D be a compact domain, or a
half-space H, or entire space R* 1. Assume that 0 is an interior point of D and
let

(632) V= (0 0) € R7 5 xyyy = O},

Then, for any n > 0 there exists an ¢ > 0 with the following significance: Let
(M, K') be either a mean-convex free boundary flow in a compact domain D or
a limit flow in H or R"*1. Suppose that

(6.33) d(K' N B(0,4r),V N B(0,4r)) < er
for some r < %d (0,3D). Then, there exist functions
(6.34) f.g:B"0,3r) > R
such that:
M f=g

(2) f.g have scale-invariant C?! norms < 1.

(3) Inside B(0,2r), the set K’ coincides with the region between graph( f) and
graph(g).

(4) f, g satisfy the graphical mean curvature flow equation.

(5) For any fixed x, the functions t +— f(x,t) and t v g(x,t) are increasing
and decreasing, respectively.

In both cases the strong maximum principle implies that in fact either f is
strictly dominated by g or f is identically equal to g (the latter can only happen
for limit flows).

Finally, we also have a version parallel to the barrier.
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COROLLARY 6.14 (Graphs above the barrier). Let (M, K) be a mean-convex free
boundary flow in a compact domain D. Assume without loss of generality that
0 € 9D and that the inward unit normal at 0 points in the positive x1-direction.
Denote H := R*1 N {x; > 0} and

(6.35) Vi={(x,1) e R" 1lx; = 0.

Then, for any n > 0 there exists an & > 0 with the following significance. Suppose
that

(6.36) d (KK N B(0,4r),V N B(0,4r)) < er
for some v > 0. Then there exists a function
(6.37) g:B™0,3r) > R
such that:
(1) g=0.

(2) g has scale-invariant C*' norm < n.

(3) Inside B(0,2r), the set K coincides with the region between ®(graph(0))
and ®(graph(g)), where the graphs are over dH.

(4) g satisfies the graphical mean curvature flow equation (6.28).

(5) For any fixed x, the function t +— g(x,t) is decreasing.

PROOF. By one-sided minimization (Theorem [I.6)), locally C must be between
dD and d/C. From this, the assertion follows easily. O

In particular, we can rule out static density two planes or half-planes as potential
tangent flows.

COROLLARY 6.15. Static density 2 planes and half-planes cannot occur as tangent
flows.

PROOF. Suppose that X = (x, ¢) is a point of density 2 with a static (half)plane
as tangent flow. Applying Corollary [6.12, Corollary [6.13, or Corollary [6.14] re-
spectively, and using the strong maximum principle (in the first two cases) or the
fact that H > 0 and spt M C D x R (in the last case), we see that all points in a
neighborhood of X are regular points of multiplicity 1; a contradiction. 0

6.4 Ruling out density two tangent flows

In this section, assuming D is mean-convex, we rule out quasi-static density
2 planes and half-planes as potential tangent flows (recall that the static case has
already been ruled out in Corollary[6.15).

Forany X = (x,t) € R*™! x R and any r > 0, we denote by

(6.38) P(X,r) = B(x,r) x (t —r?,1]

, the backwards parabolic ball of radius » with center X .
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Given any closed space-time subset ' of R”T! x R, we define two quantities
to measure Hausdorff-closeness to a quasi-static plane or half-plane, respectively.
Recall that in [45, sec. 9], White states

¢ (K') is the infimum of s > 0 such that

infy d(K' N P(0,s~1), VN P(0,s™ 1)) < s,

where inf), is taken over static planes V through the origin. Similarly, we define
¢+ (K') is the infimum of s > 0 such that

infy, d(K' 0 P(0,s™1),H N PO, s 1)) <,

where infy is taken over static half-planes H# = V N {x; > 0} that intersect
{x1 = 0} orthogonally at O (that is, (0, 0) € dH and the inner conormal is e1).

The following lemma gives sheeting sequences and their limiting behaviour for
blowups at the boundary:

(6.39)

(6.40)

LEMMA 6.16 (Sheeting sequence at the boundary). Let D be a compact domain.
Assume without loss of generality that 0 € 3D, and that the inward unit normal
at 0 is given by e1. Let (M?,K') be either a blowup sequence at 0 € 3D or a
sequence of tangent flows at 0, and suppose that ¢ (K') — 0.

Then, for large enough i there are functions f; and g;, defined on an exhaustion

of R%. x (=00, 0) such that

(1) Either f; < gi everywhere, or f; = gj.

(2) For any U € H and [a,b] C (—00,0), for i large enough the region K'
coincides in U with the region between ®;(graph( f;)) and ®;(graph(g;))
for all t € [a,b], where ®; denotes the boundary-straightening map for
D = A; D as in (6.24).

(3) f; and g; converge smoothly on compact subsets to 0.

(4) f; and g; solve the graphical mean curvature flow equation in the pullback
metric O} 8.

(5) fi and g; satisfy the zero Neumann boundary condition.

(6) f; and g; are increasing and decreasing in time, respectively.

Furthermore, if f; < g; for infinitely many i, then there exist constants ¢; > 0
and a subsequence c; - (g; — [;) that converges smoothly on compact subsets to the
constant function u(x,t) = 1 on R, x (—00,0).

A similar statement holds for blowups in the interior:

LEMMA 6.17 (Sheeting sequence in the interior). Let D be a compact domain. Let
(M*, KP) be either a blowup sequence about a fixed interior point or a sequence
of tangent flows at a fixed interior point, and suppose that ¢ (K') — 0.

Then, for large enough i there are functions f; and g;, defined on an exhaustion
of R" x (—o0, 0) such that:

(1) Either f; < gi everywhere, or f; = gj.

7 Here we denote RY ={xeR"|x; >0}and H = {x € R*T1 x>0}
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(2) Forany U € R" ! and [a, b] C (—00,0), for i large enough the region K}
coincides in U, after a suitable rotation, with the region between graph( f;)
and graph(g;) forall t € [a, b].

(3) Both sequences f; and g; converge smoothly on compact subsets to 0.

(4) f; and g; are solutions to the graphical mean curvature flow equation.

(5) f; and g; are increasing and decreasing in time, respectively.

Furthermore, if f; < g; for infinitely many i, then there exist constants ¢; > 0
and a subsequence ci(g; — f;) that converges smoothly on compact subsets to the
constant function u(x,t) = 1 on R" x (—o00, 0).

PROOF OF LEMMAS[6.16 AND[6.17. Taking i — oo, we get convergence to
some tangent flow (M’, ') that is either defined in H and supported in a free
boundary half-plane, or defined in R”?*! and supported in a plane. By Proposi-
tion these must be the static or quasi-static flows with multiplicity 2. We can
therefore apply Corollary|6.13 and Corollary [6.12 to obtain the required f; and g;,
respectively.

Suppose now there is a subsequence with f; < g;. Since ®; — id locally
smoothly, the difference

(6.41) wi=gi— f; >0

satisfies a linear parabolic equation with coefficients converging locally smoothly
as i — oo to those of the ordinary heat equation.

Let us first analyze the interior case. Since the functions u#; on the one hand are
decreasing by mean-convexity, but on the other hand want to become increasing
driven by the Harnack inequality, the argument can be concluded as in the proof
of [45, theorem 9.1].

In the boundary case, we consider the sequence of functions i; that is obtained
from u; via doubling at the boundary of R’} . Applying the same argument to i;,
the proof can be concluded in this case also. U

Finally, we also have a version for blowups parallel to the barrier. Before stating
it, we need an auxiliary result concerning mean-convex domains.

LEMMA 6.18. Assume D is mean-convex. Then for any point x € 0D, there exists
r > 0 and a smooth minimal surface in By(x) \ int D that passes through x.

PROOF. Assume without loss of generality that x = 0, R” = T(dD. The result

follows from the implicit function theorem: Consider for instance the map from
C>%(B;) x S_zir(Bl) that maps

(u, g) — (u(0), Du(0), D*u(0), Hyu),

where Hgu € C%(By) is the mean curvature of graph(u) in the metric g. The
linearization in u at the Euclidean disk (0, §) is clearly surjective, so in particular
for any diagonal, trace-free matrix A with |A| < ¢ (and any metric |g — §| < &)
we are able to find a smooth (g-)minimal surface ¥ tangent to D with second
fundamental form equal to A at x.
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To complete the proof, let B be the second fundamental form of 0D at x; then B
is diagonal in some orthonormal basis and has tr(B) > 0, so we may fix a diagonal,
trace-free matrix A < B and apply the above after appropriate scaling. Note that
A < B ensures that ¥ is disjoint from int D in a small enough ball. g

LEMMA 6.19 (Graphical sequence above the barrier). Let D be a compact domain.
Assume without loss of generality that O € 9D. Let (M*, K') be a blowup sequence
at 0 or a sequence of tangent flows at 0, and suppose that ¢(K') — 0. Let %; be
the corresponding dilates of the minimal surface passing through 0 as constructed
in Lemma@ or if the (M, K') are tangent flows, take ¥; = 9.

Then, for large enough i there are functions g;, defined on an exhaustion of dH x
(—00,0), and f; defined on an exhaustion of OH, where H = {x € R**1|x; > 0}
such that setting fi(-,t) = fi(+), we have:

(1) Either gi > 0> fiorgi =0= f;.

(2) ForanyU € H and [a, b] C (—o00,0) and for i large enough, the region K;
coincides in U with the region between ®;(graph(0)) and ®;(graph(g;)),
where the graphs here are over dlH.

(3) For any U € R"*! and for any i large enough, X; coincides in U with
®; (graph( f)).

(4) g; and f; converge smoothly on compact subsets to 0.

(5) gi and f; are solutions to the graphical mean curvature flow equation in the
pullback metric ®7 6.

(6) g; is decreasing in time.

Furthermore, if gi > 0 for infinitely many i, then there exist constants c; > 0
and a subsequence c;(g; — f;) that converges smoothly on compact subsets to the
constant function u(x,t) = 1 on 0H x (—o0, 0).

PROOF. Any subsequential limit of the ' must be a plane, and hence must be
the barrier plane dIH with multiplicity 1 (reflected density 2). The existence of the
required g; follows from Corollary [6.14, and the f; exist since ¥; is smooth and
converging smoothly to the barrier plane at 0. The convergence of ¢;(g; — f;)
follows as in the interior and free boundary cases. U

The following theorem shows that density 2 planes and half-planes are isolated:

THEOREM 6.20 (Isolation). Let (M, K) be a mean-convex flow in a compact do-
main D or a limit flow of such a flow. In case 0 € dD, assume without loss of
generality that the inward unit normal at 0 points in positive xi-direction. Then
there exists § > 0 such that for any tangent flow (M', K"y to (M, K) at X = (0,1),
we have

(1) If 0 is a boundary point and ¢4 (K') < 6, then ¢ (K') = 0.
(2) If 0 is an interior point and $(K') < 6, then ¢p(K’) = 0.
(3) If 0 is a boundary point and ¢(K') < §, then ¢p(K') = 0.
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PROOF. Suppose towards a contradiction that there is a sequence of tangent
flows (M!, ) at X = (0, ) with ¢(K?) — 0 or ¢4 (K') — 0. We must show
that for large enough i, we have ¢ (K?) = 0, respectively ¢4 (K?) = 0.

In each case (1)~(3) consider the functions f; and g; given by Lemma [6.16,
Lemmal6.17, and Lemma 6.19, respectively, taking f; = O for case (3). Since we
are dealing with sequences of tangent flows, all boundary-straightening maps are
trivial, so ' corresponds to the region between graph( f;) and graph(g;). More-
over, since the (¥, M") are tangent flows, they are backwardly self-similar; i.e.,
it holds that

(6.42) fi (rx,rzt) =rfi(x,t) and g; (rx,rzt) =rgi(x,t)

forall > 0 and all (x,¢) with ¢ < 0.

If f; < g; for infinitely many 7, then by the conclusions of the lemmata above,
there exist ¢; > 0 so that ¢;(g; — f;) converges smoothly to the constant function
u(x,t) = 1. However, equation (6.42) implies that u(rx, r?¢) = ru(x,t), which
is absurd.

So f; = g; for all sufficiently large i. But then f; = g; are both increasing and
decreasing, and hence constant in . The self-similarity above then states that

(6.43) gi(rx) =rgi(x).

Since g; is smooth and 1-homogeneous, it must be linear. In cases (2) and (3),
we conclude that X’ is a plane for i large enough; hence ¢(K’) = 0. In case (1),
taking also into account the vanishing Neumann boundary data, we conclude that
! is a half-plane orthogonal to 0T for i large enough; hence ¢ (') = 0. This
finishes the proof of the theorem. 0

We can now rule out quasi-static density-2 tangent flows:

THEOREM 6.21 (Tangent flows). Quasi-static multiplicity 2 planes, respectively
half-planes, cannot occur as tangent flows to a mean-convex free boundary flow
(M, K). If additionally D is mean-convex, then quasi-static density 2 planes also
cannot occur as tangent flows.

Note the last statement excludes case (6) of Proposition

PROOF. We follow the proof strategy in [45, theorem 9.2], with some adjust-
ments.

First, suppose, for the sake of contradiction, that one tangent flow at a point X =
0 is a quasi-static multiplicity 2 plane or half-plane. In particular, we are in case
(4) or (2), respectively, of Proposition Recall that by one-sided minimization,
any planar limit flow must have (reflected) density either 1 or 2. In particular, if
a limit flow is a multiplicity 2 plane, then it must be defined in R” ! (that is, it
cannot be a plane parallel to the barrier in H).

We may assume without loss of generality that X = 0, and in case 0 is a bound-
ary point that the inward normal of dD points in the positive x| -direction. Consider
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the parabolic dilations D K. By the discussion above, we are in case (1) or (2) of
Theorem [6.20, so we must have

(6.44) lim ¢(DyK) =0 or lim ¢ (D)K) =0,

A—o00 A—00
respectively, at X = 0. In particular, by the definitions of ¢ and ¢, every tangent
flow at X = 0 must be of the same type; that is, a quasi-static multiplicity 2 plane

and half-plane, respectively.
In either case we may consider the quantity

(6.45) V(r) = supip|0 € (B"t1(y,p) N D'y C K_,> for some y},
F

where D’ is R”*! in the planar case and R?T! N {x; > 0} in the half-planar case.
The observation above implies that

0.

(6.46) im V) _

r—>0 r
In particular, we may take a sequence r; — 0 such that
Vi) _,VGri)
ri 3r;

(6.47)

Consider the parabolic dilates X! = D,-1K. Applying Lemma(6.16 and Lemma

@ gives functions f; < g; such that K' corresponds to the region between
®; (graph( f;)) and ®;(graph(g;)) for some diffeomorphisms &; that converge
smoothly to id. In particular, for large i we have V(Ar;) ~ u;(0,—A?), where
u; .= g; — fi, and hence

(6.48) ui (0,—1) < Zu,-(o, —9).

Since (M, K) is a mean-convex flow, we must have u; > 0. Therefore, by the
above lemmata there exist ¢; > 0 so that c;u; converges uniformly to u(x,z) = 1.
This is incompatible with the inequality (6.48).

For the remaining density 2 case, suppose a tangent flow at X = 0 is a quasi-
static multiplicity 1 plane coincident with the barrier tangent plane dH. Let X be
the minimal surface in B, (0) \ int D passing through 0 as in Lemma6.18 for some
r > 0. Set My to be the mean curvature flow in B,(0) obtained by keeping X
static, and let Ky, be the region in B, (0) between X and D.

By Theorem|[6.20 (isolation), every tangent flow of M at X = 0 coincides with
dH, with multiplicity 1. Therefore by Corollary [6.14, there is a parabolic region

U= {e@)|x|®> <|t|, to <t <0} forsome zy <0,

where () — 0 ast — 0, so that in i/ the flow (M + My, KUKyx) is a graphical,
weakly mean-convex mean curvature flow without boundary, with the property
that any blowup sequence centered at (0, 0) converges smoothly to a multiplicity 2
plane. We can then use the same argument as in the interior, using Lemmal6.19 in
place of Lemma[6.17 to deduce a contradiction. O
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6.5 Ruling out density 2 limit flows

In this section, for mean-convex free boundary flow (M, K) in a mean-convex
domain D, we rule density 2 (quasi)static planes or half-planes as potential limit
flows (in the case of tangent flows this has already been done in the previous sec-
tion). Adapting [45] sec. 12], we start with the following lemma:

LEMMA 6.22. Let (M',K') be a limit flow of (M,K), defined in the limiting
domain D' = R"T! or D' = H. Let (M",K”) be a tangent flow of (M’,K’)
taken at a density 2 point X = (x,t). Then:

(1) If x is an interior point of D', and K" is a static or quasi-static plane, then
there is an open neighborhood U of x in R"*Y, an open interval (a,b),
and a properly embedded smooth minimal hypersurface ¥ in U such that
K.NU =X forall t € (a,b).

(2) If x is a boundary point of D', and K" is a static or quasi-static half-plane,
then there is an open neighborhood U of x in H, an open interval (a, b),
and a properly embedded smooth free boundary minimal hypersurface %
in U such that K, " U = X forall v € (a,b).

(3) If x is a boundary point of D', and K" is a static or quasi-static plane, then

there exists a neighborhood U of 0 in H and an open interval (a, b) such
that K. N U = dH N U forall t € (a,b).

Furthermore, in case (1) we have OM',-) > 2onall of T x (—00,b), and in
cases (2) and (3) we have ®(M’,-) > 2 on all of ¥ x (—o0, b] or dH x (—o0, b],
respectively.

PROOF. We proceed as in the proof of Theorem §.21 (tangent flows). In the limit

flow setting, we have D’ = R"*! or D’ = H, so the dilates D,—1 K’ correspond
in case (1) and (2) to the region between the graphs of f; < g,f. However, it is
possible to have f; = g; for limit flows, and in fact the proof of Theorem @
shows that this must be the case for sufficiently large ;. This immediately implies
that, in some backwards parabolic neighborhood of X, the flow K’ is a smooth
static (free boundary) mean curvature flow, which yields (1) and (2).

Similarly, in case (3) we see that g; = 0 for large enough i, which yields that
K’ equals dH in a backwards parabolic neighborhood of X .

The final assertion follows from arguing similarly as in [45, proof of theo-
rem 12.2]. O
THEOREM 6.23 (Limit flows). Let (M, K) be a mean-convex free boundary flow
in a mean-convex domain D. Then (quasi)static density-2 planes or half-planes do
not occur as limit flows.

PROOF. We follow the proof strategy of [45, theorem 12.3], with some adjust-
ments. Suppose towards a contradiction that there is a blowup sequence (M?, k)
that converges to a (quasi)static density-2 plane or half-plane (M, K°). Fix
§ > 0 as in Theorem [6.20 (isolation).
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Adjusting the sequence a bit we can assume that 0 € 3D’ N 8K6, and that the
inward unit normal of 9D’ at 0 is given by ej.

Case 1. (M®°, K*) is a density-2 half-plane.

Let i; > 0 be the smallest number for which
(6.49) ¢+ (D, K > 8)2.
Note that ;t; — 0 by hypothesis. Let (X', M’) be a subsequential limit of (D, K,
D,,; M?"). The limit satisfies

¢+ (K') = 8/2,

but
(6.50) ¢+ (DK <8/2  forp > 1.

By equation (6.50) and Theorem [6.20 (isolation) any tangent flow (M”,K”) to
(M, K’) at the origin must be a multiplicity 2 half-plane. In particular, by Theo-
rem|[6.21, (M’, K') must be a limit flow, not a dilate of (M, K).

Now, by Lemmal6.22 there exists a b € R and a free boundary minimal hyper-
surface X in an open neighborhood U C I of the origin, so that

(6.51) O(M',-)>2 onX x (—o0,b].

Consider the time translates of (/\7’ , E/) by (x,t) — (x,t + j); sending j — oo
we get a static limit flow (M, K), with

(6.52) K=K =|]Jk;
T
and
(6.53) O(M,-)>2 onZ xR.
Together with (6.49) and monotonicity this implies
(6.54) Ent[M] > 2.

Case 2. (M*,K') converges to a (quasi)static density 2 plane.

When scaling down along the sequence there is the potential scenario that the
barrier comes back in from infinity. To deal with this, instead of ¢4, we consider
the more general quantity

¢n(K') is the infimum of s > 0 such that
infy, d(K' N P(0,s™1),H N PO,s71)) <,
where infy; is now taken over all half-planes H = V N {x; > a},a < 0,and V is
a static plane intersecting {x; = 0} orthogonally at O (in particular, H > (0, 0) and
the inner conormal on 0 is given by ej).

Consider the quantity

(6.56) ¥ = min(¢, ¢p).

(6.55)
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where ¢ is defined in (6.39) and ¢y, is defined in (6.55). Let i; > 0 be the smallest
number for which

(6.57) Y (D, KY) > 8)2.

Note that y; — 0. Let (K', M’) be a subsequential limit, defined in D’, of
D, (K*, M*). The limit satisfies

(6.58) v(K) = 8/2,
but
(6.59) V(D K') <8/2 forp > 1.
In particular, if (X", M”) is a tangent flow to (K', M") at 0, then
(6.60) W (K" < 8/2.

We consider the following subcases:

Case 2a. 0 1is an interior point of D’.
In this case, it follows that

(6.61) ¢(K") <§/2,
and thus K" is a multiplicity 2 plane by Theorem [6.20 (isolation).

Case 2b. 0 is a boundary point of D’ = H, and ¢ (K") < §/2.

In this case, it follows that ¢4 (K”) < §/2, so by Theorem [6.20 (isolation) K"
must be a multiplicity 2 half-plane.

Case 2c. 0 is a boundary point of D’ = H, and ¢(K") < §/2.
Then, by Theorem |6.20 (isolation), we have ¢(K”) = 0 and K" is the barrier
plane.

In all cases 2a, 2b, and 2c, Theorem@ (tangent flows) implies that (M, K')
must be a limit flow, not a dilate of (M, K). By applying Lemmal6.22 (at different
centers), it follows that there exists » € R and X containing the origin such that
M’ has (reflected) density at least 2 on X x (—o0, b], where X is given by either:

e a minimal hypersurface in R* ™1 (Case 2a),
¢ a free boundary minimal hypersurface in H (Case 2a or 2b), or
e the barrier plane dH (Case 2c¢).

In particular, the (possibly reflected) flow satisfies
(6.62) OM’,-)>2 onX x (—o0,b],
where ¥ is a minimal hypersurface in R”+1,

Again taking translates of (M’, K’) and (M’,K’) by (x,7) — (x.f + j) and
sending j — 0o, we get a static limit flow (M, K) defined in R”*1. In each Case

2a, 2b, and 2c, (6.58) prevents this flow from being planar, so by again monotonic-
ity it must satisfy

(6.63) Ent[M] > 2.
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In all cases 1 and 2, we have thus constructed a static (possibly reflected) limit
flow (./\’/\l, ) defined in R”*1 that has entropy strictly larger than 2. Let (M™*, K*)
be a blowdown limit (i.e., a tangent flow at infinity) of (/\71, I/C\). Then (M*, K*) is
a static cone of multiplicity strictly larger than 2. Hence, by one-sided minimiza-
tion it must be nonflat, contradicting the bound |A| < CH . This finishes the proof
of the theorem. U

7 Conclusion

In this final section, we explain how to use Theorem (elliptic regularization
and consequences) and multiplicity 1 (see Section [6) to conclude the proofs of
Theorem (size of the singular set), Theorem (structure of singularities) and
Theorem (long-time behavior).

7.1 Size of the singular set

PROOF OF THEOREM [L.1l By the local regularity theorem [10,47] a point X is
regular if and only if one sees a density 1 plane or half-plane as tangent flow at
X. By the results from Section [6] (multiplicity 1) we have several restrictions on
the possible tangent flows. Namely, in case the barrier is mean-convex the tangent
flows at singular points cannot be static or quasi-static, but must be self-similar
shrinkers or self-similar shrinkers with free boundary, respectively. For a general
barrier, the only additional case that can occur is quasi-static density-2 planes.
Hence, the assertion follows from dimension reduction; cf. [44, sec. 9]. O

7.2 Structure of singularities

PROOF OF THEOREM [L.2l Let (M, K) be a mean-convex free boundary flow
in (D", g), and assume that D is mean-convex.
Given a point X in the support of the flow we consider

F1 = {(M",K')| (M',K) is a limit flow at X,

. which is defined in entire space}

and

72 Fo = {(M,K) | (M, K') is a limit flow at X,
which is defined in a half-space}.

Let

(7.3) Fi=F1UF.

As explained in the proof of Theorem (size of the singular set), the class F
does not contain any singular stationary cones. Moreover, whenever a tangent flow
of some flow in the class F at some point is a static or quasi-static plane, then it
is in fact a static multiplicity 1 plane. Hence the arguments from White’s second
paper [46] apply to the class F (actually with some simplifications thanks to the
a priori bound |A| < CH from Theorem [1.6), yielding all assertions of Theorem



814 N. EDELEN ET AL.

except for the last bullet point. In particular, note that the class J cannot
contain any doubling of a (quasi)-static plane in a half-space parallel to d0H, since
otherwise it would also contain dH. Finally, the assertion in the last bullet point
follows from [17, cor. 1.5]. Il

7.3 Long-time behavior

PROOF OF THEOREM [L.3l WEe first observe that the proof of the Bernstein-type
theorem (Theorem goes through if instead of the |A| < CH bound (which
unfortunately degenerates as # — o) one uses the Schoen-Simon result about
(mildly singular) minimal hypersurfaces in a slab [39] similarly as in [45] cor. 7.3].
Consequently, the sheeting theorem (Theorem|[6.10) can also be applied as ¢ — oo.

Now, suppose (M, K) is a mean-convex free boundary flow in a mean-convex
domain D such that

(7.4) Koo :=()K: # 2.
t

We argue as in [45, sec. 11]. Let (MT, KT) be the result of translating (M, K) by
(x,1) = (x,t — T). Then a subsequence will converge to a limit (M’, K'). Note
that

(7.5) K = ﬂ K; x R.
t

This is independent of the sequence of times going to infinity. Together with the
fact that M’ is determined by K’ (the support of M’ equals dK’, and multiplicity 1
versus-2 is determined by whether the component of K’ under consideration has
interior points), we infer that

(7.6) MT KTy - (M, K')

as T — oo (i.e., it is not necessary to pass to a subsequence). By (7.5)) the limit
(M’,K') is static, i.e.,

(7.7) sptM’) = 0Koo X R, K| = Keo-

By one-sided minimization (Theorem and the sheeting theorem (Theorem
6.10), 9K is a union of finitely many stable free boundary minimal surfaces.
Hence, by Simons [40] and Griiter [[15]] the dimension of the singular set is at most
n — 7. This finishes the proof of Theorem|1.5 U
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