

Enhanced Degradation of Micropollutants in a Peracetic Acid–Fe(III) System with Picolinic Acid

Juhee Kim, Junyue Wang, Daniel C. Ashley, Virender K. Sharma,* and Ching-Hua Huang*

Cite This: *Environ. Sci. Technol.* 2022, 56, 4437–4446

Read Online

ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Activation of peracetic acid (PAA) with iron species is an emerging advanced oxidation process (AOP). This study investigates the use of the chelating agent picolinic acid (PICA) to extend the pH range and enhance the performance of the PAA–Fe(III) AOP. Compared to the PAA–Fe(III) system, the PAA–Fe(III)–PICA system degrades various micropollutants (MPs: methylene blue, naproxen, sulfamethoxazole, carbamazepine, trimethoprim, diclofenac, and bisphenol-A) much more rapidly at higher pH, achieving almost complete removal of parent compounds within 10 min. PAA significantly outperforms the coexistent H_2O_2 and is the key oxidant for rapid compound degradation. Other chelating agents, EDTA, NTA, citric acid, proline, and nicotinic acid, could not enhance MP degradation in the PAA–Fe(III) system, while 2,6-pyridinedicarboxylic acid with a structure similar to PICA moderately enhanced MP degradation. Experiments with scavengers (*tert*-butyl alcohol and methyl phenyl sulfoxide) and a probe compound (benzoic acid) confirmed that high-valent iron species [Fe(IV) and/or Fe(V)], rather than radicals, are the major reactive species contributing to MP degradation. The oxidation products of methylene blue, naproxen, and sulfamethoxazole by PAA–Fe(III)–PICA were characterized and supported the proposed mechanism. This work demonstrates that PICA is an effective complexing ligand to assist the Fenton reaction of PAA by extending the applicable pH range and accelerating the catalytic ability of Fe(III).

KEYWORDS: peracetic acid, picolinic acid, Fenton-like reaction, high-valent iron species, Fe(V)/Fe(IV)

INTRODUCTION

Peracetic acid [PAA, $CH_3C(O)OOH$] is a widely used oxidant/disinfectant in various industries, including medicine, food processing, textile, and pulp and paper industries.^{1–4} PAA is also used in municipal wastewater treatment^{5–7} owing to its disinfection effectiveness and little formation of toxic by-products compared to the conventional chlorine oxidants.^{8,9} PAA has been applied in full-scale wastewater treatment plants (WWTPs) in the United States, Canada, and parts of Europe.^{10–12} The global PAA market was worth \$650 million in 2017 and is projected to grow to \$1.3 billion by 2026, including a steady annual 8% increase in wastewater treatment usage.¹³ More recently, PAA has been studied for the degradation of harmful micropollutants (MPs) in wastewater.^{14–25} PAA itself is a highly selective oxidant toward chemical species with the reported rate constants ranging from 3.2×10^{-6} to $>1.0 \times 10^5 M^{-1}s^{-1}$.²⁶ However, PAA can be activated by energy or catalysts to generate highly reactive species which are capable of efficiently degrading a wide range of MPs. Previous studies have proposed the formation of radicals, including $\cdot OH$, $CH_3C(O)O^\bullet$, and $CH_3C(O)OO^\bullet$, and high-valent metal species in the activated PAA systems.^{21,22,27,28}

Previous research has employed a variety of metals, such as Fe(II/III/VI), Co(II/III), Mn(II/III/IV), Ru(III), and V(IV/V), to activate PAA.^{16,20–22,29–31} Among them, Fe is environmentally abundant and benign. The Fenton reaction was first discovered by Fenton,³² and it has been applied for pollution remediation since the late 1960s.³³ Fenton-related reactions with various oxidants (e.g., H_2O_2 , persulfate, and PAA) have been extensively studied, and the formation of radicals (e.g., $\cdot OH$, HO_2^\bullet , SO_4^{2-} , and $CH_3C(O)O^\bullet$) have been well documented. Moreover, the generation of ferryl ($Fe^{IV}=O$) species especially under high pH conditions has been proposed based on the detection of nonhydroxylated degradation products and the minimal impact of radical scavengers.^{34,35} In the Fe(III)– H_2O_2 system, it has been postulated that the generation of $Fe^{IV}=O$ species is derived by the homolytic O–O bond cleavage in the $Fe^{III}-OOH$

Received: December 5, 2021

Revised: February 14, 2022

Accepted: March 10, 2022

Published: March 23, 2022

complex.³⁶ The formation of Fe(IV) is advantageous because Fe(IV) is less susceptible to scavengers compared to radicals such as $\cdot\text{OH}$ and thus can have a longer lifetime in waters containing a variety of constituents to oxidize contaminants.³⁷

However, the Fenton reactions have several limitations, one of which is that the solution pH should be maintained below 3.0 to avoid the formation of insoluble, much less reactive Fe(III) oxides. The acidification of water requires additional treatment processes to neutralize it before discharge, and it may cause other problems such as increased solution salinity, sludge formation, and release of harmful gases of sulfide or cyanide.^{34,38} Chelating agents (CAs) can be used to render Fe ions soluble at neutral to alkaline pH by forming complexes. Efficient CAs should have at least two functional groups, such as NH_2 and COOH , which can donate a pair of electrons to the Fe cation. A variety of CAs, such as ethylenediaminetetraacetic acid (EDTA),^{39–41} ethylenediamine- N,N' -disuccinic acid (EDDS),^{41,42} and protocatechuic acid,⁴³ have been studied for Fenton-related oxidation. CAs can alter the Fe(III)/Fe(II) reduction potential via the preferential stabilization of one oxidation state over the other due to ligand-field effects,^{44,45} which can affect the reactivity of the Fe(III) species with oxidants.⁴⁶ CAs may also compete with MPs for the reactive species.^{44,47}

Many different types of pyridine derivatives have been applied as CAs in the fields of pharmaceuticals, medicine, and cosmetics; thus, they are frequently detected in wastewaters.^{48,49} Picolinic acid (2-pyridinecarboxylic acid; PICA), one of the pyridine derivatives, is an intermediate metabolite of tryptophan. PICA has been well studied as a bidentate ligand to form complexes with divalent and trivalent metal ions, such as Cr, Zn, Mn, Cu, Mo, and Fe.⁵⁰ PICA includes the nitrogen atom in the pyridine ring and the oxygen atom in the carboxyl group, which can participate in the chelation of metal ions. Yang et al.⁵¹ recently reported that PICA can assist in the reaction of Fe(III) with H_2O_2 to degrade atrazine, sulfamethazine, and substituted phenols at pH 5.5. They suggested that the $\cdot\text{OH}$ radical and intermediate PICA–Fe(III)–OOH complex serve as the reactive species to degrade MPs in the H_2O_2 –Fe(III)–PICA system. Their study motivated us to consider PICA among candidate CAs to enhance the PAA Fenton system, which has not been investigated previously.

This study was motivated to investigate whether CAs can facilitate the PAA–Fe(III) system for the degradation of MPs in water, especially under higher pH conditions. A variety of CAs [PICA, nicotinic acid (NA), 2,6-pyridinedicarboxylic acid (2,6-DCA), proline (PL), EDTA, and citric acid (CIA)] were investigated for the oxidation of a model compound (methylene blue, MB) in the PAA–Fe(III) system. As will be shown later, PICA exhibited the best effectiveness. Additional study objectives included (i) investigating the degradation of MB and representative MPs [naproxen (NPX) and sulfamethoxazole (SMX)] by the PAA–Fe(III)–PICA system in depth under various reaction conditions (i.e., solution pHs, molar ratios of Fe(III) to PAA, and buffers), (ii) identifying the major reactive species and reaction mechanism in the PAA–Fe(III)–PICA system by using scavengers and probe compounds, as well as determining oxidation products (OPs), and (iii) demonstrating the application of the PAA–Fe(III)–PICA oxidation process for the abatement of other MPs of different properties [carbamazepine (CBZ), trimethoprim (TMP), diclofenac

(DCF), and bisphenol-A (BPA)] in water and wastewater at higher pH.

EXPERIMENTAL SECTION

Chemicals. Sources of chemicals and reagents used in this study are provided in the Supporting Information Text S1.

Experimental Procedures. The Fe(III)–PICA solutions with different molar ratios ($[\text{Fe(III)}]/[\text{PICA}] = 1.0:0.5–1.0:4.0$) were prepared by adding 10.0 mM ferric sulfate into the PICA solution at the desired concentrations. The Fe(III)–PICA solutions were thoroughly mixed for 60 min.

The oxidation of MPs by the PAA–Fe(III)–PICA system was conducted in a 50 mL amber borosilicate reactor with magnetic stirring ($[\text{PAA}]_0 = 100.0–500.0 \mu\text{M}$, $[\text{Fe(III)}]_0 = 50.0–400.0 \mu\text{M}$, $[\text{PICA}]_0 = 25.0–1000.0 \mu\text{M}$, $[\text{MP}]_0 = 15.0 \mu\text{M}$). The reaction solution containing the MPs and oxidant (PAA or H_2O_2) was first prepared in the glass reactor, and the initial pH was adjusted by adding a few microliters of NaOH (1.0 M) and/or H_2SO_4 (1.0 M) into the solution. The degradation of MPs by PAA alone or H_2O_2 alone was confirmed to be negligible. Soon, the reaction was initiated by adding a desired amount of the Fe(III)–PICA solution, and sample aliquots were taken periodically up to 10 min. The MB concentration was immediately measured spectrophotometrically at 665 nm (Beckman DU 520 UV–visible spectrophotometer, Beckman Coulter, Inc., Fullerton, CA, USA). For other MPs, sample aliquots were added into vials containing excess $\text{Na}_2\text{S}_2\text{O}_3$ ($[\text{Na}_2\text{S}_2\text{O}_3]/[\text{PAA}]_0 > 10.0$) to quench the oxidant and stored at 5 °C prior to analysis. The solution pH was checked again after the reaction (10 min), and pH decrease was approximately 0.0–2.3 pH units for the initial pH 3.0–7.0, respectively.

The same reaction procedures were repeated for evaluating the influence of $\cdot\text{OH}$ or high-valent iron species [Fe(V)/Fe(IV)] with scavengers [50.0 mM *tert*-butyl alcohol (TBA) or 5.0 mM methyl phenyl sulfoxide (PMSO)], which were added into the reaction solution before adding the Fe(III)–PICA solution. The oxidation of PMSO to PMSO_2 (methyl phenyl sulfone) was monitored. Benzoic acid (BA) was selected as a probe compound due to its inertness to Fe(V)/Fe(IV)⁵² and investigated for degradation in the PAA–Fe(III)–PICA system. Different CAs (EDTA, CIA, NA, 2,6-DCA, and PL) and BA were also tested for their effects on degrading MB in the PAA–Fe(III) system and compared with PICA. Control experiments without Fe(III) and/or CAs were conducted to assess the degradation of MPs by PAA alone and PAA–Fe(III). Additionally, the degradation of three MPs (SMX, TMP, and BPA) was evaluated in the real wastewater sample (i.e., tertiary effluent from a municipal WWTP). The chemical properties of the MPs and probe compounds used in this study are provided in Supporting Information Table S1. All experiments were conducted in duplicate or more.

Analytical Methods. The PAA concentration was measured by the DPD method.^{15,53} The cumulative Fe(II) concentrations were determined by the ferrozine method.^{51,54} The concentrations of MPs were analyzed by high-performance liquid chromatography (HPLC) with UV detection. The reaction products were analyzed by HPLC coupled with time-of-flight high-resolution mass spectrometry (LC-HRMS) (Agilent Technologies, USA). The detailed methods are provided in Supporting Information Text S2.

Figure 1. (A) Structures of CAs used in this study. (B) Effect of different CAs on MB degradation by PAA-Fe(III). (C) Effect of the molar ratios of Fe(III) to PICA on the degradation of MB by the PAA-Fe(III)-PICA oxidation process (experimental conditions: $[MB]_0 = 15.0 \mu\text{M}$, $[PAA]_0 = 500.0 \mu\text{M}$, $[Fe(III)]_0 = 50.0 \mu\text{M}$, $[CA]_0 = 125.0 \mu\text{M}$ for (A) and (B), $[PICA]_0 = 25.0\text{--}200.0 \mu\text{M}$ for (C), initial pH = 5.04 ± 0.05 , $T = 22 \pm 1^\circ\text{C}$).

Figure 2. Effects of the initial pH on the degradation of MPs [MB (A), NPX (B), and SMX (C)] by PAA-Fe(III)-PICA (experimental conditions: $[MP]_0 = 15.0 \mu\text{M}$, $[PAA]_0 = 500.0 \mu\text{M}$, $[Fe(III)]_0 = 50.0 \mu\text{M}$, $[PICA]_0 = 125.0 \mu\text{M}$, $T = 22 \pm 1^\circ\text{C}$).

RESULTS AND DISCUSSION

PAA-Fe(III) System with Various CAs. The effects of six CAs (PICA, NA, 2,6-DCA, PL, EDTA, and CIA, Figure 1A), as well as BA, on the degradation of MB by the PAA-Fe(III) system were investigated (Figure 1B), where the $[Fe(III)]/[CA]$ molar ratio was 1:2.5 (conditions: $[MB]_0 = 15.0 \mu\text{M}$, $[PAA]_0 = 500.0 \mu\text{M}$, $[Fe(III)]_0 = 50.0 \mu\text{M}$, $[CA]_0 = 125 \mu\text{M}$, pH = 5.0). Note that the PAA-Fe(III) system without the CA led to a minimal removal of MB. The initial first-order rate constant (k_{initial} in min^{-1}) was obtained from the slope of $\ln C_t/C_0$ versus time during the initial stage of the reaction where the reaction kinetics could be approximated by pseudo-first-order kinetics (Supporting Information Table S3). The degradation % of MB ($[\text{MB}]_{\text{removal},\%}$) was also calculated for 10 min of reaction time.

Based on k_{initial} and $[\text{MB}]_{\text{removal},\%}$, PICA was the most efficient CA to enhance MB degradation by the PAA-Fe(III) system. PICA has one N atom in the pyridine ring and a carboxyl substituent at position 2, where N and O donors can bind with the Fe(III) ion to form a stable five-membered chelate ring.^{55,56} The N atom in the pyridine ring has σ -donor (and weak π -acceptor) properties, which enhances the nucleophilicity of the metal center and increases the catalytic activity of the metal complex.⁵⁶ Compared to PICA, NA, also containing the pyridine ring but with the carboxyl substituent at position 3, showed limited chelating efficiency due to the fact that N and O atoms are too far apart to chelate the iron atom. Thus, NA complexation with Fe(III) is likely similar to that of carboxylates, such as BA. The binding of Fe(III) with

NA or BA showed little effect to improve the catalytic activity of Fe(III). 2,6-DCA showed lower promoting effect than PICA but greater than the other ligands. 2,6-DCA contains the pyridine ring and two carboxyl substituents at positions 2 and 6. It is likely that the electron-withdrawing effect of the additional carboxyl group at position 6 decreases the electron density of the ring. PL has the N atom in the pyrrolidine ring with the carboxyl substituent at position 2, and thus, it can possibly form a five-membered chelate ring with the iron atom, and the stability constants of PL for metal complexation have been reported to be similar to those of PICA.⁵⁷ Nonetheless, the impact of PL on promoting MB degradation by the PAA-Fe(III) system was negligible compared to PICA. EDTA is one of the aminopolycarboxylic acids and contains two N and four O donors for coordinating with metal ions. Several studies have reported that EDTA can form the Fe(III)-EDTA complex with a high stability constant ($\log K = 25.1$).⁵⁸ However, EDTA did not enhance MB degradation by the PAA-Fe(III) system. CIA including three carboxyl groups and one hydroxyl group also showed limited impact on the PAA-Fe(III) oxidation system.

Degradation of MB, NPX, and SMX by the PAA-Fe(III)-PICA System. Among the CAs, PICA was the most efficient to promote the PAA-Fe(III) oxidation system and thus was further investigated. Note that the doses of PAA (100.0–500.0 μM) are comparable to PAA dosages used in wastewater disinfection processes.⁵⁹

Effect of the Fe(III)-to-PICA Molar Ratio. The effect of the molar ratios of Fe(III) to PICA on MB degradation in the PAA-Fe(III)-PICA system was investigated (Figure 1C and

Figure 3. Effects of the molar ratio of Fe(III) to PAA (A,B) and buffers (C) on the degradation of MB by the PAA-Fe(III)-PICA oxidation process (experimental conditions: $[MB]_0 = 15.0 \mu\text{M}$, $[PAA]_0 = 100\text{--}500.0 \mu\text{M}$, $[Fe(III)]_0 = 50.0\text{--}400.0 \mu\text{M}$, $[PICA]_0 = 125.0\text{--}1000.0 \mu\text{M}$, initial pH $= 5.04 \pm 0.05$ for (A,B), $[MB]_0 = 15.0 \mu\text{M}$, $[PAA]_0 = 500.0 \mu\text{M}$, $[Fe(III)]_0 = 50.0 \mu\text{M}$, $[PICA]_0 = 125.0 \mu\text{M}$, initial pH $= 7.04 \pm 0.03$, [buffer] = 10 mM for (C), $T = 22 \pm 1^\circ\text{C}$).

Supporting Information Table S4, conditions: $[MB]_0 = 15.0 \mu\text{M}$, $[PAA]_0 = 500.0 \mu\text{M}$, $[Fe(III)]_0 = 50.0 \mu\text{M}$, $[PICA]_0 = 25.0\text{--}200.0 \mu\text{M}$, initial pH = 5.0). The increase of the $[Fe(III)]/[PICA]$ ratio from 1.0:0.5 to 1.0:2.0 led to the increase in both k_{initial} and $[MB]_{\text{removal},\%}$ [k_{initial} from $(5.01 \pm 0.46) \times 10^{-2}$ to $(5.48 \pm 0.01) \times 10^{-1} \text{ min}^{-1}$ and $[MB]_{\text{removal},\%}$ from 26 to 98%]. The $[Fe(III)]/[PICA]$ ratios from 1.0:2.0 to 1.0:3.0 showed similar k_{initial} values and $[MB]_{\text{removal},\%}$ [$(k_{\text{initial}} = (5.48 \pm 0.01) \times 10^{-1}\text{--}(5.60 \pm 0.01) \times 10^{-1} \text{ min}^{-1}$ and $[MB]_{\text{removal},\%} = 98\text{--}100\%$]. However, the increase of the $[Fe(III)]/[PICA]$ molar ratio up to 1:4 led to a slight decrease in the k_{initial} value [$k_{\text{initial}} = \text{from } (5.51 \pm 0.02) \times 10^{-1} \text{ to } (4.62 \pm 0.00) \times 10^{-1} \text{ min}^{-1}$]. This result indicates that the optimum stoichiometry of the Fe(III)-PICA complex is in the range of 1.0:2.0–1.0:3.0, and PICA can scavenge reactive species when it is in excess. Indeed, the formation of the 1:2 and 1:3 complexes of Fe(III) and PICA [i.e., $\text{Fe}(\text{PICA})_2$, $\text{Fe}(\text{PICA})_3$, $\text{Fe}(\text{PICA})_2\text{OH}$, and $\text{Fe}_2(\text{PICA})_4(\text{OH})_2$] was reported.^{60,61} Yang et al.⁵¹ also reported similar results showing the highest degradation rate of atrazine at a $[Fe(III)]/[PICA]$ ratio of 1.0:2.5 by the $\text{H}_2\text{O}_2\text{-Fe(III)-PICA}$ system (conditions: $[\text{atrazine}]_0 = 5.0 \mu\text{M}$, $[\text{H}_2\text{O}_2]_0 = 4000.0 \mu\text{M}$, $[Fe(III)]_0 = 35.0 \mu\text{M}$, $[PICA]_0 = 35.0\text{--}350.0 \mu\text{M}$, pH = 5.5).

Effect of the Initial pH. The degradation of three MPs (MB, NPX, and SMX) by the PAA-Fe(III)-PICA system was investigated in the pH range of 3.0–7.0 (Figure 2, conditions: $[\text{MP}]_0 = 15.0 \mu\text{M}$, $[PAA]_0 = 500.0 \mu\text{M}$, $[Fe(III)]_0 = 50.0 \mu\text{M}$, $[PICA]_0 = 125.0 \mu\text{M}$). The PAA-Fe(III) system without PICA led to little degradation of these MPs at pH 5.0 (<3%, data not shown), which is likely due to the formation of insoluble Fe(III) oxides. In contrast, the addition of PICA significantly enhanced the degradation of MB, NPX, and SMX, confirming again that PICA is a good CA for promoting the catalytic ability of Fe(III) for PAA. The k_{initial} values of MP degradation by PAA-Fe(III)-PICA were $(1.05 \pm 0.03) \times 10^{-1}\text{--}(6.06 \pm 0.03) \times 10^{-1} \text{ min}^{-1}$, $(1.84 \pm 0.24) \times 10^{-2}\text{--}(4.55 \pm 0.37) \times 10^{-1} \text{ min}^{-1}$, and $(8.50 \pm 1.04) \times 10^{-3}\text{--}(6.35 \pm 0.32) \times 10^{-1} \text{ min}^{-1}$ for MB, NPX and SMX, respectively (Supporting Information Table S5). The k_{initial} values were in the order pH 5.0–6.0 > pH 7.0 > pH 4.0 > pH 3.0 for MB and pH 6.0–7.0 > pH 5.0 > pH 4.0 > pH 3.0 for NPX and SMX, and complete degradation was observed in 10 min at pH 5.0–6.0 for MB and pH 6.0–7.0 for NPX and SMX.

The initial pH can alter the speciation of both PICA and MPs. The deprotonated species fraction of NPX ($pK_a = 4.1$) and SMX ($pK_a = 5.7$) increased ($f_{\text{NPX}^-} = 0.07\text{--}1.00$, and $f_{\text{SMX}^-} = 0.00\text{--}0.95$) from pH 3.0 to 7.0, but MB ($pK_a < 1.0$) speciation was hardly changed ($f_{\text{MB}^-} = 1.00$). Deprotonated MPs are more susceptible to oxidation by reactive species; thus, NPX and SMX were less degraded at acidic pH, compared to higher pHs. Meanwhile, the ligand can be a poorer σ -donor when it is protonated;⁶² thus, PICA should have less ability to form the complex with Fe(III) at acidic pH. Note that the reported pK_a value of PICA is 5.3 for pyridinium N,⁵¹ and Fe(III)-PICA could have a lower pK_a when PICA is bound to Fe(III). These can explain the less degradation of MB, NPX, and SMX at acidic pH, compared to higher pHs. Meanwhile, PAA speciation is minimally changed in the pH range of 3.0–7.0 (neutral species fraction of PAA = 1.00–0.94) and should have limited impact.

Fe(III) can be subjected to the hydrolytic precipitation at high pH, which can cause target the MPs to adsorb and have effects on Fe(III) complexation with PICA. Note that the adsorption of MB to the Fe(III) precipitates was not significant, and preequilibration of Fe(III)-PICA-MB prior to adding PAA only slightly retarded the initial MB degradation and had a negligible effect on the overall MB degradation (Supporting Information Figure S1).

Effect of Coexistent H_2O_2 . The PAA solution contained about 32% PAA and 5% H_2O_2 (w/w); thus, $185.0 \mu\text{M}$ H_2O_2 was present in a $500.0 \mu\text{M}$ PAA solution. It is important to note that the degradation of MB, NPX, and SMX by $\text{H}_2\text{O}_2\text{-Fe(III)-PICA}$ was much slower than that by PAA-Fe(III)-PICA (Figure 2, conditions: $[\text{MP}]_0 = 15.0 \mu\text{M}$, $[\text{H}_2\text{O}_2]_0 = 200.0 \mu\text{M}$, $[Fe(III)]_0 = 50.0 \mu\text{M}$, $[PICA]_0 = 125.0 \mu\text{M}$, initial pH = 5.0). This result indicates that H_2O_2 present in the PAA solution played a minimal role in degrading MPs in the PAA-Fe(III)-PICA system.

Effects of PAA and Fe(III) Dosages. MB was selected to study the effect of the molar ratio of $[Fe(III)]/[PAA]$ on compound degradation by the PAA-Fe(III)-PICA system. Note that MB was almost completely degraded within 10 min with $[PAA]_0 = 100.0\text{--}500.0 \mu\text{M}$ and $[Fe(III)]_0 = 50.0\text{--}400.0 \mu\text{M}$ (Figure 3A,B). The effect of PAA dosages (100.0/300.0/500.0 μM) was investigated at initial pH 5.0 while maintaining $[Fe(III)]_0$ at 50.0 μM and $[PICA]_0$ at 125.0 μM (Figure 3A).

Figure 4. Degradation of MPs [MB (A), NPX (B), and SMX (C)] by PAA–Fe(III)–PICA in the presence and absence of scavengers. (D) PMSO loss ($[\text{PMSO}]_0$ – $[\text{PMSO}]_t$) and PMSO_2 formation ($[\text{PMSO}_2]_t$) by the PAA–Fe(III)–PICA oxidation process. Empty dots show the change in the PMSO concentration ($[\text{PMSO}]_t$) by PAA alone, and vertical bars indicate the conversion yield (%; $\Delta[\text{PMSO}_2]/\Delta[\text{PMSO}]$) (experimental conditions for (A–C): $[\text{MP}]_0 = 15.0 \mu\text{M}$, $[\text{PAA}]_0 = 500.0 \mu\text{M}$, $[\text{Fe(III)}]_0 = 50.0 \mu\text{M}$, $[\text{PICA}]_0 = 125.0 \mu\text{M}$, $[\text{TBA}]_0 = 0$ or 50.0 mM , $[\text{PMSO}]_0 = 0$ or 5.0 mM , initial pH = 5.02 ± 0.04 . (D): $[\text{PMSO}]_0 = 150 \mu\text{M}$, $[\text{PAA}]_0 = 200.0 \mu\text{M}$, $[\text{Fe(III)}]_0 = 100.0 \mu\text{M}$, $[\text{PICA}]_0 = 100.0 \mu\text{M}$, initial pH = 5.02 ± 0.01 . $T = 22 \pm 1^\circ\text{C}$).

The k_{initial} value increased from $(2.72 \pm 0.14) \times 10^{-1}$ to $(5.60 \pm 0.01) \times 10^{-1} \text{ min}^{-1}$ when the PAA concentration was increased from 100.0 to 500.0 μM (Supporting Information Table S3). The effect of Fe(III) dosages (50.0/100.0/200.0/400.0 μM) was investigated at the initial pH 5.0 while fixing $[\text{PAA}]_0$ at 100.0 μM (Figure 3B). The k_{initial} value increased from $(2.72 \pm 0.14) \times 10^{-1}$ to $(1.20 \pm 0.12) \times 10^0 \text{ min}^{-1}$ when the Fe(III) concentration was increased from 50.0 to 400.0 μM (Supporting Information Table S3). However, the k_{initial} value was not linearly related to the increase of the Fe(III) concentration, suggesting that MB degradation was inhibited at a high concentration of Fe(III), possibly due to the scavenging of the reactive species by excess Fe(III).

Effects of Water Matrix Constituents. The effects of chloride (Cl^-), bicarbonate (HCO_3^-), and phosphate ($\text{H}_2\text{PO}_4^-/\text{HPO}_4^{2-}$) (10 mM) on MB degradation by PAA–Fe(III)–PICA were investigated at the initial pH 7.0 (Figure 3C). Note that the initial pH was set after adding anions. Control experiments confirmed that MB was not degraded by PAA– Cl^- , PAA– HCO_3^- , PAA– $\text{H}_2\text{PO}_4^-/\text{HPO}_4^{2-}$, Fe(III)–PICA– Cl^- , Fe(III)–PICA– HCO_3^- , and Fe(III)–PICA– $\text{H}_2\text{PO}_4^-/\text{HPO}_4^{2-}$ (data not shown). For the PAA–Fe(III)–PICA system, the presence of Cl^- had little impact on MB degradation, which agrees well with the minimal influence of Cl^- on the PAA–Co(II) and PAA–Ru(III) reaction

systems.^{20,22,25} HCO_3^- moderately retarded MB degradation [k_{initial} decreasing from $(5.60 \pm 0.01) \times 10^{-1}$ to $(2.12 \pm 0.05) \times 10^{-1} \text{ min}^{-1}$] and reduced the overall abatement from 90 to 77%. Compared to Cl^- and HCO_3^- , $\text{H}_2\text{PO}_4^-/\text{HPO}_4^{2-}$ completely inhibited MB degradation by PAA–Fe(III)–PICA. Previous research showed that HCO_3^- , $\text{H}_2\text{PO}_4^-/\text{HPO}_4^{2-}$ significantly inhibited compound degradation by PAA–Co(II) but minimally influenced the PAA–Ru(III) and UV–PAA systems.^{18,20,22} The impacts of buffers on compound degradation by PAA–Fe(III)–PICA are likely due to their competition with PICA and characteristics in complexing Fe(III); thus, the concentration of free ferric ions is diminished. Note that the stability constant ($\log K_{\text{Fe(III)}-\text{L}}$) of Fe(III)–PICA[–] is 6.02⁶¹ versus 0.61 for Fe(III)– Cl^- ,⁶³ 7.7 for Fe(III)– CO_3^{2-} ,⁶⁴ ~3.5 for Fe(III)– H_2PO_4^- ,⁶⁵ and 10.6 for Fe(III)– HPO_4^{2-} .⁶⁶ HCO_3^- and $\text{H}_2\text{PO}_4^-/\text{HPO}_4^{2-}$ are expected to have significant competition effect at the employed buffer concentration (10.0 mM).

Reactive Species in the PAA–Fe(III)–PICA System. In the reactions of PAA with Fe(III)–PICA, it is likely that the initial complex of $\text{CH}_3\text{C}(\text{O})\text{OO}^-$ –Fe(III)–PICA is formed (eq 1), which could further decompose to form Fe(IV), Fe(V), and/or radicals $\text{CH}_3\text{C}(\text{O})\text{O}^\bullet/\text{CH}_3\text{C}(\text{O})\text{OO}^\bullet$ (eqs 2–3)

First, the contribution of high-valent iron species [Fe(IV) and Fe(V)] to target MPs' degradation by PAA–Fe(III)–PICA was evaluated by adding PMSO (conditions: $[\text{MPs}]_0 = 15.0 \mu\text{M}$, $[\text{PAA}]_0 = 500.0 \mu\text{M}$, $[\text{Fe(III)}]_0 = 50.0 \mu\text{M}$, $[\text{PICA}]_0 = 125.0 \mu\text{M}$, $[\text{PMSO}]_0 = 5.0 \text{ mM}$, initial pH = 5.0, Figure 4A–C). The addition of PMSO inhibited the degradation of MPs by 25.4–47.5%. Moreover, PMSO was degraded over time with a high conversion yield (76.8%) to PMSO_2 (Figure 4D). It is known that high-valent iron species [Fe(IV) and Fe(V)] can oxidize PMSO to PMSO_2 via the oxygen atom transfer reaction ($k_{\text{app,Fe(IV)}/\text{PMSO}} = 2.58 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$),⁶⁷ which is different from the reaction of radicals with PMSO via one-electron transfer to generate hydroxylated PMSO and/or biphenyl compounds.³⁵ Thus, the PMSO study strongly suggests that Fe(IV)/Fe(V) are the major reactive species, rather than radicals.

Among the radicals, the contribution of $\text{CH}_3\text{C}(\text{O})\text{O}^\bullet$ is likely limited because $\text{CH}_3\text{C}(\text{O})\text{O}^\bullet$ when formed can rapidly self-decay to $\cdot\text{CH}_3$ and CO_2 ($k = (1-2.3) \times 10^5 \text{ s}^{-1}$),^{27,68} leading to a very low concentration of this radical. We used benzoic acid (BA) as a probe compound to evaluate the contribution of $\text{CH}_3\text{C}(\text{O})\text{OO}^\bullet$ in the PAA–Fe(III)–PICA system because high-valent iron species have limited reactivity toward BA ($k_{\text{app,Fe(IV)}/\text{BA}} = 80.0 \text{ M}^{-1} \text{ s}^{-1}$).⁵² Experiments found that BA was not degraded by PAA–Fe(III)–PICA (conditions: $[\text{BA}]_0 = 15.0 \mu\text{M}$, $[\text{PAA}]_0 = 200.0 \mu\text{M}$, $[\text{Fe(III)}]_0 = 50.0 \mu\text{M}$, $[\text{PICA}]_0 = 125.0 \mu\text{M}$, initial pH = 5.0, Supporting Information Figure S2A). On the other hand, BA was efficiently degraded by UV–PAA in the presence of TBA (conditions: $[\text{BA}]_0 = 40.0 \mu\text{M}$, $[\text{PAA}]_0 = 200.0 \mu\text{M}$, $[\text{TBA}]_0 = 10.0 \text{ mM}$, initial pH = 6.0, Supporting Information Figure S2B). The UV–PAA system generates $\text{CH}_3\text{C}(\text{O})\text{OO}^\bullet$, $\text{CH}_3\text{C}(\text{O})\text{O}^\bullet$, and $\cdot\text{OH}$ radicals, and adding 10.0 mM TBA efficiently scavenges $\cdot\text{OH}$ and may lower the $\text{CH}_3\text{C}(\text{O})\text{OO}^\bullet$ concentration.^{15,27} The significant degradation of BA by UV–PAA–TBA along with the minimal removal of BA by PAA–Fe(III)–PICA further confirms that the major reactive species are Fe(IV)/Fe(V), rather than $\text{CH}_3\text{C}(\text{O})\text{OO}^\bullet$ radicals.

The potential formation of $\cdot\text{OH}$ in the PAA–Fe(III)–PICA system should be considered as well owing to the presence of H_2O_2 (eqs 4–6)

However, the minimal impact of TBA (50.0 mM) on MPs' removal (Figure 4A–C) confirmed that there was little contribution of $\cdot\text{OH}$ to the degradation of MPs in the PAA–Fe(III)–PICA system.

Additionally, other reactions to be considered are described in eqs 7–15, which may generate certain secondary radicals.

However, the secondary radicals, such as $\text{HO}_2^\bullet/\text{O}_2^\bullet^-$, $\cdot\text{CH}_3$, and $\text{CH}_3\text{OO}^\bullet$, should have minor contributions to MPs' degradation because of low reactivities ($k_{\text{HO}_2^\bullet/\text{MPs}} \approx 0-10^8 \text{ M}^{-1} \text{ s}^{-1}$,⁶⁹ $k_{\text{CH}_3\text{OO}^\bullet/\text{MPs}} \approx 10^5-10^7 \text{ M}^{-1} \text{ s}^{-1}$,⁷⁰ and the rapid reaction with O_2 ($k_{\text{CH}_3/\text{O}_2} = 4.1 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$).⁷¹

The generation of Fe(II) in the PAA–Fe(III)–PICA system was investigated by determining the cumulative Fe(II) concentration (conditions: $[\text{PAA}]_0 = 500.0 \mu\text{M}$, $[\text{Fe(III)}]_0 = 50.0 \mu\text{M}$, $[\text{PICA}]_0 = 125.0 \mu\text{M}$, $[\text{ferrozine}]_0 = 300.0 \mu\text{M}$, initial pH = 5.0, Supporting Information Figure S3A). Note that Fe(II) can be formed via eq 3 and/or eq 5 in the PAA–Fe(III)–PICA system. The cumulative Fe(II) concentration was only about 1.3 μM within 10 min in PAA–Fe(III)–PICA, and there was no significant difference in the cumulative Fe(II) concentration between the PAA–Fe(III)–PICA and the H_2O_2 –Fe(III)–PICA systems ($[\text{H}_2\text{O}_2]_0 = 200.0 \text{ }\mu\text{M}$, which was close to the background concentration in the 500.0 μM PAA solution). These results indicate that Fe(II) formation by the reaction of Fe(III)–PICA with PAA (eq 3) is minimal, which is different from the H_2O_2 –Fe(III)–PICA system (eq 5), showing the significant formation of Fe(II) as reported previously.⁵¹

Decay of PAA and H_2O_2 was also monitored in the PAA–Fe(III)–PICA system (conditions: $[\text{PAA}]_0 = 500.0 \mu\text{M}$, $[\text{Fe(III)}]_0 = 50.0 \mu\text{M}$, $[\text{PICA}]_0 = 125.0 \mu\text{M}$, initial pH = 5.0, Supporting Information Figure S3B). The PAA loss was about 20% in 10 min, which was greater than the Fe(III) concentration. This suggests that PAA can be additionally consumed by $\cdot\text{OH}$ and/or Fe(IV)/Fe(V), which can compete with the MPs. Meanwhile, H_2O_2 loss in the PAA–Fe(III)–PICA system was minimal (only <1%), confirming that the reaction of PAA with Fe(III)–PICA significantly outperforms H_2O_2 .

Abatement of the MPs by PAA–Fe(III)–PICA. The degradation of additional four MPs (CBZ, TMP, DCF, and BPA) and MB, NPX, and SMX by PAA–Fe(III)–PICA was evaluated at pH 7.0 (conditions: $[\text{MPs}]_0 = 15.0 \mu\text{M}$, $[\text{PAA}]_0 =$

Figure 5. Degradation of MPs in reagent water (A) and tertiary effluent from a WWTP (B) by the PAA-Fe(III)-PICA oxidation process (experimental conditions: $[MP]_0 = 15.0 \mu\text{M}$, $[PAA]_0 = 500.0 \mu\text{M}$, $[Fe(III)]_0 = 50.0 \mu\text{M}$, $[PICA]_0 = 125.0 \mu\text{M}$, initial pH = 7.03 ± 0.02 for (A), pH 6.51 ± 0.06 for (B), $T = 25 \pm 1^\circ\text{C}$). MPs: MB-methylene blue, NPX: naproxen, SMX: sulfamethoxazole, CBZ: carbamazepine, TMP: trimethoprim, DCF: diclofenac, and BPA : bisphenol-A.

$500.0 \mu\text{M}$, $[Fe(III)]_0 = 50.0 \mu\text{M}$, $[PICA]_0 = 125.0 \mu\text{M}$, initial pH = 7.0, Figure 5A, Supporting Information Tables S5 and S6). Based on the k_{initial} values and $[MP]_{\text{removal},\%}$ at 10 min, the removal efficiency was in the order SMX \sim BPA \sim MB \sim NPX $>$ DCF $>$ TMP $>$ CBZ. The rate constants for the reaction of high-valent iron species with MPs are scarcely reported, but it is known that Fe(IV) can react with aromatic compounds, such as phenol, nitrophenols, and nitrobenzene, with a rate constant of $\sim 10^4 \text{ M}^{-1} \text{ s}^{-1}$.⁷² Moreover, it has been reported that compounds containing aniline, phenolic, and amine groups have relatively high reactivity with high-valent iron species.^{73,74} Luo et al.⁷⁵ also reported the rapid oxidation of amine-containing compounds by Fe(IV) at pH 9.0 with the estimated rate constants of 7.9×10^4 , 8.3×10^4 , and $1.3 \text{ M}^{-1} \text{ s}^{-1}$ for SMX, TMP, and CBZ, respectively. The results in this study also showed slower degradation of CBZ and relatively faster degradation of SMX, DCF, TMP, BPA, and MB containing phenol, aniline, and/or amine moieties.

Additional experiments with NPX, TMP, and BPA in tertiary wastewater effluent showed $>40\%$ of MPs' removal by PAA-Fe(III)-PICA (Figure 5B). Note that the solution pH of tertiary wastewater effluent was 6.51, and the concentration of $\text{NH}_3\text{-N}$ was about 0.5 mg L^{-1} , that of total-P was 0.03 mg L^{-1} , and that of TOC was 6.0 mg L^{-1} .

Oxidation Products. The OPs of three compounds (MB, NPX, and SMX) in the PAA-Fe(III)-PICA system were identified by LC-HRMS. Supporting Information Table S7 and Figures S4–S9 show the retention time, accurate masses, ion fragments, evolution of the products with time, and proposed structures of the products. Overall, the hydrated products of three compounds were detected, which could be formed via electron transfer by high-valent iron species.^{16,52,76} The products of MB included OP-M228 and OP-M270 (the demethylated products), OP-M256 (formed via methyl cleavage from the dimethylamino groups), and OP-M300 (the hydroxylated product). The detected products of NPX were OP-N201, OP-N215, and OP-N233 (formed by demethylation and/or subsequent hydroxylation), and OP-N185 (generated by decarboxylation and the subsequent β -elimination reaction). Similar products of MB and NPX have also been found in the PAA-Fe(II) system, which was previously reported to generate high-valent iron species.¹⁶ The

products of SMX included OP-S270, OP-284, OP-300 (formed via the hydroxylation of the benzene ring and/or aniline ring oxidation), and OP-S99 (formed by the S–N bond cleavage). It was also reported that the S–N bond cleavage, hydroxylation, and aniline ring oxidation pathways of SMX are predominant in the systems generating high-valent iron species.^{75,77}

Environmental Significance and Implications. This study demonstrated that, compared to other common CAs, PICA in combination with PAA-Fe(III) can significantly enhance MP degradation by providing the benefits of extending the working pH to a higher pH range, increasing the catalytic ability of Fe(III) toward PAA and maintaining reaction effectiveness in real water matrices. While only PAA-Fe(III) is unable to degrade MPs at higher pH, the PAA-Fe(III)-PICA system is a promising advanced oxidation process to degrade a range of MPs with different properties. The reaction of PAA with Fe(III)-PICA complex outperformed the coexistent H_2O_2 , leading to faster MPs' degradation compared to $\text{H}_2\text{O}_2\text{-Fe(III)}\text{-PICA}$. The in-depth evaluation confirmed that the major reactive species contributing to MPs' degradation by PAA-Fe(III)-PICA were selective high-valent iron species [i.e., Fe(IV) and/or Fe(V)], rather than radicals, which would be less susceptible to water matrix's scavenging effects owing to their higher selectivity.

Compared to toxic and nonbiodegradable aminopolycarboxylic acid-type CAs (e.g., EDTA), PICA is biodegradable and has relatively less adverse environmental consequences.^{51,78} Meanwhile, Fe(III) is ubiquitous and environmentally benign in natural aquatic and soil environments. Thus, the PAA-Fe(III)-PICA oxidation process is worth of further exploring as an advanced oxidation technology that can rapidly remove MPs in a circumneutral pH range and environmental matrices. Further research should assess the optimal conditions for practical application, taking into account the effects of anions on the complex formation between Fe(III) and PICA in environmental waters, as well as PICA toxicity and biodegradation.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/acs.est.1c08311>.

Chemicals and reagents; analytical methods; chemical properties of micropollutants and probe compounds; chemical properties of chelating agents; initial reaction rate constants (k_{initial}) of degradation of MB by PAA–Fe(III)–CAs at the initial pH 5.0 and 22 °C; initial reaction rate constants (k_{initial}) of degradation of MB by PAA–Fe(III)–PICA at the initial pH 5.0 and 22 °C; initial reaction rate constants (k_{initial}) of degradation of MB, NPX, and SMX by PAA–Fe(III)–PICA at the initial pH 3.0–7.0 and 22 °C; initial reaction rate constants (k_{initial}) of degradation of additional four MPs (BPA, DCF, TMP, and CBZ) by PAA–Fe(III)–PICA at the initial pH 7.0 and 22 °C; effect of pre-equilibration of Fe(III)–PICA–MB prior to the addition of PAA and MB removal by Fe(III) precipitates; degradation of BA by PAA–Fe(III)–PICA and UV–PAA; cumulative Fe(II) concentration in PAA–Fe(III)–PICA or H_2O_2 –Fe(III)–PICA systems and decay of PAA or H_2O_2 in PAA–Fe(III)–PICA system; reaction products of MB in the PAA–Fe(III)–PICA system at different reaction times; reaction products of NPX in the PAA–Fe(III)–PICA system at different reaction times; reaction products of SMX in the PAA–Fe(III)–PICA system at different reaction times; measured MS spectra of MB and the reaction products; measured MS spectra of NPX and the reaction products; and measured MS spectra of SMX and the reaction products (PDF)

AUTHOR INFORMATION

Corresponding Authors

Virender K. Sharma – Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, Texas 77843, United States; [0000-0002-5980-8675](https://orcid.org/0000-0002-5980-8675); Email: vsharma@tamu.edu

Ching-Hua Huang – School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States; [0000-0002-3786-094X](https://orcid.org/0000-0002-3786-094X); Email: ching-hua.huang@ce.gatech.edu

Authors

Juhee Kim – School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

Junyue Wang – School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

Daniel C. Ashley – Department of Chemistry and Biochemistry, Spelman College, Atlanta, Georgia 30314, United States

Complete contact information is available at:

<https://pubs.acs.org/doi/10.1021/acs.est.1c08311>

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation grants CHE-2108701 and CHE-2107967. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

- (1) Malchesky, P. S. Peracetic acid and its application to medical instrument sterilization. *Artif. Organs* **1993**, *17*, 147–152.
- (2) Baldry, M. G. C. The bactericidal, fungicidal and sporicidal properties of hydrogen peroxide and peracetic acid. *J. Appl. Microbiol.* **1983**, *54*, 417–423.
- (3) Zoellner, C.; Aguayo-Acosta, A.; Siddiqui, M. W.; Dávila-Avila, J. E. Peracetic acid in disinfection of fruits and vegetables. In *Postharvest Disinfection of Fruits and Vegetables*; Academic Press, 2018; pp 53–66.
- (4) Liu, D.; Straus, D. L.; Pedersen, L.-F.; Meinelt, T. Pulse versus continuous peracetic acid applications: Effects on rainbow trout performance, biofilm formation and water quality. *Aquac. Eng.* **2017**, *77*, 72–79.
- (5) Luukkonen, T.; Heyninck, T.; Rämö, J.; Lassi, U. Comparison of organic peracids in wastewater treatment: Disinfection, oxidation and corrosion. *Water Res.* **2015**, *85*, 275–285.
- (6) Dell'Erba, A.; Falsanisi, D.; Liberti, L.; Notarnicola, M.; Santoro, D. Disinfection by-products formation during wastewater disinfection with peracetic acid. *Desalination* **2007**, *215*, 177–186.
- (7) Domínguez Henao, L.; Delli Compagni, R.; Turolla, A.; Antonelli, M. Influence of inorganic and organic compounds on the decay of peracetic acid in wastewater disinfection. *Chem. Eng. J.* **2018**, *337*, 133–142.
- (8) Monarca, S.; Richardso, S. D.; Feretti, D.; Grottolo, M.; Thruston, A. D., Jr.; Zani, C.; Navazio, G.; Ragazzo, P.; Zerbini, I.; Alberti, A. Mutagenicity and disinfection by-products in surface drinking water disinfected with peracetic acid. *Environ. Toxicol. Chem.* **2002**, *21*, 309–318.
- (9) Lee, W.-N.; Huang, C.-H. Formation of disinfection byproducts in wash water and lettuce by washing with sodium hypochlorite and peracetic acid sanitizers. *Food Chem.: X* **2019**, *1*, 100003.
- (10) U.S. Environmental Protection Agency. Combined sewer overflow technology fact sheet: Alternative disinfection methods. 1999, <https://www3.epa.gov/npdes/pubs/altdis.pdf> (accessed Nov 16, 2021).
- (11) Liberti, L.; Notarnicola, M. Advanced treatment and disinfection for municipal wastewater reuse in agriculture. *Water Sci. Technol.* **1999**, *40*, 235–245.
- (12) U.S. Environmental Protection Agency. Emerging technologies for wastewater treatment and in-plant wet weather management. 2013, <https://www.epa.gov/sites/production/files/2019-02/documents/emerging-tech-wastewater-treatment-management.pdf> (accessed Nov 16, 2021).
- (13) Bettenhausen, C. A. How peracetic acid is changing wastewater treatment: A new disinfection chemistry holds environmental and financial promise. 2020, <https://cen.acs.org/environment/water/peracetic-acid-changingwastewater-treatment/98/i15>. (accessed Nov 16, 2021).
- (14) Rizzo, L.; Agovino, T.; Nahim-Granados, S.; Castro-Alférez, M.; Fernández-Ibáñez, P.; Polo-López, M. I. Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: Effect on contaminants of emerging concern and antibiotic resistance. *Water Res.* **2019**, *149*, 272–281.
- (15) Cai, M.; Sun, P.; Zhang, L.; Huang, C.-H. UV/peracetic acid for degradation of pharmaceuticals and reactive species evaluation. *Environ. Sci. Technol.* **2017**, *51*, 14217–14224.
- (16) Kim, J.; Zhang, T.; Liu, W.; Du, P.; Dobson, J. T.; Huang, C.-H. Advanced oxidation process with peracetic acid and Fe(II) for contaminant degradation. *Environ. Sci. Technol.* **2019**, *53*, 13312–13322.

(17) Rokhina, E. V.; Makarova, K.; Golovina, E. A.; Van As, H.; Virkutyte, J. Free radical reaction pathway, thermochemistry of peracetic acid homolysis, and its application for phenol degradation: Spectroscopic study and quantum chemistry calculations. *Environ. Sci. Technol.* **2010**, *44*, 6815–6821.

(18) Chen, S.; Cai, M.; Liu, Y.; Zhang, L.; Feng, L. Effects of water matrices on the degradation of naproxen by reactive radicals in the UV/peracetic acid process. *Water Res.* **2019**, *150*, 153–161.

(19) Wang, Z.; Wang, J.; Xiong, B.; Bai, F.; Wang, S.; Wan, Y.; Zhang, L.; Xie, P.; Wiesner, M. R. Application of cobalt/peracetic acid to degrade sulfamethoxazole at neutral condition: Efficiency and mechanisms. *Environ. Sci. Technol.* **2019**, *54*, 464–475.

(20) Kim, J.; Du, P.; Liu, W.; Luo, C.; Zhao, H.; Huang, C.-H. Cobalt/peracetic acid: advanced oxidation of aromatic organic compounds by acetylperoxy radical. *Environ. Sci. Technol.* **2020**, *54*, 5268–5278.

(21) Manoli, K.; Li, R.; Kim, J.; Feng, M.; Huang, C.-H.; Sharma, V. K. Ferrate(VI)-peracetic acid oxidation process: Rapid degradation of pharmaceuticals in water. *Chem. Eng. Sci.* **2022**, *429*, 132384.

(22) Li, R.; Manoli, K.; Kim, J.; Feng, M.; Huang, C.-H.; Sharma, V. K. Peracetic acid–ruthenium(III) oxidation process for the degradation of micropollutants in water. *Environ. Sci. Technol.* **2021**, *55*, 9150–9160.

(23) Hollman, J.; Dominic, J. A.; Achari, G. Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H₂O₂. *Chemosphere* **2020**, *248*, 125911.

(24) Carlos, T. D.; Bezerra, L. B.; Vieira, M. M.; Sarmento, R. A.; Pereira, D. H.; Cavallini, G. S. Fenton-type process using peracetic acid: Efficiency, reaction elucidations and ecotoxicity. *J. Hazard. Mater.* **2021**, *403*, 123949.

(25) Liu, B.; Guo, W.; Jia, W.; Wang, H.; Zheng, S.; Si, Q.; Zhao, Q.; Luo, H.; Jiang, J.; Ren, N. Insights into the oxidation of organic contaminants by Co(II) activated peracetic acid: the overlooked role of high-valent cobalt-oxo species. *Water Res.* **2021**, *201*, 117313.

(26) Kim, J.; Huang, C.-H. Reactivity of peracetic acid with organic compounds: A critical review. *ACS ES&T Water* **2021**, *1*, 15–33.

(27) Zhang, T.; Huang, C.-H. Modeling the kinetics of uv/peracetic acid advanced oxidation process. *Environ. Sci. Technol.* **2020**, *54*, 7579–7590.

(28) Ao, X.-w.; Eloranta, J.; Huang, C.-H.; Santoro, D.; Sun, W.-j.; Lu, Z.-d.; Li, C. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. *Water Res.* **2021**, *188*, 116479.

(29) Zhou, F.; Lu, C.; Yao, Y.; Sun, L.; Gong, F.; Li, D.; Pei, K.; Lu, W.; Chen, W. Activated carbon fibers as an effective metal-free catalyst for peracetic acid activation: Implications for the removal of organic pollutants. *Chem. Eng. J.* **2015**, *281*, 953–960.

(30) Gonzalez Cuervo, L.; Kozlov, Y. N.; Süss-Fink, G.; Shul'pin, G. B. Oxidation of saturated hydrocarbons with peroxyacetic acid catalyzed by vanadium complexes. *J. Mol. Catal. A: Chem.* **2004**, *218*, 171–177.

(31) Mandelli, D.; Kozlov, Y. N.; Golfeto, C. C.; Shul'pin, G. B. Peroxyacetic acid oxidation of olefins and alkanes catalyzed by a dinuclear manganese(IV) complex with 1,4,7-trimethyl-1,4,7-triazaclononane. *Catal. Lett.* **2007**, *118*, 22–29.

(32) Fenton, H. J. H. LXXIII.-Oxidation of tartaric acid in presence of iron. *J. Chem. Soc., Faraday Trans.* **1894**, *65*, 899–910.

(33) Huang, C.; Dong, C.; Tang, Z. Advanced chemical oxidation: its present role and potential future in hazardous waste treatment. *Waste Manage.* **1993**, *13*, 361–377.

(34) Zhang, Y.; Zhou, M. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values. *J. Hazard. Mater.* **2019**, *362*, 436–450.

(35) Wang, Z.; Jiang, J.; Pang, S.; Zhou, Y.; Guan, C.; Gao, Y.; Li, J.; Yang, Y.; Qiu, W.; Jiang, C. Is sulfate radical really generated from peroxydisulfate activated by iron(II) for environmental decontamination? *Environ. Sci. Technol.* **2018**, *52*, 11276–11284.

(36) Chen, J.; Draksharapu, A.; Angelone, D.; Unjaroen, D.; Padamati, S. K.; Hage, R.; Swart, M.; Duboc, C.; Browne, W. R. H₂O₂ Oxidation by Fe^{III}–OOH intermediates and its effect on catalytic efficiency. *ACS Catal.* **2018**, *8*, 9665–9674.

(37) Remucal, C. K.; Sedlak, D. L. The role of iron coordination in the production of reactive oxidants from ferrous iron oxidation by oxygen and hydrogen peroxide. In *Aquatic redox chemistry*; ACS Publications, 2011; pp 177–197.

(38) Lipczynska-Kochany, E.; Kochany, J. Effect of humic substances on the Fenton treatment of wastewater at acidic and neutral pH. *Chemosphere* **2008**, *73*, 745–750.

(39) Nam, S.; Renganathan, V.; Tratnyek, P. G. Substituent effects on azo dye oxidation by the Fe^{III}–EDTA–H₂O₂ system. *Chemosphere* **2001**, *45*, 59–65.

(40) Englehardt, J. D.; Meeroff, D. E.; Echegoyen, L.; Deng, Y.; Raymo, F. M.; Shibata, T. Oxidation of aqueous EDTA and associated organics and coprecipitation of inorganics by ambient iron-mediated aeration. *Environ. Sci. Technol.* **2007**, *41*, 270–276.

(41) Prete, P.; Fiorentino, A.; Rizzo, L.; Proto, A.; Cuccinello, R. Review of aminopolycarboxylic acids-based metal complexes application to water and wastewater treatment by (photo-) Fenton process at neutral pH. *Curr. Opin. Green Sustain. Chem.* **2021**, *28*, 100451.

(42) Huang, W.; Brigante, M.; Wu, F.; Mousty, C.; Hanna, K.; Mailhot, G. Assessment of the Fe(III)–EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A. *Environ. Sci. Technol.* **2013**, *47*, 1952–1959.

(43) Qin, Y.; Song, F.; Ai, Z.; Zhang, P.; Zhang, L. Protocatechuic acid promoted alachlor degradation in Fe(III)/H₂O₂ Fenton system. *Environ. Sci. Technol.* **2015**, *49*, 7948–7956.

(44) Sun, Y.; Pignatello, J. J. Chemical treatment of pesticide wastes. Evaluation of iron(III) chelates for catalytic hydrogen peroxide oxidation of 2,4-D at circumneutral pH. *J. Agric. Food Chem.* **1992**, *40*, 322–327.

(45) Yang, Z.; Yan, Y.; Yu, A.; Pan, B.; Pignatello, J. J. Revisiting the phenanthroline and ferrozine colorimetric methods for quantification of Fe(II) in Fenton reactions. *Chem. Eng. Sci.* **2020**, *391*, 123592.

(46) Graf, E.; Mahoney, J. R.; Bryant, R. G.; Eaton, J. W. Iron-catalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. *J. Biol. Chem.* **1984**, *259*, 3620–3624.

(47) Georgi, A.; Schierz, A.; Trommler, U.; Horwitz, C.; Collins, T.; Kopinke, F.-D. Humic acid modified Fenton reagent for enhancement of the working pH range. *Appl. Catal., B* **2007**, *72*, 26–36.

(48) Loring, J. S.; Karlsson, M.; Fawcett, W. R.; Casey, W. H. Attenuated total reflection–Fourier-transform infrared and ²⁷Al–nuclear magnetic resonance investigation of speciation and complexation in aqueous Al(III)–picolinate solutions. *Geochim. Cosmochim. Acta* **2000**, *64*, 4115–4129.

(49) Zhang, L.; Yu, F.; Chang, Z.; Guo, Y.; Li, D. Extraction equilibria of picolinic acid with trialkylamine/n-octanol. *J. Chem. Eng. Data* **2012**, *57*, 577–581.

(50) Evans, G. W.; Johnson, E. C. Zinc absorption in rats fed a low-protein diet and a low-protein diet supplemented with tryptophan or picolinic acid. *J. Nutr.* **1980**, *110*, 1076–1080.

(51) Yang, Z.; Shan, C.; Pan, B.; Pignatello, J. J. The Fenton reaction in water assisted by picolinic acid: Accelerated iron cycling and co-generation of a selective fe-based oxidant. *Environ. Sci. Technol.* **2021**, *55*, 8299–8308.

(52) Jacobsen, F.; Holcman, J.; Sehested, K. Reactions of the ferryl ion with some compounds found in cloud water. *Int. J. Chem. Kinet.* **1998**, *30*, 215–221.

(53) American Public Health Association, Army Wives Welfare Association, World Economic Forum. *Standard Methods for the Examination of Water and Wastewater*; Washington, DC, USA, 1998.

(54) Viollier, E.; Inglett, P. W.; Hunter, K.; Roychoudhury, A. N.; Van Cappellen, P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. *Appl. Geochem.* **2000**, *15*, 785–790.

(55) Basu, S.; Peng, S.-M.; Lee, G.-H.; Bhattacharya, S. Synthesis, structure and electrochemical properties of tris-picolinate complexes of rhodium and iridium. *Polyhedron* **2005**, *24*, 157–163.

(56) Dutta, D. K.; Chutia, P.; Sarmah, B. J.; Borah, B. J.; Deb, B.; Woollins, J. D. Rhodium carbonyl complexes containing pyridine carboxylic acid ligands: Reactivity towards various electrophiles and catalytic activity. *J. Mol. Catal. A: Chem.* **2009**, *300*, 29–35.

(57) Suzuki, K.; Yasuda, M.; Yamasaki, K. Stability constants of picolinic and quinaldic acid chelates of bivalent metals. *J. Phys. Chem.* **1957**, *61*, 229–231.

(58) Zhou, P.; Zhang, J.; Xiong, Z.; Liu, Y.; Huo, X.; Cheng, X.; Li, W.; Cheng, F.; Zhang, Y. C₆₀ fullerol promoted Fe(III)/H₂O₂ Fenton oxidation: role of photosensitive Fe(III)-fullerol complex. *Appl. Catal., B* **2020**, *265*, 118264.

(59) Luukkonen, T.; Pehkonen, S. O. Peracids in water treatment: A critical review. *Crit. Rev. Environ. Sci. Technol.* **2017**, *47*, 1–39.

(60) Timberlake, C. F. Iron–tartrate complexes. *J. Chem. Soc.* **1964**, *0*, 1229–1240.

(61) Lannon, A. M.; Lappin, A. G.; Segal, M. G. Redox reactions of some iron(II), iron (III), and cobalt (II) picolinate complexes. *J. Chem. Soc., Dalton Trans.* **1986**, *619–624*.

(62) Crabtree, R. H. Multifunctional ligands in transition metal catalysis. *New J. Chem.* **2011**, *35*, 18–23.

(63) Møller, M. The complex formation of ferric ions with chloride ions. *J. Phys. Chem.* **1937**, *41*, 1123–1128.

(64) Bruno, J.; Duro, L. Reply to W. Hummel's comment on and correction to On the influence of carbonate in mineral dissolution: 1. The thermodynamics and kinetics of hematite dissolution in bicarbonate solutions at T= 25 °C by J. Bruno, W. Stumm, P. Wersin, and F. Brandberg. *Geochim. Cosmochim. Acta* **2000**, *64*, 2173–2176.

(65) Wilhelmy, R. B.; Patel, R. C.; Matijevic, E. Thermodynamics and kinetics of aqueous ferric phosphate complex formation. *Inorg. Chem.* **1985**, *24*, 3290–3297.

(66) Stumm, W.; Lee, G. F. The chemistry of aqueous iron. *Schweiz. Z. Hydrol.* **1960**, *22*, 295–319.

(67) Zhu, J.; Yu, F.; Meng, J.; Shao, B.; Dong, H.; Chu, W.; Cao, T.; Wei, G.; Wang, H.; Guan, X. Overlooked role of Fe(IV) and Fe(V) in organic contaminant oxidation by Fe(VI). *Environ. Sci. Technol.* **2020**, *54*, 9702–9710.

(68) Lu, Z.; Continetti, R. E. Dynamics of the acetylloxyl radical studied by dissociative photodetachment of the acetate anion. *J. Phys. Chem. A* **2004**, *108*, 9962–9969.

(69) Bielski, B. H. J.; Cabelli, D. E.; Arudi, R. L.; Ross, A. B. Reactivity of HO₂/O₂[–] radicals in aqueous solution. *J. Phys. Chem. Ref. Data* **1985**, *14*, 1041–1100.

(70) Huie, R. E.; Neta, P. Rate constants for one-electron oxidation by methylperoxyl radicals in aqueous solutions. *Int. J. Chem. Kinet.* **1986**, *18*, 1185–1191.

(71) Marchaj, A.; Kelley, D. G.; Bakac, A.; Espenson, J. H. Kinetics of the reactions between alkyl radicals and molecular oxygen in aqueous solution. *J. Phys. Chem.* **1991**, *95*, 4440–4441.

(72) Mårtire, D. O.; Caregnato, P.; Furlong, J.; Allegretti, P.; Gonzalez, M. C. Kinetic study of the reactions of oxoiron(IV) with aromatic substrates in aqueous solutions. *Int. J. Chem. Kinet.* **2002**, *34*, 488–494.

(73) Bielski, B. H. J.; Sharma, V. K.; Czapski, G. Reactivity of ferrat (V) with carboxylic acids: a pre-mix pulse radiolysis study. *Radiat. Phys. Chem.* **1994**, *44*, 479–484.

(74) Sharma, V. K. Ferrate (VI) and ferrate (V) oxidation of organic compounds: Kinetics and mechanism. *Coord. Chem. Rev.* **2013**, *257*, 495–510.

(75) Luo, C.; Feng, M.; Zhang, T.; Sharma, V. K.; Huang, C.-H. Ferrate(VI) oxidation of pharmaceuticals in hydrolyzed urine: Enhancement by creatinine and the role of Fe(IV). *ACS ES&T Water* **2021**, *1*, 969–979.

(76) Feng, M.; Jinadatha, C.; McDonald, T. J.; Sharma, V. K. Accelerated oxidation of organic contaminants by ferrate (VI): The overlooked role of reducing additives. *Environ. Sci. Technol.* **2018**, *52*, 11319–11327.

(77) Feng, M.; Sharma, V. K. Enhanced oxidation of antibiotics by ferrate(VI)-sulfur(IV) system: Elucidating multi-oxidant mechanism. *Chem. Eng. J.* **2018**, *341*, 137–145.

(78) Dagley, S.; Johnson, P. A. Microbial oxidation of kynurenic, xanthurenic and picolinic acids. *Biochim. Biophys. Acta* **1963**, *78*, 577–587.