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ABSTRACT: Chromium (Cr) is a well-known heavy metal contaminant
with toxicity highly dependent on its oxidation state. Hexavalent Cr
(Cr(VI)) is a known carcinogen while trivalent chromium (Cr(III)) is
significantly less toxic. The reduction of Cr(VI) and oxidation of Cr(III) in
different compartments of the environment occur through intermediate
species pentavalent Cr (Cr(V)) and tetravalent Cr (Cr(IV)), which are
highly reactive. The environmental literature generally lacks information on
Cr(V) and Cr(IV) species in various redox processes. This Perspective
presents the aquatic chemistry of Cr(V) and Cr(IV), which includes their
spectroscopic characterizations and kinetic behaviors under different
environmental conditions. Examples are presented to demonstrate the
possible existence of the intermediate Cr species in different systems of environmental importance such as the reduction of Cr(VI)
by iron(II) (Fe(II)), molecules of natural organic matter (e.g., fulvic acids and carboxylic acids), and oxidation of Cr(III) by
hydrogen peroxide, hypochlorite, and manganese oxides (MnOx). The oxidation of organic pollutants by the Cr(VI)−S(IV) system
is also discussed. This Perspective suggests in-depth investigations on the redox reactions of Cr relevant to environmental processes
to shed light on the mechanisms of the generation of Cr(V) and Cr(IV) species and their roles in water decontamination.

■ INTRODUCTION
Heavy metals are known to pollute water resources and have
both natural and anthropogenic sources. Anthropogenic
sources of heavy metals consist of sewage discharge, pesticides,
mine tailings, and coal combustion residuals, while natural
sources of heavy metals can include soil erosion and
weathering.1,2 Industrial processes to extract metals may
illegally discharge waste into the natural environment, creating
pollution events that need complete remediation.3 Anthro-
pogenic disturbances of geochemical processes can cause
background levels of heavy metals to elevate and bioaccumu-
late, posing health risks to humans and the ecosystem because
of their persistence in the environment and damage to the
nerve system and other organs.4,5 Among heavy metals,
chromium (Cr) is a major pollutant, entering soil from wastes
of industrial activities such as coal-fired power generation,
chrome pigment production, wood preservation, stainless steel
production, galvanization, cement production, electroplating,
and leather tanning.6−9 Chromium has four isotopes in nature:
isotopes 50Cr, 52Cr, 53Cr, and 54Cr with respective abundances
of 4.35%, 83.79%, 9.50%, and 2.36%.10

The oxidation states of chromium range from −2 to +6.
Three forms of Cr (Cr(0), Cr(III), and Cr(VI)) are
thermodynamically stable and extensively used in various
industrial applications. The application of Cr(0) is in its
metallic form (e.g., iron-based alloys such as stainless steel).
Pollution from incineration of chrome materials results in small
Cr(III)- and Cr(VI)-containing particles, which may be

inhaled through polluted air exposure and ultimately increase
the levels of Cr in surface waters. Considering this and other
pollution routes, Cr has been listed as a priority pollutant by
the United States Environmental Protection Agency (USEPA)
and is regulated in drinking water. The USEPA has set a Cr
limit of 100 μg/L in drinking water.11

In natural environments, most of Cr is present in Cr(VI)
and Cr(III) species and their concentrations depend on the
total concentration of Cr, pH, and redox potential (pε) of
water (Figure S1).12 The oxyanions of Cr(VI) (i.e., Cr2O7

2−

and HCrO4
−) are dominant species between pH 0.0 and 6.0.

The other oxyanion of Cr(VI), CrO4
2−, appears at around pH

4.5 with a maximum concentration at pH ≥ 8.0. Compara-
tively, there are five species of Cr(III) present in water (Cr3+,
CrOH2+, Cr(OH)2

+, Cr(OH)3
0, and Cr(OH)4

−).13 The values
of pε and pH provide information on the equilibrium species
of Cr in the water. Insoluble at neutral pH, Cr(III) is the most
thermodynamically stable and kinetically inert.14 The Cr(III)
ion exists in a hydration sphere as the hexaaquo ion
[Cr(H2O)6]

3+ (pKa = 4.0) with each water molecule being
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hydrogen-bonded to two other water molecules in a second
sphere.15,16 The speciation of Cr(III) as a function of pH is
presented in Figure S2.13 The dominant Cr species in an acidic
medium is Cr3+, whereas Cr(OH)3

0 and Cr(OH)4
− are the

main Cr species in alkaline conditions (Figure S2).13

Chromium(III) has also been known as an essential
micronutrient for humans; however, the molecular mecha-
nisms are still unclear, bringing into question how essential it is
as a supplement.15 Some studies regard Cr(III) supplementa-
tion to be beneficial in weight loss for patients with diabetes,
while others postulate that excessive intake could be
carcinogenic.17 Concerns over potential oxidation of Cr(III)
supplements to Cr(VI) arise from physiological variations in
pH, redox potential, and the occurrence of oxidizing
compounds. The Food and Nutrition Board of the National
Academics of Sciences, Engineering, and Medicine has set
adequate intake values of Cr(III) at 25 and 35 μg/day for
women and men, respectively, far less than that provided by
chromium supplementation.17 The World Health Organization
has set an upper limit of safe intake of Cr at 250 μg/day;
excessive Cr(III) intake is unwarranted at this time because of
studies revealing the toxicity of Cr(III) at high concen-
trations.18 For example, the popular Cr(III) supplement
known as chromium picolinate (Cr(pic)3) has shown
clastogenic, cytotoxic, and chromosome damage to Chinese
hamster ovary cells with other short-term tests that have
revealed deoxyribonucleic acid (DNA) damage.19,20 Yet, other
studies have shown no genotoxic effects in physiological
conditions, including a chronic study on rats and mice
revealing no toxicity of Cr(pic)3.

20,21 One reason for the
apparent discrepancy in toxicity could be due to the low

cellular uptake of Cr(III).21 Significantly, Cr(VI), but not
Cr(III), has been reported to potentially cause cancers to
humans.7,22 Therefore, more stringent regulations in the State
of California have even set Cr(VI) limits in drinking water to
10 μg/L.23

The toxicity of Cr(VI) is potentially related to the
production of reactive intermediates Cr(V) and Cr(IV)
under biological environments. In earlier research, the presence
of Cr(V) and Cr(IV) was largely ignored. However, the
detection of Cr(V) with ligands such as thiols, glycols, and
phenols and their potential in damaging the DNA have been
reported.15,24,25 The reduction of Cr(VI) to Cr(V) and
subsequently to Cr(III) is an intercellular reduction process,
possibly carried out by nicotinamide adenine dinucleotide
(NADH) and/or nicotinamide adenine dinucleotide phos-
phate (NADPH).26 Other intercellular reducing agents include
cysteine, lipoic acid, fructose, and ribose as well as redox
proteins such as cytochrome P450 and hemoglobin.15 Under
physiological conditions, the reduction of Cr(VI) by ascorbate
and glutathione that occurs within cells can also produce
reactive oxygen species (ROS) such as singlet oxygen (1O2),
superoxide radical (O2

•−), hydroxyl radical (•OH), and
hydrogen peroxide (H2O2) that can damage DNA.26,27

Though ROS have been shown to play a role in Cr(VI)-
induced oxidative stress, the direct relationship between
DNA−ROS and Cr(VI)-induced DNA damage is still
debated.15 For example, a tetraperoxochromate(V) species
has been suggested in the reduction of Cr(VI) by H2O2,
forming ROS like •OH that results in DNA damage; yet,
another study disproved the generation of •OH in this system
using an electron paramagnetic resonance (EPR) technique.15

Figure 1. Brief overview of chromium cellular entry and the subsequent intercellular reduction of Cr(VI), which illustrates the role of intermediates
Cr(IV) and Cr(V) in causing DNA damage. Reactive oxygen species (ROS) and Cr(III) accumulation may result in membrane damage, allowing
Cr(III) cellular entry.
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Additionally, cytotoxicity, genotoxicity, chromosomal aberra-
tions, and DNA lesions, which might lead to carcinogenesis,
can occur from the reactions of ROS and Cr(V)/Cr(IV).27

Also worth mentioning is that Cr(VI) can form complexes with
biological thiols, which has been determined by various
spectroscopic techniques.28 The potential cellular mechanisms
involving Cr intermediates is illustrated in Figure 1. Cr(III)
complexes are not able to pass through cell membranes
through anionic transport like Cr(VI) complexes; however,
their accumulation may cause morphological alterations to cell
surfaces and yield cell membrane lipid injuries, allowing for
Cr(III) to pass through and potentially cause DNA
damage.26,27

The mechanisms involving Cr-induced carcinogenicity
depend on multiple factors including cell type, DNA adduct
and free radical formation, Cr(VI) concentration, and the
reactivity of Cr intermediates.29 Though Cr(V) and Cr(IV)
might be grouped together as reactive Cr intermediates, their
function in toxicity differs. For example, both Cr(V) and
Cr(IV) were shown to induce DNA double-strand breaks, yet
Cr(IV) had more mutation frequencies in the hypoxanthine
phosphoribosyltransferase (HPRT) gene compared to Cr-
(V).30 More research is needed to identify not only specific
mechanisms of Cr-induced carcinogenicity but also the role of
intermediates Cr(V) and Cr(IV). Selective detection of Cr(V)
has been shown by EPR and UV−visible measurements,
electrospray mass spectrometry (ES-MS), and X-ray absorp-
tion spectroscopy methods.25,31−33 Additionally, kinetics data
on the interaction of Cr(VI) with reducing agents L-cysteine,
glutathione, L-ascorbic acid, and Trolox using stopped-flow
UV−visible spectrophotometry have been obtained to gain
insights into the information on Cr(V) and Cr(IV) species.34

Intermediates Cr(V) and Cr(IV) are often responsible for Cr-
induced toxicity.
To date, a progress has been made on the Cr(V) and Cr(IV)

species due to their biological importance, but their roles in the
environmental processes are largely overlooked. Significantly,
these reactive species of Cr (i.e., Cr(V) and Cr(IV)) are likely
produced from the interaction of Cr(VI) with natural organic
ligands (or compounds) and the reaction of Cr(VI) with
reducing moieties of natural organic matter (NOM) as well as
from the interaction of Cr(III) with oxidants. Thus, the focus
of this Perspective is to provide the basic properties and
characterization of Cr(V) and Cr(IV) to bring attention to
researchers of the need to carry out more mechanistic
investigations to shed light on the species involved in the
redox reactions of chromium in environmental processes.
Examples of studies on chromium of environmental
importance are presented below.

■ CHROMIUM(V) AND CHROMIUM(IV) SPECIES
Cr(V) and Cr(IV) species are highly reactive intermediates.
This may largely be attributed to the higher standard redox
potentials of Cr(V) and Cr(IV) species than Cr(VI) in acidic
conditions (Figure 2).15,35 Cr(VI) is expected under oxidizing
conditions, completely soluble across the pH range, and highly
mobile overall.6,14,15 The one-electron redox potential under
acidic conditions decreases in the order of Cr(IV) > Cr(V) >
Cr(VI). The chemical properties of Cr(V) and Cr(IV) are
different from those of Cr(VI) and Cr(III). The redox
potentials of Cr(V) and Cr(IV) are not available in alkaline
conditions. High-valent Cr species (i.e., Cr(VI), Cr(V), and
Cr(IV)) are powerful oxidants. Comparatively, CrII is a good

reductant (see the negative redox potential of CrII/Cr(0) in
Figure 2).15,35

Both Cr(V) and Cr(IV) are typically short-lived, making
them challenging to quantify. Both Cr species could be
stabilized by the complexing agent 2-ethyl-2-hydroxobutanoato
(ehba), and UV−visible spectra of the complexes have been
obtained (Figure 3).15 All Cr species have characteristic

spectra to distinguish different high-valent Cr species. In the
UV range, the Cr(V) complex has reasonable molar
absorptivity (ε = 103 M−1cm−1). The Cr(IV) complex also
absorbs over a wide wavelength range with a maximum near
350 nm (ε = 1.7 × 103 M−1cm−1). Cr(III) forms a weak
complex with ehba (Figure 3).15 The spectrum of Cr(VI)
represents the maximum molar absorptivity of HCrO4

− at a
different wavelength.
EPR is often applied to detect Cr(V) species. The typical

EPR spectra of Cr(V) complex species for hydroxamate
complexing agents are given in Figure 4.36 The hydroxamate
groups are likely moieties in humic substances and interact
with Cr(VI) to form Cr(V)−hydroxamate species.37,38 The
EPR spectra for the Cr(V) complexes have a center at giso ≈
1.98 with a strong narrow line.39 Another example is the
reduction of Cr(VI) by catecholamines to produce octahedral
Cr(V) species, which has been quantified by EPR yielding a

Figure 2. Standard redox potentials (E0) of various Cr species in basic
and acidic conditions (reduction potentials were cited from refs 15
and 35).

Figure 3. UV−visible spectra of the Cr−ehba buffer complex (ehba =
2-ethyl-2-hydroxobutanoato) at pH 3.5 showing varying Cr oxidation
states; the Cr(V) complex was [CrO(ehba)2]

−, and the Cr(IV)
complex was [CrO(ehbaH)2]

0 (Adapted from ref 15 with permission
from John Wiley & Sons, Inc. Copyright 2012).
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signal at giso ∼ 1.972 (Aiso(
53Cr) > 23.9 × 10−4 cm−1).31 Many

other Cr(V) complexes with EPR signals obtained include
Cr(V)−ascorbate, Cr(V)−D-glucose, and Cr(V) with D-ribose-
5′-monophosphate.39 Interestingly, diol ligands might play an
important role in stabilizing Cr(V) complexes, which has been
noted by the detection of Cr(V) EPR signals after 48 h of
reaction.39 The Cr(V)−glutathione (GSH) complex ([Cr(V)-
O(LH2)2]

3− (LH5 = GSH)) has been characterized and
quantified by electrospray mass spectrometry, X-ray absorp-
tion, EPR spectroscopy, and other analytical techniques.32

Since Cr(IV) complexes are less stable in aqueous solutions
than Cr(V) complexes and the EPR spectroscopy technique
cannot be used for Cr(IV) complexes under ambient
conditions, less is known about Cr(IV) chemistry.39 Several
studies have investigated Mn(II) as a selective trap for Cr(IV),
but that has overall been inconclusive in the determination of
the role of Cr(IV) in DNA damage.39 In other conditions, the
fast reaction between Cr(III) and •OH/SO2

•− at acidic

conditions revealed a Cr(IV) spectrum between 250 and 420
nm with an increasing molar absorption coefficient from 4.3 to
48 M−1cm−1, ultimately producing Cr(VI).15

The pulse radiolysis technique was applied to produce
Cr(V) from Cr(VI). The reaction of Cr(VI) with •CO2 under
nitrous oxide saturated solution generates Cr(V) (eq 1).

+ → ≈• − −kCr(VI) CO Cr(V); 10 M s2
8 1 1

(1)

Reaction 1 was performed at different pH values, and the
spectra of the obtained Cr(V) and Cr(IV) are presented in
Figure 5.40 In the pH range from 1.85 to 4.75, the spectrum of

Cr(V) had no variation.40 The molar absorptivity of Cr(V) was
lower in the acidic pH range compared to that in the alkaline
pH range. The spectra of Cr(V) did not change significantly in
the pH range from 8.0 to 13.7.40 The decay of Cr(V) in
aqueous solution has been proposed on the basis of the
disproportionation of Cr(V) as a function of pH and
conductivity measurements, which can be described by
reactions 2−6.

+ → +− •− −HCr O CO HCr O COVI
4(tet) 2

V
4(tet)

2
2 (2)

+ = ×− + −F KHCr O H H Cr O 6.0 10V
4(tet)

2
2

V
4 3

3

(3)

+ = ×− + F KH Cr O H H Cr O 5.6 102
V

4 3
V

4(oct) 4
2

(4)

+

→ +

−

− −

HCr O H Cr O

HCr O H Cr O

V
4(tet)

2
3

V
4(oct)

VI
4(tet) 3

V
4(oct) (5)

+ = ×− + − −F KHCr O H Cr O 1.0 10V
4(tet)

2 V
4
3

6
7

(6)

The constants of protonic equilibria of reactions 3, 4, and 6
suggest that both monoprotonated and deprotonated species
of Cr(V) coexist at pH 7.0 (Figure S3).40

Figure 4. Electron paramagnetic response (EPR) spectra (X-band) of
solutions obtained from reaction between 10 mM Cr(VI) and 0.10 M
hydroxamic acids (acetohydroxamic acid (AHA), benzohydroxamic
acid (BHA), salicylhydroxamic acid (SaHA), and suberohydroxamic
acid (SuHA)) in N,N-dimethylformamide (DMF) for 3.5 h at 22 °C:
(a) first derivative spectra with modulation amplitude at 1.0 G and
asterisks indicating the satellite signals from 53Cr hyperfine coupling;
(b) second derivative spectra showing only central signals with
modulation amplitude at 0.40 G; (c) second derivative spectra with
modulation amplitude at 1.0 G of satellite signals of the Cr(V)−BHA
complex.36

Figure 5. UV−visible spectra of Cr(V) over varying pH obtained by
pulse radiolysis from the reaction of Cr(VI) and formate in a N2O
saturated solution; the inset illustrates little variance in Cr(V) spectra
in acidic conditions from pH 1.75 to 4.75 (Adapted from ref 15 with
permission from John Wiley & Sons, Inc. Copyright 2012).
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It has been proposed that octahedral Cr(IV) complexes can
slowly react with each other, producing Cr(III) and Cr(V)
octahedral coordination, as seen in eq 7.15 Subsequently, the
fast rearrangement of Cr(V) octahedral to tetrahedral
complexes allows for a rapid reaction between Cr(V)
tetrahedral and Cr(IV) octahedral complexes, which form
Cr(VI) and Cr(III) as shown in the following eqs 8 and 9.15

+ → +Cr(IV) Cr(IV) Cr(III) Cr(V) slowoct oct oct oct
(7)

FCr(V) Cr(V) fastoct tet (8)

+ → +Cr(V) Cr(IV) Cr(VI) Cr(III) fasttet oct tet oct (9)

The reactivities of Cr(IV) and Cr(V) have been examined
by studying the oxidation of different organic compounds (e.g.,
carbohydrates, alcohols, thiols, amino acids, and peptides) by
Cr(VI). Both Cr(IV) and Cr(V) can oxidize compounds (X)
by either a one-electron pathway to form a radical (X•) or a
two-electron pathway to form an oxidized product (X(O))
(eqs 10−13).24,36,41−49 Therefore, different mechanisms may
occur, depending on the concentrations of the chromium
species and X.

+ → + •Cr(IV) X Cr(III) X (10)

+ → +Cr(IV) X Cr(II) X(O) (11)

+ → + •Cr(V) X Cr(IV) X (12)

+ → +Cr(V) X Cr(III) X(O) (13)

Cr(IV) and Cr(V) may form complex species with compounds
(e.g., carbohydrates and peptides) to increase their stabiliza-
tion,50 similar to high-valent iron species like ferrates.51,52

These complexes can possibly react with organic compounds
as well.48,50 The role of Cr(IV) and Cr(V) in the degradation
of organic pollutants in water is further described below.

■ INVOLVEMENT OF CR(V)/CR(IV) SPECIES IN
CHROMIUM REDOX REACTIONS OF
ENVIRONMENTAL IMPORTANCE

Reactions of Cr(III)/Cr(VI) with Hydrogen Peroxide.
The chemistry between Cr(III) and H2O2 has been extensively
studied, and reactive intermediates Cr(V) and Cr(IV) are
capable of generating HO• from H2O2 by means of Fenton and
Haber-Weiss-type reactions.53−56 Reactions 14−17 illustrate
the production of HO• as well as the oxidation of Cr(III).14

The reaction between Cr(III) and H2O2 gives Cr(IV) and
HO• species (reaction 14). The Cr(IV) species may react with
H2O2 to form Cr(V) and HO• species (reaction 15). The
disproportionation of Cr(IV) may also produce Cr(V) species
(reaction 16). Further reaction of Cr(V) with H2O2 may
produce Cr(VI) and HO• (reaction 17).

+ → + +• −Cr(III) H O Cr(IV) HO OH2 2 (14)

+ → + +• −Cr(IV) H O Cr(V) HO OH2 2 (15)

→ +2Cr(IV) Cr(V) Cr(III) (16)

+ → + +• −Cr(V) H O Cr(VI) HO OH2 2 (17)

Though Fenton reactions have shown oxidation of organic
contaminants utilizing transition metals, their use is limited in
that the active metal species is consumed as a reagent and lost

through precipitation.14 This means that metal reagents need
to be continuously added to activate H2O2, resulting in the
formation of metal sludge.14,57 In fact, H2O2 can function as an
oxidant of Cr(III) (E0(H2O2/H2O) = 1.763 V) and reductant
of Cr(VI) (E0(O2/H2O2) = 0.695 V), creating a redox cycle
that generates HO• repeatedly.14,58 The oxidation of Cr(III)
by H2O2 can occur at pH > 8.0, and the reduction of Cr(VI)
(eq 1859) can occur under acidic conditions because the
reduction capability of H2O2 increases with decreasing pH.8,14

+ + → + +− + +2CrO 3H O 10H 2Cr 3O 8H O4
2

2 2
3

2 2
(18)

Full reduction of residual Cr(VI) was possible by 1.0 M HCl
and 20 mM H2O2.

59 Subsequently, the use of H2O2 as an
advanced oxidation process in chromium-contaminated waste-
water to produce HO• and reduce toxic Cr(VI) can be
controlled by adjusting the pH of the solution. This redox
chemistry brings forth evidence showing that the utilization of
Cr(V)/Cr(IV) species may be feasible in the degradation of
pollutants in wastewater.

Oxidation of Cr(III) during Chlorination. Consequently,
Cr(III) can generate Cr(VI) by the treatment of chromium-
contaminated water using free chlorine. The characterization
of the redox chemistry of chromium in water distribution and
treatment is vital for the evaluation of the potential of Cr(VI)
exposure in drinking water. Chlorine used in the disinfection
process has been shown to react with dissolved organic matter
and inorganic compounds like bromide (Br−), forming highly
toxic halogenated disinfection byproducts (DBPs).60 Chlorine
in water treatment processes can oxidize Cr(III) to Cr(VI) as
well.61−65 The oxidation of Cr(III) by HOCl is highly
problematic, and trace levels of bromide in this system were
shown to be a catalyst in Cr(VI) formation.63−66 Interestingly,
Cr(III) species, such as Cr(OH)3(s) and Cr2O3(s), reveal
different reactivities in chlorine consumption on the basis of
their surface area and reactive sites.64 The oxidation of Cr(III)
by HOCl typically proceeds through reaction 19.65

+ + → +

+

− +

−

2Cr(III) 3HOCl 5H O 2CrO 13H

3Cl

(s) 2 4
2

(19)

Corrosion of iron pipes in water distribution systems has
been shown to release chromium, forming mixed phases of
Cr(III)−Fe(III) hydroxide that can be oxidized by chlorine.66

This is of concern to public health because roughly 70% of
water distribution pipes in the U.S. are composed of iron
materials and often have a lifespan of multiple decades, giving
ample time for chromium to accumulate to high concen-
trations.66 Interestingly, Cr(0), which exists in cast iron
corrosion scales, was shown to be more reactive than Cr(III)
with HOCl and the dominant factor of the Cr(VI) release in
drinking water (reaction 20).65

+ + → + +− + −Cr(0) 3HOCl H O CrO 5H 3Cl(s) 2 4
2

(20)

Additionally, the oxidation of Br− by HOCl can produce
hypobromous acid (HOBr), and this reaction is approximately
six times faster than the oxidation of Cr(III) by HOCl.64 This
indicates that even trace levels of Br− should be addressed with
caution in solutions where Cr(III) and HOCl are present. The
Cr(OH)3(s) oxidation rate constants at pH 7.0 and 7.5 are 1.2
× 10−3 and 1.5 × 10−3 M−1 min−1 for HOBr in reaction 21 and
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2.0 × 10−4 and 2.2 × 10−4 M−1 min−1 for HOCl in reaction
22.64

+ → + +

+

− − +2Cr(OH) 3HOBr 2CrO 3Br 7H

H O

3(s) 4
2

2 (21)

+ → + +

+

− − +2Cr(OH) 3HOCl 2CrO 3Cl 7H

H O

3(s) 4
2

2 (22)

Oxidation of Cr(III) by Solid Manganese Oxides.
Naturally occurring Cr(III) can be oxidized and lead to
Cr(VI) groundwater contamination, which has previously
caused drinking water concerns.8 Oxidizing agents of Cr(III)
that occur naturally in varying groundwater conditions consist
of solid manganese oxides (MnOx) and other metal oxides
(Figure 6).67 The primary oxidizing agent of Cr(III) in alkaline

and aerobic conditions is MnOx from the birnessite mineral;
this is due to its large surface area, high degree of crystallinity,
strong electronegativity, and ability to regenerate via the
oxidation of Mn(II) by microorganisms and/or dissolved
oxygen.8,67−69 The oxidation of Mn(II) yielding Mn(III)/(IV)
oxides at alkaline and oxic conditions was shown to accelerate
Cr(VI) production; this was the dominant pathway of Cr(III)
oxidation in the long-term analysis (1 year) compared to
oxidation by MnO2 or O2 (Figure 6).

67,70 The accumulation of
MnOx in groundwater and subsequent oxidation of Cr(III) to
Cr(VI) has occurred across the globe, creating drinking water
health risks, especially in systems without adequate Cr
treatment.71−73 The following reaction 23 indicates the
oxidation of Cr(III) by MnOx species:

74

+ + +

+

+ −

−

F2Cr(OH) 3MnO 3Mn 2CrO 2H O

2OH
3 2

2
4
2

2

(23)

Reduction of Cr(VI) by Natural Reducing Agents. As
for the natural reduction of Cr(VI), reducing agents such as
organic matter, Fe(II), and sulfides can reduce Cr(VI) to
Cr(III) (Figure 6).8,67,75,76 Not only is Fe(II) an environ-

mentally friendly reducing agent, but its application on
adsorbed surfaces has shown the promising removal of Cr(VI)
through consecutive one-electron reduction processes (Cr(VI)
+ Fe(II) → Cr(V); Cr(V) + Fe(II) → Cr(IV); Cr(IV) +
Fe(II) → Cr(III)).77−79 Surface adsorbed Fe(II) is regarded as
having higher reducing capabilities than Fe(II) in water, which
has been demonstrated in Fe(II)-treated graphene oxide for
the adsorption and reduction of Cr(VI).80 Clay minerals
containing Fe(II)/(III) are capable of reducing Cr(VI) with
Fe-poor montmorillonite and Fe-rich nontronite clay minerals
having second-order rate constants at pH 7.3 of 1.28 and 449
M−1 min−1, respectively.81 Additionally, some organic ligands
can enhance Cr(VI) reduction by Fe(II) from the formation of
Fe(II)/(III)−ligand and Cr(V)−ligand complexes.82 Another
example is the reduction of Cr(VI) by biological Fe(II)
complexes (e.g., hemeproteins), which may result in Cr(V)
complexes.83

Another effective method in Cr(VI) reduction utilizing
Fe(II) has been shown by Fe(II)-doped TiO2 photocatalysts;
in 3.0 h of sunlight irradiation, almost 100% of 102.3 mg/L
Cr(VI) from plating wastewater was removed.84 Methods
without Fe(II) adsorbed on surfaces, like the Fe(II)/H2O2
Fenton reaction, has also shown the potential to reduce
Cr(VI). More recently, the incorporation of the catalyst WS2
was shown to enhance the oxidation of phenol and the
reduction of Cr(VI), achieving 90.9% reduction of 40 mg/L
Cr(VI) at pH 3.8.85 These studies that explored the
incorporation of the natural reductant Fe(II) in Cr(VI)
reduction yield promising data for its application in Cr-
contaminated wastewater. Mechanistic studies involving Cr-
(V)/Cr(IV) in these systems are lacking.
The reduction of Cr(VI) to Cr(III) can also occur by

microorganisms in both aerobic and anaerobic environments.86

Microorganisms can directly reduce Cr(VI) by intracellular
reduction and indirectly reduce Cr(VI) by producing natural
reductants.86 Reductants of Cr(VI) like S(II) and Fe(II) can
be produced by bacteria while oxalic acid can be produced by
fungi.8,87 The natural reduction of Cr(VI) has been shown by
some fungal species through enzymatic reduction and sorption
to mycelia.75,87 The Cr-resistant fungus Paecilomyces lilacinus
was shown to reduce 1.24 mg/L of Cr(VI) from tannery
effluent to below the detection level in 18 h in both acidic and
basic conditions.88 Additionally, the Cr-tolerant fungus
Penicillium oxalicum SL2 was shown to reduce 40.6 and 96.1
mg/L of Cr(VI) in 48 and 96 h, respectively, from
electroplating wastewater; a remarkable 89.6% of 217.1 mg/L
Cr(VI) was also reduced from electroplating wastewater in 96
h.89 The reduction of Cr(VI) by Penicillium oxalicum SL2 was
attributed to oxalic acid secreted by Penicillium oxalicum SL2
and by biomass uptake through amine, carboxyl, and
phosphate functional groups.87 Interestingly, Mn2+ has been
shown to promote Cr(VI) reduction by oxalic acid, posing
another mechanism for the natural Cr(VI) reduction and
application to wastewater remediation.90

Remediation of chromium-contaminated systems by bacteria
is largely influenced by the bacterial cell surface; Gram-
negative bacteria are more efficient at reducing Cr(VI) than
Gram-positive bacteria because their outer membranes contain
lipopolysaccharides, lipoproteins, and phospholipids.91 Fur-
thermore, multiple other microorganisms have shown the
promising reduction of Cr(VI), making bioremediation of Cr-
contaminated environments a viable treatment technology,
partly because it can be highly selective to toxic metals.92 The

Figure 6. An environmentally relevant redox potential diagram
illustrating the primary redox couples that are thermodynamically
capable of influencing Cr redox species. Adapted with permission
from ref 67. Copyright 2016 Canadian Science Publishing.
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reduction of Cr(VI) would most likely occur through
intermediates Cr(V) and Cr(IV), which warrants in-depth
investigations.
Interaction of Cr(VI) with Natural Organic Matter.

Natural organic matter (NOM) contains different components
like polysaccharides, proteins, polyphenols, and humic
substances (HSs). HSs are produced from microbial and
abiotic degradation of different plants and animal wastes. HSs
are commonly found in river and surface waters, soil,
groundwater, and sediments. The typical levels of HSs are in
the ranges of sub mg/L to mg/L.93−97 NOM contains many
organic compounds with different functional groups such as
thiols, carbohydrates, carbonyls, and carboxylic acid.98−102

Researchers have subclassified HSs into fulvic acids (FAs),
humic acids (HAs), and humin. FAs are considered soluble
components over a broad pH range and have low molecular
weight constituents while HAs are insoluble at low pH and
encompass high molecular weight constituents.103

Many studies have been carried out on the interactions of
Cr(VI) with NOM.104−107 In an earlier work, it was shown
that the reduction rate of Cr(VI) with soil FA decreased with
the increase in pH.106,107 The empirical rates from the
experimental data indicated that different functional groups
of FA reduced Cr(VI). Another study using EPR measure-
ments showed the formation of Cr(V) from the reduction of
Cr(VI) by FA (see Figure S4).108 Model compounds of FA
like 1,2-dihydroxybenzene also reduced Cr(VI) to Cr(V)
species. The reduction of Cr(VI) is highly dependent on the
ionic strength, coexisting ions, and source of NOM.104,109 The
investigations of carboxylic acids (e.g., formic, malic, and
malonic acids) as model compounds of HA have examined
their capacity to reduce Cr(VI). The formation of reactive
Cr(V) and Cr(IV) complexes in the Cr(VI)−carboxylic acid
interaction has been explored.110 The literature has clearly
suggested the formation of Cr(V) and Cr(IV) complex species
with functional groups of NOM like carbohydrates, carbox-
ylates, hydroxamate, peptides, and proteins. Importantly, the
formation of the reactive Cr(V) and Cr(IV) in the Cr(VI)−
NOM system may react with organic contaminants coexisting
in the aquatic environment to cause their degradation.
Oxidation of Organic Pollutants by the Cr(VI)−S(IV)

System. In the past few years, the oxidation of emerging
organic contaminants by the Cr(VI)−S(IV) system has been
investigated.35,111 The reduction of Cr(VI) by S(IV) (HSO3

−

⇌ H+ + SO3
2−, pKa = 7.2111) gives Cr(V) and Cr(IV) species

and sulfite radical (eqs 24−26).

+ → + +− •− +Cr(VI) HSO Cr(V) SO H3 3 (24)

+ → + +− •− +Cr(V) HSO Cr(IV) SO H3 3 (25)

+ → + +− •− +Cr(IV) HSO Cr(III) SO H3 3 (26)

The generated SO3
•− is converted to reactive sulfate radical

(SO4
•−) through a series of reactions.111 The degradation

kinetics of a wide range of organic contaminants are presented
in Figure S5a.35 The properties of functional groups in the
organic molecules determine their degradation kinetics. The
formation of Cr(V)/Cr(IV) and SO4

•− was particularly
studied. The methyl phenyl sulfoxide (PMSO), which reacts
selectively with Cr(V)/Cr(IV), could indirectly determine the
formation of high-valent Cr intermediates in the Cr(VI)−
S(IV) system. EPR measurements using ehba as a stabilizer of
Cr(V)/Cr(IV) provided signals of Cr(V)/Cr(IV). The kinetic

modeling of the reactions involved in the degradation of
organic contaminants by the Cr(VI)−S(IV) system allowed
the evaluation of the individual contribution of Cr(V) and
SO4

•− for the degradation of a wide range of contaminants
(Figure S5b). The relative contributions of each reactive
species varied with the properties of the target organic
contaminants.

■ CONCLUSIONS
The environmental ubiquity of chromium, its industrial
applications, and its varying toxicity based on the oxidation
state give reasons for the continued interest in this widespread
element. Toxicity studies under biological environments clearly
suggest the role of high-valent Cr(V) and Cr(IV) species.
Comparatively, the roles of such intermediate Cr species in
environmental processes and the exploration of their potential
uses in redox reactions of Cr are greatly lacking. This
Perspective provides current fundamental knowledge for
Cr(V) and Cr(IV) in aquatic environments to guide
researchers to characterize them using spectroscopic methods
like UV−visible and EPR techniques and subsequently perform
the mechanistic evaluation of the redox system. Additionally,
examples presented on various redox reactions of Cr will assist
in the design of the experiments to evaluate the potential of
Cr(V) and/or Cr(IV) species in the environmental systems of
interest. Moreover, the formation of Cr(V) and Cr(IV) during
the interaction of Cr(VI)/Cr(III) with functionalities of NOM
needs further in-depth investigations to learn their roles in
various natural and engineered processes, including the
decontamination of organic contaminants. Lastly, a Cr(VI)-
reductant system may effectively degrade many organic
contaminants in water, which warrants greater attention in
future studies.
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