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We prove Łojasiewicz inequalities for round cylinders and cylinders over Abresch–

Langer curves, using perturbative analysis of a quantity introduced by Colding–

Minicozzi. A feature is that this auxiliary quantity allows us to work essentially at

1st order. This new method interpolates between the higher-order perturbative analysis

used by the author for certain shrinking cylinders and the differential geometric method

used by Colding–Minicozzi for the round case.

1 Introduction

Self-shrinkers are submanifolds !n ⊂ RN satisfying the elliptic partial differential

equation (PDE) φ := −H+ x⊥
2 = 0; they serve as singularity models for the mean curvature

flow. Łojasiewicz inequalities have been successful in proving the uniqueness of tangent

flows for a variety of model shrinkers [2, 3, 5, 8], and “explicit” forms can also be used to

establish rigidity in the class of shrinkers [6, 9]. Explicit Łojasiewicz inequalities for a

class of shrinking cylinders were proven by the author in [10] and previously by Colding

and Minicozzi for the case of round cylinders [3, 5]. The purpose of this note is to provide

a bridge between these two approaches.
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2 J. J. Zhu

Specifically, in [10] we used Taylor expansion of the shrinker quantity φ while in

[3, 5] a pointwise differential geometric method is used, relying on an auxiliary quantity

τ = A
|H| . In this note we show that Taylor expansion of τ , combined with the techniques

in [10], yields another Łojasiewicz inequality for round cylinders and Abresch–Langer

cylinders. Denoting by Cn(
◦
$) the set of all rotations of

◦
$k × Rn−k ⊂ RN about the origin,

we prove the following:

Theorem 1.1 (Łojasiewicz inequality of the 1st kind). Let
◦
$ be a round shrinking sphere

or an Abresch–Langer curve. There exists ε2 > 0 so that for any ε1, λ0, Cj there exist R0, l0
such that if l ≥ l0, !n ⊂ RN has λ(!) ≤ λ0 and

(1) for some R > R0, we have that BR ∩ ! is the graph of a normal field U over

some cylinder in Cn(
◦
$) with ‖U‖C3(BR) ≤ ε2 and ‖U‖2

L2(BR)
≤ e−R2/8;

(2) |∇jA| ≤ Cj on BR ∩ ! for all j ≤ l;

then there is a cylinder $ ∈ Cn(
◦
$) and a compactly supported normal vector field V over

$ with ‖V‖C2,α ≤ ε1, such that ! ∩ BR−6 is contained in the graph of V, and

‖V‖2
L2 ≤ C

(
‖φ‖al

L1(BR)
+ ‖φ‖2al

L2(BR)
+ (R − 5)alne−al(R−5)2/4

)
,

where C = C(n, l, Cl, λ0, ε1) and al ↗ 1 as l → ∞.

Theorem 1.2 (Łojasiewicz inequality of the 2nd kind). Let
◦
$ be a round shrinking

sphere or an Abresch–Langer curve. There exists ε2 > 0 so that for any λ0, Cj there

exist R0, l0 such that if l ≥ l0, !n ⊂ RN has λ(!) ≤ λ0 and

(1) for some R > R0, we have that BR ∩ ! is the graph of a normal field U over

some cylinder in Cn(
◦
$) with ‖U‖C3(BR) ≤ ε2 and ‖U‖2

L2(BR)
≤ e−R2/8;

(2) |∇jA| ≤ Cj on BR ∩ ! for all j ≤ l;

then for C = C(n, β, l, Cl, λ0) we have

|F(!) − F(
◦
$)| ≤ C

(
‖φ‖

3al
2

L2 + (R − 6)n e− (R−6)2
4

)
.

Note that by the work of Colding–Minicozzi [4], the only codimension one, mean

convex self-shrinkers are precisely the cylinders over round spheres Sk√
2k

and Abresch–

Langer [1] curves $a,b. The inequalities above differ slightly from those in [10] by

the exponents on the right, but morally they are equivalent since al may be taken

arbitrarily close to 1. Indeed, the above estimates suffice to give alternative proofs

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnab287/6389728 by Princeton U

niversity Library user on 05 Septem
ber 2022



Łojasiewicz Inequalities for Mean Convex Self-Shrinkers 3

of the uniqueness of tangent flows and rigidity for these mean convex shrinkers (see

Remark 5.2; cf. [10, Theorems 1.1 and 1.2]).

The advantage of the τ quantity is that it allows us to perform the variational

analysis only at 1st order, whereas in [10] we needed the 2nd-order expansion of φ. This

is a significant reduction as the complexity of the method increases quickly with the

order of expansion. Applying the perturbative method to τ also explains and quantifies

the success of the method used by Colding–Minicozzi [3, 5] for round spheres.

Note that the C3 assumption in the above statements is not serious and can be

relaxed to lower derivatives by the L2 assumption and interpolation. We have chosen to

state the hypotheses in this way to reflect the natural progression of our estimates and

the use of the 3rd-order quantity ∇τ .

The key new geometric data, derived in Section 3, are the (1st) variation formulae

for τ and a further auxiliary quantity P. We then prove estimates for entire graphs

over the cylinders in Section 4, using Taylor expansion of τ in place of the 2nd-order

analysis in [10, Section 5.2]. Note that the 1st-order analysis of φ is still required. Some

preliminaries are included in Section 2 and the Łojasiewicz inequalities of Theorems 1.1

and 1.2 are proven in Section 5.

2 Preliminaries

We consider smooth, properly immersed submanifolds !n ⊂ RN .

For a vector V we denote by VT the projection to the tangent bundle and

V⊥ = )(V) the projection to the normal bundle N!. Given a vector field U on !

with ‖U‖C1 small enough, the graph !U is the submanifold given by the immersion

XU(p) = X(p) + U(p). We say !U is a normal graph if UT = 0.

The 2nd fundamental form is the 2-tensor with values in the normal bundle

defined by A(Y, Z) = ∇⊥
Y Z, and the mean curvature (vector) is H = −Aii. Here, and

henceforth, we take the convention that repeated lower indices are summed with the

metric, for instance Aii = gijAij. We denote the shrinker mean curvature by φ = 1
2x⊥ − H

and the principal normal by N = H
|H| . A submanifold is a shrinker if φ ≡ 0 on !.

Given a vector V we denote AV = 〈A, V〉. The Hessian on the normal bundle is

given by (∇⊥∇⊥V)(Y, Z) = ∇⊥
Z ∇⊥

Y V − ∇⊥
∇T

Z Y
V.

For graphs $U over a fixed submanifold $, we use subscripts to denote the

values of geometric quantities on $U . We also consider these quantities as functionals

on (normal) vector fields U. For instance, there is a smooth function ϕ such that
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4 J. J. Zhu

φU = ϕ(p, U, ∇U, ∇2U). For variations of such quantities, we use the shorthand notation

Dϕ(U) to mean the variation Dϕ|0([U, ∇U, ∇2U]) evaluated at 0, and so forth.

The Gaussian weight is ρ = ρn = (4π)−n/2 e−|x|2/4. Here n is the dimension of the

submanifold and will be omitted when clear from context. By Lp, Wk,p we denote the

weighted Sobolev spaces with respect to ρ. The Gaussian area functional is F(!) =
∫
! ρ.

The entropy is λ(!) = supy,s>0 F(s(! − y)), and for a shrinker, λ(!) = F(!). Note that

finite entropy λ(!) ≤ λ0 implies Euclidean volume growth |! ∩ BR| ≤ C(λ0)Rn.

We will use the following elliptic operators: the drift Laplacian L = - − 1
2∇xT

and the Jacobi operator L = L + 1
2 + ∑

k,l〈·, Akl〉Akl. The drift Laplacian is defined on

functions and tensors, while L is defined on sections of the normal bundle (via ∇⊥). For

such operators, unless otherwise indicated, ker will refer to the W2,2 kernel, for instance

K = ker L.

We set 〈x〉 = (1 + |x|2)
1
2 . On a curve $1 ⊂ R2, we denote the geodesic curvature

by κ and use dots κ̇ = ∂σ κ to denote differentiation with respect to the arclength

parameter σ .

We use C to denote a constant that may change from line to line but retains the

stated dependencies.

2.1 Mean convex self-shrinkers

In this article, we say that a submanifold $n ⊂ RN has “codimension one” if the minimal

affine subspace containing $ has dimension n + 1. Note that for shrinkers, the minimal

subspace necessarily contains the origin since Lx = −1
2x. Consider a codimension one

shrinker $. Up to ambient rotation we have $n ⊂ Rn+1 × RN−n−1. Moreover, the normal

bundle is trivial and is spanned by N and ∂zα
, where zα are standard coordinates on

RN−n−1.

An orientable codimension one submanifold is mean convex (up to change of

orientation) if |H| > 0. By the work of Colding–Minicozzi [4] (see also [7]), the only mean

convex self-shrinkers with finite entropy are cylinders $ = ◦
$k × Rn−k, where

◦
$ is either

a round shrinking sphere Sk√
2k

or an Abresch–Langer curve
◦
$1

a,b (see [1]). We further

decompose RN = Rk+1 ×Rn−k ×RN−m−n so that
◦
$ ⊂ Rk+1, and let

◦
x, y, z be the projection

of x to each respective factor.

Given
◦
$k, we denote by Cn(

◦
$) the set of all rotations of

◦
$ × Rn−k ⊂ RN about the

origin.
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Łojasiewicz Inequalities for Mean Convex Self-Shrinkers 5

2.2 The auxiliary quantities τ and P

For submanifolds $ on which H never vanishes, Colding–Minicozzi [5] considered

the 2-tensor τ = A
|H| and showed that |∇⊥τ |2 satisfies a certain elliptic PDE with

inhomogenous term given by

P = |A|2|AN|2 − 2|A2|2 +
∑

ijlm

(
2〈Ajl, Aim〉〈Alm, Aij〉 − 〈Aij, Aml〉2

)

+ |A|2
4|H|2

(
|AN(xT , ·)|2 − |A(xT , ·)|2

)
.

(2.1)

Here A2 is the real-valued 2-tensor (A2)ij = 〈Aim, Amj〉.
If $ = ◦

$k × Rn−k is either a round cylinder or an Abresch–Langer cylinder, one

has τ = −1
k N

◦
gij and in particular ∇⊥τ = 0.

As before, for graphs $U there is a smooth function P so that for sufficiently

small δ > 0 and ‖U‖C2 < δ we have PU = P(p, U, ∇U, ∇2U). Similarly, there is a smooth

function T such that for ‖U‖C3 < δ we have |∇⊥τ |2U = T (p, U, ∇U, ∇2U, ∇3U).

The quantity P vanishes on submanifolds of codimension one [5, Lemma 2.4].

2.3 Jacobi fields

The space of Jacobi fields on a shrinker $ is the (W2,2) kernel K = ker L. It contains

the subspace K0 of Jacobi fields generated by ambient rotations, and we denote its

L2-orthocomplement in K by K1.

The following summarises the Jacobi fields on $ = ◦
$ ×Rn−k, where

◦
$ is a round

shrinking sphere or an Abresch–Langer curve (see [10, Sections 2.6 and 4.1]).

Proposition 2.1. Let $ = ◦
$ ×Rn−k where

◦
$ is a round shrinking sphere or an Abresch–

Langer curve. Then the space K0 is spanned by normal vector fields of the following

forms:

(1)
◦
xi∂

⊥
◦
xj

− ◦
xj∂

⊥
◦
xi

;

(2) yj∂
⊥
◦
xi

;

(3)
◦
xi∂zα

; and yj∂zα
.

Moreover, the space K1 is spanned by the normal fields {(yiyj − 2δij)H}.

Corollary 2.2. Let $ = ◦
$ × Rn−k where

◦
$ is a round shrinking sphere or an Abresch–

Langer curve. Let r0 = diam(
◦
$) + 1. There exists C so that for any J ∈ K we have

|J| + |∇J| + |∇2J| + |∇3J| ≤ C〈x〉2‖J‖L2(Br0 ) and |∇2J(·, y)| ≤ C〈x〉‖J‖L2(Br0 ).
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6 J. J. Zhu

3 Auxiliary Variation Analysis

In this section we compute the variation of the auxiliary quantities, insofar as to

establish Propositions 3.2 and 3.3 for ∇⊥τ and Lemma 3.4 and Proposition 3.6 for P. The

benefit of using these quantities is that their 1st variation will be sufficient to establish

the formal 2nd-order obstruction of φ.

We consider a submanifold $ with a fixed immersion X0 : $n → RN , and a one-

parameter family of immersions X : I × $n → RN with X(0, p) = X0(p). We use s for

the coordinate on I = (−ε, ε) and subscripts to denote differentiation with respect to

s. For instance, Xs = ∂
∂sX. If pi are local coordinates on !, we have the tangent frame

Xi = X∗(
∂

∂pi ).

All geometric quantities such as ), g, A should be considered as functions of s, p,

given by the value of each quantity at X(s, p) on the submanifold defined by X(s, ·). For

instance, the metric gij(s, p) is given by gij = 〈Xi, Xj〉. Recall ) is the projection to the

normal bundle. Also recall that repeated lower indices are contracted via the (inverse)

metric gij.

The following 1st variations were calculated in [5]:

Proposition 3.1 ([5]). Suppose Xs = V = V⊥; then at s = 0:

)s(W) = −)(∇WT V) − Xjg
ij〈)(∇Xi

V), W〉, (3.1)

(gij)s = −2AV
ij , (g

ij)s = 2gilAV
lmgmj, (3.2)

(Aij)s = −Xl〈∇⊥
Xl

V, Aij〉 + (∇⊥∇⊥V)(Xi, Xj) − AV
il Ajl, (3.3)

|H|s = −〈N, -⊥V + AV
ijAij〉. (3.4)

3.1 Variation of ∇⊥τ

We begin with a general submanifold $. Assume that on $, we have |H| 4= 0 on $ (so τ is

well defined) and ∇⊥τ = 0. Then at s = 0,

(|∇⊥τ |2)s = 0, (|∇⊥τ |2)ss = 2|(∇⊥τ )s|2. (3.5)

The 1st variation of ∇⊥τ is given by

(∇⊥τ )s = )s(∇τ ) + )(∇(τs)). (3.6)
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Łojasiewicz Inequalities for Mean Convex Self-Shrinkers 7

Since ∇⊥τ = 0, we have ∇lτij = −〈τij, Alm〉em. Using (3.1), this gives the following

formula for the 1st term on the right in (3.6),

)s(∇lτij) = 1
|H| 〈Aij, Alm〉∇⊥

mV. (3.7)

For the last term in (3.6), we calculate

)(∇(τs)) = −∇|H|
|H|2 )(As − |H|sτ ) + ∇⊥As

|H| − ∇|H|s
|H| τ . (3.8)

The 1st two terms in (3.8) are already known from Proposition 3.1, and we

proceed to calculate the last two: differentiating |H|s = −〈N, -⊥V + AV
ijAij〉 gives

∇|H|s = − 〈∇⊥N, -⊥V + AV
ijAij〉 − 〈N, ∇⊥-⊥V〉

− AN
ij (〈∇⊥Aij, V〉 + 〈Aij, ∇⊥V〉) − AV

ij〈N, ∇⊥Aij〉.
(3.9)

Now differentiating (Aij)s = −Xl〈∇⊥
l V, Aij〉 − AV

il Ajl + (∇⊥∇⊥V)(Xi, Xj), we have

∇⊥
l (Aij)s = − Aml〈∇⊥

mV, Aij〉 − 〈∇⊥
l Aim, V〉Ajm − 〈Aim, ∇⊥

l V〉Ajm

− AV
im∇⊥

l Ajm + (∇⊥∇⊥∇⊥V)(Xi, Xj, Xl).
(3.10)

In the remainder of this subsection we consider the cases where
◦
$ is either

a shrinking sphere Sk√
2k

, or an Abresch–Langer curve
◦
$a,b. In both cases, $ has

codimension one and indeed satisfies ∇⊥τ = 0 and A = ANN. Furthermore, ∇⊥N = 0,

and it follows that any normal variation on $ may be written U = uN + uα∂zα
, with

∇⊥
i U = (∇iu)N + (∇iu

α)∂zα
, and so forth.

3.1.1 Round cylinders

Proposition 3.2. Let
◦
$ = Sk√

2k
and $ ∈ Cn(

◦
$). If U ∈ K1, then ‖D2T (U, U)‖L1 = 2

k3 ‖U‖2
L2 .

Proof. A shrinking sphere
◦
$ = Sk√

2k
satisfies

◦
Aij = − 1√

2k
N

◦
gij. Consider a variation by

U = uN. As in [5], it follows that at s = 0 we have

(Aij)s =
◦
gij√
2k

∇u −
◦
gij

2k
uN + (∇2u)ijN,

|H|s = −-u − u
2

.
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8 J. J. Zhu

Using the variation formulae above, we may also compute that

)s(∇lτij) = 1√
2k3

◦
gij

◦
gml(∇mu)N,

∇⊥
l (Aij)s = − 1

2k
◦
gij

◦
gml(∇mu)N − 1

2k
◦
gij(∇lu)N + (∇3u)ijlN,

∇l|H|s = −∇l-u − 1
2

∇lu.

We now specialise to U ∈ K1, so that u = u(y) = ∑
ij cij(yiyj − 2δij). In particular,

(L + 1)u = 0 and ∇3u = 0.

Combining the above according to (3.6), (3.7), and (3.8) then gives

(∇⊥τ )ijl,s =
√

2
k3

◦
gij(∇lu − ◦

glm∇mu)N (3.11)

and therefore

1
2

(|∇⊥τ |2)ss = 1
2

D2T (U, U) = 2
k3 |∇u|2. (3.12)

Using the identity
∫
$ |∇u|2ρ = −

∫
$ u(Lu)ρ =

∫
$ u2ρ then completes the

proof. !

3.1.2 Abresch–Langer curves

Proposition 3.3. Let
◦
$ = ◦

$a,b be an Abresch–Langer curve and $ ∈ Cn(
◦
$).

If U ∈ K1, then ‖D2T (U, U)‖L1 ≥ 4B2(
◦
$)‖U‖2

L2 , where B2(
◦
$) =

∫
◦
$

κ4ρ2∫
◦
$

κ2ρ2
> 0.

Proof. The curve
◦
$ = ◦

$a,b satisfies
◦
Aij = −κN

◦
gij, where κ is the geodesic curvature.

Consider a variation by U = uN. It follows that at s = 0, we have the following:

)s(∇lτij) = κ
◦
gij

◦
gml(∇mu)N,

(Aij)s = κ
◦
gij∇u − κ2u

◦
gijN + (∇2u)ijN,

∇⊥
l (Aij)s = −κ2 ◦

gij
◦
gml(∇mu)N − 2κ

◦
giju(∇lκ)N − κ2 ◦

gij(∇lu)N + (∇3u)ijlN,

|H|s = −-u − κ2u, ∇l|H|s = −∇l-u − 2κu∇lκ − κ2∇lu.
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Łojasiewicz Inequalities for Mean Convex Self-Shrinkers 9

We now specialise to U ∈ K1, so that u = f (y)κ and f (y) = ∑
ij cij(yiyj − 2δij); in

particular, note that (L + 1)f = 0.

Take coordinates on $ so that the i = 0 index corresponds to the arclength

parameter on
◦
$ and the remaining indices i > 0 correspond to the standard coordinates

on Rn−1. Then the metric on
◦
$ satisfies

◦
gij = δij.

Combining the above according to (3.6), (3.7), and (3.8) then gives, for i = j = 0

and l > 0, that

(∇⊥τ )00l,s = (−2κ∇lu − κ−1∇l-u + κ−1(∇3u)00l)N

= (−2κ2∇lf − κ−1∇l(κ̈f + 2κ) + κ−1κ̈∇lf )N

= −2κ2(∇lf )N.

Therefore,

1
2

(|∇⊥τ |2)ss = 1
2

D2T (U, U) = |(∇⊥τ )s|2 ≥ 4κ4|∇f |2. (3.13)

Again using the identity
∫
$ |∇f |2ρ = −

∫
$ f (Lf )ρ =

∫
$ f 2ρ completes the

proof. !

3.2 Variation of P

The 1st and 2nd variations of P were studied in [5] for the case of round cylinders.

Here we consider the case where
◦
$ is an Abresch–Langer curve. Again we write normal

variations as U = uN + uα∂zα
.

We first show that the 1st variation of P is identically zero on $.

Lemma 3.4. DP = 0 on $ = ◦
$a,b × Rn−1.

Proof. The variation of the 1st four terms of P proceeds similarly to the round cylinder

case in [5, Section 5.3], so we only list the results of some key calculations. The basic

ingredients are (evaluated at s = 0):

〈Aij, Aml〉 = κ2 ◦
gij

◦
gml, 〈(Aij)s, Aml〉 = −κ(uij − κ2 ◦

giju)
◦
gml, (3.14)

(gij)s = 2AV
ij − 2κu

◦
gij, (3.15)

− Hs = κ∇u + (-u + κ2u)N + (-uα)∂zα
, Ns = −∇u − 1

κ
(-uα)∂zα

. (3.16)
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10 J. J. Zhu

Combining these as in [5] gives

(|A|2)s = −2κ(ü + κ2u),

〈Aij, N〉s = uij − κ2 ◦
giju, (|AN|2)s = −2κ(ü + κ2u),

(A2
ij)s = −κ(uim

◦
gmj + umj

◦
gim), (|A2|2)s = −4κ3(ü + κ2u),

(〈Aij, Aml〉2)s = −4κ3(ü + κ2u),

(〈Ajl, Aim〉〈Alm, Aij〉)s = −4κ3(ü + κ2u).

Since |A|2 = |AN|2 = κ2, from the above one can see that the 1st variation of the

1st four terms of P cancels to zero. It remains to check the variation of the last term

|A|2
4|H|2 (|AN(xT , ·)|2) − |A(xT , ·)|2).

Since A = ANN, the factor in brackets vanishes at s = 0, so it is enough to show that its

variation is zero too.

Indeed, we find that (AN(xT , ·))s = 〈(A(xT , ·))s, N〉 + 〈A(xT , ·), Ns〉 = 〈(A(xT , ·))s, N〉
since 〈Ns, N〉 = 0. Therefore, we have

(|AN(xT , ·)|2)s = 2〈(AN(xT , ·))s, AN(xT , ·)〉 = 2〈(A(xT , ·))s, A(xT , ·)〉 = (|A(xT , ·)|2)s.

This completes the proof. !

Remark 3.5. We also give a somewhat more intuitive explanation of why DP = 0 as

follows:

• In the directions uN, recall that P vanishes in codimension one. In particu-

lar, as the graph of uN remains codimension one for any u, the 1st variation

of P vanishes in this direction.

• In the directions uα∂zα
, note that the 1st variation As takes values only

in span{∂zα
}. Since A itself only takes values in span N, any contraction

of As with A will vanish. The only terms in Ps not of this form are

when the derivative hits xT , but these obviously cancel each other out as

A = ANN on $.
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Łojasiewicz Inequalities for Mean Convex Self-Shrinkers 11

Using Lemma 3.4, the same proof as [5, Corollary 5.36] (using that
◦
$ and its

variations by K1 have codimension one) now gives

Proposition 3.6. Let $ = ◦
$a,b × Rn−1. If V ∈ N$ with LV = 0 and ‖V‖W2,2 < ∞ then

(D2P)(V, V) = 0.

Remark 3.7. One may also check directly that D2P(V, V) = 0 for V ∈ K using the 2nd

variation formulae in [10, Section 3].

4 Estimates for Entire Graphs

We now proceed to prove estimates for entire graphs using the auxiliary quantities. In

particular, we consider normal variation fields U with compact support over a cylinder

$ = ◦
$ × Rn−k with ‖U‖C3 < δ. Also define |V|m = ∑

j≤m |∇jV|, so that ‖V‖q
Wm,q =

∫
$ |V|qmρ.

First, we note the following crude bounds to be used for Taylor expansion. Recall

the quantities P(p, U, ∇U, ∇2U) = PU and T (p, U, ∇U, ∇2U, ∇3U) = |∇⊥τ |2U .

Lemma 4.1. Let
◦
$ be a compact shrinker with | ◦

H| > 0. If $ = ◦
$ × Rn−k, then there

exists C, δ such that for any vector field U on $ with ‖U‖C3 < δ, we have ‖T ‖C3 ≤ C and

‖P‖C3 ≤ C〈x〉2.

Proof. As in [5, Lemma 5.30], each quantity in the definition of P is a smooth function

of (p, U, ∇U, ∇2U) and the position vector x(p) enters quadratically. Similarly, each

quantity in ∇⊥τ is a smooth function of (p, U, ∇U, ∇2U, ∇3U), but the position vector

does not enter explicitly. !

In the remainder of this section,
◦
$ is either a round sphere or an Abresch–Langer

curve.

4.1 First-order decomposition

Given a compactly supported normal field U on $, we have the orthogonal decomposi-

tion U = J + h, where J ∈ K and h ∈ K⊥. We may further decompose J = U0 + J ′, where

U0 ∈ K0 and J ′ ∈ K1.

The 1st-order expansion of φ implies the following estimates (cf. [10, Proposition

5.4]):
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12 J. J. Zhu

Proposition 4.2. Let $ = ◦
$ × Rn−k. There exists ε0 and C so that if U is a compactly

supported normal field on $ with ‖U‖C3 < ε0, then

‖h‖2
W3,2 ≤ C(‖φU‖2

W1,2 + ‖U‖4
L2), (4.1)

‖U‖3
W3,3 ≤ C(‖φU‖2

W1,2 + ‖U‖3
L2), (4.2)

‖h‖2
W2,2 ≤ C(‖φU‖2

L2 + ‖U‖4
L2), (4.3)

and for any κ ∈ (0, 1],

∫

$
〈x〉6|U|32ρ ≤ C(κ)(‖φU‖

6
3+κ

L2 + ‖U‖3
L2). (4.4)

Proof. The last two statements were already proven in [10, Proposition 5.4]. The 1st

two are analogous, but involve an extra derivative. The method is essentially the same,

so we sketch it here for completeness.

Taking an extra derivative in [10, Proof of Lemma 5.3] (see also [3, Lemma 4.10]),

one can prove the pointwise estimate

|φU − Lh|1 ≤ C(〈x〉|U|1|U|2 + |U|22 + |U|1|U|3). (4.5)

Squaring and integrating implies

‖φU − Lh‖2
W1,2 ≤ C(‖〈x〉|U|1|U|2‖2

L2 + ‖U‖4
W2,4 + ‖|U|1|U|3‖2

L2)

≤ C′(‖U‖4
W2,4 + ‖|U|1|U|3‖2

L2) ≤ 2C′‖U‖4
W3,4 ,

(4.6)

where we have used the Gaussian Poincaré inequality [10, Lemma 2.2] in moving to the

2nd line. Now by the triangle inequality and the absorbing inequality, we have

|U|43 ≤ 2|U|23|h|23 + 2|U|23|J|23 ≤ 4ε2
0 |h|23 + 4|J|43. (4.7)

By Corollary 2.2 we have |J|3 ≤ C〈x〉2‖J‖L2 ≤ C〈x〉2‖U‖L2 . So integrating (4.7) gives

‖U‖4
W3,4 ≤ 4ε2

0‖h‖2
W3,2 + C‖U‖4

L2 . (4.8)
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Łojasiewicz Inequalities for Mean Convex Self-Shrinkers 13

Now combining (4.6, 4.8) with elliptic regularity, we have

‖h‖2
W3,2 ≤ C‖Lh‖2

W1,2 ≤ C′(‖φU‖2
W1,2 + ‖U‖4

W3,4) ≤ C′′(‖φU‖2
W1,2 + ‖U‖4

L2), (4.9)

where we have absorbed the ε2
0 term to achieve the last inequality. This establishes the

1st statement. Finally, arguing as for (4.7), we have |U|33 ≤ 4ε0|h|23 + C|J|33. Integrating

this and absorbing higher powers implies the 2nd statement and completes the

proof. !

4.2 Estimates by ∇⊥τ and φ

We proceed with U = J + h = U0 + J ′ + h decomposed as in Section 4.1.

Lemma 4.3. There exists C so that for any U as above, we have the pointwise estimate

||∇⊥τ |2U − 1
2

D2T (J ′, J ′)| ≤ C(|U|33 + 2|J|3|h|3 + |h|23 + 2|J ′|3|U0|3 + |U0|23). (4.10)

Proof. Let T(s) = T (p, sU, s∇U, s∇2U, s∇3U). Since ‖T ‖C3 ≤ C by Lemma 4.1, Taylor

expansion about s = 0 gives

|T(1) − T(0) − T ′(0) − 1
2

T ′′(0)| ≤ C|U|33.

Note that T(1) = |∇⊥τ |2U , T(0) = 0, T ′(0) = DT (U) = 0 and T ′′(0) = 1
2D2T (U, U).

Expanding the bilinear form D2T (U, U) according to the decomposition of U, and using

‖T ‖C3 ≤ C to estimate the remaining terms except D2T (J ′, J ′) finishes the proof. !

We may now estimate the variation field U in terms of φU and |∇⊥τ |U .

Proposition 4.4. Let $ = ◦
$×Rn−k, where

◦
$ is a round shrinking sphere or an Abresch–

Langer curve. There exists ε0 > 0 such that if U is a compactly supported normal vector

field on $ with ‖U‖C3 ≤ ε0, then

‖U‖2
L2 ≤ C(‖U0‖2

L2 + ‖|∇⊥τ |2U‖L1 + ‖φU‖2
W1,2), (4.11)

where U0 = πK0
(U).

Proof. By Proposition 3.2 or 3.3 respectively we have δ0‖J ′‖2
L2 ≤ ‖D2T (J ′, J ′)‖L1 for

some δ0 > 0. Now to estimate the right-hand side, we integrate estimate (4.10), using
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14 J. J. Zhu

Corollary 2.2 to estimate the Jacobi terms. This gives

C−1‖D2T (J ′, J ′)‖L1 ≤ ‖|∇⊥τ |2U‖L1 + ‖U‖3
W3,3 + ‖h‖2

W3,2 + ‖U0‖2
L2

+ ‖U‖L2

∫

$
〈x〉2|h|3ρ + ‖U‖L2‖U0‖L2

≤ ‖|∇⊥τ |2U‖L1 + ‖U‖3
W3,3 + (1 + C′ε−1)‖h‖2

W3,2 + ‖U0‖2
L2

+ 2ε‖U‖2
L2 + ε−1‖U0‖2

L2 .

(4.12)

Here for the 2nd line we have used Cauchy–Schwarz, so that
∫
$〈x〉2|h|3ρ ≤

C′‖h‖W3,2 , as well as the elementary inequality 2ab ≤ εa2 + ε−1b2.

Now for small enough ε0, we certainly have ‖U‖L2 < 1 and ‖φU‖W1,2 < 1, so lower

powers dominate. Using Proposition 4.2 then gives

C−1δ0‖J ′‖2
L2 ≤ ‖|∇⊥τ |2U‖L1 + ε‖U‖2

L2 + C(ε)
(
‖φU‖2

W1,2 + ‖U0‖2
L2

)
. (4.13)

Since

‖U‖2
L2 ≤ ‖U0‖2

L2 + ‖h‖2
L2 + ‖J ′‖2

L2 ≤ ‖U0‖2
L2 + C

(
‖φU‖2

L2 + ‖U‖4
L2

)
+ ‖J ′‖2

L2 , (4.14)

if we choose ε < C
δ0

then the ‖U‖2
L2 term may be absorbed into the left-hand side; thus,

‖U‖2
L2 ≤ C

(
‖|∇⊥τ |2U‖L1 + ‖φU‖2

W1,2 + ‖U0‖2
L2

)
. (4.15)

!

Remark 4.5. Proposition 4.4 is analogous to [5, Proposition 4.47] and to [3, Proposition

2.1]. Indeed, following the cutoff and rotation method we use in the proof of Theorem

5.1 below, or in [10, Theorem 7.1], yields a corresponding estimate by |∇⊥τ | and φ for

graphs over a (sufficiently large) subdomain.

4.3 Estimates by φ

We now observe as in [5] that the shrinker quantity φ controls the auxiliary quantity

∇⊥τ , to a degree consistent with a 2nd-order obstruction.

First, we need a PDE estimate proven by Colding–Minicozzi [5]:

Proposition 4.6 ([5]). Let $ = ◦
$ × Rn−k, where

◦
$ is a round shrinking sphere or an

Abresch–Langer curve. There exist δ > 0 and C = C(‖U‖C3) so that whenever ‖U‖C2 < δ,
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Łojasiewicz Inequalities for Mean Convex Self-Shrinkers 15

we have

‖|∇⊥τ |2U‖L1 ≤ C
(
‖PU‖L1 + ‖φU‖W2,1 + ‖φU‖2

W1,2

)
. (4.16)

Proof. Since U is compactly supported, we may apply [5, Theorem 2.2] to $U

(with ψ = 1). The desired estimate follows immediately after using the identity

∇⊥
i H = −1

2A(xT , Xi) − ∇⊥
i φ (cf. [5, Proof of Theorem 7.4]) and that A, |H|−1 and |∇H|

are uniformly bounded. !

Second, we have the following Taylor expansion estimate for P:

Proposition 4.7. Let $ = ◦
$×Rn−k, where

◦
$ is a round shrinking sphere or an Abresch–

Langer curve. There exist C, Cκ so that for any κ ∈ (0, 1], we have

‖PU‖L1 ≤ Cκ

(
‖U‖3

L2 + ‖φU‖
6

3+κ

L2

)
+ C‖U‖L2‖φU‖L2 + C‖φU‖2

W1,2 .

Proof. The case of round cylinders was proven in [5, Proposition 6.1], and the proof for

Abresch–Langer cylinders proceeds exactly the same way. For the readers’ convenience,

we emphasise the corresponding ingredients:

Set P(s) = P(p, sU, s∇U, s∇2U); then P(0) = 0 and Lemma 3.4 and Proposition 3.6

imply that P′(0) = 0 and

|P′′(0)| ≤ C〈x〉2|h|2(|J|2 + |h|2),

respectively. Lemma 4.1 then gives the Taylor expansion estimate

|PU | ≤ C〈x〉2|h|2(|J|2 + |h|2) + C〈x〉6|U|32.

The proof now follows as in [5, Proposition 6.1], using Corollary 2.2 to estimate

the J terms and Proposition 4.2 for the h, U terms. !

We may now prove the main estimate for entire graphs:

Theorem 4.8. Let $ = ◦
$ × Rn−k, where

◦
$ is a round shrinking sphere or an Abresch–

Langer curve. There exists ε0 > 0 such that if κ ∈ (0, 1] and U is a compactly supported
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16 J. J. Zhu

normal vector field on $ with ‖U‖C3 ≤ ε0, then

‖U‖2
L2 ≤ C(κ)

(
‖U0‖2

L2 + ‖φU‖W2,1 + ‖φU‖2
W1,2 + ‖φU‖

6
3+κ

L2

)
, (4.17)

where U0 = πK0
(U).

Proof. Combining Propositions 4.4, 4.6, and 4.7 and noting that lower powers domi-

nate, we find that

‖U‖2
L2 ≤ C(κ)

(
‖U‖3

L2 + ‖U‖L2‖φU‖L2 + ‖φU‖2
W1,2 + ‖φU‖W2,1 + ‖φU‖

6
3+κ

L2 + ‖U0‖2
L2

)
. (4.18)

Using the elementary inequality 2ab ≤ εa2 + ε−1b2 on the 2nd term on the right and

absorbing the resulting ‖U‖L2 terms into the left-hand side gives the result. !

5 Łojasiewicz Inequalities via τ

In this section, we conclude the Łojasiewicz inequalities from the main estimate

Theorem 4.8, using the rotation and cutoff procedure in [10, Section 7]. For convenience

set δR := Rn e−R2/4.

Theorem 5.1. Let
◦
$ be a round shrinking sphere or an Abresch–Langer curve.

There exists ε2 > 0 so that for any ε1, λ0, Cj there exist R0, l0 such that if l ≥ l0,

!n ⊂ RN has λ(!) ≤ λ0 and

(1) for some R > R0, we have that BR ∩ ! is the graph of a normal field U over

some cylinder in Cn(
◦
$) with ‖U‖C3(BR) ≤ ε2 and ‖U‖L2(BR) ≤ ε2/R;

(2) |∇jA| ≤ Cj on BR ∩ ! for all j ≤ l;

then there is a cylinder $ ∈ Cn(
◦
$) and a compactly supported normal vector field V over

$ with ‖V‖C2,α ≤ ε1, such that ! ∩ BR−6 is contained in the graph of V, and

‖V‖2
L2 ≤ C

(
‖U‖4al

L2 + ‖φ‖al
L1(BR)

+ ‖φ‖2al
L2(BR)

+ δ
al
R−5

)
,

where C = C(n, l, Cl, λ0, ε1) and al ↗ 1 as l → ∞.

Proof. Let al := al,2,n be the exponent from interpolation (see Appendix A). Follow-

ing precisely the proof of [10, Theorem 7.1], except using Theorem 4.8 in place of

[10, Theorem 5.8] yields a vector field V, supported on $ ∩ BR−5 and such that ! ∩ BR−6
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Łojasiewicz Inequalities for Mean Convex Self-Shrinkers 17

is contained in the graph of V, satisfying the estimate

‖V‖2
L2 ≤ C

(
‖πK0

(V)‖2
L2 + ‖φV‖W2,1 + ‖φV‖2

W1,2 + ‖φV‖
6

3+κ

L2

)
, (5.1)

where the rotation part satisfies

‖πK0
(V)‖L2 ≤ C

(
‖φ‖2al

L2(BR)
+ ‖U‖2al

L2 + δ
al
R−2 + δR−5

)
. (5.2)

Moreover, for any s ∈ [1, 2] we have the cutoff estimate

‖φV‖s
Ls ≤ ‖φ‖s

Ls(BR) + C(s)δR−5, (5.3)

Using interpolation on the φV terms in (5.1) and then the cutoff estimate, we have

‖V‖2
L2 ≤ C

(
‖φ‖4al

L2(BR)
+ δ

2al
R−2 + ‖U‖4al

L2 + δ2
R−5

)

+ C
(
‖φ‖al

L1(BR)
+ δ

al
R−5 + ‖φ‖2al

L2(BR)
+ δ

2al
R−5 + ‖φ‖

6
3+κ

L2(BR)
+ δ

6
3+κ

R−5

)
. (5.4)

We take κ so that 3
3+κ > al. Then since lower powers dominate, we have

‖V‖2
L2 ≤ C

(
‖U‖4al

L2 + ‖φ‖al
L1(BR)

+ ‖φ‖2al
L2(BR)

+ δ
al
R−5

)
. (5.5)

!

Proof of Theorem 1.1. Apply Theorem 5.1 and note that ‖U‖4al
L2 is dominated by the

exponential error term for large enough l. !

Proof of Theorem 1.2. Let V, $ be as given by Theorem 1.1. Exactly as in the proof of

[10, Theorem 1.4], we have

|F($V) − F($)| ≤ C(‖φV‖
3
2
L2 + ‖V‖3

L2), (5.6)

and |F(!) − F($V)| ≤ CδR−6. Consider l large enough so that al > 2
3 . The conclusion of

Theorem 1.1 together with Hölder’s inequality imply that

‖V‖3
L2 ≤ C

(
‖φ‖

3al
2

L2 + δ
3al
2

R−5

)
.
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Using the cutoff estimate (5.3) and collecting dominant terms, we conclude that

|F(!) − F($)| ≤ C
(
‖φ‖

3al
2

L2 + δR−6

)
. (5.7)

!

Remark 5.2. If in addition to the hypotheses of Theorem 1.1 one also has ‖φ‖L2 ≤
e−R2/4, then arguing as in the proof of [10, Theorem 7.2] we obtain

‖V‖2
L2 ≤ C

(
e−al

R2
4 +(R − 5)aln e−al

(R−5)2
4

)
. (5.8)

Since l may be chosen so that al is arbitrarily close to 1, this gives an alternative proof

of [10, Theorem 7.2], and hence of [10, Theorems 1.1 and 1.2] for the special cases where

$ is a round cylinder or an Abresch–Langer cylinder.

A Interpolation

Here we recall some interpolation inequalities; see also [10, Appendix A] and [3,

Appendix B]. In this appendix, Lp refers to unweighted space, with Lp
ρ the ρ-weighted

space.

Lemma A.1. There exists C = C(m, j, n) so that if u is a Cm function on Bn
r , then for

j ≤ m, setting am,j,n = m−j
m+n we have

rj‖∇ju‖L∞(Br)
≤ C

(
r−n‖u‖L1(Br)

+ rj‖u‖am,j,n

L1(Br)
‖∇mu‖1−am,j,n

L∞(Br)

)
.

The lemma above also holds for tensor quantities on a manifold with uniformly

bounded geometry. Define Mj = ‖∇ju‖L∞(BR). It follows that on a generalised cylinder

$ = ◦
$k × Rn−k, for large enough R

‖u‖
Wj,p

ρ (BR−1)
≤ C(m, j, n, p, M0, Mm)‖u‖am,j,n

Lp
ρ (BR)

. (A.1)
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