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.ABSTRACT.: Activation of peracetic acid (PAA) with iron species /~ Peracetic acid-Fe(lll)-Picolinic acid (PICA) N
is an emerging advanced oxidation process (AOP). This study

investigates the use of the chelating agent picolinic acid (PICA) to Initial pH 7.0

extend the pH range and enhance the performance of the PAA— CH,C(O)OOH * Fe(lll)-PICA M T

Fe(III) AOP. Compared to the PAA—Fe(III) system, the PAA— . .
Fe(III)—PICA system degrades various micropollutants (MPs: ||High-valent iron species _— ¥ S
methylene blue, naproxen, sulfamethoxazole, carbamazepine, Fe(V)/Fe(IV) = < g : EFZ;
trimethoprim, diclofenac, and bisphenoI-A) much more rapidly . SR -,
at higher pH, achieving almost complete removal of parent |° Extended pHrange N -

compounds within 10 min. PAA significantly outperforms the |° Enhanced degradation of | LS S
coexistent H,0, and is the key oxidant for rapid compound micropollutants (MPs) 00 20 40 60 8O 100
degradation. Other chelating agents, EDTA, NTA, citric acid, - Time (min) J

proline, and nicotinic acid, could not enhance MP degradation in

the PAA—Fe(III) system, while 2,6-pyridinedicarboxylic acid with a structure similar to PICA moderately enhanced MP degradation.
Experiments with scavengers (tert-butyl alcohol and methyl phenyl sulfoxide) and a probe compound (benzoic acid) confirmed that
high-valent iron species [Fe(IV) and/or Fe(V)], rather than radicals, are the major reactive species contributing to MP degradation.
The oxidation products of methylene blue, naproxen, and sulfamethoxazole by PAA—Fe(III)—PICA were characterized and
supported the proposed mechanism. This work demonstrates that PICA is an effective complexing ligand to assist the Fenton
reaction of PAA by extending the applicable pH range and accelerating the catalytic ability of Fe(III).

KEYWORDS: peracetic acid, picolinic acid, Fenton-like reaction, high-valent iron species, Fe(V)/Fe(IV)

Bl INTRODUCTION Previous research has employed a variety of metals, such as
. . . . Fe(II/I11/VI), Co(II/III), Mn(II/III/IV), Ru(IIIl), and V(IV,

Peracetic acid [PAA, CH;C(O)OOH] is a widely used V(;( t/o ﬁctizfateO(PP/sA 1)6,2032(2,24_31/ szolri( t)heiill F(e ié
oxidant/disinfectant in various industries, including medicine, ’ ) . g ’ .

food processing, textile, and pulp and paper industries.'™* PAA emnronmefltally abundant and 312)en1gn: The Fenton reaction
is also used in municipal wastewater treatment” owing to its was first discovered by Fenton,™ and it haszlz)een applied for
disinfection effectiveness and little formation of toxic by- p olluFion re.mediat‘ion sinc‘e the late 1960s.”" Fenton-related
products compared to the conventional chlorine oxidants.”’ reactions with various qmdants (é'g" H,0, p ersulfatt'e, and
PAA has been applied in full-scale wastewater treatment plants PAA) have be.e o extens1v.e ly stu.ciled, and the forma.tlon of
(WWTPs) in the United States, Canada, and parts of radicals (eg, “OH, HO,", S0, and CH,C(O)O") have
Europe 10512 e global PAA market was worth $650 million been well documented. Moreover, the generation of ferryl
in 2017 and is projected to grow to $1.3 billion by 2026, (Fe'"==0) species especially under high pH conditions has
including a steady annual 8% increase in wastewater treatment been proposed based on the detection of nonhydroxylated

usage.”> More recently, PAA has been studied for the degradation products and the minimal impact of radical
. ) 34,35 .

degradation of harmful micropollutants (MPs) in waste- scavengers. In the F?(IH)_HI%,OZ syster?, ft ha§ been
water. ™25 PAA itself is a highly selective oxidant toward postulated that the generation of Fe''=0 species is derived by

. ° : I_
chemical species with the reported rate constants ranging from the homolytic. O—O bond cleavage in the Fe"-OOH

32 X 107 to >1.0 X 10° M~'s™".*° However, PAA can be

activated by energy or catalysts to generate highly reactive Received: December 5, 2021
species which are capable of efficiently degrading a wide range Revised:  February 14, 2022
of MPs. Previous studies have proposed the formation of Acce}’ted‘ March 10, 2022
radicals, including *OH, CH;C(O)O®, and CH,C(O)0O0*, Published: March 23, 2022
and high-valent metal species in the activated PAA

21,22,27,28
systems.
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complex.”® The formation of Fe(IV) is advantageous because
Fe(IV) is less susceptible to scavengers compared to radicals
such as *OH and thus can have a longer lifetime in waters
containing a variety of constituents to oxidize contaminants.”’

However, the Fenton reactions have several limitations, one
of which is that the solution pH should be maintained below
3.0 to avoid the formation of insoluble, much less reactive
Fe(III) oxides. The acidification of water requires additional
treatment processes to neutralize it before discharge, and it
may cause other problems such as increased solution salinity,
sludge formation, and release of harmful gases of sulfide or
cyanide.**** Chelating agents (CAs) can be used to render Fe
ions soluble at neutral to alkaline pH by forming complexes.
Efficient CAs should have at least two functional groups, such
as NH, and COOH, which can donate a pair of electrons to
the Fe cation. A variety of CAs, such as ethylenediaminetetra-
acetic acid (EDTA),””™*" ethylenediamine-N,N’-disuccinic
acid (EDDS),*"** and protocatechuic acid,” have been
studied for Fenton-related oxidation. CAs can alter the
Fe(IlI)/Fe(Il) reduction potential via the preferential
stabilization of one oxidation state over the other due to
ligand-field effects,***> which can affect the reactivity of the
Fe(III) species with oxidants.”® CAs may also compete with
MPs for the reactive species.**"”

Many different types of pyridine derivatives have been
applied as CAs in the fields of pharmaceuticals, medicine, and
cosmetics; thus, they are frequently detected in waste-
waters.”*” Picolinic acid (2-pyridinecarboxylic acid; PICA),
one of the pyridine derivatives, is an intermediate metabolite of
tryptophan. PICA has been well studied as a bidentate ligand
to form complexes with divalent and trivalent metal ions, such
as Cr, Zn, Mn, Cu, Mo, and Fe.’® PICA includes the nitrogen
atom in the pyridine ring and the oxygen atom in the carboxyl
group, which can participate in the chelation of metal ions.
Yang et al.”' recently reported that PICA can assist in the
reaction of Fe(Ill) with H,0, to degrade atrazine,
sulfamethazine, and substituted phenols at pH S5.5. They
suggested that the °OH radical and intermediate PICA—
Fe(1II)—OOH complex serve as the reactive species to degrade
MPs in the H,0,—Fe(IlI)—PICA system. Their study
motivated us to consider PICA among candidate CAs to
enhance the PAA Fenton system, which has not been
investigated previously.

This study was motivated to investigate whether CAs can
facilitate the PAA—Fe(III) system for the degradation of MPs
in water, especially under higher pH conditions. A variety of
CAs [PICA, nicotinic acid (NA), 2,6-pyridinedicarboxylic acid
(2,6-DCA), proline (PL), EDTA, and citric acid (CIA)] were
investigated for the oxidation of a model compound
(methylene blue, MB) in the PAA—Fe(II) system. As will
be shown later, PICA exhibited the best effectiveness.
Additional study objectives included (i) investigating the
degradation of MB and representative MPs [naproxen (NPX)
and sulfamethoxazole (SMX)] by the PAA—Fe(III)-PICA
system in depth under various reaction conditions (ie.
solution pHs, molar ratios of Fe(IIl) to PAA, and buffers),
(ii) identifying the major reactive species and reaction
mechanism in the PAA—Fe(III)—PICA system by using
scavengers and probe compounds, as well as determining
oxidation products (OPs), and (iii) demonstrating the
application of the PAA—Fe(III)—PICA oxidation process for
the abatement of other MPs of different properties
[carbamazepine (CBZ), trimethoprim (TMP), diclofenac
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(DCF), and bisphenol-A (BPA)] in water and wastewater at
higher pH.

B EXPERIMENTAL SECTION

Chemicals. Sources of chemicals and reagents used in this
study are provided in the Supporting Information Text S1.

Experimental Procedures. The Fe(III)—PICA solutions
with different molar ratios ([Fe(III)]/[PICA] 1.0:0.5—
1.0:4.0) were prepared by adding 10.0 mM ferric sulfate into
the PICA solution at the desired concentrations. The Fe(III)—
PICA solutions were thoroughly mixed for 60 min.

The oxidation of MPs by the PAA—Fe(III)—PICA system
was conducted in a 50 mL amber borosilicate reactor with
magnetic stirring ([PAA], = 100.0—500.0 uM, [Fe(Ill)], =
50.0—400.0 M, [PICA], = 25.0—1000.0 M, [MP], = 15.0
uM). The reaction solution containing the MPs and oxidant
(PAA or H,0,) was first prepared in the glass reactor, and the
initial pH was adjusted by adding a few microliters of NaOH
(1.0 M) and/or H,SO, (1.0 M) into the solution. The
degradation of MPs by PAA alone or H,O, alone was
confirmed to be negligible. Soon, the reaction was initiated by
adding a desired amount of the Fe(III)—PICA solution, and
sample aliquots were taken periodically up to 10 min. The MB
concentration was immediately measured spectrophotometri-
cally at 665 nm (Beckman DU 520 UV—visible spectropho-
tometer, Beckman Coulter, Inc., Fullerton, CA, USA). For
other MPs, sample aliquots were added into vials containing
excess Na,$,0; ([Na,S,05]/[PAA], > 10.0) to quench the
oxidant and stored at S °C prior to analysis. The solution pH
was checked again after the reaction (10 min), and pH
decrease was approximately 0.0—2.3 pH units for the initial pH
3.0—7.0, respectively.

The same reaction procedures were repeated for evaluating
the influence of *OH or high-valent iron species [Fe(V)/
Fe(IV)] with scavengers [50.0 mM tert-butyl alcohol (TBA) or
5.0 mM methyl phenyl sulfoxide (PMSO)], which were added
into the reaction solution before adding the Fe(III)-PICA
solution. The oxidation of PMSO to PMSO, (methyl phenyl
sulfone) was monitored. Benzoic acid (BA) was selected as a
probe compound due to its inertness to Fe(V)/Fe(IV)>* and
investigated for degradation in the PAA—Fe(IIl)—PICA
system. Different CAs (EDTA, CIA, NA, 2,6-DCA, and PL)
and BA were also tested for their effects on degrading MB in
the PAA—Fe(IIl) system and compared with PICA. Control
experiments without Fe(III) and/or CAs were conducted to
assess the degradation of MPs by PAA alone and PAA—
Fe(III). Additionally, the degradation of three MPs (SMX,
TMP, and BPA) was evaluated in the real wastewater sample
(ie., tertiary effluent from a municipal WWTP). The chemical
properties of the MPs and probe compounds used in this study
are provided in Supporting Information Table S1. All
experiments were conducted in duplicate or more.

Analytical Methods. The PAA concentration was
measured by the DPD method."”*® The cumulative Fe(II)
concentrations were determined by the ferrozine method.”"**
The concentrations of MPs were analyzed by high-perform-
ance liquid chromatography (HPLC) with UV detection. The
reaction products were analyzed by HPLC coupled with time-
of-flight high-resolution mass spectrometry (LC-HRMS)
(Agilent Technologies, USA). The detailed methods are
provided in Supporting Information Text S2.
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Figure 1. (A) Structures of CAs used in this study. (B) Effect of different CAs on MB degradation by PAA—Fe(III). (C) Effect of the molar ratios
of Fe(III) to PICA on the degradation of MB by the PAA—Fe(III)—PICA oxidation process (experimental conditions: [MB], = 15.0 uM, [PAA],
= 500.0 uM, [Fe(IIT)], = 50.0 uM, [CA], = 125.0 uM for (A) and (B), [PICA], = 25.0-200.0 iM for (C), initial pH = 5.04 + 0.0, T = 22 + 1

°C).
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Figure 2. Effects of the initial pH on the degradation of MPs [MB (A), NPX (B), and SMX (C)] by PAA—Fe(III)~PICA (experimental
conditions: [MP], = 15.0 uM, [PAA], = 500.0 uM, [Fe(Il)], = 50.0 uM, [PICA], = 125.0 uM, T = 22 = 1 °C).

B RESULTS AND DISCUSSION

PAA—Fe(lll) System with Various CAs. The effects of six
CAs (PICA, NA, 2,6-DCA, PL, EDTA, and CIA, Figure 1A),
as well as BA, on the degradation of MB by the PAA—Fe(III)
system were investigated (Figure 1B), where the [Fe(III)]/
[CA] molar ratio was 1:2.5 (conditions: [MB], = 15.0 uM,
[PAA], = 500.0 uM, [Fe(IIl)], = 50.0 uM, [CA], = 125 uM,
pH = 5.0). Note that the PAA—Fe(III) system without the CA
led to a minimal removal of MB. The initial first-order rate
constant (ki in min~') was obtained from the slope of In C,/
C, versus time during the initial stage of the reaction where the
reaction kinetics could be approximated by pseudo-first-order
kinetics (Supporting Information Table S3). The degradation
% of MB ([MB],emovass) Was also calculated for 10 min of
reaction time.

Based on ki and [MB] o PICA was the most
efficient CA to enhance MB degradation by the PAA—Fe(I1I)
system. PICA has one N atom in the pyridine ring and a
carboxyl substituent at position 2, where N and O donors can
bind with the Fe(III) ion to form a stable five-membered
chelate ring.”>*° The N atom in the pyridine ring has ¢-donor
(and weak z-acceptor) properties, which enhances the
nucleophilicity of the metal center and increases the catalytic
activity of the metal complex.”® Compared to PICA, NA, also
containing the pyridine ring but with the carboxyl substituent
at position 3, showed limited chelating efficiency due to the
fact that N and O atoms are too far apart to chelate the iron
atom. Thus, NA complexation with Fe(III) is likely similar to
that of carboxylates, such as BA. The binding of Fe(IIl) with
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NA or BA showed little effect to improve the catalytic activity
of Fe(III). 2,6-DCA showed lower promoting effect than PICA
but greater than the other ligands. 2,6-DCA contains the
pyridine ring and two carboxyl substituents at positions 2 and
6. It is likely that the electron-withdrawing effect of the
additional carboxyl group at position 6 decreases the electron
density of the ring. PL has the N atom in the pyrrolidine ring
with the carboxyl substituent at position 2, and thus, it can
possibly form a five-membered chelate ring with the iron atom,
and the stability constants of PL for metal com;)lexation have
been reported to be similar to those of PICA.”” Nonetheless,
the impact of PL on promoting MB degradation by the PAA—
Fe(III) system was negligible compared to PICA. EDTA is one
of the aminopolycarboxylic acids and contains two N and four
O donors for coordinating with metal ions. Several studies
have reported that EDTA can form the Fe(III)-EDTA
complex with a high stability constant (log K = 25.1).>*
However, EDTA did not enhance MB degradation by the
PAA—Fe(III) system. CIA including three carboxyl groups and
one hydroxyl group also showed limited impact on the PAA—
Fe(III) oxidation system.

Degradation of MB, NPX, and SMX by the PAA-
Fe(lll)-PICA System. Among the CAs, PICA was the most
efficient to promote the PAA—Fe(IlI) oxidation system and
thus was further investigated. Note that the doses of PAA
(100.0—500.0 uM) are comparable to PAA dosages used in
wastewater disinfection processes.59

Effect of the Fe(lll)-to-PICA Molar Ratio. The effect of the
molar ratios of Fe(III) to PICA on MB degradation in the
PAA—Fe(III)—PICA system was investigated (Figure 1C and

https://doi.org/10.1021/acs.est.1c08311
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Figure 3. Effects of the molar ratio of Fe(III) to PAA (A,B) and buffers (C) on the degradation of MB by the PAA—Fe(III)—PICA oxidation
process (experimental conditions: [MB], = 15.0 uM, [PAA], = 100—500.0 uM, [Fe(III)], = 50.0—400.0 uM [PICA], = 125.0—1000.0 M, initial
pH = 5.04 + 0.05 for (A,B), [MB], = 15.0 uM, [PAA], = 500.0 uM, [Fe(III)], = 50.0 uM, [PICA], = 125.0 uM, initial pH = 7.04 + 0.03, [buffer]

=10 mM for (C), T =22 + 1 °C).

Supporting Information Table S4, conditions: [MB], = 15.0
uM, [PAA], = 500.0 M, [Fe(IID)], = 50.0 uM, [PICA], =
25.0—200.0 uM, initial pH = 5.0). The increase of the
[Fe(II1)]/[PICA] ratio from 1.0:0.5 to 1.0:2.0 led to the
increase in both ki, and [MB]novars [Kinia from (5.01 +
0.46) X 107> to (5.48 + 0.01) X 10~ min™" and [MB],.movars
from 26 to 98%]. The [Fe(IlI)]/[PICA] ratios from 1.0:2.0 to
1.0:3.0 showed similar Ky, values and [MB],emovatse [ (Kinitial =
(548 + 0.01) x 107'—(5.60 + 0.01) X 107! min~' and
[MB]cmovale = 98—100%)]. However, the increase of the
[Fe(11I)]/[PICA] molar ratio up to 1:4 led to a slight decrease
in the k;;;, value [k = from (5.51 + 0.02) X 107" to (4.62
+ 0.00) X 107" min~"']. This result indicates that the optimum
stoichiometry of the Fe(III)—~PICA complex is in the range of
1.0:2.0—1.0:3.0, and PICA can scavenge reactive species when
it is in excess. Indeed, the formation of the 1:2 and 1:3
complexes of Fe(IlI) and PICA [i.e., Fe(PICA),, Fe(PICA)g,
Fe(PICA),OH, and Fe,(PICA),(OH),] was reported.éo’ !
Yang et al.”" also reported similar results showing the highest
degradation rate of atrazine at a [Fe(III)]/[PICA] ratio of
1.0:2.5 by the H,0,—Fe(IIl)-PICA system (conditions:
[atrazine], = 5.0 uM, [H,0,], = 4000.0 uM, [Fe(Ill)], =
35.0 uM, [PICA], = 35.0-350.0 uM, pH = 5.5).

Effect of the Initial pH. The degradation of three MPs (MB,
NPX, and SMX) by the PAA—Fe(Ill)-PICA system was
investigated in the pH range of 3.0—7.0 (Figure 2, conditions:
[MP], = 15.0 uM, [PAA], = 500.0 uM, [Fe(III)], = 50.0 uM,
[PICA], = 125.0 uM). The PAA—Fe(IIl) system without
PICA led to little degradation of these MPs at pH 5.0 (<3%,
data not shown), which is likely due to the formation of
insoluble Fe(IlI) oxides. In contrast, the addition of PICA
significantly enhanced the degradation of MB, NPX, and SMX,
confirming again that PICA is a good CA for promoting the
catalytic ability of Fe(Ill) for PAA. The ki values of MP
degradation by PAA—Fe(III)—PICA were (1.0S + 0.03) X
107'—(6.06 + 0.03) x 107" min~!, (1.84 + 0.24) X 107*—
(4.55 + 0.37) X 107! min™", and (8.50 = 1.04) X 107*—(6.35
+ 0.32) X 107" min~" for MB, NPX and SMX, respectively
(Supporting Information Table SS). The ki values were in
the order pH 5.0—6.0 > pH 7.0 > pH 4.0 > pH 3.0 for MB and
pH 6.0~7.0 > pH 5.0 > pH 4.0 > pH 3.0 for NPX and SMX,
and complete degradation was observed in 10 min at pH 5.0—
6.0 for MB and pH 6.0—7.0 for NPX and SMX.

The initial pH can alter the speciation of both PICA and
MPs. The deprotonated species fraction of NPX (pK, = 4.1)
and SMX (pK, = S5.7) increased (fypx = 0.07—1.00, and
for = 0.00—0.95) from pH 3.0 to 7.0, but MB (pK, < 1.0)
speciation was hardly changed (fyg~ = 1.00). Deprotonated
MPs are more susceptible to oxidation by reactive species;
thus, NPX and SMX were less degraded at acidic pH,
compared to higher pHs. Meanwhile, the ligand can be a
poorer o-donor when it is protonated;®” thus, PICA should
have less ability to form the complex with Fe(III) at acidic pH.
Note that the reported pK, value of PICA is 5.3 for pyridinium
N,*" and Fe(III)—PICA could have a lower pK, when PICA is
bound to Fe(IIl). These can explain the less degradation of
MB, NPX, and SMX at acidic pH, compared to higher pHs.
Meanwhile, PAA speciation is minimally changed in the pH
range of 3.0—7.0 (neutral species fraction of PAA = 1.00—
0.94) and should have limited impact.

Fe(III) can be subjected to the hydrolytic precipitation at
high pH, which can cause target the MPs to adsorb and have
effects on Fe(IlI) complexation with PICA. Note that the
adsorption of MB to the Fe(IIl) precipitates was not
significant, and preequilibration of Fe(Il)—PICA—MB prior
to adding PAA only slightly retarded the initial MB
degradation and had a negligible effect on the overall MB
degradation (Supporting Information Figure S1).

Effect of Coexistent H,O,. The PAA solution contained
about 32% PAA and 5% H,0, (w/w); thus, 185.0 uM H,0,
was present in a 500.0 uM PAA solution. It is important to
note that the degradation of MB, NPX, and SMX by H,0,—
Fe(III)—PICA was much slower than that by PAA—Fe(III)—
PICA (Figure 2, conditions: [MP], = 15.0 uM, [H,0,], =
200.0 1M, [Fe(III)], = 50.0 uM, [PICA], = 125.0 uM, initial
pH = 5.0). This result indicates that H,O, present in the PAA
solution played a minimal role in degrading MPs in the PAA—
Fe(III)—PICA system.

Effects of PAA and Fe(lll) Dosages. MB was selected to
study the effect of the molar ratio of [Fe(Ill)]/[PAA] on
compound degradation by the PAA—Fe(III)—PICA system.
Note that MB was almost completely degraded within 10 min
with [PAA], = 100.0-500.0 M and [Fe(III)], = 50.0—400.0
UM (Figure 3A,B). The effect of PAA dosages (100.0/300.0/
500.0 uM) was investigated at initial pH 5.0 while maintaining
[Fe(TII)], at 50.0 M and [PICA], at 125.0 M (Figure 3A).
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+ 001 T=22+1°C).

The ki, value increased from (2.72 + 0.14) X 107" to (5.60
+ 0.01) X 107! min~' when the PAA concentration was
increased from 100.0 to 500.0 uM (Supporting Information
Table S3). The effect of Fe(III) dosages (50.0/100.0/200.0/
400.0 4M) was investigated at the initial pH 5.0 while fixing
[PAA], at 100.0 uM (Figure 3B). The ka1 value increased
from (2.72 + 0.14) X 107" to (1.20 + 0.12) X 10° min~"! when
the Fe(III) concentration was increased from 50.0 to 400.0 uM
(Supporting Information Table S3). However, the ki, value
was not linearly related to the increase of the Fe(III)
concentration, suggesting that MB degradation was inhibited
at a high concentration of Fe(III), possibly due to the
scavenging of the reactive species by excess Fe(III).

Effects of Water Matrix Constituents. The effects of
chloride (CI7), bicarbonate (HCO;™), and phosphate
(H,PO, /HPO,*") (10 mM) on MB degradation by PAA—
Fe(III)—PICA were investigated at the initial pH 7.0 (Figure
3C). Note that the initial pH was set after adding anions.
Control experiments confirmed that MB was not degraded by
PAA—CI~, PAA—HCO,~, PAA—H,PO,”/HPO,>, Fe(Ill)—
PICA—CI, Fe(IlI)-PICA—HCO,~, and Fe(III)—~PICA—
H,PO,”/HPO,*~ (data not shown). For the PAA—Fe(IIl)—
PICA system, the presence of CI” had little impact on MB
degradation, which agrees well with the minimal influence of
Cl™ on the PAA—Co(II) and PAA—Ru(Ill) reaction
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systems.””*>*> HCO,~ moderately retarded MB degradation
[Kinitial decreasing from (5.60 + 0.01) X 107" to (2.12 + 0.05)
X 107" min™'] and reduced the overall abatement from 90 to
77%. Compared to Cl~ and HCO;~, H,PO,”/HPO,>”
completely inhibited MB degradation by PAA—Fe(III)—
PICA. Previous research showed that HCO,;~, H,PO,”/
HPO,*" significantly inhibited compound degradation by
PAA—Co(II) but minimally influenced the PAA—Ru(II)
and UV—-PAA systems.'>””** The impacts of buffers on
compound degradation by PAA—Fe(III)—PICA are likely due
to their competition with PICA and characteristics in
complexing Fe(Ill); thus, the concentration of free ferric
ions is diminished. Note that the stability constant (log
Kre(um.1,) of Fe(III)—PICA™ is 6.02°" versus 0.61 for Fe(III)—
CI~,% 7.7 for Fe(1lI)—CO;>~,%* ~3.5 for Fe(IlI)-H,PO,~,"
and 10.6 for Fe(Ill)-HPO,>~.°® HCO,” and H,PO,”/
HPO,*™ are expected to have significant competition effect
at the employed buffer concentration (10.0 mM).

Reactive Species in the PAA—Fe(lll)-PICA System. In
the reactions of PAA with Fe(IIl)—PICA, it is likely that the
initial complex of CH,C(O)OO—Fe(III)—PICA is formed (eq
1), which could further decompose to form Fe(IV), Fe(V),
and/or radicals CH;C(O)0O®/CH;C(O)00* (eqs 2—3)
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CH,C(O)OOH + Fe(Il1)-PICA

— CH,C(0)OO0—Fe(IlI)-PICA + H* (1)
CH,C(0)OO—Fe(III)-PICA

— Fe(IV)O-PICA + CH,C(0)O" + H' (2.1)
CH,C(0)OO—Fe(III)-PICA

— Fe(V)O-PICA + CH,C(0)O” (22)
CH,C(0)OO—Fe(III)-PICA

— Fe(1I)-PICA + CH,C(0)0O0O* (3)

First, the contribution of high-valent iron species [Fe(IV)
and Fe(V)] to target MPs’ degradation by PAA—Fe(Ill)—
PICA was evaluated by adding PMSO (conditions: [MPs], =
15.0 uM, [PAA], = 500.0 uM, [Fe(III)], = 50.0 uM, [PICA],
= 125.0 uM, [PMSO], = 5.0 mM, initial pH = 5.0, Figure 4A—
C). The addition of PMSO inhibited the degradation of MPs
by 25.4—47.5%. Moreover, PMSO was degraded over time
with a high conversion yield (76.8%) to PMSO, (Figure 4D).
It is known that high-valent iron species [Fe(IV) and Fe(V)]
can oxidize PMSO to PMSO, via the oxygen atom transfer
reaction (kapp,Fe(IV)/PMSO =258 x 10° M~ 's71),% which is
different from the reaction of radicals with PMSO via one-
electron transfer to §_enerate hydroxylated PMSO and/or
biphenyl compounds.”™ Thus, the PMSO study strongly
suggests that Fe(IV)/Fe(V) are the major reactive species,
rather than radicals.

Among the radicals, the contribution of CH;C(O)O* is
likely limited because CH;C(O)O® when formed can rapidlgr
self-decay to *CH; and CO, (k = (1-2.3) x 10° s7!)"*
leading to a very low concentration of this radical. We used
benzoic acid (BA) as a probe compound to evaluate the
contribution of CH;C(0)0OO0° in the PAA—Fe(III)-PICA
system because high-valent iron species have limited reactivity
toward BA (K re(tv)/pa = 80.0 M~'s7").>* Experiments found
that BA was not degraded by PAA—Fe(III)-PICA (con-
ditions: [BA], = 15.0 uM, [PAA], = 200.0 uM, [Fe(1l)], =
50.0 uM, [PICA], = 125.0 uM, initial pH = 5.0, Supporting
Information Figure S2A). On the other hand, BA was
efficiently degraded by UV—PAA in the presence of TBA
(conditions: [BA], = 40.0 uM, [PAA], = 200.0 uM, [TBA], =
10.0 mM, initial pH = 6.0, Supporting Information Figure
S2B). The UV—PAA system generates CH;C(O)0O0*, CH;C-
(0)0®, and *OH radicals, and adding 10.0 mM TBA efficiently
scavenges *OH and may lower the CH;C(O)OO® concen-
tration.'””” The significant degradation of BA by UV—PAA—
TBA along with the minimal removal of BA by PAA—Fe(III)—
PICA further confirms that the major reactive species are
Fe(IV)/Fe(V), rather than CH;C(O)OO"* radicals.

The potential formation of *OH in the PAA—Fe(II1)—PICA
system should be considered as well owing to the presence of
H,0, (eqs 4—6)

H,0, + Fe(IlI)-PICA — H(O)O—Fe(Ill)-PICA + H*

(4)
H(O)O—Fe(IlI)—PICA — Fe(II)-PICA + HO} (s)
H,O, + Fe(II)—PICA — Fe(IlI)~PICA + *OH + OH~
(6)
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However, the minimal impact of TBA (50.0 mM) on MPs’
removal (Figure 4A—C) confirmed that there was little
contribution of *OH to the degradation of MPs in the
PAA—Fe(II1)—PICA system.

Additionally, other reactions to be considered are described
in eqs 7—15, which may generate certain secondary radicals.

CH,C(O)OOH + CH,C(0)0"°

— CH,C(0)00" + CH,C(O)OH )
CH,C(O)OOH + *OH — CH,C(0)00° + H,0  (s)
CH,C(O)OOH + *OH — HO} + CH,C(O)OH  (9)
CH,C(0)0* — *CH, + CO, (10)
‘CH; + O, —» CH,00" (11)
CH,C(0)0" + CH,C(0)0" — (CH,C(0)0), (12)
CH,C(0)00" — HO} + CH,CO (13)
H,0, + CH,C(0)00° — HO} + CH,C(0)OOH

(14)
H,0, + *OH — HO; + H,0 (15)

However, the secondary radicals, such as HO,*/0,*”, *CH;,
and CH;00° should have minor contributions to MPs’
degradation because of low reactivities (kyo/pps &~ 0—10°
M s keootmps & 10°=107 M~ s7')7% and the rapid
reaction with O, (k'cyy,/0, = 4.1 x 10° M~ s71).7!

The generation of Fe(II) in the PAA—Fe(III)—PICA system
was investigated by determining the cumulative Fe(II)
concentration (conditions: [PAA], = 500.0 uM, [Fe(Ill)], =
50.0 uM, [PICA], = 125.0 uM, [ferrozine], = 300.0 uM, initial
pH = 5.0, Supporting Information Figure S3A). Note that
Fe(II) can be formed via eq 3 and/or eq S in the PAA—
Fe(1II)—PICA system. The cumulative Fe(II) concentration
was only about 1.3 #M within 10 min in PAA—Fe(III)—PICA,
and there was no significant difference in the cumulative Fe(II)
concentration between the PAA—Fe(III)—PICA and the
H,0,—Fe(IlI)—PICA systems ([H,0,], = 200.0 uM, which
was close to the background concentration in the 500.0 uM
PAA solution). These results indicate that Fe(II) formation by
the reaction of Fe(IlI)—PICA with PAA (eq 3) is minimal,
which is different from the H,0,—Fe(III)—PICA system (eq
5), showing the significant formation of Fe(II) as reported
previously.”"

Decay of PAA and H,0, was also monitored in the PAA—
Fe(Il)—PICA system (conditions: [PAA], = 500.0 uM,
[Fe(Ill)], = 50.0 uM, [PICA], = 125.0 uM, initial pH =
5.0, Supporting Information Figure S3B). The PAA loss was
about 20% in 10 min, which was greater than the Fe(III)
concentration. This suggests that PAA can be additionally
consumed by *OH and/or Fe(IV)/Fe(V), which can compete
with the MPs. Meanwhile, H,0, loss in the PAA—Fe(IIl)—
PICA system was minimal (only <1%), confirming that the
reaction of PAA with Fe(III)—PICA significantly outperforms
H,0,.

Abatement of the MPs by PAA—Fe(lll)-PICA. The
degradation of additional four MPs (CBZ, TMP, DCF, and
BPA) and MB, NPX, and SMX by PAA—Fe(III)—PICA was
evaluated at pH 7.0 (conditions: [MPs], = 15.0 uM, [PAA], =
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Figure 5. Degradation of MPs in reagent water (A) and tertiary effluent from a WWTP (B) by the PAA—Fe(III)—PICA oxidation process
(experimental conditions: [MP], = 15.0 uM, [PAA], = 500.0 uM, [Fe(III)], = 50.0 uM, [PICA], = 125.0 M, initial pH = 7.03 + 0.02 for (A), pH
6.51 + 0.06 for (B), T = 25 + 1 °C). MPs: MB-methylene blue, NPX: naproxen, SMX: sulfamethoxazole, CBZ: carbamazepine, TMP:

trimethoprim, DCEF: diclofenac, and BPA : bisphenol-A.

500.0 uM, [Fe(III)], = 50.0 uM, [PICA], = 125.0 uM, initial
pH = 7.0, Figure SA, Supporting Information Tables S5 and
S6). Based on the ki, values and [MP],0va19 at 10 min, the
removal efficiency was in the order SMX ~ BPA ~ MB ~ NPX
> DCF > TMP > CBZ. The rate constants for the reaction of
high-valent iron species with MPs are scarcely reported, but it
is known that Fe(IV) can react with aromatic compounds, such
as phenol, nitrophenols, and nitrobenzene, with a rate constant
of ~10* M™! s7.7> Moreover, it has been reported that
compounds containing aniline, phenolic, and amine groups
have relatively high reactivity with high-valent iron species.”””*
Luo et al.”® also reported the rapid oxidation of amine-
containing compounds by Fe(IV) at pH 9.0 with the estimated
rate constants of 7.9 X 10* 8.3 X 10%, and 1.3 M's™! for SMX,
TMP, and CBZ, respectively. The results in this study also
showed slower degradation of CBZ and relatively faster
degradation of SMX, DCF, TMP, BPA, and MB containing
phenol, aniline, and/or amine moieties.

Additional experiments with NPX, TMP, and BPA in tertiary
wastewater effluent showed >40% of MPs’ removal by PAA—
Fe(III)—PICA (Figure SB). Note that the solution pH of
tertiary wastewater effluent was 6.51, and the concentration of
NH;—N was about 0.5 mg-L™!, that of total-P was 0.03 mg:
L7} and that of TOC was 6.0 mg-L_l.

Oxidation Products. The OPs of three compounds (MB,
NPX, and SMX) in the PAA—Fe(IlI)—PICA system were
identified by LC-HRMS. Supporting Information Table S7 and
Figures S4—S9 show the retention time, accurate masses, ion
fragments, evolution of the products with time, and proposed
structures of the products. Overall, the hydrated products of
three compounds were detected, which could be formed via
electron transfer by high-valent iron species."**’® The
products of MB included OP-M228 and OP-M270 (the
demethylated products), OP-M256 (formed via methyl
cleavage from the dimethylamino groups), and OP-M300
(the hydroxylated product). The detected products of NPX
were OP-N201, OP-N215, and OP-N233 (formed by
demethylation and/or subsequent hydroxylation), and OP-
N185 (generated by decarboxylation and the subsequent f-
elimination reaction). Similar products of MB and NPX have
also been found in the PAA—Fe(Il) system, which was
previously reported to generate high-valent iron species.'® The
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products of SMX included OP-S270, OP-284, OP-300
(formed via the hydroxylation of the benzene ring and/or
aniline ring oxidation), and OP-S99 (formed by the S—N bond
cleavage). It was also reported that the S—N bond cleavage,
hydroxylation, and aniline ring oxidation pathways of SMX are
predominant in the systems generating high-valent iron
species.75’77

Environmental Significance and Implications. This
study demonstrated that, compared to other common CAs,
PICA in combination with PAA—Fe(Ill) can significantly
enhance MP degradation by providing the benefits of
extending the working pH to a higher pH range, increasing
the catalytic ability of Fe(III) toward PAA and maintaining
reaction effectiveness in real water matrices. While only PAA—
Fe(Ill) is unable to degrade MPs at higher pH, the PAA—
Fe(III)-PICA system is a promising advanced oxidation
process to degrade a range of MPs with different properties.
The reaction of PAA with Fe(II)—PICA complex out-
performed the coexistent H,0,, leading to faster MPs’
degradation compared to H,0,—Fe(lIl)—PICA. The in-
depth evaluation confirmed that the major reactive species
contributing to MPs’ degradation by PAA—Fe(III)—PICA
were selective high-valent iron species [i.e., Fe(IV) and/or
Fe(V)], rather than radicals, which would be less susceptible to
water matrix’s scavenging effects owing to their higher
selectivity.

Compared to toxic and nonbiodegradable aminopolycarbox-
ylic acid-type CAs (e.g, EDTA), PICA is biodegradable and
has relatively less adverse environmental consequences.”””®
Meanwhile, Fe(IIl) is ubiquitous and environmentally benign
in natural aquatic and soil environments. Thus, the PAA—
Fe(III)—PICA oxidation process is worth of further exploring
as an advanced oxidation technology that can rapidly remove
MPs in a circumneutral pH range and environmental matrices.
Further research should assess the optimal conditions for
practical application, taking into account the effects of anions
on the complex formation between Fe(III) and PICA in
environmental waters, as well as PICA toxicity and
biodegradation..
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