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Abstract

Sea spray is a significant global aerosol source with impacts on marine cloud formation and
climate. The physical properties and atmospheric fate of sea spray aerosol depend on its
chemical composition, but the current understanding of the sources and composition marine
aerosol or sea spray aerosol composition remains limited particularly for the smallest aerosol.
The composition of ultrafine (< 100 nm diameter) sea spray aerosol (SSA) particles controls the
critical diameter for activation to cloud droplets. This study presents online measurements of sea
salt and organic mass fractions in ultrafine sea spray aerosol measured during the Sea Spray
Chemistry and Particle Evolution (SeaSCAPE) experiment conducted in summer 2019 at Scripps
Institution of Oceanography. Primary sea spray aerosol particles were generated in a wave flume
mesocosm study with coastal seawater obtained from Scripps Pier in San Diego, CA. Ultrafine
particle composition measurements were performed using the Thermal Desorption Chemical
Ionization Mass Spectrometer (TDCIMS). Trends in inorganic and organic fractions show
dependence on the biological activity of the ocean water, where heterotrophic bacteria
concentrations were correlated with organic mass fraction of ultrafine sea spray aerosol. At low
phytoplankton concentrations, ultrafine sea spray particles were mainly composed of inorganic
salts. Characteristic positive ion fragments indicate influence from polysaccharides and fatty
acids likely of bacterial origin in the smallest sizes. In contrast, polysaccharide and fatty acid
species were below detection levels in TDCIMS measurements of larger sea spray aerosol
(~100-200 nm). Comparisons with submicron aerosol composition measured by an Aerosol Mass
Spectrometer (AMS) showed high correlation between AMS and general TDCIMS organic

fractions but anti-correlation between measured, individual TDCIMS organics. These results
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suggest biological drivers for inorganic and organic aerosol composition and a strong size

dependence on the organic composition of nascent sea spray, consistent with previous findings.

1. Introduction

Atmospheric aerosol plays a critical role in the Earth’s radiative budget but remain the
single largest source of uncertainty in models estimating potential changes in radiative
forcing.!> The atmospheric impacts of particles are dependent upon multiple factors
including composition, size, and number concentration, which can all affect their ability to
serve as cloud condensation nuclei (CCN).>> Sea spray aerosol (SSA) are an important
contributor to total aerosol mass globally.®” SSA can activate into cloud droplets, which have
been shown to potentially change the albedo of marine boundary layer clouds by as much as
30%.% The composition of SSA, especially the sea salt component, impacts the ability to
serve as cloud droplets, due to the hygroscopicity of these chemical components.” It is
important to understand the processes that control SSA production and composition because

of the significant role of it plays in Earth’s radiative budget.!”

Sea spray aerosol (SSA) is produced via physical ejection of sea spray droplets produced
by bubble-bursting.”!'"!* Two major mechanisms for SSA formation occur during bubble
bursting. Submicron particles are mainly produced through the rupture of film droplets,
which contain surface-active molecules such as aliphatic organics that are enriched in the sea
surface microlayer relative to bulk seawater.'*"'¢ Supermicron particles are understood to be
formed via jet droplets that often closely reflect the composition of bulk seawater, composed
of sea salt with dissolved organic species and potentially large fragments from organisms.

Submicron SSA composition, especially in the sub-100 nm size range, is of particular
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importance as the chemical composition within this size range directly affects the particles’

ability to form a cloud droplet and nucleate as a CCN.°

Both field and laboratory studies have been performed in an effort to determine the
composition of ultrafine SSA, but each pose unique challenges. Prior work has established
that freshly emitted SSA undergoes rapid chemical changes under ambient conditions due to
the uptake of acidic gases, water loss, and other aging processes, with results from field
measurements suggesting a change in pH could take place over timescales ranging from
minutes to hours.!”!® Field measurements represent a non-controlled environment, where
measurements of SSA composition are often limited to remote regions with little
anthropogenic influence.” Even within this location restriction, sampling of freshly emitted,
SSA is extremely difficult and essentially no ambient measurements can provide information
on nascent SSA. There is a substantial amount of previous work that supports the view that
SSA contains marine biogenic organics.!”?? As a result, there is still uncertainty as to the
extent of the influence that marine biological activity has on SSA organic composition and
the size-dependence of particle composition.'*!?* Additionally, commonly utilized
laboratory techniques to produce SSA do not appropriately mimic the production of SSA,
and thus the particle physicochemical properties are not representative of those in the real

world.?

This study focuses on online measurements of ultrafine nascent sea spray aerosol using
the Thermal Desorption Chemical Ionization Mass Spectrometer (TDCIMS) and reports
trends in the inorganic and organic composition during the Sea Spray and Particle Evolution
experiment (SeaSCAPE).?* Utilizing the wave channel located in the Hydraulics Laboratory

at Scripps Institution of Oceanography, this experiment simulated the coastal marine air-sea
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interface in a laboratory setting by inducing phytoplankton blooms in collected seawater to
mimic marine biological activity and inducing regular wave-breaking SSA formation. This
study investigates the trends in inorganic and organic composition of ultrafine sea spray
aerosol and potential connections to biological activity. Additionally, TDCIMS
measurements of the integrated, sub-200 nm nascent aerosol and complementary
composition measurements of submicron non-refractory aerosol from an Aerosol Mass
Spectrometer (AMS) allow further insights into the size-resolved composition of submicron

SSA.

2. Methods

a. SeaSCAPE campaign and sampling configuration

The Sea Spray Chemistry and Particle Evolution (SeaSCAPE) experiment was conducted
at the Scripps Institution of Oceanography in the summer of 2019. This experiment utilized a
sealed, 11,800 L wave channel filled with coastal Pacific Ocean seawater to mimic the ocean-
atmosphere interface. A mechanical paddle generated waves that broke at an artificial beach to
simulate wave breaking aerosol formation mechanisms and produce realistic SSA. This
experiment was conducted over two months and was divided into three phytoplankton blooms,
each induced by the addition of growth media to promote phytoplankton growth. Further
descriptions of the experiment specifications and schematics, the bloom initiation process,
nutrient information and measurements performed can be found in Sauer et al., 2022. The work
presented herein characterizes ultrafine SSA from the second bloom, which took place from July
13 to July 20, 2019. The second bloom, unlike the later bloom, utilized a 50-pm Nitex mesh filter
directly on the pump while filling the wave flume with seawater which unintentionally damaged

some of the microorganisms present in the seawater. However, this does not necessarily make
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the seawater less representative of the real marine environment, as lysing of phytoplankton cells
may take place naturally due to predation by bacteria and viruses. Nutrients were added two days
after the initial fill of the tank with algae growth media and sodium metasilicate to promote
phytoplankton growth. Taxonomy classification during the field experiment is discussed in more
detail in Sauer et al., 2022. Ultrafine SSA measurements presented herein were measured via

sampling ports located roughly 3 m downstream of the artificial beach.
b. Thermal Desorption Chemical Ionization Mass Spectrometry (TDCIMS)

Ultrafine SSA particle composition was measured using TDCIMS. This instrument has been
described in detail in prior manuscripts.>>” The TDCIMS sampled air from the wave channel
headspace slightly behind the artificial beach where wave breaking occurred . Sample air passed
through unipolar chargers (UPCs) to charge ultrafine SSA via ion diffusion.?® Negatively
charged particles were then size-selected in radial differential mobility analyzers (RDMAs). Two
UPC/RDMA units operated in parallel. Charged, size-selected particles were then
electrostatically deposited onto a Pt wire for a designated amount of time. For this experiment,
ultrafine SSA were collected for one hour to achieve sufficient particle mass collected while
maintaining good temporal resolution. Once the collection was complete, the wire was translated
into the 1on source region where thermal desorption was performed. The wire was resistively
heated over a programmed temperature ramp from about room temperature to a sufficiently high
temperature to volatilize aerosol NaCl (estimated 800 C) over a period of 70 s. Chemical

components of the sampled SSA were desorbed according to their volatilities.

Following desorption, reagent ions reacted with desorbed compounds to form product ions,
which were detected with a time-of-flight mass spectrometer. The reagent ions for negative ion

mode were O2” and (H20)nO;" clusters, and for positive ion mode reagent ions were H3O" and
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larger protonated water clusters. Only one polarity could be observed for a given aerosol sample.
Sampling of SSA during the SeaSCAPE experiment was set for one hour, followed by a one-
hour background, then switching polarities. Background measurements followed the same
sampling procedures as the collections, but without applying a voltage to the Pt wire.
Background signals primarily resulted from gases adsorbed onto the wire and to the walls of the
ion source. For the current study we integrated collection and background ion signals over the
entire desorption period, with exception of the Na* ion described below. Signals reported herein
are background-subtracted signals that are normalized at every point by the average reagent ion
signal to account for changing sensitivity of the instrument as the campaign progressed. Signal
and concentration uncertainties are based on the ion counting variability, calculated as the square

root of the ion count.

c. Quantification of NaCl mass fractions and organic ion mass fractions

1. Quantification of Inorganic Mass Fractions

Quantification of NaCl mass fraction in SSA was performed using overnight data for
each of the 8 days of the second bloom. Overnight particle populations were relatively stable in
comparison to daytime, enabling accurate estimations of collected particulate mass. We
hypothesize this variability during the day due to changing temperature and flume conditions.
Collected mass was calculated using measurements of number-size distributions from a scanning
mobility particle sizer (SMPS), which consisted of a bipolar neutralizer, nano DMA (model
3085; TSI Inc.) and mixing condensation particle sizer (MCPC, model 1720, Brechtel). A
separate, identical MCPC operated in parallel to provide integrated particle number
concentration. Both instruments sampled the exit flow of the TDCIMS inlet, downstream of the

collection filament. For these measurements, the TDCIMS RDMASs were set to 300 V,
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corresponding to a mobility diameter of 25 nm. The physical size distribution of collected
particles depends on the size distribution of particles in the wave channel headspace, since
particles larger than 20 nm in diameter are subject to multiple-charging by the UPC.?° This
physical size distribution was captured by the downstream SMPS equipped with a bipolar

neutralizer.

To estimate sampled particulate mass, we first determined the campaign-averaged, size-
resolved collection efficiency for the range of particle diameters delivered to the TDCIMS
(Figure S1). The uncertainties in collection efficiency and collected particle mass were atypically
high for these measurements due to the low particle concentrations, particularly at the target
sizes. This collection efficiency was then applied to the average size distribution during a
background sampling period to determine the average size distribution of particles collected
during the adjacent sampling period, which we used to determine the volume mean diameter of
sampled particles. Average volume concentration of sampled particles was determined by
multiplying the volume mean diameter by N,;; — Npgck, where N,y and Ny are the average
number concentration of particles measured by the separate MCPC during the adjacent collection
and background periods, respectively. Multiplying the average volume concentration by the
sample flow rate and collection time, and assuming a density of sodium chloride (2.16 g/cm?),

we estimated sampled particulate mass.

Inorganic particulate mass was quantified based on the TDCIMS-derived sodium ion
signal. Na" was the primary ion utilized for quantification purposes, due to the potential
influence from chloride-containing gaseous species or sample volatilization effects on the CI°
integrated signal. Sodium chloride atomized particles were collected to determine the

relationship between measured ion abundance and sample mass. The broad, multiply peaked Na*
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thermogram of collected SSA suggests multiple processes may be responsible for the formation
of Na" ions during desorption (Figure S2). We attribute the first peak in the thermogram to
inorganic Na" from melting NaCl which volatilized after melting, due to its correlation to both
the CINa," ion, which can only be derived from NaCl, and the peak Na" signal of atomized NaCl
particles. We used this peak for quantification. To confirm the validity of this approach, we also
compared thermograms of laboratory atomized NaCl to a sea salt standard (Sigma Aldrich).
Signal integration of the whole thermogram yielded a non-linear relationship between ion
abundance and collected particulate mass (Figure S3). However, the integration of only the mode
associated with the first major desorption peak around 37 s results in an ion abundance-to-
collected mass relationship that is linear and comparable for both NaCl and sea salt atomized
standards. We therefore use this first peak to determine the contribution of NaCl to particulate
mass. Later desorption peaks, after 40 seconds, may be due to direct emission of Na" ions from
the wire via thermal emission. Prior work has shown the potential for the thermal emission of
sodium and potassium ions when corresponding alkali halides were heated on platinum to similar

temperatures found in the TDCIMS.*°

To integrate the first peak in the Na* thermogram, the entire thermogram was modeled as
the sum of five Gaussian distributions using a numerical optimization package (Igor Pro function
optimize m=3, simulated annealing). This process always resulted in a separate Gaussian mode
with a peak at 37 s, as shown in Figure S2. The mass of sampled particulate NaCl in the SSA
was then calculated using calibration data from the first Gaussian mode of the Na' signal from
NaCl atomized standards (Figure S4). This mass of particulate NaCl was divided by the total
sampled SSA particulate mass measured during the same sampling period to obtain the time

series of inorganic mass fractions.
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ii. Quantification of Organic Ion Components in Ultrafine SSA

It was not possible to quantify the majority of organic components present in the ultrafine
SSA. Due to the multitude of species present in the organic portion of the composition, total
mass quantification based on standards is unrealistic. As a result, we report the abundance of
characteristic ions normalized by collected particulate mass. Prior TDCIMS measurements of
ambient marine aerosol have identified, via positive matrix factorization (PMF), characteristic
polysaccharide and fatty acid factors.!” These strongest and most characteristic fragments from
PMF analysis of polysaccharide species, CsHsO," and CeHsOs", and of fatty acid species,
C14H290:", were identified during the SeaSCAPE campaign and used for relative quantification.
Nanocellulose is a useful calibration species for polysaccharides in the TDCIMS!, and we used
it as a standard in this study as well. Assuming these characteristic polysaccharide fragments are
primarily from polysaccharides in the SSA samples, the mass of polysaccharide-like material in

SSA can be estimated (Figure S5).

While polysaccharide and fatty acid components may comprise a significant portion of
organic nascent aerosol, it is important to note that there are other organic species present in sea
spray aerosol that the TDCIMS is less sensitive to. For example, the TDCIMS has poor
sensitivity to humic-like substances, which have been previously found to contribute to primary
marine organic aerosol.!”3!733 One likely reason for this is the complex, irregular structure of
such substances, which result in a broad distribution of ions in the TDCIMS. Other complex
biogenic molecules may be similarly difficult to detect. Organic analysis herein focuses on

TDCIMS-sensitive organic components.

iii. Quantification of Sub-200 nm SSA Organic lon Fractions
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In order to compare the composition of ultrafine SSA and larger submicron (100-200 nm)
particles, measurements of the latter were made every morning during bloom 2. The sampling
approach is the same to that of the TDCIMS ultrafine particle collection approach noted above,
but the RDMA voltage was increased to 1100 V and the sampling time was shortened to 1 min.
While this voltage corresponds to a 50 nm mobility diameter, multiple charging and a size
distribution centered at greater than 100 nm resulted in particles of 100-200 nm dominating the
sample mass. Since the TDCIMS downstream SMPS could not measure the full range of particle
sizes collected, a different approach was taken to determine particulate mass collected as
required for the calculation of ion fractions. Assuming that the majority of particulate mass
collected at larger particle sizes is inorganic sea salt, which is dominated by NaCl and
quantifiable by the Na" ion, we calculate sample mass based on the abundance of this ion using

the same method described above.
d. Complementary aerosol and biological seawater measurements

The chemical composition of submicron non-refractory aerosol was measured by high
resolution time-of-flight aerosol mass spectrometry (HR-TOF-AMS; Aerodyne Research Inc.).>*
Dry nascent SSA size distributions (dm = 13.8 — 723.4 nm) were measured from the wave
channel headspace using an SMPS equipped with an X-ray neutralizer (TSI Inc, Classifier 3080,
DMA 3081, WCPC 3787). Details of the SMPS and AMS operation during SeaSCAPE are
described elsewhere.>*Measurements of the taxonomic composition of bulk seawater utilized
whole seawater sampling with viable cell enumeration using confocal microscopy and iz vivo
chlorophyll a concentrations were continuously measured via an Environmental Sample
Processor during the experiment.?* Bulk seawater samples collected daily utilized 16S and 18S

rDNA amplicon sequencing to measure the microbial and chemical composition as the bloom
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progressed.®® This sequencing allows for the understanding of the progression of various

bacterial classes.
e. Principal component analysis

Principal component analysis (PCA) was performed with the “princomp” function of the
R statistical software package (R,2011) similar to the approach explained in Glicker et al. (2019).
This analysis included key polysaccharide and fatty acid TDCIMS positive ion signal fractions,
as well as TDCIMS-measured NaCl Fraction, AMS chloride and organic fractions, total
heterotrophic cell concentration and sub-700 nm integrated particle number from size

distribution measurements.

3. Results and Discussion

a. Inorganic Mass Fraction

During the second bloom, the average integrated number concentration of sub-100 nm
diameter particles during overnight collections was 99 + 22 particles/cm®. The TDCIMS sampled
SSA with a volume mean diameter of ~40 nm (Figure 1). Given the low particle concentrations,
sample masses were typically within the range of 150-400 pg after one-hour collections (Fig.

S4). SSA particle size distributions associated with the early bloom, prior to July 16", 2019,
show generally lower number concentrations of sub-100 nm particles, but have a similar
characteristic distribution compared to later bloom size distributions. We considered the
possibility that background contamination particles could affect the calculated mass
measurements. In comparing the average nightly distributions during the early and late periods of
the blooms, the late bloom aerosol concentration is enhanced, on average, a factor of 1.7 = 0.2

for every size bin, making this amplification of particle number uniform throughout all particle



273 diameters measured (Figure S6). From this we conclude that there is not likely any bias caused
274 by background particles, and that concentration changes result from processes occurring in the

275  wave flume.
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Figure 1: The particle size distribution of nascent sea spray aerosol during bloom 2 of the
SeaSCAPE campaign. The volume mean diameter of particles collected (black crosses) is
approximately 40 nm. As noted in the methods section c.i., the difference between
background CPC and collection CPC counts, on the bottom plot, with the volume mean
diameter were used to estimate mass of collected particles. Background CPC counts are
associated with particle counts when there is no voltage applied to the TDCIMS Pt wire,
whereas collection CPC counts are associated to the particle counts when a voltage is
applied.

276

277 To obtain the inorganic mass fraction, the calculated NaCl mass was divided at each

278  overnight collection by the total sample mass of particles as described above. The trend in time
279  series of the inorganic fraction is shown in Figure 2. The inorganic fraction reported is the

280 fraction of only NaCl, as any other seawater salts are expected to contribute only a small fraction

281  to the mass compared with the uncertainty of these measurements.>” The main source of
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uncertainty in mass fraction is due to the uncertainties associated with the size-resolved
collection efficiency of the TDCIMS (Figure S1). Especially at small mass loadings like those
measured in this study, the particulate mass estimated is sensitive to slight changes in collected
average volume mean diameter, with the largest size-dependent collection efficiency uncertainty
of +/- 20% for 40 nm sampled particles. Early bloom 2 has relatively low inorganic fractions
and, as the bloom progresses, the inorganic mass fraction increases. Samples with low inorganic
mass are assumed to have correspondingly high organic fractions, as we are unable to quantify

organic mass directly using calibrations.
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Figure 2: Inorganic mass fraction (vertical, dark gray bars) measured from sodium chloride during bloom 2.
The black dashed line denotes a fraction of 1. Shaded blue regions are measured total heterotrophic cell
concentration in cells/L and shaded green regions are measured chlorophyll a concentration in ug/L.
Organic fraction was highest during the first two days of the bloom (Figure 2). This
coincides with peak biological activity as determined by total concentration of viable cells. At

the start of this bloom, over-filtered water was utilized which led to the lysing of cells, eventually

leading to a decrease in cell concentration three days into the bloom. Neither bulk seawater nor
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the sea surface microlayer was otherwise affected by this filtration. As the living cells died by
July 16", inorganic fraction began to peak. The higher biological activity earlier may have
corresponded with higher seawater concentrations of organics that preferentially contributed to
SSA. These similar results of the relationship between biological activity and organic fraction

have been previously observed in O’Dowd et al. (2004) and Prather et al. (2013).
b. Organic fraction of sub-100 nm nascent sea spray particles

Insights into organic composition can be obtained from the variety of ions detected by
TDCIMS. From prior TDCIMS measurements of marine aerosol, various fragments were
identified belonging to a few key organic sources.!? In this prior work, Lawler et al. used positive
matrix factorization (PMF) to identify five characteristic organic types in filter-sampled marine
aerosol collected over the North Atlantic. These factors correspond to polysaccharides,
recalcitrant organics, fatty acids, and two types of oxidized secondary organics. For the present
measurements of nascent sea spray aerosol, where secondary chemistry was assumed to be
negligible, the dominant and most characteristic peaks of the polysaccharide and fatty acid

factors were expected to be most abundant in these SeaSCAPE measurements.

Biogenic polysaccharides have been found to contribute to the composition of marine
aerosol, where marine phytoplankton produce polysaccharides that contribute to the organic
carbon pool.'”* Figure 3 shows plots of mass-normalized ion abundance of two polysaccharides
and one fatty acid ions that were major ions in the corresponding PMF factors. No attempt was
made to calibrate for fatty acids or recalcitrant organic compounds; however, by normalizing by
sample mass we are able to investigate relative changes in these species during the course of the
campaign. As stated previously, polysaccharidal material was characterized by the positive ion

fragments CsHsO>" and C¢HsOs3". Polysaccharide mass estimates were quantified using
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laboratory standards and peak mass from these species was roughly 200 pg (Figure S5).
Polysaccharide mass fractions for ultrafine sea spray aerosol were quantified and suggest
contributions ranging for <1% to as much as 60% of the total mass, as shown in Figure S5.
These estimates are upper bounds since other chemical species could result in these ion
fragments. Polysaccharides have been previously measured in laboratory sea spray aerosol
samples and in ambient marine aerosol and suggest a similar wide range of impact on particle
composition.!**%4! The link between the enrichment of polysaccharides in sea spray aerosol and

marine bacteria has been observed*? and is explored further in section D of the results.
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Figure 3: Time series of the organic ion abundance of CsHsO,", CsHsO3" and Ci4H200," mass
normalized by the total mass of particles collected. CsHsO," and C¢HsOs" are identified as
polysaccharide tracers and Ci4H200;" is a fatty acid. Error bars are propagated from uncertainties in
TDCIMS ion abundance and sample mass measurements.
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The ion C14H290;" is linked to fatty acid contribution, namely from myristic acid and
other aliphatic fragments. Other, smaller, hydrocarbon fragments were additionally measured
during the second bloom. Fatty acids have been previously measured in marine aerosol, largely
attributed to lipase enzymatic activity of lipid constituents and other marine biota.!>*~4¢ The
peak in fatty acid contribution mirrored that of polysaccharidal species. Trends in these species
over bloom 2 were similar to those of the inorganic mass fraction, peaking towards the second
half of the bloom. While these species were present throughout the whole campaign, the peak in
mass-normalized ion abundance was unexpected as the organic fraction of ultrafine nascent sea
spray aerosol peaked within the first two days. This indicates that, when the inorganic
contribution to sub-100 nm sea spray aerosol was largest, the polysaccharides and fatty acids
were at their highest levels. The explanation of this observed trend could be linked to the
generally lower total sub-100 nm particulate mass collected for the first two days of the
campaign (Figure S4). With lower total particulate mass collected, the masses of these individual
polysaccharide or fatty acid species may be smaller, even with a more dominant organic fraction.
Even though a smaller mass of particles was collected early in the measurement time, since a larger

fraction of those particles were organic in nature, these polysaccharide or fatty acid species would be

measured if they were readily available. It is important to reiterate that, during the times of peak
organic ultrafine SSA fraction, the mass-normalized abundance of the corresponding ions above
were low. During the first half of the bloom, the TDCIMS-detected organics were relatively low,
signifying that the dominant organics in ultrafine SSA were organics that the TDCIMS is not
sensitive to. These species present during the highest organic fraction time may be humic-like
substances or other complex biogenic molecules, as these species lead to a broad distribution of

ions in the TDCIMS. However, the observed trend of these polysaccharide and fatty acid species
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could also be influenced by the organic enrichment, as noted in the chlorophyll a concentrations,

during the second half of bloom.

c. Organic fraction 100-200 nm diameter nascent sea spray particles

In an effort to gain insight into size-dependent particle composition, the organic
constituents of TDCIMS-analyzed 100-200 nm aerosol can be compared to the ultrafine
composition detailed above. Early morning 100-200 nm measurements during bloom 2 had
significantly larger total mass collected, as estimated using collected NaCl mass. The average
collected NaCl mass during the 1-minute collections was 1300 + 260 pg. Given this approach for
estimating sample mass, this would likely underestimate total particulate mass, but still suggests
a drastic increase to the total collected mass when compared to 1 hour collections of sub-60 nm

particles.

Figure 4 shows the mass-normalized time series of the three most important identified
organic components for both the sub-100 nm and 100-200 nm diameter particles. Across all
these fragments, there were significantly smaller organic mass-normalized ion abundances for
these larger particles and no real peaks in the mass spectra for these species, even given the
larger, underestimated total mass of 100-200 nm collected particle samples that would likely
over-predict mass-normalized ion abundance,. This suggests a significant size-dependence in the
particle composition for these compounds detected by the TDCIMS. Previous work has generally
noted that along with a decrease in diameter there is an increase in the organic composition of

sea spray aerosol.*’

However, TDCIMS measurements of the same organic ion fragments for
these two different particle size populations show that there is a size-resolved impact on the

organic composition and types of organics present. Fatty acid species and polysaccharide species
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Figure 4: Sub-100 nm (black) and 100-200 nm (red) diameter mass-normalized organic ion signals
for three characteristic primary organic fragments, CsHsO,", CsHsO3" and Ci4H290,". While fatty
acid and polysaccharide species were a significant component of TDCIMS measured species in sub-
100 nm particles, these organic fragments were significantly lower in the integrated sub-200 nm
aerosol population.

375

376 To evaluate potential sources and contributions to both the inorganic and organic

377 fractions, TDCIMS-measured inorganic and organic fractions were compared to AMS-

378 derived mass fractions via Principal Component Analysis (PCA). Figure 5 shows the results
379 of this analysis. Tightly correlated species, like TDCIMS NacCl fraction and AMS Chloride
380 fraction, are represented by a large aspect ratio of the displayed ellipse. Such correlations
381 may denote similar sources, as these two fractions from each measurement are from

382 inorganic salts present in SSA. Additionally, the strong correlation between TDCIMS and

383 AMS inorganic fractions and sub-700 nm integrated number indicates there is a strong
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relationship between the inorganic salt contribution and presence of sea spray aerosol across
TDCIMS and AMS aerosol size populations. However, the AMS organic fraction is anti-
correlated with most TDCIMS-sensitive organic species individually but correlated with the
overall organic fraction of sub-100 nm particles as determined by the subtraction of the
measured inorganic fraction as described above. The correlation between the TDCIMS and
AMS organic fractions suggest that broader influences of organics may impact different
particle size populations similarly, like the general trend in biological activity, but the anti-
correlation between individual TDCIMS organics suggests that the organic composition is
chemically different between these groups. This idea is reinforced by the direct comparisons
of TDCIMS-measured organics in sub-100 nm and 100-200 nm samples. The TDCIMS
measurements of 100-200 nm diameter particles would likely be associated with the smallest
sizes measured by the AMS, so AMS mass fractions analyzed here would be largely
represented by larger TDCIMS-analyzed particles. In the comparison of these three size
populations, sub-100 nm particles seem to have a unique organic chemical composition,
comprised of polysaccharides and fatty acids. This is not observed in sea spray aerosol

particles greater than 100 nm in diameter.
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Figure 5: Principal component analysis (PCA) of TDCIMS organic and inorganic fractions,
AMS organic and inorganic fraction, heterotrophic cell concentration in ug/L and sub
700 nm integrated particles number data. Polysaccharide lon Fraction is the average ion
fraction of CsHsO," and Ce¢HsOs* for ultrafine nascent particles and Fatty Acid lon fraction
is the average ion fraction of C14H,90," in ultrafine nascent particles. Species shown are
ordered with decreasing correlation to the first principal component, from the top to
the bottom. The darker blue, narrower positive slope ellipse notes stronger correlation
and the darker red, narrower negative slope ellipse notes stronger anti-correlation.

TDCIMS Organic Fraction

d. Potential biological influence and implications

The potential relationship between sea spray aerosol and seawater biology has been evaluated
in numerous studies.!**%*® TDCIMS-measured organics in sub-100 nm sea spray aerosol may be

linked to the presence of various classes of bacteria present during the bloom progression. The
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presence of bacteria connected to polysaccharide-producing and degrading enzymes, noted in
Figure S5, showed a similar trend in relative abundance.*®*’ Marine bacteria have been shown to
have an effect on saccharide enrichment in sea spray aerosol.*>*° Certain strains of heterotrophic
bacteria, like those investigated in Figure S5, directly impact the composition and size of
saccharides present in seawater, thus impacting the sea spray aerosol composition.**° These
bacteria thrive in the presence of various algal-polysaccharides that are typically found in marine
environments and are critical in the degradation of intact cell-wall polysaccharides. Therefore, as
the bloom progressed, leading to the increase in abundance of these polysaccharide-related
bacteria, this may have led to an increase in the mass-normalized organic ion signal for these two
polysaccharide species. The fatty acid component of organic composition may be linked to
lipase-producing bacteria. While the lipase activity leading to the production of free fatty acids
can vary depending on the bacterial species and organic medium, previous work has investigated
the lipid degradation rate for marine lipase-producing bacteria in a triglyceride-enriched medium
to simulate marine environments. ' Results of that work showed that free fatty acids began to
appear via lipase enzymatic reactions from tripalmitate after 19 hours. As free fatty acids are
produced via lipase activity over the timescale of several hours, it seems that the sub-100 nm
particulate composition may be influenced in a similar manner. While initial attempts to directly
connect the ultrafine nascent aerosol composition to biological activity can only be achieved
with this work, additional work in the future can help elucidate the complex connection between

particle composition and marine biological activity.
4. Conclusions

The inorganic mass fraction and some organic components of ultrafine sea spray aerosol

were measured during the 2019 SeaSCAPE experiment at the Scripps Institution of
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Oceanography. The inorganic component dominated the mass fraction of ultrafine particles at
times of low phytoplankton activity. During times of higher biological activity as determined by
the total sea water cell count, the organic fraction dominated, but inorganic sodium chloride was
still present. The TDCIMS was not very sensitive to the organic components present during high
organic mass fraction periods, indicating that these organics could be humic-like substances or
other complex organic compounds that are not sensitively detected by TDCIMS. Clear fatty acid
and polysaccharide signals were only measured in the ultrafine size range, despite greater sample
mass for 100-200 nm particles. These measurements are the first to compare these two SSA
particle size populations using the TDCIMS technique, and showed that the organic composition
of ultrafine particles differs greatly from only modestly larger particles, despite both being film
drop-generated. Similar trends in both organic and inorganic fractions were observed for both
TDCIMS- and AMS-measured SSA, but TDCIMS results suggest that different organic species
influence the composition of the two particle populations. As the composition directly impacts
particle physicochemical properties and ultimately atmospheric fate, more work is needed to
understand the composition of ultrafine SSA produced during times of both high and low
biological activity. The fate of inorganic ultrafine particles would inherently be different than

organic ultrafine particles, thus leading to different aging processes and CCN formation.

Associated Content

Supporting Information

Collection efficiency of ultrafine particles via TDCIMS measurements (Figure S1), Gaussian
parameterized desorption analysis for sodium chloride (Figure S2), non-linear vs linear fits for
Na+ signal using Gaussian parametrization (Figure S3), estimated total mass of particles

collected and estimated mass of sodium chloride (Figure S4), estimated mass of polysaccharide
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species and polysaccharide mass fractions (Figure S5), size distributions at different parts of the

campaign measurements to rule out background influence (Figure S6)
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