J. J. Zhu (2021) “Lojasiewicz Inequalities for Mean Convex Self-Shrinkers,”
International Mathematics Research Notices, Vol. 00, No. O, pp. 1-19
https://doi.org/10.1093/imrn/rnab287

Lojasiewicz Inequalities for Mean Convex Self-Shrinkers

Jonathan J. Zhu*

Mathematical Sciences Institute, Australian National University, Hanna
Neumann Building, Science Road, Canberra, ACT 2601, Australia and
Department of Mathematics, Princeton University, Fine Hall,
Washington Road, Princeton, NJ 08544, USA

*Correspondence to be sent to: e-mail: jjzhu@math.princeton.edu

We prove tojasiewicz inequalities for round cylinders and cylinders over Abresch-
Langer curves, using perturbative analysis of a quantity introduced by Colding-—
Minicozzi. A feature is that this auxiliary quantity allows us to work essentially at
1st order. This new method interpolates between the higher-order perturbative analysis
used by the author for certain shrinking cylinders and the differential geometric method

used by Colding—-Minicozzi for the round case.

1 Introduction

Self-shrinkers are submanifolds " c RY satisfying the elliptic partial differential
equation (PDE) ¢ := —H+X7L = 0; they serve as singularity models for the mean curvature
flow. Lojasiewicz inequalities have been successful in proving the uniqueness of tangent
flows for a variety of model shrinkers [2, 3, 5, 8], and “explicit” forms can also be used to
establish rigidity in the class of shrinkers [6, 9]. Explicit Lojasiewicz inequalities for a
class of shrinking cylinders were proven by the author in [10] and previously by Colding
and Minicozzi for the case of round cylinders [3, 5]. The purpose of this note is to provide

a bridge between these two approaches.
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2 J.J. Zhu

Specifically, in [10] we used Taylor expansion of the shrinker quantity ¢ while in
[3, 5] a pointwise differential geometric method is used, relying on an auxiliary quantity
T = %‘. In this note we show that Taylor expansion of 7, combined with the techniques
in [10], yields another tojasiewicz inequality for round cylinders and Abresch-Langer
cylinders. Denoting by Cn(f) the set of all rotations of ' x R" % ¢ RY about the origin,

we prove the following:

Theorem 1.1 (Eojasiewicz inequality of the 1stkind). LetI" be a round shrinking sphere
or an Abresch-Langer curve. There exists €, > 0 so that for any ¢;, 1, Cj there exist Ry, [
such that if I > I, £ ¢ RY has A(¥) < A and

(1) for some R > R, we have that By N X is the graph of a normal field U over

2
2 < o RYB.

some cylinder in Cn(f‘) with 1Ullc3(8g) < €2 and ||U||L2(BR)

(2) |V/A|<CjonBgN X forallj<i;
then there is a cylinder I' € Cn(f‘) and a compactly supported normal vector field V over

I' with | V| c2« < €;, such that ¥ N Bg_g is contained in the graph of V, and
2 _ Y
VI = C(IBI5E g + 1917505, + (R — 5)memuB=07/4),

where C = C(n,!l,Cj, Ay, €;) and q; /' 1 asl — oo.

Theorem 1.2 (Lojasiewicz inequality of the 2nd kind). Let I be a round shrinking
sphere or an Abresch-Langer curve. There exists €, > 0 so that for any 2, C; there
exist Ry, [, such that if I > [, ¥ ¢ R has A(¥) < A, and

(1) for some R > R, we have that By N X is the graph of a normal field U over

2
2 < e~R%/8,

some cylinder in Cn(f‘) with [|U]l¢s(p,) < €, and ||U||L2(BR) <

(2) |V/A|<CjonBgN X forallj<i;
then for C = C(n, 8,1, C;, »y) we have

3aq;

. 3a; R_6)2
P —F) = c(Igl +R-6)"e 5 ).

Note that by the work of Colding—Minicozzi [4], the only codimension one, mean
convex self-shrinkers are precisely the cylinders over round spheres S’f/% and Abresch—
Langer [1] curves T'y;. The inequalities above differ slightly from those in [10] by
the exponents on the right, but morally they are equivalent since a; may be taken

arbitrarily close to 1. Indeed, the above estimates suffice to give alternative proofs
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t.ojasiewicz Inequalities for Mean Convex Self-Shrinkers 3

of the uniqueness of tangent flows and rigidity for these mean convex shrinkers (see
Remark 5.2; cf. [10, Theorems 1.1 and 1.2]).

The advantage of the t quantity is that it allows us to perform the variational
analysis only at 1st order, whereas in [10] we needed the 2nd-order expansion of ¢. This
is a significant reduction as the complexity of the method increases quickly with the
order of expansion. Applying the perturbative method to t also explains and quantifies
the success of the method used by Colding—Minicozzi [3, 5] for round spheres.

Note that the €3 assumption in the above statements is not serious and can be
relaxed to lower derivatives by the L? assumption and interpolation. We have chosen to
state the hypotheses in this way to reflect the natural progression of our estimates and
the use of the 3rd-order quantity Vr.

The key new geometric data, derived in Section 3, are the (1st) variation formulae
for 7 and a further auxiliary quantity P. We then prove estimates for entire graphs
over the cylinders in Section 4, using Taylor expansion of 7z in place of the 2nd-order
analysis in [10, Section 5.2]. Note that the 1st-order analysis of ¢ is still required. Some
preliminaries are included in Section 2 and the %f.ojasiewicz inequalities of Theorems 1.1

and 1.2 are proven in Section 5.

2 Preliminaries

We consider smooth, properly immersed submanifolds " c RV,

For a vector V we denote by VT the projection to the tangent bundle and
V1 = TI(V) the projection to the normal bundle NX. Given a vector field U on %
with ||U||;1 small enough, the graph X, is the submanifold given by the immersion
Xy (p) = X(p) + U(p). We say ¥ is a normal graph if U7 = 0.

The 2nd fundamental form is the 2-tensor with values in the normal bundle
defined by A(Y,2) = V%Z, and the mean curvature (vector) is H = —A;;,. Here, and
henceforth, we take the convention that repeated lower indices are summed with the
metric, for instance 4;; = giinj. We denote the shrinker mean curvature by ¢ = 2x+ —H
and the principal normal by N = \% A submanifold is a shrinker if ¢ =0 on X.

Given a vector V we denote AY = (A, V). The Hessian on the normal bundle is
given by (VAVLV)(Y,2) = V4 VLV — vézTyv.

For graphs I';; over a fixed submanifold I', we use subscripts to denote the
values of geometric quantities on I';;. We also consider these quantities as functionals

on (normal) vector fields U. For instance, there is a smooth function ¢ such that
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4 J.J Zhu

oy =9, U VU, V2U). For variations of such quantities, we use the shorthand notation
Dy (U) to mean the variation Dy|y([U, VU, V2U]) evaluated at 0, and so forth.

The Gaussian weight is p = p, = (47) /2 e~1X"/4 Here n is the dimension of the
submanifold and will be omitted when clear from context. By LP, W*P we denote the
weighted Sobolev spaces with respect to p. The Gaussian area functional is F(X) = [5 p.
The entropy is A(X) = supy, oo F(S(Z — ), and for a shrinker, A(X) = F(X). Note that
finite entropy A(X) < %, implies Euclidean volume growth |~ N Bg| < C(A¢)R™.

We will use the following elliptic operators: the drift Laplacian £ = A — %VXT
and the Jacobi operator L = £ + § + 2 kil Ag) A The drift Laplacian is defined on
functions and tensors, while L is defined on sections of the normal bundle (via V+). For
such operators, unless otherwise indicated, ker will refer to the W??2 kernel, for instance
K = kerL.

We set (x) = (1 + |X|2)%. On a curve I'' ¢ R?, we denote the geodesic curvature
by « and use dots k = 9.« to denote differentiation with respect to the arclength
parameter o.

We use C to denote a constant that may change from line to line but retains the

stated dependencies.

2.1 Mean convex self-shrinkers

In this article, we say that a submanifold I'" ¢ RY has “codimension one” if the minimal
affine subspace containing I has dimension n + 1. Note that for shrinkers, the minimal
subspace necessarily contains the origin since £x = —%X. Consider a codimension one
shrinker I'. Up to ambient rotation we have I' ¢ R"®*! x RV-"~1 Moreover, the normal
bundle is trivial and is spanned by N and 9, , where z, are standard coordinates on
Ranfl .

An orientable codimension one submanifold is mean convex (up to change of
orientation) if |H| > 0. By the work of Colding—Minicozzi [4] (see also [7]), the only mean
convex self-shrinkers with finite entropy are cylinders I' = I'* x R"k where I' is either
a round shrinking sphere Slf/ﬁc
decompose RV = RK+1 x Rk x RN-m~7 g4 that I' ¢ R¥!, and let %, y, z be the projection

or an Abresch-Langer curve f‘éb (see [1]). We further

of x to each respective factor.
Given I'¥, we denote by Cn(f‘) the set of all rotations of I' x R"* ¢ RYN about the

origin.
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t.ojasiewicz Inequalities for Mean Convex Self-Shrinkers 5
2.2 The auxiliary quantities r and P

For submanifolds I' on which H never vanishes, Colding—Minicozzi [5] considered

the 2-tensor r = I%I and showed that |V'r|? satisfies a certain elliptic PDE with

inhomogenous term given by

P=|ARIANP = 21472 + 3" (2047 Agn) (A, Ag) — Ay A)?)

ijlm

(2.1)

AP (NG 2 T 2
+ gz (NGO - 1AGT 1),

Here A2 is the real-valued 2-tensor (A2 )ij = (Aims Apj)-

If I = I'* x R"* is either a round cylinder or an Abresch-Langer cylinder, one
has r = —¢Ng;; and in particular V+7 = 0.

As before, for graphs I';; there is a smooth function P so that for sufficiently
small § > 0 and |U|2 < é we have P; = P(p, U, VU, V2U). Similarly, there is a smooth
function 7 such that for |Ul|s < § we have |Vit|4 = T(p, U, VU, V23U, V3U).

The quantity P vanishes on submanifolds of codimension one [5, Lemma 2.4].

2.3 Jacobi fields

The space of Jacobi fields on a shrinker I' is the (W??) kernel K = kerL. It contains
the subspace K, of Jacobi fields generated by ambient rotations, and we denote its

2_orthocomplement in K by K;.
The following summarises the Jacobi fields on ' = I' x R" ¥ where I' is a round

shrinking sphere or an Abresch-Langer curve (see [10, Sections 2.6 and 4.11]).

Proposition 2.1. LetT =I' x R* ¥ where I is a round shrinking sphere or an Abresch—
Langer curve. Then the space K, is spanned by normal vector fields of the following

forms:
(1) x; 8L - X; 9t
X
(2) yJBL
(3) x,;0,; and y;d, .

lZ’

Moreover, the space K, is spanned by the normal fields {(y;y; — 2§;)H}.

Corollary 2.2. LetT =TI x R" ¥ where I' is a round shrinking sphere or an Abresch-
Langer curve. Let ry = diam(') + 1. There exists C so that for any J € K we have
|+ VI + V2| + V3| < C<X)2||J||Lz(3,0> and |[V2J (-, y)| < CXI N2 ,,)-
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6 J. J Zhu
3 Auxiliary Variation Analysis

In this section we compute the variation of the auxiliary quantities, insofar as to
establish Propositions 3.2 and 3.3 for V7 and Lemma 3.4 and Proposition 3.6 for P. The
benefit of using these quantities is that their 1st variation will be sufficient to establish
the formal 2nd-order obstruction of ¢.

We consider a submanifold I" with a fixed immersion X, : I'* — RY and a one-
parameter family of immersions X : I x ' — R¥ with X(0,p) = X,(p). We use s for
the coordinate on I = (—¢,¢) and subscripts to denote differentiation with respect to
s. For instance, X, = %X . If p; are local coordinates on ¥, we have the tangent frame
X = X*(aipi)'

All geometric quantities such as I, g, A should be considered as functions of s, p,
given by the value of each quantity at X(s, p) on the submanifold defined by X(s, -). For
instance, the metric g;;(s, p) is given by g;; = (X;, X;). Recall Il is the projection to the
normal bundle. Also recall that repeated lower indices are contracted via the (inverse)
metric g¥.

The following 1st variations were calculated in [5]:

Proposition 3.1 ([5]). Suppose X, =V = V*; then at s = 0:

(W) = —T1(Vyyr V) — X;g7 (1(Vy, V), W), (3.1)

Gy)s = —24[, (9")s = 29" A}, g™, (3.2)

Qs = XV V. Ay) + (VIVIV(X, X)) — Aj Ay, (3.3)
1 |4

H|; = —(N, A"V + AjA;). (3.4)

3.1 Variation of V1t

We begin with a general submanifold I'. Assume that on I', we have |[H| #0 on I" (so 7 is
well defined) and V17 = 0. Then at s = 0,

(Vi) =0,  (VirHg = 21(VEin)l2 (3.5)
The 1st variation of V-t is given by

(Vi) = (V1) 4 TI(V(1y)). (3.6)
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t.ojasiewicz Inequalities for Mean Convex Self-Shrinkers 7

Since V17 = 0, we have Vitij = —(tj, Apn) €, Using (3.1), this gives the following

'L'ij,
formula for the 1st term on the right in (3.6),

1
M,(Vy7;) = — (A

1
) = g Qi Am) VinV- (3.7)

For the last term in (3.6), we calculate

V|H| via,  VIH|
e (A, — H[;7) + - —T.

(3.8)
[H] H]|

(V(ry) = —

The 1st two terms in (3.8) are already known from Proposition 3.1, and we

proceed to calculate the last two: differentiating |H|, = —(N, ALV + AEAU) gives

VIH|; = — (VIN, ATV + AjAy) — (N, VEATD)

—A%}T((VLA V) + (A;;, V1T7) —Ag(N, VEA;).

i i

Now differentiating (4;;); = —X)(Vi V, A — A;{Aﬂ + (VivE V)(X;, X;), we have

Vir(A)s = — A (Vi V, Ay) — (VA

i V) A — (Aj, Vi V)A;

im’ im’ jm

(3.10)
— A} Vi Ay, + (VEVEVEY) (X, X X)),

In the remainder of this subsection we consider the cases where I" is either

a shrinking sphere S or an Abresch-Langer curve lo”a,b. In both cases, I' has

k

V2k'
codimension one and indeed satisfies V4t = 0 and A = ANN. Furthermore, V1N = 0,
and it follows that any normal variation on I' may be written U = uN + u%d, , with

ViLU = (V;wN + (V;u®)a, , and so forth.

3.1.1 Round cylinders

Proposition 3.2. Let = S’f/ﬁ and I € C,(I"). If U € Ky, then [|D2T (U, )2 = EIUI%,.
e 1s S <k . pe o 1 P . s
Proof. A shrinking sphere I' = Sm satisfies A;; = ~ 7 NGij- Consider a variation by
U = uN. As in [5], it follows that at s = 0 we have
9ij gij 2

u
[H|; = —Au— .
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8 J.J Zhu

Using the variation formulae above, we may also compute that

1 . .
M (ViTy) = ﬁgijgml(vmu)N,

| 1.
Vi @ijs = = 52 959m (Vi WN = g5 (VWN + (Vu)N,
1
Vl|H|S = —VZAU/ — EVlu
We now specialise to U € K, so that u = u(y) = >_;; ¢;;(y;yj — 28;). In particular,

(L+1u=0and V3u = 0.
Combining the above according to (3.6), (3.7), and (3.8) then gives

/2. .
and therefore
LVt = 10T (W, U) = 2 Vup? (3.12)
5 s =5 U) = 5 IVul® .
Using the identity [.|Vul?s = — [fu(fu)p = [-u?p then completes the
proof. |

3.1.2 Abresch-Langer curves

Proposition 3.3. Let = f‘a'b be an Abresch-Langer curve and I € C,,(I").

4
If U € Ky, then |D*T(U, U) 1 > 4B,(D)[|U||%,, where By(I') = {{ >0,
T
Proof. The curve I = lﬂ“a,b satisfies Aij = —kNg;;, where « is the geodesic curvature.

Consider a variation by U = uN. It follows that at s = 0, we have the following:
M (Vi) = €94iGmi(Vin WN,
(A5 = kg;;Vu — K*ug;N + (V2u);N,
vita

i)s = —Kzgijgm,(vmu)N — 2k g;;u(Vy)N — Kzgij(vlu)N + (Vsu)iﬂN,

H|, = —Au—«2u,  VjH|, = —V,Au— 2kuVik — k2Vu.
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t.ojasiewicz Inequalities for Mean Convex Self-Shrinkers 9

We now specialise to U € Ky, so that u = f(y)x and f(y) = 2_;; ¢;;(v;¥; — 24;); in
particular, note that (£ + 1)f = 0.

Take coordinates on I' so that the i = 0 index corresponds to the arclength
parameter on I and the remaining indices i > 0 correspond to the standard coordinates
on R"~!. Then the metric on I satisfies g;; = §;;.

Combining the above according to (3.6), (3.7), and (3.8) then gives, fori =j = 0
and ! > 0, that

(VD) oos = (—26Viu — k' VAU + k7 (VU)o N

= (=262Vif — kIS + 2k) + kYN

= —2k?(V,f)N.
Therefore,
%(Wiﬂz)ss = %DZT(U, U) = |(Vir) 2 > ac?|VF)2. (3.13)
Again using the identity [.|VfI?0 = — [.f(Lf)p = [-f?p completes the
proof. |

3.2 Variation of P

The 1st and 2nd variations of P were studied in [5] for the case of round cylinders.
Here we consider the case where I' is an Abresch-Langer curve. Again we write normal
variations as U = uN + u“9,_.

We first show that the 1st variation of P is identically zero on I'.
Lemma3.4. DP=0onl =I,, xR*"1

Proof. The variation of the 1st four terms of P proceeds similarly to the round cylinder
case in [5, Section 5.3], so we only list the results of some key calculations. The basic

ingredients are (evaluated at s = 0):

g7, = 24} — 2kugy, (3.15)
1
—H, =«Vu+ (Au+c>wN + (Au®)d, , Ny=-Vu——(Au*)d, . (3.16)
o K o
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10 J.J.Zhu

Combining these as in [5] gives
(A7) = =26 (U +x*w),

(A N)g = uy —k®ggu, (AN = —2ic (i + «*w),

(A7)s = =k WimGmj + UmiGim),  (1A%P)g = =43 (L + Pu),
(A Ap)D)s = —43 (i + 2w,

(Aj1, A Apms Ag))s = —43 (1 + K2 u).
Since |A|2 = |AN|?2 = k2, from the above one can see that the 1st variation of the

1st four terms of P cancels to zero. It remains to check the variation of the last term

|A|2

PO (AN ", )15 — 1AET, HP).

Since A = ANN, the factor in brackets vanishes at s = 0, so it is enough to show that its
variation is zero too.
Indeed, we find that (ANxT, ), = (AT, ), N) + (AxT, ), Ng) = (AT, ), N)

since (N, N) = 0. Therefore, we have
(AN T, 1B = 2((AN T, ), ANT, ) = 2((AGT, ), AT, ) = (AT, )12),.
This completes the proof. |

Remark 3.5. We also give a somewhat more intuitive explanation of why DP = 0 as

follows:

e In the directions uN, recall that P vanishes in codimension one. In particu-
lar, as the graph of uN remains codimension one for any u, the 1st variation
of P vanishes in this direction.

e In the directions u“d, , note that the 1st variation A, takes values only

Zo!
in span{d, }. Since A itself only takes values in span N, any contraction
of A; with A will vanish. The only terms in P; not of this form are
when the derivative hits xT, but these obviously cancel each other out as

A=ANNonT.
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t.ojasiewicz Inequalities for Mean Convex Self-Shrinkers 11

Using Lemma 3.4, the same proof as [5, Corollary 5.36] (using that I' and its

variations by K; have codimension one) now gives

Proposition 3.6. Let = I,, x R" 1. If V € NT with LV = 0 and || V|22 < oo then
(D?*P)(V,V) =0.

Remark 3.7. One may also check directly that D?P(V, V) = 0 for V € K using the 2nd

variation formulae in [10, Section 3].

4 Estimates for Entire Graphs

We now proceed to prove estimates for entire graphs using the auxiliary quantities. In
particular, we consider normal variation fields U with compact support over a cylinder
I =T x R* ¥ with ||U||ss < 8. Also define |V, = > i<m IV7V, s0 that | V| me = [1- VIR0

First, we note the following crude bounds to be used for Taylor expansion. Recall
the quantities P(p, U, VU, V2U) = Py and T (p, U, VU, V2U, V3U) = |Vit|%.

Lemma 4.1. LetI bea compact shrinker with [H| > 0. If T = I x R" ¥, then there
exists C,§ such that for any vector field U on I' with ||U||;s < §, we have || T|s < C and
IPllgs < Cx)2.

Proof. Asin [5, Lemma 5.30], each quantity in the definition of P is a smooth function
of (p,U,VU,V?U) and the position vector x(p) enters quadratically. Similarly, each
quantity in V1t is a smooth function of (p, U, VU, V2U, V3U), but the position vector

does not enter explicitly. |

In the remainder of this section, I is either a round sphere or an Abresch-Langer

curve.

4.1 First-order decomposition

Given a compactly supported normal field U on I', we have the orthogonal decomposi-
tion U = J + h, where J € K and h € K+. We may further decompose J = U, + J', where
UyeKgandJ € K;.

The 1st-order expansion of ¢ implies the following estimates (cf. [10, Proposition
5.4]):
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12 J.J. Zhu

Proposition 4.2. Let ' = I' x R" ¥, There exists €y and C so that if U is a compactly

supported normal field on I" with ||U| s < €y, then

1RlZ,52 < Cllgylionz + 1Ul7), (4.1)
1U13y25 < CUidyli3 .z + U, (4.2)
IRlI5,22 < Cll¢yliz: + U, (4.3)
and for any « € (0, 1],
/F x)°|U3p < C(K)(||¢U||§§“ + T3 (4.4)

Proof. The last two statements were already proven in [10, Proposition 5.4]. The 1st
two are analogous, but involve an extra derivative. The method is essentially the same,
so we sketch it here for completeness.

Taking an extra derivative in [10, Proof of Lemma 5.3] (see also [3, Lemma 4.10]),

one can prove the pointwise estimate
by — Lhly < CAX)|UL|Uly + U + Ul [UL). (4.5)
Squaring and integrating implies

gy — Lhll5,2 < CAXULLUL11% + U524 + 11U 1UI5152) we
< C'(IUllgpea + UL UI3N22) < 2C U504,

where we have used the Gaussian Poincaré inequality [10, Lemma 2.2] in moving to the

2nd line. Now by the triangle inequality and the absorbing inequality, we have
UJ5 < 2|UBIRIE + 21URBITIS < 4€51hi3 + 4115, 4.7)
By Corollary 2.2 we have |J|3 < C(x)?||J||;2 < C(x)?||U]|;2. So integrating (4.7) gives

1UI5yea < 4€51Rll52 + CIUI . (4.8)
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Now combining (4.6, 4.8) with elliptic regularity, we have
I1RlI2,52 < CILRIZ,2 < CUdylins + 1Ul5ee) < C UloylEz + 1UI%), (4.9)

where we have absorbed the eg term to achieve the last inequality. This establishes the
1st statement. Finally, arguing as for (4.7), we have |U|§ < 4eo|h|§ + C|J|§. Integrating
this and absorbing higher powers implies the 2nd statement and completes the

proof. |

4.2 Estimates by V1t and ¢

We proceed with U =J + h = U, + J' + h decomposed as in Section 4.1.
Lemma 4.3. There exists C so that for any U as above, we have the pointwise estimate
1
IVE21G = 5 D*TW IO < CUUI3 + 21 131hls + 1hi3 + 21 '[31Ugls + 1To|3)- (4.10)

Proof. Let T(s) = 7 (p,sU,sVU,sV2U,sV3U). Since |T|lcz < C by Lemma 4.1, Taylor

expansion about s = 0 gives
/ 1 1 3
IT(1) = T(0) —T(0) — ET 0| = C|UJ3.
Note that T(1) = [V17|4, T(0) = 0, T'(0) = DT(U) = 0 and T"(0) = 1D*T(U, U).
Expanding the bilinear form D?7 (U, U) according to the decomposition of U, and using
| Tllcs < C to estimate the remaining terms except D*7(J’,J’) finishes the proof. [ ]

We may now estimate the variation field U in terms of ¢;; and |V-1|y.

Proposition 4.4. LetT =TI x R" ¥ where I' is a round shrinking sphere or an Abresch—
Langer curve. There exists ¢, > 0 such that if U is a compactly supported normal vector
field on T" with ||U||z < €, then

1U1Z, < CUTG N2, + IV 21l + ldpliin.), (4.11)
where Uy = i, (U).

Proof. By Proposition 3.2 or 3.3 respectively we have 50||J/||i2 < |ID?>TJ,J)| for

some §; > 0. Now to estimate the right-hand side, we integrate estimate (4.10), using
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14 J.J. Zhu

Corollary 2.2 to estimate the Jacobi terms. This gives

C DT, Il < MIVET1Eln + 1018 + 1Rz + 1Ull2

+ U2 / (X>2|h|3)0 + U2 1Tl 2
r (4.12)

< NVl + 1U13,65 + 1+ Ce DHIRIZ52 + 1Upll%

+ 2¢[|U|I%, + € Upll%,.

Here for the 2nd line we have used Cauchy-Schwarz, so that fr(x)2|h|3p <
C'||hllys.2, as well as the elementary inequality 2ab < ea? + ¢~ 1b2.
Now for small enough ¢,, we certainly have ||Ul|;2 < 1 and ||¢ylly12 < 1, so lower

powers dominate. Using Proposition 4.2 then gives
Cl 00l 12 < V-l + €lUNZ + C©) (I9ul3z + 1Ul1% ) - (4.13)
Since

1U1Z, < 1UpllZ2 + I1RIIZ: + 11122 < 1Ul12, + C(||¢U||§2 + ||U||§2) + 171122, (4.14)

if we choose € < % then the | U||§2 term may be absorbed into the left-hand side; thus,

U2, < c(|||er|§,||L1 +lglZn: + ||U0||§z). (4.15)
|

Remark 4.5. Proposition 4.4 is analogous to [5, Proposition 4.47] and to [3, Proposition
2.1]. Indeed, following the cutoff and rotation method we use in the proof of Theorem
5.1 below, or in [10, Theorem 7.1], yields a corresponding estimate by |V'z| and ¢ for

graphs over a (sufficiently large) subdomain.

4.3 Estimates by ¢

We now observe as in [5] that the shrinker quantity ¢ controls the auxiliary quantity
vir, toa degree consistent with a 2nd-order obstruction.

First, we need a PDE estimate proven by Colding—Minicozzi [5]:

Proposition 4.6 ([5]). Let I' = I' x R" ¥, where I' is a round shrinking sphere or an

Abresch-Langer curve. There exist § > 0 and C = C(||U||z3) so that whenever |Ul|2 < §,
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we have

var&lescKﬂPmul+n¢UnW11+n¢Un@u). (4.16)

Proof. Since U is compactly supported, we may apply [5, Theorem 2.2] to Ty

(with ¢+ = 1). The desired estimate follows immediately after using the identity
ViH = —JAT,X;) — Vit (cf. [5, Proof of Theorem 7.4]) and that A, |H|~! and |VH]
are uniformly bounded. u

Second, we have the following Taylor expansion estimate for P:

Proposition 4.7. LetT =TI x R" ¥, where I' is a round shrinking sphere or an Abresch-

Langer curve. There exist C, C, so that for any « € (0, 1], we have

6

1Pyl = C (I, + 165157 ) + ClUIL Iy lze + Cldy ..

Proof. The case of round cylinders was proven in [5, Proposition 6.1], and the proof for
Abresch-Langer cylinders proceeds exactly the same way. For the readers’ convenience,
we emphasise the corresponding ingredients:

Set P(s) = P(p,sU,sVU,sV2U); then P(0) = 0 and Lemma 3.4 and Proposition 3.6
imply that P’(0) = 0 and

P"(0)] < C(x)*|hIy (113 + |hl),
respectively. Lemma 4.1 then gives the Taylor expansion estimate
Pyl < Cx)2[RIy (11, + Rl + Cx)°|UL.

The proof now follows as in [5, Proposition 6.1], using Corollary 2.2 to estimate

the J terms and Proposition 4.2 for the h, U terms. [ |
We may now prove the main estimate for entire graphs:

Theorem 4.8. LetT =TI x R" ¥, where I' is a round shrinking sphere or an Abresch-

Langer curve. There exists ¢; > 0 such that if « € (0,1] and U is a compactly supported
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16 J.J.Zhu
normal vector field on I' with ||U||ss < €y, then

6

1012 =€) (1Uol + Igyllwer + I6ulidz + I9g157)., (4.17)
where Uy = i, (V).

Proof. Combining Propositions 4.4, 4.6, and 4.7 and noting that lower powers domi-

nate, we find that

6

U2, < cm(nwiz + 1 Ulzlloylzz + 16yloz + ¢yl + llégl e + ||U0||§2). (4.18)

Using the elementary inequality 2ab < ea? + ¢~'b? on the 2nd term on the right and

absorbing the resulting ||U||;2> terms into the left-hand side gives the result. [ |

5 Lojasiewicz Inequalities via t

In this section, we conclude the %.ojasiewicz inequalities from the main estimate
Theorem 4.8, using the rotation and cutoff procedure in [10, Section 7]. For convenience

set 8 := R" e F*/4,

Theorem 5.1. Let I" be a round shrinking sphere or an Abresch-Langer curve.
There exists €, > 0 so that for any €;, A, C; there exist Ry, [, such that if [ > [,,
£" C RY has A(Z) < Ay and
(1) for some R > R, we have that By N X is the graph of a normal field U over
some CYlindeI‘ in Cn(f‘) Wlth ”U”CS(BR) < 62 and ||U||L2(BR) < Ez/R;
(2) |VIA| < Cj onBgNXforallj<l
then there is a cylinder T Cn(f) and a compactly supported normal vector field V over

I with | V| sz« < €;, such that ¥ N Bg_g is contained in the graph of V, and

4 2
vz, <c (||U||L§” I3 g, + 1017505, + 3;1_5) :

where C = C(n,l,Cj, Ay, €;) and q; /' 1 asl — oo.

Proof. Let aq; := aq;,, be the exponent from interpolation (see Appendix A). Follow-
ing precisely the proof of [10, Theorem 7.1], except using Theorem 4.8 in place of
[10, Theorem 5.8] yields a vector field V, supported on I' N Bz_5 and such that X N Bg_g4
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is contained in the graph of V, satisfying the estimate

1V1Z < (I, (D12 + I9yllwes + lgylZn. + ||¢V||3+K), (5.1)

where the rotation part satisfies

2 2
i, Mz < C(I128L5, + NV + 855 + 85 s)- 5.2)

Moreover, for any s € [1, 2] we have the cutoff estimate

||¢V||is = ”?b”iS(BR) + C(s)dg_s, (5.3)

Using interpolation on the ¢, terms in (5.1) and then the cutoff estimate, we have

4 2 4
V12, = C(IgI35L,, + 83, + NTIS! + 53 _s)
2a; 2az 3+K 3i<
+ C(IBIE g + Ss + D125 + 5% + 191555, +0575).  (6.4)

We take « so that % > a;. Then since lower powers dominate, we have

4 2
IVIZ = C (1T + I ) + 1612005 +65s) - (5.5)
|

Proof of Theorem 1.1. Apply Theorem 5.1 and note that ||U||4al is dominated by the

exponential error term for large enough . |

Proof of Theorem 1.2. Let V,T be as given by Theorem 1.1. Exactly as in the proof of
[10, Theorem 1.4], we have

3
IF(Ty) —F(D)| < CligyllZ + VI3, (5.6)

and |F(X) — F(I'y)| < C8z_g. Consider I large enough so that a; > % The conclusion of
Theorem 1.1 together with Holder's inequality imply that

3a; 3aq;

IVIE, = (1912 +38:5).
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18 J.J.Zhu

Using the cutoff estimate (5.3) and collecting dominant terms, we conclude that

3aq;

IF(2) = F(D)| = (1913 +95s). 5.7

Remark 5.2. If in addition to the hypotheses of Theorem 1.1 one also has |¢|;2 <

e~R/4, then arguing as in the proof of [10, Theorem 7.2] we obtain

2 _5\2
i <c (e“”i (R — 5 g~ ) . (5.8)

Since I may be chosen so that g; is arbitrarily close to 1, this gives an alternative proof
of [10, Theorem 7.2], and hence of [10, Theorems 1.1 and 1.2] for the special cases where

' is a round cylinder or an Abresch-Langer cylinder.

A Interpolation

Here we recall some interpolation inequalities; see also [10, Appendix A] and [3,
Appendix B]. In this appendix, L? refers to unweighted space, with L} the p-weighted

space.

Lemma A.1. There exists C = C(m,j,n) so that if u is a C™ function on B}, then for

. . _ m_j
J < m, setting Amjn = min WE have

. . _ . a . l_a .
PV Ul s, = € (Pl s, + P Il 19wl grs™)

The lemma above also holds for tensor quantities on a manifold with uniformly
bounded geometry. Define M; = IV u|| Lo@Bg)- 1t follows that on a generalised cylinder
I' = I'* x R"*, for large enough R

. amJ,n
1) <C(m,]j, n,p,MO,Mm)||u||Lg(BR). (A.1)
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