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Abstract

In this paper, we generalize White’s regularity and structure theory for mean-
convex mean curvature flow [45, 46, 48] to the setting with free boundary. A
major new challenge in the free boundary setting is to derive an a priori bound
for the ratio between the norm of the second fundamental form and the mean
curvature. We establish such a bound via the maximum principle for a triple-
approximation scheme, which combines ideas from Edelen [9], Haslhofer-Hersh-
kovits [16], and Volkmann [43]. Other important new ingredients are a Bernstein-
type theorem and a sheeting theorem for low-entropy free boundary flows in a
half-slab, which allow us to rule out multiplicity 2 (half-)planes as possible tan-
gent flows and, for mean-convex domains, as possible limit flows. © 2021 Wi-
ley Periodicals LLC.
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1 Introduction

A family of closed embedded hypersurfaces in a Riemannian manifold
moves by mean curvature flow if the normal velocity at each point on

the (hyper)surface is given by the mean curvature vector at that point. If the initial
surface is mean-convex, i.e., if everywhere on the surface the mean curvature vector
points inwards, then the flow can be continued uniquely through all singularities
[11,45]. This evolution can be described both in the language of partial differential
equations as a level set flow [8,11] and in the language of geometric measure theory
as an integral Brakke flow [3].

White and Huisken-Sinestrari developed a far-reaching structure theory for the
mean curvature flow of such mean-convex hypersurfaces. Their papers [21, 22,
45, 46, 48] provide a package of estimates and structural results that yield a pre-
cise description of singularities and of high curvature regions (more recently, an
alternative treatment of this theory has been given by Haslhofer-Kleiner [18]). In
particular, their work implies that the parabolic Hausdorff dimension of the singu-
lar set is at most , and all blowup limits are convex, noncollapsed, and smooth
until they become extinct.1

The goal of the present paper is to generalize this theory to hypersurface with
free-boundary, i.e., hypersurfaces satisfying a Neumann-type boundary condition.
In the smooth setting, mean curvature flow with free-boundary has been studied in
important work by Stahl [41,42] and Buckland [7]. In the singular setting, in anal-
ogy to the flow of closed hypersurfaces, the free-boundary flow can be described
as a level-set flow [13] or as a Brakke-type flow [10]. We prove here the existence
of a unique mean-convex free boundary flow for all time and establish sharp results
on the size and structure of singularities for this flow. Recent work of White [49]
has developed an existence and regularity theory for flows with prescribed (Dirich-
let) data, and in particular showed that the resulting flow is always regular near its
Dirichlet data. This is very different from the free-boundary setting, where one
expects singularities on the boundary to be modelled on interior singularities.

1.1 Mean convex free boundary flow

To describe the setup, fix a smooth compact domain . A smooth
domain has free boundary if Int meets orthogonally;2

in other words,

(1.1) for all

where denotes the outward unit normal of and denotes the outward unit
normal to . These notions are illustrated in Figure 1.1. We assume that

1 By Brendle [5] and Haslhofer-Hershkovits [16] this applies without dimensional restrictions and
in general ambient manifolds.

2 It is more convenient to phrase everything in terms of compact domains instead of hypersur-
faces . These points of view are of course equivalent.
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FIGURE 1.1. Mean curvature flow with free boundary

is mean-convex, i.e., that the mean curvature vector everywhere on points in-
side .

Given , there is a unique evolution by the free boundary level set flow

from Giga-Sato [13]. This has been described originally in terms of viscosity so-
lutions of degenerate partial differential equations. Using the more geometric in-
terpretation from Ilmanen [24], simply is the maximal family
of closed sets starting at that does not bump into any smooth free boundary sub-
solution (see Section 3 for more detailed definitions). Mean convexity is preserved
under the free boundary level set flow (see again Section 3), i.e.,

(1.2) Int for all

We denote by

(1.3) K

the space-time track of the free boundary level set flow. Moreover, it can be
checked (see Theorem 1.6 and Remark 1.7 below) that

(1.4) M H

is a free boundary Brakke flow as defined in [10] (see also Section 5). The pair
M K is called a mean-convex free boundary flow.

1.2 Size of the singular set

Given a mean-convex free boundary flow M K in a domain , its
singular set S consists by definition of all points in the
support of the flow such that there is no two-sided space-time neighborhood of
in which evolution can be described as smooth free boundary flow. The parabolic
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Hausdorff dimension of a subset of spacetime is the Hausdorff dimension with
respect to the parabolic metric

(1.5) max

For example, the parabolic Hausdorff dimension of is . Our first
main theorem shows that the singular set in any mean-convex free boundary flow
is quite small:

THEOREM 1.1 (Size of the singular set). Let M K be a mean-convex free bound-

ary flow in . Then the parabolic Hausdorff dimension of its singular

set S is

at most if the domain is mean-convex, and

at most if the domain is arbitrary.

Simple examples show that the result is sharp. Indeed, rotationally symmetric
thin shrinking tori or half-tori in a ball show that an -dimensional
singular set can occur both in the interior and at the boundary. Likewise, the num-
ber is sharp for general barriers, since the surface can pop when it hits ,
cf. [10]. For example, if is an annulus and ,
then the shrinking sphere pops when it hits the inner boundary of the annulus and
produces an -dimensional singular set.

1.3 Structure of singularities

Let M K be a mean-convex free boundary flow in a mean-convex domain .
Given in the support of the flow and , we

consider the blowup sequence M K that is obtained from M K by translat-
ing to the origin and parabolically rescaling by . It is always possible to find
a convergent subsequence where M converges in the sense of (free boundary)
Brakke flows [10,25] and K converges in the Hausdorff sense. Any subsequential
limit M K is called a limit flow at . Here, M K is either a flow without
boundary in or a flow with free boundary defined in a half-space .
If , we call it a tangent flow at . Tangent flows are always backwardly
self-similar [10, 20].

THEOREM 1.2 (Structure of singularities). Let M K be a mean-convex free

boundary flow in a mean-convex domain . Let M K be a limit

flow, and denote by ext ext M K its extinction time, i.e., the

supremum of all with . Then:

M has multiplicity and its support equals K .

M K ext is smooth.

K has convex time slices, i.e., is convex for every .

K is either a static half-space or quarter-space, or it has strictly posi-

tive mean curvature and sweeps out the whole space or half-space, i.e.,

or , respectively.
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FIGURE 1.2. Neckpinches at the boundary

K is -noncollapsed; i.e., every admits interior and exterior balls

of radius .

Furthermore, if M K is backwardly self-similar, then it is either (i) a static

multiplicity plane or half-plane, (ii) a round shrinking sphere or half-sphere, or

(iii) a round shrinking cylinder or half-cylinder.

Examples where half-cylinders occur as tangent flows are neckpinches at the
boundary. Note that there are two types of half-cylinders with free boundary, de-
pending on whether the axis is contained in or perpendicular to it. An illus-
trative example where a limit flow is not backwardly self-similar is a degenerate
neckpinch at the boundary, in which case some limit flow M K would be a
half-bowl. These examples are illustrated in Figure 1.2.

Together with the recent breakthroughs by Brendle-Choi [6] and Angenent-
Daskalopoulos-Sesum [2], we obtain for :

COROLLARY 1.3 (Classification of limit flows). Let M K be a two-dimensional

mean-convex free boundary flow in a mean-convex domain . Then any

limit flow M K is one of the following:
a static multiplicity plane or half-plane,

a round shrinking sphere or half-sphere,

a round shrinking cylinder or half-cylinder,

a translating bowl or half-bowl,

an ancient oval or half-oval.
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In any dimension, Theorem 1.2 (structure of singularities) in particular implies
the following estimates for the flow M K itself.

COROLLARY 1.4 (Estimates for mean-convex free boundary flow). Let M K be

a mean-convex free boundary flow in a mean-convex domain .

Sharp noncollapsing. For any and , there exists an

with the following significance. For any , at any point

with there exist interior and exterior balls of radius at least

.

Convexity estimate. For all and , there exists an

with the following significance. For any , at any point with

, we have .

Gradient estimate. For all there is a such that at all times

and at all points we have .

We mention that a related convexity estimate was proved in [9]. On the other
hand, the gradient estimate for mean-convex free boundary flows only follows after
establishing our main structure theorem (Theorem 1.2), and we are not aware of
any shorter path towards establishing such a gradient estimate directly. This is
similar in spirit to the fact that Perelman obtained the gradient estimate for 3-D
Ricci flow as a corollary after establishing his canonical neighborhood theorem
[36, 37].

1.4 Long-time behavior

Mean curvature flow of closed surfaces in Euclidean space always becomes ex-
tinct in finite time, since there are no closed minimal surfaces it can converge to.
The mean curvature flow with free boundary can have more interesting long-time
behavior even for :

THEOREM 1.5 (Long-time behavior). Let M K be a mean-convex free boundary

flow in a mean-convex domain , and set

(1.6)

Then either or has finitely many connected components. The bound-

ary of each component is a stable free boundary minimal surface whose singular

set has Hausdorff dimension at most . Furthermore, converges smoothly

(either locally one-sheeted or two-sheeted depending on whether or not the com-

ponent has interior points) to away from the singular set of .

For example, consider the case where looks like a dumbbell, which contains
a strictly stable free boundary minimal disc . Fix small enough. If

, then we get two-sheeted convergence to . On the other
hand, letting be one of the components of and setting

, we get one-sheeted convergence.



MEAN CONVEX FLOW WITH FREE BOUNDARY 773

1.5 Some remarks on the proofs

As the reader will expect, one of the key steps is of course to rule out blowup
limits of higher multiplicity. In the case of mean-convex surfaces without boundary
there is a short maximum principle argument by Andrews [1]. Unfortunately, we
have not been able to generalize the argument by Andrews to the free boundary
setting (related to this, Brendle’s proof of the Lawson conjecture [4] does not seem
to generalize in any obvious way to establish uniqueness of the critical catenoid).
We thus follow White’s original approach from [45]. To this end, we prove free
boundary versions of the expanding hole lemma, the Bernstein-type theorem for
low entropy flows in a slab, and the sheeting theorem, and use them to rule out static
and quasi-static planes or free boundary half-planes with density as potential
tangent flows or limit flows (see Section 6).

Another major issue is to rule out nontrivial minimal cones, such as the Simons
cone, as potential blowup limits. This requires an a priori bound for the ratio
between the norm of the second fundamental form and the mean curvature, which
turns out to be substantially more involved than in the case without boundary. The
technical heart of the present paper is the following:

THEOREM 1.6 (Elliptic regularization and consequences). Let be a

free boundary level set flow with smooth strictly mean-convex initial data .

Then:

arises as a limit of smooth free boundary flows.

H is a free boundary Brakke flow.

is one-sided minimizing, i.e., H H whenever

.

There exist constants and such that

for all we have

inf
reg

For every there exist constants and

such that for every we have

sup
reg

Remark 1.7. A priori, one has to work with the reduced boundary . A pos-
teriori, Theorem 1.1 will imply that H H for all . The
distinction is immaterial for the argument itself.

To prove Theorem 1.6 (elliptic regularization and consequences) we use a triple-
approximate elliptic regularization scheme. We use a capillary parameter to deal
with the lack of an -estimate in case the flow does not become extinct in finite
time (cf. Haslhofer-Hershkovits [16]). Next, we bend the corners of to deal with
the mixed Dirichlet-Neumann problem (cf. Volkmann [43]). Moreover, we have to
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perturb the second fundamental form to get a reasonable normal derivative at the
barrier (cf. Edelen [9]). Finally, we need an additional weight function to force the
extrema away from the barrier (cf. Edelen [9]). We carry this out in Section 4.

Once Theorem 1.6 (free boundary level set flow) and multiplicity (see Sec-
tion 6) are established, all the remaining steps proceed broadly following the proof
strategy of [45, 46], the main point being to rule out density 2 (planar) limit flows.
In addition to multiplicity 2 planes and free boundary half-planes, there is the new
possibility of a (quasi)static limit flow defined in a half-space and coincident with
the barrier plane, which is not directly analogous to the case without boundary. We
rule out this potential scenario if the barrier is mean-convex.3

2 Notation and Conventions

Let us fix a Riemannian manifold and a compact domain
with smooth boundary . For any domain we write for

the interior of viewed as a subset of , and Int for the interior of viewed
as a subset of the topological space . We call Int the Dirichlet
boundary of , and the Neumann boundary of . We let
be the outward unit normal of and use the sign convention that H . We
write for the outward unit normal to .

3 Free Boundary Level Set Flow

A smooth family of closed domains is a smooth free boundary

subsolution if moves inwards at least as fast as the mean curvature flow and
hits in a convex fashion, i.e.,

vel H(3.1)

where vel denotes the normal velocity of . A family of closed sets
is a set theoretic subsolution of the free boundary mean curvature flow if

it avoids any smooth free boundary subsolution, i.e., whenever ,
where is a smooth free boundary subsolution with ,
then for all . The free boundary level set flow is
the maximal set-theoretic subsolution with initial condition . By the
work of Giga-Sato [13] the free boundary level set flow has the following basic
properties:

(1) Consistency with smooth flows: If is a smooth free-boundary
mean curvature flow, then .

(2) Avoidance: If and are disjoint, then and are also disjoint
and .

(3) Inclusion: If , then .

3 This assumption on the barrier is indeed necessary. For general barriers, the flow can “pop,”
which is captured by quasi-static density tangent flows.
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(4) Semigroup property: .
(5) Strict inclusion: If Int , then Int .

A closed subset is said to be mean-convex if for some ,
Int for all . If is smooth, this is equivalent to the condition that

everywhere and not identically zero.

PROPOSITION 3.1. Let be mean-convex. Mean convexity is preserved

under the free boundary level set flow, i.e., Int for all

. Moreover, the boundaries form a possibly singular foliation of

, and it holds that . In particular, the flow

is nonfattening.

PROOF. This follows from the above basic properties, arguing as in [45, sec. 3].
Namely, using the definition of mean-convex and the basic properties (4) and (5)
we infer that

(3.2) Int

for all and all . By induction we conclude that (3.2) holds
for all and all , where ; hence mean convexity
is preserved. In particular, the sets are disjoint. Next, given any

, denoting by the last time such that , we
have . Hence

(3.3)

Next, it follows from (2) and (5) that is a set-theoretic subsolution.
Also, note that is property (3). Together with the observation
that is disjoint from

(3.4) Int

by (5), we infer that . Recalling that is a set-
theoretic subsolution with initial condition , while is the maximal set-
theoretic subsolution with initial condition , we conclude that

. Since Int , this finishes the proof of the proposition. ⇤

4 Elliptic Regularization and Consequences

In this section, we prove Theorem 1.6 (elliptic regularization and consequences).

4.1 Triple approximation scheme

The aim now is to construct solutions of a mixed Dirichlet-Neumann problem:
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THEOREM 4.1. Given a strictly mean-convex domain , and constants

, there exists a unique solution of the

problem

(4.1)

div in

on

on

To solve problem (4.1), we need some additional approximations. Namely, to
deal with the mixed Dirichlet-Neumann boundary we approximate the initial do-
main by domains ( ) as in Volkmann [43, p. 74], which in particular
satisfy the strict angle condition

(4.2)

Given , we then consider the triple approximation problem

(4.3)

div in

on

on

To solve (4.3) we use the continuity method; i.e., we introduce yet another pa-
rameter and consider the problem

(4.4)

div in

on

on

For the problem (4.4) has the obvious solution . We will now
derive the needed a priori estimates for . Note first that we have the
sup-bound

(4.5)

which follows directly from the maximum principle. To proceed further, we con-
sider the graph

(4.6) graph

We write for the unit vector in the direction, and for the upward
pointing unit normal of (here and in the following we drop the dependence
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on in the notation when there is no risk of confusion). Written more
geometrically, problem (4.4) takes the form

(4.7) satisfies with free boundary on
and Dirichlet boundary on

where is the mean curvature of , and

(4.8)

We recall from [16, lemma 2.5] that

(4.9) Rc

Let be a -function satisfying

(4.10)

where denotes the maximal curvature of the barrier. We will sometimes tacitly
view as a function on that is independent of the -coordinate.

LEMMA 4.2. The weight function , where and are constants,

satisfies

log T(4.11)

and

T tr(4.12)

PROOF. The first formula is immediate. To prove the second formula choos-
ing an orthonormal frame with at the point in consideration, we
compute

This implies the assertion. ⇤

LEMMA 4.3. The function satisfies

log(4.13)

and

(4.14)

log
T Rc tr
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PROOF. Differentiating and using (4.7) one obtains that

(4.15)

Together with log , this yields (4.13). Using that

log log

the second formula follows from (4.9) and (4.12). ⇤
PROPOSITION 4.4. Let and max max Rc . Then

the function satisfies

(4.16) max min min

PROOF. By equation (4.13), the normal derivative of is positive at the bar-
rier for . Therefore, the minimum of is attained in . If the
minimum is attained on or if the minimum is at least max , then we are
done.

Suppose now towards a contradiction that the minimum of is attained in
and is less than max . By Lemma 4.2 and Lemma 4.3 at such an interior
point we get

log T(4.17)

and
T Rc tr

T(4.18)

where we also used that T . Furthermore, taking also into
account the graphical identity

(4.19)

implies
T T

Rc
(4.20)

Since , we have T . Hence, max Rc yields

(4.21)

but this contradicts . ⇤
Note that a lower bound for is equivalent to an upper bound for . The

next lemma provides a uniform lower bound for min .

LEMMA 4.5. There exists a constant such that

(4.22) sup
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PROOF. We argue as in the proof of [43, lemma 3.9] and seek a supersolution
of the form

(4.23)

where is the distance from and is the distance from . Here,
, with denoting a smooth mollification of max . We work

in the region , where is in particular small
enough to ensure that is smooth on . Due to the sup-bound (4.5) we have

on provided

(4.24)

Let be a constant such that for any we have
log dist on . Then the normal derivative of on the Neu-

mann-boundary satisfies

(4.25)

provided

(4.26)

By the maximum principle, it is thus enough to show that

D div(4.27)

in (once this is done, one concludes that in , which yields the
assertion of the lemma).

Let us now show that (4.27) indeed holds for a suitable choice of constants
. To this end, we start by estimating

D(4.28)

If is small enough, then by the Riccati equation we have

(4.29) min

Thus, we obtain

min(4.30)

Next, we calculate

(4.31)
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and

(4.32)

In particular, we see that

(4.33)

for small enough. Taking another derivative of (4.32), we get

R(4.34)

where the remainder satisfies R . This yields

(4.35)

Finally, using again (4.32) we see that

(4.36)

Putting everything together we conclude that

(4.37) D min

provided we first fix large enough, and then choose very large and set .
This proves the lemma. ⇤

We can now prove existence for our triple approximate problem.

THEOREM 4.6. There exists , where

, which solves problem (4.3).

PROOF. As in [29, 33, 43] we work with the weighted Hölder space

(4.38)

equipped with the norm

sup Int(4.39)

where

(4.40) Int

It follows directly from the definitions that

(4.41) loc Int

Fix , and consider

(4.42) (4.4) has a solution in
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We want to show that , provided is sufficiently small. Since
, it suffices to show that is open and closed.

Note that by equation (4.5), Proposition 4.4, and Lemma 4.5, we have the a priori
estimate

(4.43) sup

where is independent of . Since by (4.2) the corners of the domain
have angles strictly less than , for small enough, we can now
apply Lieberman’s estimates for mixed boundary value problems [29, 30], to get
the a priori estimate

(4.44)

where is independent of . It follows that is closed.
Next, observe that the linearization of (4.4) is given by

L div

(4.45)

By the maximum principle and the Hopf lemma the only solution of L
with zero boundary conditions is . Together with the Fredholm alternative
for mixed boundary value problems [29, 30] and the inverse function theorem, it
follows that is open.

Finally, by standard elliptic estimates, the solution is smooth away from the
corners. ⇤

PROOF OF THEOREM 4.1. Existence of solutions for the problem (4.1)
now follows by taking the solution of problem (4.3) from Theorem 4.6 and
sending . Uniqueness is a consequence of the maximum principle and the
Hopf lemma. ⇤
4.2 Double approximate estimate for

The goal of this subsection is to prove a lower bound for . We
start by giving a uniform sup-bound for in a neighborhood of .

LEMMA 4.7. There exist constants and

such that in .

PROOF. We will construct a suitable supersolution. Let be the arrival time
function the free boundary mean curvature flow . Then for

sufficiently small is smooth and satisfies

(4.46) div
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and

(4.47)

for some . For consider the function . A
straightforward calculation as in [16, lemma 3.8] shows that is a supersolution
of (4.1) provided is small enough. Hence, by the maximum principle we conclude
that

(4.48) in

This proves the lemma. ⇤

PROPOSITION 4.8. Let . Then for sufficiently large,

the function satisfies

max min min(4.49)

PROOF. Consider the function where exp . Suppose to-
wards a contradiction that the minimum of is attained in and is less than

max . Setting and , equations (4.18) and (4.19) imply

(4.50)
T Rc

tr

Using min we get T and . Hence, for
sufficiently large, the positive term T dominates all other
terms in (4.50), and we obtain a contradiction. ⇤

THEOREM 4.9. There exist constants and

such that for all we have the estimate

(4.51)

for all .

PROOF. Fix and . In Section 4.1, we have proved that
in and that converges uniformly in to the unique solution of (4.1)
as . Hence, by Lemma 4.7 we get in for sufficiently
small. Now due to this new -independent sup-bound, we can choose the
constant in the proof of Lemma 4.5 (for ) to be also independent of .
This in turn implies an -independent gradient bound for on .
Hence, by Proposition 4.8 we get

(4.52)

for all . Taking , this estimate passes to the limit in . ⇤
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4.3 Double approximate estimate for

The goal of this section is to prove the following estimate:

THEOREM 4.10. There exist constants and

such that for any we have

max
(4.53)

for all .

To prove Theorem 4.10 we will apply the maximum principle to the function

(4.54)

where and are constants to be chosen below. Here
denotes a certain perturbation of the second fundamental form; cf. Edelen [9].

To define , fix some smooth extensions and of the second fundamental form
and the unit normal vector of the barrier to . The perturbed
second fundamental form is then defined by

(4.55)

where is the second fundamental form of the graph of , and is a 3-tensor
on defined by

(4.56)

Since the graph of is perpendicular to , we have . Thus, we
get for any tangent vector perpendicular to , which in
turn implies

(4.57)

whenever is perpendicular to .

LEMMA 4.11. The perturbed second fundamental form satisfies

PROOF. Let be an orthonormal frame field for with A cal-
culation as in [9, lemma 6.1] shows that

(4.58)
(4.59)

Together with the fact that for by (4.57), and the formula
(cf. [9, p. 13]), this implies the assertion. ⇤
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Moreover, the perturbed second fundamental form controls the second funda-
mental form. Namely, at any point with we have

(4.60)

and

(4.61)

Indeed, (4.60) follows from the fact that is bounded, and (4.61) follows from the
formula .

PROPOSITION 4.12. Whenever , then

(4.62) T

PROOF. To begin with, by [16, eqs. (4.8), (4.9)] we have

(4.63) T Rm

Together with Simon’s identity

(4.64)

this yields

(4.65) T

Next, the tensor satisfies the identities

T(4.66)

(4.67)

cf. [9, p. 14]. Taking the difference and using T , we infer that

(4.68) T

Combining (4.65) and (4.68), we conclude that

T(4.69)

From this the claim follows. ⇤

LEMMA 4.13. There exists a constant such that

(4.70)

PROOF. The proof is essentially the same as the one for [16, prop. 4.12]. The
only change is that due to , we need to add to
the right-hand sides of [16, eqs. (4.16), (4.18)]. The rest of the argument remains
intact. ⇤
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PROOF OF THEOREM 4.10. Consider the function as defined in (4.54). The
constants will be chosen below. Throughout the proof, we tacitly assume
that and are small enough such that

(4.71)

Using Lemma 4.11 we see that

log(4.72)

provided is large enough. Hence the maximum of over is either attained in
the interior or on the Dirichlet boundary . Suppose now the maximum is
attained at , and let .

CLAIM 4.14. There exists such that at we have

T(4.73)

provided that max at .

PROOF. At we have log , or equivalently
T

T T(4.74)

Using (4.71) and max we deduce that

(4.75)

Therefore, in view of Lemma 4.13 we get the estimate

(4.76)

where . Together with Proposition 4.12 this implies the claim. ⇤
Continuing the proof of the theorem, we compute

T(4.77)

and

(4.78)
T

log

cf. Lemma 4.3.
Since T log at , combining the in-

equalities (4.73), (4.77), and (4.78) we obtain

log log
(4.79)
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provided that . Due to , the gradient term can be
estimated by

log log log

(4.80)

Using this, and assuming max , we infer that

(4.81)

which yields a contradiction, provided , and .
So far we have shown that there exist constants , depending only on
and , such that at any interior maximum of we have

(4.82) max

The last part of the proof is to show that is uniformly bounded. To this
end, let us point out first that (4.82) obviously implies

(4.83) max tr

If the maximum on the right-hand side of (4.83) equals tr , then we get

(4.84)
tr

since is bounded below by Theorem 4.9. If the maximum on the right-hand
side of (4.83) equals , then

(4.85)

since and are bounded below. Finally, if the maximum on the right-hand
side of (4.83) equals , then tr and tr . This implies

; hence again

(4.86)

Since on by Lemma 4.7, this finishes the proof of the theorem.
⇤

4.4 Passing to limits and one-sided minimization

We will first send , then prove one-sided minimization, and then send
.
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LEMMA 4.15. There exists a relatively open set containing such that

the following holds. The (improper) limit
4

as is in loc

loc and solves

(4.87)

div in

on

on

Moreover, for we have estimates

(4.88)

where and , and for any for

we have the estimate

sup(4.89)

where and .

PROOF. Suppose . Since is a supersolution of (4.1) for by
the maximum principle we have . Therefore we can take a pointwise
(improper) limit lim for each . Obviously

on . Define

(4.90)

By Theorem 4.9, we have the uniform Lipschitz estimate

(4.91)

hence is open, as , and (4.88) holds. Fi-
nally, by standard elliptic estimates (cf. the proof of Theorem 4.6), the convergence

is in loc , and passing the estimates from Theorem 4.9 and
Theorem 4.10 to the limit yields (4.88) and (4.89). ⇤

Consider

(4.92)

The geometric meaning of (4.87) is that is a smooth self-similar solution of
the free boundary mean curvature flow, translating downwards with speed .

4 Here, the word improper just indicates that for .
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PROPOSITION 4.16. The sets are one-sided minimizing. Namely, given any

compact set Int we have the estimate

(4.93) H H

whenever and .

PROOF. Since is mean-convex, we can use the unit normal as cali-
bration and evaluate

(4.94)
ˆ

div H

using the divergence theorem. In general, the boundary of consists of three
parts. By the free boundary condition, the part contained in does not
contribute to the flux integral. From this, the assertion follows. ⇤

PROOF OF THEOREM 1.6. Let be as in Lemma 4.15. By (4.88),
we have

(4.95)

Thus, for any sequence there is a subsequence and a relatively
open set containing a neighborhood of such that locally
uniformly in and as . Since arises as a limit of
locally uniform Lipschitz functions, it solves

div in

on

on

in the viscosity sense. By the definition of viscosity solutions, the family of closed
sets satisfies the avoidance principle, and thus is a
set-theoretic subsolution of the mean curvature flow with free boundary. Hence,
by the same argument as in [16, p. 1154] the limit agrees with the arrival time
function of the free boundary level set flow. In particular, ,
and the subsequential convergence entails a full limit.

Recall that as defined in (4.92) is a smooth self-similar solution of the
free boundary mean curvature flow in , translating downwards with speed

. The arrival time function of is given by and
converges locally uniformly to , which is the arrival time function
of . Hence, for any the flow converges to in
the strong Hausdorff sense as defined in [18, def. 4.10], i.e., the space-time track

(4.96) L



MEAN CONVEX FLOW WITH FREE BOUNDARY 789

Hausdorff converges to

(4.97) K

and the closure of the complement of the space-time track, namely

(4.98) L

Hausdorff converges to

(4.99) K

Next, we will pass to a limit in the sense of free-boundary Brakke flows and
relate this to the strong Hausdorff limit from above. The following argument uses
some basic definitions and facts about free-boundary Brakke flows that will be
reviewed in Section 5 below.

By the compactness theorem for Brakke flow with free boundary [10], which
can be applied thanks to the uniform area-ratio bounds implied by Proposition 4.16,
for any sequence we can pass to a subsequence so that M
H converges in in the sense of free-boundary Brakke flows
to an -dimensional unit-regular free-boundary Brakke flow M

in .
We now want to relate the Dirichlet boundary of

(4.100) K

with the support of M. Convergence as free-boundary Brakke flows implies that
spt M Hausdorff converges to spt M . On the other hand, L Hausdorff
converges to K thanks to the strong Hausdorff convergence from above. Since
spt M L , we infer that

(4.101) spt M K

Next, we can pass the one-sided minimization property from Proposition 4.16
to the limit (cf. [38, sec. 5]), which yields

(4.102) is one-sided minimizing for every

Together with (4.101), by the same argument as in [38, sec. 5] this implies

(4.103) H for a.e.

Furthermore, thanks to our Lipschitz estimate for the arrival time, comparing the
co-area formula for the reduced boundary and the topological boundary (cf. again
[38, sec. 5]) gives

(4.104) H H for a.e.



790 N. EDELEN ET AL.

In fact, we can improve (4.103) as follows. Given any ball Int ,
for every we get by one-sided minimization

H H H

Since in as (a consequence of nonfattening), we deduce
that for every we have the inequalities

(4.105) lim H H lim H

whenever the limits on the left/right-hand side exist (here ). On the other
hand, by standard semidecreasing properties for free-boundary Brakke flows ([10,
prop. 4.13]), the limits lim exist for every , and agree on a co-
countable set of times. Hence,

lim H lim

Therefore, we can replace with H whenever they don’t agree
(which is only a countable collection of times), and still have a unit-regular free-
boundary Brakke flow. Moreover, the support sptM does not change.

Splitting off a line, the above shows that M H is a unit-
regular free-boundary Brakke flow with sptM K on . Since
is a smooth free-boundary flow for short time , we have lim
H H and sptM K.

Finally, passing the estimates (4.88) and (4.89) to the limit at smooth points via
the local regularity theorem [10, 47], we infer that

(4.106) inf
reg

and, taking also into account that is smooth with bounded curvature for
small enough, that

(4.107) sup
reg

This finishes the proof of Theorem 1.6. ⇤

5 Free Boundary Brakke Flow and Limit Flows

For ease of notation let us pretend that (everything
generalizes in a straightforward way to other ambient manifolds).

Let be a free boundary level set flow with smooth, strictly mean-
convex initial data . As before, we write

(5.1) K
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for its space-time track. By Theorem 1.6 (elliptic regularization and consequences),
we can also consider the associated free boundary Brakke flow

(5.2) M H

We recall that the pair M K is called a mean-convex free boundary flow.

5.1 Free boundary Brakke flow

As in [10, sec. 3], for any Borel-measurable vector field , define the vector
field

(5.3)

We recall from [10, sec. 4] that in general a free boundary Brakke flow M

is given by a family of Radon measures in that are integer -rectifiable
for almost all times such that

(5.4)
ˆ ˆ

for all nonnegative -functions . Here denotes the limsup of difference quo-
tients, and it is assumed that for almost every time the first variation of the associ-
ated varifold is represented by a function , namely,

(5.5)
ˆ

for all -vector fields that are tangential along .5

Remark 5.1. Thanks to Theorem 1.6 (elliptic regularization and consequences)
all free boundary Brakke flows that we encounter in the present paper, or more
precisely their stabilized version obtained by crossing with a line, are limits of
smooth free boundary flows.

Let M K be a mean-convex free boundary flow. The support of M consists
by definition of all points that have Gaussian density (see Section 5.3
below) at least . We write K K Int K for the Dirichlet boundary of K
as a subset of space-time.

PROPOSITION 5.2 (support). If M K is a free boundary Brakke flow, then the

support of M is equal to K for .

PROOF. This already has been shown in the proof of Theorem 1.6. ⇤

5 In particular, by (5.5), has free boundary in the sense of integral varifolds.
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5.2 Blowup sequences and limit flows

Let M K be a mean-convex free boundary flow in . Given
K (with lim inf and lim sup ) and , we consider

the blowup sequence M K , which is obtained from M K by translating
to the origin and parabolically rescaling by . After passing to a subsequence, we
can assume that either

(5.6) lim (interior case)

or

(5.7) lim (boundary case)

Note that M K is defined in the domain , which is obtained from by
shifting to the origin and rescaling by . For the domains converge
locally smoothly to in the interior case, and to a half-space, which we denote
by , in the boundary case. By the area bounds from one-sided minimization
(Theorem 1.6) and the compactness theorem for free boundary Brakke flows [10,
theorem 4.10] after passing to a subsequence, we can assume that M converges
to a limit M , which is a Brakke flow in the interior case and a free boundary
Brakke flow in the boundary case. After passing to a further subsequence we can
also assume that K converges in the Hausdorff sense to a limit K . Any such pair
M K is called a limit flow.

In the boundary case, when M K is a free boundary flow in , then one can
reflect M K around the planar barrier to obtain a boundaryless flow M K

(cf. [10, prop. 4.4]), called the reflected limit flow.

PROPOSITION 5.3 (Characterization of planar limit flows). Let M K be a mean-

convex free boundary flow in , and let M K be a blowup sequence converg-

ing to a limit flow M K . Suppose sptM is contained in some static plane.

Then one of the following six cases occurs:

(1) K is a static half-space in , and M is the static plane K .

(2) K is a (quasi)static plane in , and M is the (quasi)static plane K

with multiplicity .

(3) K is a static quarter-space in , and M is the static half-plane K with

multiplicity .

(4) K is a (quasi)static half-plane in , and M is a (quasi)static half-plane

K with multiplicity .

(5) K is a static slab in containing , and M is the static plane K with

multiplicity .

(6) K is the (quasi)static plane coincident with , and M is the (quasi)static

plane coincident with having multiplicity .
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PROOF. We adapt the proof from [45, theorem 5.4] to our setting. The hypoth-
esis implies that

(5.8) sptM

where is either a plane or a free boundary half-plane, and . Since
sptM K it follows that K limK must be either

(a) , where is either a half-space bounded by , or a quarter-
space or slab bounded by and , or

(b) .
Let us first suppose that our limit flow is defined in entire . Then, in scenario
(a) the only possibility is that is a half-space and , and by one-sided
minimization the multiplicity of must be ; i.e., we are in case (1). In
scenario (b) by one-sided minimization the multiplicity of is at most 2. If the
multiplicity was equal to , then by the local regularity theorem [47] the conver-
gence would be smooth and K would have nonempty interior, contradicting (b).
Hence, the multiplicity must be 2 and we are in case (2).

Suppose now our limit flow is defined in a half-space and is a free boundary
half-plane. Then, arguing as above, with the only difference that we now also use
the free boundary version of the local regularity theorem [10], we see that we are
in case (3) or (4).

Suppose now our limit flow is defined in a half-space and is a plane, which
must be necessarily parallel to .

If , then a priori there are the following three possibilities:
(i) K , where is the slab between and .

(ii) K , where is half-space bounded by .
(iii) K .

In scenario (i) by one-sided minimization the multiplicity of must be , and
we are in case (5). In scenario (ii) by one-sided minimization the multiplicity of
would be 0,6 contradicting the fact that the multiplicity is at least . Hence, scenario
(ii) cannot occur. In scenario (iii) by one-sided minimization the multiplicity of
would be . But then by the local regularity theorem [10, 47] the convergence
would be smooth and K would have nonempty interior; a contradiction. Hence,
scenario (iii) cannot occur either.

If , then the above possibilities (i) and (iii) degenerate into the same
possibility; i.e., a priori we have the two following possibilities:

(i ) K .
(ii ) K , where is a half-space bounded by .

In scenario (i ) by one-sided minimization the multiplicity must be , and we are
in case (6). Finally, scenario (ii ) can be ruled out similarly as scenario (ii). This
concludes the proof of the proposition. ⇤

6 After doubling, this corresponds to the case in [45, theorem 3.9].
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FIGURE 5.1. Planar limit flows of Proposition 5.3

THEOREM 5.4 (Properties of limit flows). Let M K be a mean-convex free

boundary flow in , and let M K be a blowup sequence converging to a limit

flow M K . Then:
(1) K is weakly mean-convex; i.e., whenever .

(2) The support of M equals K .

(3) The sets K Hausdorff converge to K .

(4) M K is one-sided minimizing.

PROOF. The first assertion is trivial. Assertions (2) and (3) follow as in [45,
proof of theorem 5.5], using Proposition 5.3 in place of [45, theorem 5.4]. Asser-
tion (4) follows from the one-sided-minization of K as in [45, theorem 6.1]. ⇤

5.3 Tangent flows and Gaussian density

For close enough to there is a well-defined projection to the
nearest point in . Denote by

(5.9)

the point that is obtained by reflection across . Using this, one can define the
almost monotone quantity

(5.10) refl M

as in [10, def. 5.1.1], which interpolates between Huisken’s monotone quantity in
the interior [20] and an almost monotone reflected quantity close to the boundary.
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Let in the support of M K be fixed, and . Let M K be the
sequence of flows that is obtained from M K by translating to the origin and
parabolically rescaling by . Any subsequential limit M K is called a tangent

flow at . By the almost monotonicity formula from [10, theorem 5.1], tangent
flows are always backwardly self-similar, i.e., M K is invariant
under parabolic dilation. In particular, they have a well-defined reflected Gaussian

density

(5.11) refl M lim refl M

Tangent flows are either shrinking, static, or quasi-static; see [44].
If M K is a limit flow at , which is defined in a half-space, and

M K is the doubled flow, then by [10, theorem 6.4 and lemma 7.1] we have

(5.12) Ent M refl M

with equality in the case of tangent flows. Here,

(5.13) Ent M lim
ˆ

denotes the entropy (aka density at ) of M .

6 Multiplicity

The goal of this section is to prove that static and quasi-static density- planes
and half-planes cannot occur as tangent flows or limit flows (note also that planes
and half-planes of density are immediately ruled out by one-sided minimiza-
tion).

6.1 Limit flows with entropy at most 2

In this section, we consider the following class of limit flows.

DEFINITION 6.1 (Class of limit flows). Let M K be a mean-convex flow in .
Let C be the class of all limit flows M K such that

(1) Ent M in case M K is defined in entire space, and Ent M
in case M K is defined in a half-space.

(2) M K is not a static or quasi-static multiplicity-2 plane or half-plane.

We recall that all limits flows are either free boundary flows in a half-space or
flows without boundary in entire space. In the above definition, in case M K

is defined in a half-space, M K is reflected flow .

PROPOSITION 6.2 (Partial regularity). If M K C, then no tangent flow at a

singular point can be static or quasi-static. In particular, the parabolic Hausdorff

dimension of the singular set is at most .
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PROOF. In case M K is defined in a half-space, we consider its double
M K . By the equality case of the monotonicity formula and the definition

of the class C, no tangent flow can be a static or quasi-static plane of multiplicity .
Hence, by the stratification of the singular set from [44, sec. 9], each time slice of
the singular set has Hausdorff dimension at most .

Now, if a tangent flow is a stationary cone, then arguing as above we see that
its singular set has dimension at most . Since our flow arises as the limit
of smooth flows with by Theorem 1.6 (elliptic regularization) using
the local regularity theorem, we infer that vanishes identically on the regular
part; i.e., the cone is flat. Furthermore, the cone cannot be a union of three or four
half-planes by one-sided minimization (Theorem 5.4). Hence the cone is a static
multiplicity plane, and by the local regularity theorem the point is regular.

Summing up, all tangent flows at singular points are shrinking. Hence, again
by [44, sec. 9], the parabolic Hausdorff dimension of the singular set is at most

. ⇤
COROLLARY 6.3 (Static limit flows). If M K C is static (or quasi-static),
then one of the following five cases occurs:

(1) K is a static half-space in , and M is the static plane K .

(2) M is a pair of two static, parallel, multiplicity planes in , and K is

the region in between.

(3) K is a static quarter-space in , and M is the static half-plane K with

multiplicity .

(4) M is a pair of static multiplicity half-planes in with free boundary, and

K is the region in between.

(5) M is a static multiplicity plane in parallel to the barrier plane ,

and K is the region in between.

PROOF. The argument above shows that M K must be smooth and flat.
Hence, it is the union of one or two planes or half-planes. Together with the one-
sided minimization (Theorem 5.4) and unit regularity, the assertion follows. ⇤

THEOREM 6.4 (Separation theorem). Let M K C. In case the flow is defined

in a half-space, suppose there is a half-plane perpendicular to the barrier plane

such that

(6.1)

and suppose the complement of contains points on each side of . Then

M K is static, and is the region between two parallel half-planes perpen-

dicular to the barrier (a similar statement holds in case the limit flow is defined in

entire space and contains a plane).

PROOF. Consider the doubled flow M K . Using the partial regularity result
(Proposition 6.2) and one-sided minimization (Theorem 5.4), the same argument
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FIGURE 6.1. (Quasi-)static limit flows in C.

as in [45, proof of theorem 7.4] shows that M splits into two components. Since
the entropy is at most 2, and each nonplanar component contributes strictly more
than , this implies the assertion. ⇤

6.2 Bernstein-type theorem

For a set , a point , and a radius , the relative thickness of
in is

(6.2) Th inf Th

where

(6.3) Th sup

LEMMA 6.5 (Expanding hole lemma). For every there exists

with the following significance. Suppose K is a set-theoretic subsolution of the free

boundary mean curvature flow in our compact domain or in a half-space ,

or a set-theoretic subsolution of the mean curvature flow in ; suppose that

is less than diam in the former case and arbitrary in the other cases. If

there exists such that

(6.4) Th for

and

(6.5)



798 N. EDELEN ET AL.

then

(6.6) dist for

PROOF. We follow the strategy of the proof of [45, theorem 4.1]. By translation
we may assume . Suppose that the result is false for some . Then
for every there is a set-theoretic subsolution K satisfying the first two
conditions but not the last. Let

(6.7) inf dist

Since , we certainly have , and the failure of the last condition
implies that . In particular, in the case where K is defined in , we get

.
Parabolically rescale by and pass to a subsequential limit. The limiting

domain is either or a half-space , and the limiting set-theoretic subsolution
K satisfies Th for all , as well as dist for , and
dist .

Since its thickness is , must be contained in a plane , and in the case the
domain is the half-plane must meet orthogonally. In either
case, the distance condition implies that is a proper subset of the static plane
or half-plane solution, and must therefore vanish instantly. In particular, ,
which is a contradiction. ⇤

Similarly as in [45, sec. 4] the expanding hole lemma (Lemma 6.5) implies the
following two corollaries.

COROLLARY 6.6. Let K be as above and assume in addition that it is weakly

mean-convex. If is a point such that

(6.8) lim sup Th

and such that for all , then

(6.9) lim inf
dist

COROLLARY 6.7. If K is a weakly mean-convex set-theoretic subsolution of the

free boundary mean curvature flow in a half-space or of the mean curvature

flow in , and there is a point such that

(6.10) lim sup Th

then either

(6.11) lim inf
dist

or

(6.12)
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The following generalizes White’s Bernstein-type theorem [45, theorem 7.5] to
limit flows defined in a half-space. Importantly, we do not assume a priori at which
angle the thin slab meets the barrier.

THEOREM 6.8 (Bernstein-type theorem). There exists an with the following

significance. If M K C is defined in a half-space and there is a point

such that

(6.13) lim inf
dist

and

(6.14) lim sup Th

then M is either a pair of static, parallel, multiplicity half-planes with free

boundary in , or a static multiplicity plane parallel to the barrier in . In

either case K is the region in between the planes of M and the barrier.

Similarly, if M K is defined in , then under the same assumptions M

is a pair of static, parallel, multiplicity planes, with K the region in between.

PROOF. The statement for flows in follows from the proof of [45, theo-
rem 7.5], so we focus on the case of free boundary flows in .

Take , which for small enough must be nonempty by Corollary 6.7.
Consider the flows obtained by translating M K by and let M K

be a limit as . Then M K is a static flow, and at any time .
By the classification of static limit flows from Corollary 6.3, we see that is

either a static multiplicity half-plane; the region in between a pair of multiplic-
ity free boundary half-planes and the barrier; or finally the region bounded by
the barrier plane and a parallel multiplicity plane. In the first two cases, Theorem
6.4 (separation theorem) immediately implies the result. For the final case, the re-
flected flow K will be the static flow in between two parallel multiplicity
planes, so applying the entire case of Theorem 6.4 (separation theorem) shows that
the reflected flow K M consists of the region between two multiplicity planes
parallel to the barrier, which implies the result. ⇤

6.3 Sheeting theorem

The goal of this section is to prove a sheeting theorem (Theorem 6.10, Corollary
6.12, and Corollary 6.13).

Let M K be a mean-convex free boundary flow in a compact domain .
Recall that for any and any we denote by

(6.15)

the two-sided parabolic ball with center and radius .
The following lemma shows that if a blowup sequence Hausdorff converges to

a multiplicity plane or half-plane, then we can find some sequence of rescaling
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factors for which one has smooth convergence to a pair of parallel planes or half-
planes.

LEMMA 6.9. Let M K be a blowup sequence (see Section 5.2), and suppose

that

(6.16) K

where is either a plane or a half-plane. Then, there exists some sequence

converging to such that the parabolic dilates D M converge smoothly to

either

(a) a pair of parallel planes in , or

(b) a pair of parallel half-planes with free boundary in a half-space , or

(c) a multiplicity plane parallel to the boundary of .

Furthermore, in all cases D K converges to the enclosed region.

PROOF. Fix small enough. Take to be the least number such that for
all we have

(6.17) Th and dist

By Corollary 6.6 (expanding holes), we have for each . Moreover, as-
sumption (6.16) easily implies that .

Consider the dilates D M K and take a subsequential limit. Any such
limit M K satisfies

(6.18) Th and dist for all

with at least one inequality being nonstrict for , namely,

(6.19) Th or dist

Moreover, by one-sided minimization (Theorem 1.6) the (reflected) density at in-
finity of M is at most . Now due to (6.19) we can apply Theorem 6.8 (Bernstein-
type theorem) to deduce that M consists of separate multiplicity (half-)planes,
and then the local regularity theorem [10,47] gives smooth convergence ofD M

to M . This proves the lemma. ⇤

The above lemma essentially gives that the M are eventually smooth, but to get
smooth convergence at the original scale the strategy is to find a separating surface
as follows. Recall that denotes the domain of the rescaled flow K M . If
we are in case (a) or (b) of the above lemma, then we let be the set of centers
of open balls such that and touches at two or more
points. Set

(6.20) S
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THEOREM 6.10 (Sheeting theorem). Let M K be a blowup sequence (see Sec-

tion 5.2) and suppose that

(6.21) K

where either lim and is a plane, or lim and is a

free boundary half-plane. Then, for all large S is a -hypersurface

that divides K into two nonempty components K and K . In particular, any

convergent subsequence of M in converges smoothly to a plane or half-

plane with multiplicity .

PROOF. We claim that S is a properly embedded hypersurface
of , which therefore divides into two disjoint open subsets each
bounded by S (once this is shown, K and K can be defined as the respective
portions of K in each open subset).

Suppose the claim is false, so that there are points S about which
S fails to be a embedded hypersurface. Then we may consider the translates
M K M K . Up to taking a subsequence, the K

will Hausdorff-converge locally to a translate of .
Now, Lemma 6.9 (note that outcome ( ) is excluded by the hypotheses on )

implies that for large there are radii for which K splits as the
region in bounded either by two smooth, disjoint hypersurfaces S S

(without boundary), or by smooth disjoint hypersurfaces S S (with boundary
on ) together with the barrier . In either case, each S is graphical over
(the plane containing) , with uniformly small norm, and with the norm
tending to as .

But the distance function from a smooth submanifold S with boundary is in
a small neighborhood U S , indeed with nonzero gradient S

S
S

; see,
e.g., [35]. Since S is clearly given by the locus S S

and both S Hausdorff-converge locally to , the implicit function theorem
then implies that S is in fact a embedded hypersurface. This
provides the desired contradiction, and thus proves the claim.

It remains to show that the K converge locally smoothly and separately to
. For each , by the assumption we have that K Hausdorff

converges to with some multiplicity. But one-sided minimization
(Theorem 1.6) implies that the sum of (reflected) densities is at most . Therefore
each must converge with multiplicity , and the partial regularity theorem [10, 47]
then implies the smooth convergence. ⇤

To reformulate Theorem 6.10 (sheeting theorem) in a more geometric way, it
will be convenient to fix certain boundary-straightening maps centered about a
point , as in [10]. Locally these maps may be described as follows: Up to
a translation we may take , and up to a rotation and reflection we may take

to be , with the inward normal of at pointing in the positive
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-direction. Near the barrier is then locally given by a graph over ,
and we define a map by

(6.22)

The key properties are that for every small enough , we have uniformly

(6.23) id id

In particular, define to be a sequence of rescalings of , with
so that converges to a half-space . Let be the nearest-

point projection of to ; up to translation we may assume lim
. Then the boundary-straightening maps for are given by

by

(6.24)

Hence,

(6.25) id locally smoothly.

Finally, for a function defined in , define the scale-invariant -norm
of to be the usual -norm of the function

(6.26)

Remark 6.11. If for some , is parametrized by

(6.27)

then satisfies the graphical mean curvature flow equation (with respect to
), given by

(6.28)

where is the pullback of under the map , and is an analytic
function of , , , , and such that when id.

Using the above notions, the sheeting theorem (Theorem 6.10) implies the fol-
lowing two corollaries.

COROLLARY 6.12 (Sheeting at the boundary). Let be a compact domain or the

half-space . Assume that , and that the inward unit normal

at points in the positive -direction. Let be the boundary-straightening

map of centered at . Then, for any there exists an with the

following significance.

Let M K be a free boundary flow in , which is either a mean-convex flow

in a compact domain , or a limit flow in . Set

(6.29) H

and suppose that

(6.30) K H
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for some . Then, there exist functions

(6.31)

such that:
(1) .

(2) and have scale-invariant norms .

(3) Inside , the set K coincides with the region that is between

graph and graph .

(4) satisfy the graphical mean curvature flow equation (6.28).
(5) satisfy the Neumann boundary condition on

(6) For any fixed , the functions and are increasing

and decreasing, respectively.

Note that for a mean-convex flow, in order for (6.30) to hold for some scale , it
must be the case that , where lim . With this observation
the above corollary follows after scaling from the second case of Theorem 6.10.
The first case immediately yields the following:

COROLLARY 6.13 (Sheeting in the interior). Let be a compact domain, or a

half-space , or entire space . Assume that is an interior point of and

let

(6.32) V

Then, for any there exists an with the following significance: Let

M K be either a mean-convex free boundary flow in a compact domain or

a limit flow in or . Suppose that

(6.33) K V

for some . Then, there exist functions

(6.34)

such that:

(1) .

(2) have scale-invariant norms .

(3) Inside , the set K coincides with the region between graph and

graph .

(4) satisfy the graphical mean curvature flow equation.

(5) For any fixed , the functions and are increasing

and decreasing, respectively.

In both cases the strong maximum principle implies that in fact either is
strictly dominated by or is identically equal to (the latter can only happen
for limit flows).

Finally, we also have a version parallel to the barrier.
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COROLLARY 6.14 (Graphs above the barrier). Let M K be a mean-convex free

boundary flow in a compact domain . Assume without loss of generality that

and that the inward unit normal at points in the positive -direction.

Denote and

(6.35) V

Then, for any there exists an with the following significance. Suppose

that

(6.36) K V

for some . Then there exists a function

(6.37)

such that:
(1) .

(2) has scale-invariant norm .

(3) Inside , the set K coincides with the region between graph
and graph , where the graphs are over .

(4) satisfies the graphical mean curvature flow equation (6.28).
(5) For any fixed , the function is decreasing.

PROOF. By one-sided minimization (Theorem 1.6), locally K must be between
and K. From this, the assertion follows easily. ⇤

In particular, we can rule out static density two planes or half-planes as potential
tangent flows.

COROLLARY 6.15. Static density planes and half-planes cannot occur as tangent

flows.

PROOF. Suppose that is a point of density with a static (half)plane
as tangent flow. Applying Corollary 6.12, Corollary 6.13, or Corollary 6.14, re-
spectively, and using the strong maximum principle (in the first two cases) or the
fact that and sptM (in the last case), we see that all points in a
neighborhood of are regular points of multiplicity ; a contradiction. ⇤

6.4 Ruling out density two tangent flows

In this section, assuming is mean-convex, we rule out quasi-static density
planes and half-planes as potential tangent flows (recall that the static case has

already been ruled out in Corollary 6.15).
For any and any , we denote by

(6.38)

, the backwards parabolic ball of radius with center .
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Given any closed space-time subset K of , we define two quantities
to measure Hausdorff-closeness to a quasi-static plane or half-plane, respectively.
Recall that in [45, sec. 9], White states

(6.39) K is the infimum of such that
infV K V

where infV is taken over static planes V through the origin. Similarly, we define

(6.40) K is the infimum of such that
infH K H

where infH is taken over static half-planes H V that intersect
orthogonally at 0 (that is, H and the inner conormal is ).

The following lemma gives sheeting sequences and their limiting behaviour for
blowups at the boundary:

LEMMA 6.16 (Sheeting sequence at the boundary). Let be a compact domain.

Assume without loss of generality that , and that the inward unit normal

at is given by . Let M K be either a blowup sequence at or a

sequence of tangent flows at , and suppose that K .

Then, for large enough there are functions and , defined on an exhaustion

of such that:7

(1) Either everywhere, or .

(2) For any and , for large enough the region

coincides in with the region between graph and graph
for all , where denotes the boundary-straightening map for

as in (6.24).
(3) and converge smoothly on compact subsets to .

(4) and solve the graphical mean curvature flow equation in the pullback

metric .

(5) and satisfy the zero Neumann boundary condition.

(6) and are increasing and decreasing in time, respectively.

Furthermore, if for infinitely many , then there exist constants

and a subsequence that converges smoothly on compact subsets to the

constant function on .

A similar statement holds for blowups in the interior:

LEMMA 6.17 (Sheeting sequence in the interior). Let be a compact domain. Let

M K be either a blowup sequence about a fixed interior point or a sequence

of tangent flows at a fixed interior point, and suppose that K .

Then, for large enough there are functions and , defined on an exhaustion

of such that:
(1) Either everywhere, or .

7 Here we denote and .
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(2) For any and , for large enough the region

coincides in , after a suitable rotation, with the region between graph
and graph for all .

(3) Both sequences and converge smoothly on compact subsets to .

(4) and are solutions to the graphical mean curvature flow equation.

(5) and are increasing and decreasing in time, respectively.

Furthermore, if for infinitely many , then there exist constants

and a subsequence that converges smoothly on compact subsets to the

constant function on .

PROOF OF LEMMAS 6.16 AND 6.17. Taking , we get convergence to
some tangent flow M K that is either defined in and supported in a free
boundary half-plane, or defined in and supported in a plane. By Proposi-
tion 5.3 these must be the static or quasi-static flows with multiplicity 2. We can
therefore apply Corollary 6.13 and Corollary 6.12 to obtain the required and ,
respectively.

Suppose now there is a subsequence with . Since id locally
smoothly, the difference

(6.41)

satisfies a linear parabolic equation with coefficients converging locally smoothly
as to those of the ordinary heat equation.

Let us first analyze the interior case. Since the functions on the one hand are
decreasing by mean-convexity, but on the other hand want to become increasing
driven by the Harnack inequality, the argument can be concluded as in the proof
of [45, theorem 9.1].

In the boundary case, we consider the sequence of functions that is obtained
from via doubling at the boundary of . Applying the same argument to ,
the proof can be concluded in this case also. ⇤

Finally, we also have a version for blowups parallel to the barrier. Before stating
it, we need an auxiliary result concerning mean-convex domains.

LEMMA 6.18. Assume is mean-convex. Then for any point , there exists

and a smooth minimal surface in int that passes through .

PROOF. Assume without loss of generality that , . The result
follows from the implicit function theorem: Consider for instance the map from

S that maps

where is the mean curvature of graph in the metric . The
linearization in at the Euclidean disk is clearly surjective, so in particular
for any diagonal, trace-free matrix with (and any metric )
we are able to find a smooth ( -)minimal surface tangent to with second
fundamental form equal to at .
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To complete the proof, let be the second fundamental form of at ; then
is diagonal in some orthonormal basis and has tr , so we may fix a diagonal,
trace-free matrix and apply the above after appropriate scaling. Note that

ensures that is disjoint from int in a small enough ball. ⇤

LEMMA 6.19 (Graphical sequence above the barrier). Let be a compact domain.

Assume without loss of generality that . Let M K be a blowup sequence

at or a sequence of tangent flows at , and suppose that K . Let be

the corresponding dilates of the minimal surface passing through as constructed

in Lemma 6.18, or if the M K are tangent flows, take .

Then, for large enough there are functions , defined on an exhaustion of

, and defined on an exhaustion of , where

such that setting , we have:

(1) Either or .

(2) For any and and for large enough, the region

coincides in with the region between graph and graph ,

where the graphs here are over .

(3) For any and for any large enough, coincides in with

graph .

(4) and converge smoothly on compact subsets to 0.

(5) and are solutions to the graphical mean curvature flow equation in the

pullback metric .

(6) is decreasing in time.

Furthermore, if for infinitely many , then there exist constants

and a subsequence that converges smoothly on compact subsets to the

constant function on .

PROOF. Any subsequential limit of the K must be a plane, and hence must be
the barrier plane with multiplicity 1 (reflected density 2). The existence of the
required follows from Corollary 6.14, and the exist since is smooth and
converging smoothly to the barrier plane at . The convergence of
follows as in the interior and free boundary cases. ⇤

The following theorem shows that density planes and half-planes are isolated:

THEOREM 6.20 (Isolation). Let M K be a mean-convex flow in a compact do-

main or a limit flow of such a flow. In case , assume without loss of

generality that the inward unit normal at points in positive -direction. Then

there exists such that for any tangent flow M K to M K at ,

we have

(1) If is a boundary point and K , then K .

(2) If is an interior point and K , then K .

(3) If is a boundary point and K , then K .
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PROOF. Suppose towards a contradiction that there is a sequence of tangent
flows M K at with K or K . We must show
that for large enough , we have K , respectively K .

In each case (1)–(3) consider the functions and given by Lemma 6.16,
Lemma 6.17, and Lemma 6.19, respectively, taking for case (3). Since we
are dealing with sequences of tangent flows, all boundary-straightening maps are
trivial, so K corresponds to the region between graph and graph . More-
over, since the K M are tangent flows, they are backwardly self-similar; i.e.,
it holds that

(6.42) and

for all and all with .
If for infinitely many , then by the conclusions of the lemmata above,

there exist so that converges smoothly to the constant function
. However, equation (6.42) implies that , which

is absurd.
So for all sufficiently large . But then are both increasing and

decreasing, and hence constant in . The self-similarity above then states that

(6.43)

Since is smooth and 1-homogeneous, it must be linear. In cases (2) and (3),
we conclude that K is a plane for large enough; hence K . In case (1),
taking also into account the vanishing Neumann boundary data, we conclude that
K is a half-plane orthogonal to for large enough; hence K . This
finishes the proof of the theorem. ⇤

We can now rule out quasi-static density- tangent flows:

THEOREM 6.21 (Tangent flows). Quasi-static multiplicity planes, respectively

half-planes, cannot occur as tangent flows to a mean-convex free boundary flow

M K . If additionally is mean-convex, then quasi-static density planes also

cannot occur as tangent flows.

Note the last statement excludes case (6) of Proposition 5.3.

PROOF. We follow the proof strategy in [45, theorem 9.2], with some adjust-
ments.

First, suppose, for the sake of contradiction, that one tangent flow at a point
is a quasi-static multiplicity plane or half-plane. In particular, we are in case

(4) or (2), respectively, of Proposition 5.3. Recall that by one-sided minimization,
any planar limit flow must have (reflected) density either 1 or 2. In particular, if
a limit flow is a multiplicity 2 plane, then it must be defined in (that is, it
cannot be a plane parallel to the barrier in ).

We may assume without loss of generality that , and in case is a bound-
ary point that the inward normal of points in the positive -direction. Consider
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the parabolic dilations D K. By the discussion above, we are in case (1) or (2) of
Theorem 6.20, so we must have

(6.44) lim D K or lim D K

respectively, at . In particular, by the definitions of and , every tangent
flow at must be of the same type; that is, a quasi-static multiplicity 2 plane
and half-plane, respectively.

In either case we may consider the quantity

(6.45) sup for some

where is in the planar case and in the half-planar case.
The observation above implies that

(6.46) lim

In particular, we may take a sequence such that

(6.47)

Consider the parabolic dilates K D K. Applying Lemma 6.16 and Lemma
6.17 gives functions such that K corresponds to the region between

graph and graph for some diffeomorphisms that converge
smoothly to id. In particular, for large we have , where

, and hence

(6.48)

Since M K is a mean-convex flow, we must have Therefore, by the
above lemmata there exist so that converges uniformly to .
This is incompatible with the inequality (6.48).

For the remaining density case, suppose a tangent flow at is a quasi-
static multiplicity plane coincident with the barrier tangent plane . Let be
the minimal surface in int passing through as in Lemma 6.18 for some

. Set M to be the mean curvature flow in obtained by keeping
static, and let K be the region in between and .

By Theorem 6.20 (isolation), every tangent flow of M at coincides with
, with multiplicity . Therefore by Corollary 6.14, there is a parabolic region

U for some

where as , so that in U the flow M M K K is a graphical,
weakly mean-convex mean curvature flow without boundary, with the property
that any blowup sequence centered at converges smoothly to a multiplicity
plane. We can then use the same argument as in the interior, using Lemma 6.19 in
place of Lemma 6.17 to deduce a contradiction. ⇤
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6.5 Ruling out density limit flows

In this section, for mean-convex free boundary flow M K in a mean-convex
domain , we rule density 2 (quasi)static planes or half-planes as potential limit
flows (in the case of tangent flows this has already been done in the previous sec-
tion). Adapting [45, sec. 12], we start with the following lemma:
LEMMA 6.22. Let M K be a limit flow of M K , defined in the limiting

domain or . Let M K be a tangent flow of M K

taken at a density point . Then:
(1) If is an interior point of , and K is a static or quasi-static plane, then

there is an open neighborhood of in , an open interval ,

and a properly embedded smooth minimal hypersurface in such that

for all .

(2) If is a boundary point of , and K is a static or quasi-static half-plane,

then there is an open neighborhood of in , an open interval ,

and a properly embedded smooth free boundary minimal hypersurface

in such that for all .

(3) If is a boundary point of , and K is a static or quasi-static plane, then

there exists a neighborhood of in and an open interval such

that for all .

Furthermore, in case (1) we have M on all of , and in

cases (2) and (3) we have M on all of or ,

respectively.

PROOF. We proceed as in the proof of Theorem 6.21 (tangent flows). In the limit
flow setting, we have or , so the dilates D K correspond
in case (1) and (2) to the region between the graphs of . However, it is
possible to have for limit flows, and in fact the proof of Theorem 6.21
shows that this must be the case for sufficiently large . This immediately implies
that, in some backwards parabolic neighborhood of , the flow K is a smooth
static (free boundary) mean curvature flow, which yields (1) and (2).

Similarly, in case (3) we see that for large enough , which yields that
K equals in a backwards parabolic neighborhood of .

The final assertion follows from arguing similarly as in [45, proof of theo-
rem 12.2]. ⇤
THEOREM 6.23 (Limit flows). Let M K be a mean-convex free boundary flow

in a mean-convex domain . Then (quasi)static density- planes or half-planes do

not occur as limit flows.

PROOF. We follow the proof strategy of [45, theorem 12.3], with some adjust-
ments. Suppose towards a contradiction that there is a blowup sequence M K

that converges to a (quasi)static density- plane or half-plane M K . Fix
as in Theorem 6.20 (isolation).
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Adjusting the sequence a bit we can assume that , and that the
inward unit normal of at is given by .

Case 1. M K is a density- half-plane.
Let be the smallest number for which

(6.49) D K

Note that by hypothesis. Let K M be a subsequential limit of D K

D M . The limit satisfies
K

but

(6.50) D K for

By equation (6.50) and Theorem 6.20 (isolation) any tangent flow M K to
M K at the origin must be a multiplicity 2 half-plane. In particular, by Theo-

rem 6.21, M K must be a limit flow, not a dilate of M K .
Now, by Lemma 6.22 there exists a and a free boundary minimal hyper-

surface in an open neighborhood of the origin, so that

(6.51) M on

Consider the time translates of M K by ; sending
we get a static limit flow M K , with

(6.52)

and

(6.53) M on

Together with (6.49) and monotonicity this implies

(6.54) Ent M

Case 2. M K converges to a (quasi)static density 2 plane.
When scaling down along the sequence there is the potential scenario that the

barrier comes back in from infinity. To deal with this, instead of , we consider
the more general quantity

(6.55) K is the infimum of such that
infH K H

where infH is now taken over all half-planes H V , , and V is
a static plane intersecting orthogonally at 0 (in particular, H and
the inner conormal on H is given by ).

Consider the quantity

(6.56) min
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where is defined in (6.39) and is defined in (6.55). Let be the smallest
number for which

(6.57) D K

Note that . Let K M be a subsequential limit, defined in , of
D K M . The limit satisfies

(6.58) K

but

(6.59) D K for

In particular, if K M is a tangent flow to K M at 0, then

(6.60) K

We consider the following subcases:

Case 2a. is an interior point of .
In this case, it follows that

(6.61) K

and thus K is a multiplicity 2 plane by Theorem 6.20 (isolation).

Case 2b. is a boundary point of , and K .
In this case, it follows that K , so by Theorem 6.20 (isolation) K

must be a multiplicity 2 half-plane.

Case 2c. is a boundary point of , and K .
Then, by Theorem 6.20 (isolation), we have K and K is the barrier

plane.
In all cases 2a, 2b, and 2c, Theorem 6.21 (tangent flows) implies that M K

must be a limit flow, not a dilate of M K . By applying Lemma 6.22 (at different
centers), it follows that there exists and containing the origin such that
M has (reflected) density at least 2 on , where is given by either:

a minimal hypersurface in (Case 2a),
a free boundary minimal hypersurface in (Case 2a or 2b), or
the barrier plane (Case 2c).

In particular, the (possibly reflected) flow satisfies

(6.62) M on

where is a minimal hypersurface in .
Again taking translates of M K and M K by and

sending , we get a static limit flow M K defined in . In each Case
2a, 2b, and 2c, (6.58) prevents this flow from being planar, so by again monotonic-
ity it must satisfy

(6.63) Ent M
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In all cases 1 and 2, we have thus constructed a static (possibly reflected) limit
flow M K defined in that has entropy strictly larger than . Let M K

be a blowdown limit (i.e., a tangent flow at infinity) of M K . Then M K is
a static cone of multiplicity strictly larger than 2. Hence, by one-sided minimiza-
tion it must be nonflat, contradicting the bound . This finishes the proof
of the theorem. ⇤

7 Conclusion

In this final section, we explain how to use Theorem 1.6 (elliptic regularization
and consequences) and multiplicity (see Section 6) to conclude the proofs of
Theorem 1.1 (size of the singular set), Theorem 1.2 (structure of singularities) and
Theorem 1.5 (long-time behavior).

7.1 Size of the singular set

PROOF OF THEOREM 1.1. By the local regularity theorem [10,47] a point is
regular if and only if one sees a density plane or half-plane as tangent flow at

. By the results from Section 6 (multiplicity ) we have several restrictions on
the possible tangent flows. Namely, in case the barrier is mean-convex the tangent
flows at singular points cannot be static or quasi-static, but must be self-similar
shrinkers or self-similar shrinkers with free boundary, respectively. For a general
barrier, the only additional case that can occur is quasi-static density- planes.
Hence, the assertion follows from dimension reduction; cf. [44, sec. 9]. ⇤

7.2 Structure of singularities

PROOF OF THEOREM 1.2. Let M K be a mean-convex free boundary flow
in , and assume that is mean-convex.

Given a point in the support of the flow we consider

F M K M K is a limit flow at ,
which is defined in entire space

(7.1)

and
F M K M K is a limit flow at ,

which is defined in a half-space
(7.2)

Let

(7.3) F F F

As explained in the proof of Theorem 1.1 (size of the singular set), the class F

does not contain any singular stationary cones. Moreover, whenever a tangent flow
of some flow in the class F at some point is a static or quasi-static plane, then it
is in fact a static multiplicity plane. Hence the arguments from White’s second
paper [46] apply to the class F (actually with some simplifications thanks to the
a priori bound from Theorem 1.6), yielding all assertions of Theorem
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1.2 except for the last bullet point. In particular, note that the class F cannot
contain any doubling of a (quasi)-static plane in a half-space parallel to , since
otherwise it would also contain . Finally, the assertion in the last bullet point
follows from [17, cor. 1.5]. ⇤

7.3 Long-time behavior

PROOF OF THEOREM 1.5. We first observe that the proof of the Bernstein-type
theorem (Theorem 6.8) goes through if instead of the bound (which
unfortunately degenerates as ) one uses the Schoen-Simon result about
(mildly singular) minimal hypersurfaces in a slab [39] similarly as in [45, cor. 7.3].
Consequently, the sheeting theorem (Theorem 6.10) can also be applied as .

Now, suppose M K is a mean-convex free boundary flow in a mean-convex
domain such that

(7.4)

We argue as in [45, sec. 11]. Let M K be the result of translating M K by
. Then a subsequence will converge to a limit M K . Note

that

(7.5) K

This is independent of the sequence of times going to infinity. Together with the
fact that M is determined by K (the support of M equals K , and multiplicity
versus- is determined by whether the component of K under consideration has
interior points), we infer that

(7.6) M K M K

as (i.e., it is not necessary to pass to a subsequence). By (7.5) the limit
M K is static, i.e.,

(7.7) spt M

By one-sided minimization (Theorem 5.4) and the sheeting theorem (Theorem
6.10), is a union of finitely many stable free boundary minimal surfaces.
Hence, by Simons [40] and Grüter [15] the dimension of the singular set is at most

. This finishes the proof of Theorem 1.5. ⇤
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