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PARTIAL DIFFERENTIAL EQUATION OF HIDDEN-MEMORY SPACE-TIME
VARIABLE ORDER*
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Abstract. We analyze a time-stepping finite element method for a time-fractional partial differential equation
with hidden-memory space-time variable order. Due to the coupling of the space-dependent variable order with the
finite element formulation and the hidden memory, the variable fractional order cannot be split from the space and
destroys the monotonicity in the time-stepping discretization. Because of these difficulties, the numerical analysis
of a fully-discrete finite element method of the proposed model remained untreated in the literature. We develop an
alternative analysis to address these issues and to prove an optimal-order error estimate of the fully-discrete finite
element scheme without any assumption on the regularity of the true solution and perform numerical experiments to
substantiate the theoretical findings.
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1. Introduction. Time-fractional diffusion equations (tFDEs)

Ofu — Au = 0, 0<a<l,

(. [
fg"/o T(a)(t— 5"

accurately model physical processes exhibiting power-law memory properties, as they were
derived assuming their solutions have power-law decays [23, 24], and they have attracted
extensive research [2, 3, 4,5, 7,9, 10, 11, 14, 16, 17, 21, 22, 33, 34, 40]. But they yield
solutions with initial weak singularities [26, 28] and fail to capture the initial Fickian diffusion
behavior of the processes, making the error estimates of their discretizations proved for smooth
solutions unrealistic. The reason is that equation (1.1) is derived as the diffusion limit of a
continuous time random walk when the number of particle jumps tends to infinity [23, 24],
and this limit is only valid for ¢ >> 1 rather than all the way up to the initial time ¢t = 0 as is
often assumed in the literature. A two-time-scale mobile-immobile tFDE

ou+ kOfu —Au=0, k>0,

was presented in [27] to improve the modeling of subdiffusive transport of solutes in heteroge-
neous aquifers, in which a portion of 1/(1 + ) of the solute mass stays in the mobile phase
undergoing Brownian motion while the rest gets trapped in the aquifers forming an immobile
phase leading to subdiffusive transport.

In applications such as bioclogging [6] and hydrofracturing in gas and oil recovery [12],
the medium structures may evolve with time and change their fractal dimension, which in
turn changes the order of the tFDEs [23] and leads to variable-order tFDEs. A widely used
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variable-order tFDE corresponds to o = «(t) in (1.1) [8, 29, 31, 35, 41]. A hidden-memory
variable-order tFDE, which corresponds to o = «(s) in (1.1), was investigated in [19, 29]. A
variable-order tFDE with general time-dependent hidden-memory variable order o = «(s, t)
was proposed in [19], which showed that the variable-order tFDE with o = «(t) has an
immediate response to a change of the variable order but has no memory retentiveness of the
order history, while the one with &« = «/(s) has a weak response to a change of the variable
order but has an intermediate memory retentiveness of the order history. In addition, the
model with &« = «(t — s) has a very slow response to a change of the variable order but has
strong memory retentiveness of the order history. A general time-dependent variable order
a = a(s, t) provides a flexible description between the fading memory of the order history
and the response to order variations among other impacts. Another definition, called the
variable-order Scarpi derivative, was recently introduced in [13] via the Laplace transform. For
highly heterogeneous materials, the variable order o may also depend on the spatial location
x.
We consider a tFDE with a general space-time variable order

du(z, t) + k(z, )T ™ u(z, t) — Au(z,t) = f(z,t), (x,t)€Qx (0,7,
(1.2) u(z,t) =0, (z,t) € 0Q x (0,7,
u(x,0) = up(x), €.

Here 2 C R% is a simply-connected bounded domain with a piecewise smooth boundary
0N with convex corners, « := (z1,...,zq), with 1 < d < 3, denotes the spacial variables,
k > 0 is the partition coefficient, f and u( refer to the source term and the initial data, re-

. a(x,:,t)
spectively, and 0
operator [19]

is the space-time hidden-memory variable-order fractional differential

Note that the symbol “:” in «(x,:,t) represents the implicit variable integrated into the
fractional integral, e.g., the variable s in the above definitions.

There exists some recent work on the mathematical and numerical analysis for the
model (1.2) with a variable order depending on time and/or space [15, 18, 32, 37, 38, 39]. In
particular, the semidiscrete-in-time schemes were analyzed for the model (1.2) with space-
time dependent variable order in [18, 39]. Without discretization in space, the difficulties in
the numerical analysis arising from the coupling of the space-dependent variable order and
the spatial inner product of the FEM are avoided (cf. the statements given at (4.6)—(4.7) in
Section 4 for details), which significantly facilitates the estimates [39]. For these reasons, error
estimates for the fully-discrete finite element scheme of the model (1.2) remained untreated,
to the best knowledge of the authors, which motivates the current work.

In this paper we prove an optimal-order error estimate of a time-stepping discretization
of problem (1.2). The rest of the paper is organized as follows: In Section 2 we outline
the notation and auxiliary results to be used subsequently. In Section 3 we prove the well-
posedness and smoothing properties of problem (1.2). In Section 4 we present a time-stepping
discretization and prove its optimal-order error estimate. In Section 5 we conduct numerical
experiments to substantiate the theoretical findings.
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2. Preliminaries. We present some preliminaries to be used subsequently.

2.1. Notations. For a positive integer m and a real number 1 < p < oo, let WP ()
be the Sobolev space of functions with weak derivatives up to order m in LP((2), the space
of functions with p-th power being Lebesgue integrable on {2 (similarly defined with 2
replaced by an interval 7). Let H™(Q) := W"™2(Q), and let HJ"(2) be its subspace with
zero boundary conditions up to order m — 1. For a non-integer s > 0, H*(12) is defined
via interpolation [1]. Let 0 < A; 1 oo be the eigenvalues and {¢; }?°, the corresponding
orthonormal eigenfunctions of the problem —A¢p; = \;¢; with zero boundary conditions. We
introduce the Sobolev space H*(Q), for s > 0, by

FIS(Q):{UELQ( o, = ZAS }

which is a subspace of H*(Q) satisfying H°(Q) = L?(Q) and H?(Q) = H2(Q)NHZ(Q) [30].
For a Banach space X, define W™ (Z; X) by (see [1])

W™mP(0, T; X) = { 0,T] = X« ||oFu(-, L°(0,T), 0<k<m,1<p< oo},

Bl €
equipped with the norm

1/p
(o ot I W) L 1spe,
”vHW’"’p(O,T;X) =

max esssup Ha v

p = oQ.
0<k<m te(0,T)

)] s
For instance, if X = LP(2), then the above definition becomes

1/p
(Z’ZNLO fOT fQ !akv '7t |pdwdt) 3 1 S P < 00,

max  esssup |5‘ v(x, t) } p = 0.
X?
0<k<m te(0,T),ze0

[vllwm.e 0,510 () =

In particular, we have LP(Z; X') := W%P(Z; X'). Throughout this paper, we assume that there
exists a constant 0 < a™ < 1 such that

0 S a(a:?S?t) S Oé*?

and we use ) and Q; to denote generic positive constants, where () may assume different
values at different occurrences. We set || - || := || - [|z2(q) and LP(X) for LP(0,T; X) for
brevity and drop the notation €2 in the spaces and norms if no confusion occurs.

2.2. Solution representation and resolvent estimates. For 6 € (7/2,7) and § > 0, let
Iy be the contour in the complex plane defined by

Ig:={z€C:larg(z)| =0,]z| = 6} U{z € C: |arg(2)| < 0,|z| = d}.

The following inequalities hold for 1 < p < 00, 0 < u < 1,and Q = Q(6, u, p) [3, 20]:

/ 21t =] < Qi
Ty

H/ Z“ —1 tz dz < Q
Ty

_tl—t7

2.1) t e (0,7,

Lp—LP
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where the norm || - || > z» of an operator S : LP(Q) — LP(Q) is defined as

S
”S”L?’—)Lp = sup ” q”LP.
0#qeLP ||q||LP

For any ¢ € L}, .(Z), the Laplace transform L of its extension §(t) to zero outside Z and
the corresponding inverse transform £~! are denoted by

2mi

Lq(z) = /000 q(t)e "dt, Eil(ﬁq(z)) = — e*Lq(z)dz = q(t).

The Riemann-Liouville fractional differential operator 78] q := 9, I}~ "¢ satisfies [25]
L£("9]q(t)) = 27L(q(1)), 0<~y<1.

The semigroup E(t) := e*” generated by the Dirichlet Laplacian has the spectral decomposi-
tion and expression in terms of the inverse Laplace transform

@2) B() ze (0.000(@) = g [ =B @ bz b e IHO).

The following estimates hold for any ¢ > 0 and 1 < p < o0 [3, 20, 30]:

IE@®) e~ + HIE )| Loore + HAE®) | Lo e < @,

where E'(t) := e*®A. The solution u to the heat equation

20iu(x,t) — Au(x, t) = f(.alc,t)7 (x,t) € Q x (0,77,
(2.3) u(x,t) =0, (z,t) € 00 x (0,71,
u(x,0) =0, T €,
can be expressed in terms of F(t) via Duhamel’s principle

2.4) (1) = /O E(t - 0)(x,0)d0

and allows for the following estimate [3]:
LEMMA 2.1. For f € LP(L?), for 1 < p < oo, problem (2.3) has a unique solution
u € WEP(L?) N LP(H?) given by (2.4) such that

lullwreo.e2) + 1wl Lo m2) < QUFIlLe0,62), 0<t<T,
where @ is independent of f, t, or T.

3. Analysis of the variable-order tFDE (1.2). We prove the well-posedness and smooth-
ing properties of the space-time hidden-memory variable-order tFDE (1.2).

THEOREM 3.1. Let o« € W1>°(T; L™>®), k € WL (L), Aug € L?, and f € LP(L?),
for1 < p < oc. Then problem (1.2) has a unique solution v € WP (L?) N LP(H?) and

lullwezey + lull o2y < QUIFIZe(L2) + 1 AuollL2), Q@ = Q(aw, T, p).

The proof of this theorem could be carried out following that of [39, Theorem 1] and thus is
omitted.
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Next we prove more general space-time regularity estimates of the solutions u for the
problem (1.2) than those in [39, Theorem 2]. The difference w(x,t) := u(x,t) — up(x)
satisfies

3.1) (Ow — Aw)(z,t) = f(a,t) + Aug(x) — r(z, )0 ™ Dw(a, t)

on (xz,t) € Q x (0,T] equipped with homogeneous initial and boundary conditions. We
use (2.4) to express w as follows:

w(x,t) :/0 E(t—s)(AuO—l—f(ac,s))ds—/O BE(t — s)(k02® ") w(x, 5))ds
= Ll—LQ.

3.2)

LEMMA 3.2. Assume that o« € W3>®(T; L) and k € W?°°(L>®). Then there is
a positive QQ = Q(e, ax, ||af[ws.oo(x;00), || w200 (o), T) such that for 0 < t < T and
0<ex],

Ogw(a,0)|ds  Q(|f(x,0)| +|Auol)

t
e ofz,:,t) |
3.3) |Rat Oy (I{at U))’ < Q/() (t — a)a*+g to(x,0,0)+e

Proof. The proof of this lemma is given in Appendix A. |
THEOREM 3.3. Suppose that « € W3°°(T; L), k € W2°(L>®), Aug, A?uy € L?
and f € HY(L?) N L2(H?). Then, for 1 < p < 2and p < 1/ag with ag := ||a(+,0,0)| L,

[ullwer L2y + [lullwree w2y + [ullwrn gz
< Q (Il 22y + 1l z2qas) + 1Auoll + 1 A%uoll)

where Q = Q(p, o, || alyws.00 (5;00), [Kllw2.0 (o), T).
Proof. We apply (2.2) to directly evaluate 92 L by

Ly =0 f + A(Aug + f) + [y 02, N2e M=) (Aug + £, ¢i)pids.

An application of Young’s inequality yields
9 1/2
L2 (O,T)]

) t
”atQLl”L?(L?) < [Z H / )\fe*Ai(tfs)(Auo + f(, s), ¢z)d$‘
i=1 70

3.4 9
A a2y + 1 ez ey + 1A ol

< QIf ez 22y + 1F 1l 22y + 1A% uoll).
We differentiate Lo in (3.2) with respect to ¢ to get
t
(3.5) OrLo = / elt=)A A(/iag(m’:’s)w(w, s))ds + ﬁ@?(m’:’t)w(m,t).
0

We utilize the commutativity of the convolution operator to obtain

t t
3t/ e(tfs)AA(nas‘(w’:’s)w(a:, 5))ds = 8t/ eSAA(l-@a;'(m’:’y)w(w, y)) |y:t—s ds
0 0 :

t
= / 6SAAat (Hag(w7:’y)w(may))|y:t—s)d8
0

t
= - / e =IRAY (RO @ (x, 5))ds,
0
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and we use (3.5) to evaluate 8§L2 as follows:
t
(3.6) 2Ly = —/ (=98 AQ, (Faag(w’:’s)w(w, s))ds + O, (naf‘<"’“'"’“w(w, t)).
0

We use Lemma 3.2 with € = 0 to bound the second term directly and use (2.2) and apply the
Laplace transform to the first term to conclude that for 0 < ¢ < 1,

t
L[ / e“S>AAaS(nag<w~S>w(a;,5))ds}
0

t
zﬁ{/ 8t(1/ ez(ts)(z—A)1dz)83(n8§‘(z’:’s)w(a:,s))ds
0 Ty

2mi

= (' (z = A) N (L[ (m@f(m’:’t)w)]),

that is,

¢
/ (=92 A9, (nag(w’:’s)w(w, s))ds
0

t
:/ [1/ 2178 (2 — A)lez(ts)dz} (Rajas(ﬁag(m’:’s)w(:c,s)))ds.
0 Ty

2mi

Using (2.1) to bound the integral in the square brackets and Lemma 3.2 to bound the first term
on the right-hand side of 8t2L2 in (3.6) yields

- Q/t ||R8§85(58?(”:’5)w(w,3))Hds
0

t
(t—s)AA a(x,:,s)
H /0 e s (KOS w(z, s))ds )i

61 <o g ([ (0 + [ Aul)s e )ds
3u(.0)]

t 82 . —«
<Q4éﬂw»w+Q(ﬂﬂm+mwmt”

We multiply (3.6) by e~ " and take the || - || .» (0,7:)-norm on both sides of the resulting equation
and then invoke (3.7) and Young’s convolution inequality to obtain

||670t0262L2||Lp(L2)
(3.8) < Q[[(e™t7) x (e 7w, D[ Lo 0.1y + QUISC, O + [ Auo])
< Qo e R wl| Lo (r2y + QIS 0) + | Augl]).-

Differentiating (3.2) twice in time, applying the || - || .+ (0,7)-norm on both sides of the resulting
equation multiplied by e~** and invoking (3.4) and (3.8) yields

|‘€70t81£2w”LP(L2) < ||€7Utat2L1||Lp( HL”(LZ)

< QIf lzr 22y + 1F | 22y + | Auo| + [A%uol|) + Qo ~H|e™ 0Fw]| 129

L2) + ||€7Utat2L2

We set o large enough to hide the last term on the right-hand side to get

(3.9) 107w]| 2y < QUIF Nz 22y + 1F Il 22y + 1Al + [[A%uo]]).-
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Applying Lemma 3.2 with € = 0 yields

a(x,:,t
100 (507 Ow) || 12y < QUi 22 + 1 F 122y + | Auol| + [ A%uo])).
We use these estimates to arrive at

HathLP(FP) = HatAwHLp(Lz) = [|0Fw + Dy (kO w) — 3tfHLp(L2
< QU e w2y + Il z2 2y + 1 Auol| + [|Augl]).-

(3.10) )

Finally, we combine the two expression
t
Orw = / O*w(x, s)ds + Oyw(x,0) and  dyw(x,0) = f(x,0) + Aug,
0

and estimate (3.9) to bound ||0;w|| - (z.2) in terms of the right-hand side of (3.10). o

REMARK 3.4. The proved regularity results in Theorem 3.3 are required in the estimates
of the truncation errors proved in Step 2 of the proof of Theorem 4.1. Furthermore, if the
solutions are smooth enough, then some compatibility conditions such as f(x,0) + Aug =0
for & € 02 may be required.

4. A numerical discretization and its error estimate. Define a uniform temporal par-
tition on [0,T] by ¢, := nr, for 7 := T/N and 0 < n < N. Define a quasi-uniform
partition of €2 with mesh diameter h, and let S}, be the space of continuous and piecewise
linear functions on {2 with respect to the partition. Let I be the identity operator. The Ritz
projection I, : H}(Q) — S, () defined by (V(g — IIg), V) = 0, for any x € Sy, has
the approximation property

“.D I(I =gl < QR*|lgllm=, Vg € H? N Hy.
For brevity of expression, we skip & whenever there is no confusion and denote u,, := u(x, t,,),
kn = K(x,tn), and f, = f(=,t,). We discretize J;u and 8?(m’:’t)u at t = ¢, for
1<n< N,by

Up — Up—_1 1 [tn 9

6tu|t:tn = 5Tu'n + En =t at ’U/(w,t)(t — tnfl)dt,
T T Je, 4
(42) @t "L (ty, — s) @S9 u(x, 5)ds
01 iz, = Tl
k=1"tk-1 ( —Ck(:l:,s,tn))

= 62@5t)y, + Ry + Ry,

where 6@ty R, and R, are defined by

_ S)*a(w’tk,tn)

n th ¢ n
fa@itn)y, e / (tn Srupds =Y by — g
e B« A e S Y

k=1

(t, — th_1) 7@ betn) (¢, — ) lm @t tn)
I'2 — a(x, tk, tn))T ’

R n t (t _ S)—a(w,s,tn) (t _ S)—a(w,tk,tn)
R, = / ( n B >6Su x, s)ds,
; te_1 F(l 70‘(m757tn)) F(l *Oé(.’B,tk,,tn)) ( )

bn,k: =
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n no (Dsu(z, s) — drup(x))ds
Rk
X=X

1 k=1"7tk-1 P(l - a(w7tk>tn))(tn - S)Q(m’tk’t")

. (1, — 5) 0t 2u(z, 0)dodz |d
Z/ F(l—a(wtk,t»(/t“ | Gu@.9) ) >

k=1"1tk—1

The idea of the discretization of 9;" (@)1, arises from the approximation of each sub-integral

/t’“ (tn, — s)~ @St u(x, s)ds
- (1 - a(z,s,ty))

by replacing dsu(x, s) and a(x, s, t,) by d-uy and a(x, tg, t,,), respectively, in order to ob-

tain an explicit formula 67 (w’:’t“)un for the numerical implementation; the resulting truncation

error is split into two parts R,, and R, for the convenience of error estimates.

We plug these discretizations into (1.2) and integrate the resulting equation multiplied by
X € HE(£2) on Q to obtain its weak formulation forn = 1,..., N:
(57un7 X)"‘(Hn 62(%:77:”)“%7 X) + (vun7 VX)

4.3) A )
= (fn»X)_ (ﬁn(Rn"‘ar)""_EnaX)a VXGHO(Q)

We drop the local truncation error term to obtain a finite element scheme for (1.2): find
U, € Sy with Uy := Il ug such that forn =1,..., N,

(4.4) (07U, X) + (ki 2@ U, ) + (VUL VX) = (fa, X), VX € Sh.
We subtract equation (4.4) from equation (4.3) to obtain the error equation

(6 (U = W, X)+(kn 53(337:’%)([] —U)n, X) + (V(U — U, VX)

4.5) .
= (Hn(Rn+Rn)+EnaX)a Vx € Sh.

Let 1T, u be the Ritz projection of v and 7 := II,u — u be bounded in (4.1). We split
the error into U,, — u,, = &, + 1y, and it remains to bound &, := U,, — llu,, € Sp,. We set
x = &, in (4.5) and rewrite the error equation as

(0r&ny En)+(Rn02 @), ) + (Vén, VE,)

(4.6) R _
= (”in[Rn + Rn - 6$(m’t")7’]n] + En - 577]m €n>

For a = a(t) and k = k(t), &, and {b,, 1 } are independent of = and can be moved outside of
the inner product in the second term on the left-hand side. Equation (4.6) reduces to

[1 + Tk(tn)bn’n] ||§nH2 + HV§n||2

n—1
(gn 17511 +7_k Z nk+1*bn,k)(€ka§n)
k=1
(4.7) +7(k(tn) [Rn + Rn — 62U, + By — 6,10, )
n—1
< 1gall (€1l + 7R (tn) D (Buss = b
k=1

7 [k(tn) | R + R = 32| + || B = 70l
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Dropping the || V&, ||?-term, canceling ||, on both sides, and using the monotonicity of
{bn.%} and an induction argument yields a stability estimate [36]. For problem (1.2) with
a = oz, s, t), the expressions {b,, 1} and x,, depend on  and cannot be moved out of the
inner product in the second term on the left-hand side of equation (4.6), to which the analysis
in (4.7) does not apply. We adopt a novel approach to prove the following theorem.

THEOREM 4.1. Under the assumptions of Theorem 3.3, scheme (4.4) has an optimal-order
error estimate for T small enough:

— ~ -— _ < 2
4.8) 10—l g2y = max |0 = | < QQ(r +12).

Here ) := 1l w2y + 1Nl 2 giey + | Auoll + [|A%uoll, and Q is independent of h, T, N.
Proof. We multiply equation (4.6) by 27, cancel ||&,, || from the (&,,_1, 2, )-term, and use
&o = Uy — ITug = 0 to deduce the following inequality from (4.6):
1€ 11? + 27 (Bnbn.nén: €n) + 27V

(4.9) ) =
< Hgn—l H + 27 Z (”in(bn,k-&-l - bn,k)fk;fn) + T(Gm fn)a

k=1

where G, :=2(k, [Rn +R, — 6?(w’:’t”)nn} + Ep — 6:1).
We prove the theorem in two steps.
Step 1. Stability estimate of ||£,||. There is a constant Q). = Q. (T") such that

N
(4.10) ||§||ﬁoo(L2) < Q*HGHLl(m)a ||G||ﬁ1(L2) = TZ 1G]l

Since by, ;; = O(7~ %), a naive estimate of the second term on the right-hand side of (4.9) will
blow up. We present a novel splitting to bound the sum of the terms |bn7k+1 — bk |

n—1
Z ‘bn,k+1 - bn,k‘
k=1

1 tht1 —a(@,tp41,tn) 1 tr (t _ S)*a(mﬂfk;tn)
= f/ ds — 7/ 7 ds
— |7 Ji, 1 —a(x, tgyr, tn)) T Jo, T(1 = afz, ty, ty,))
(4.11) n=l b —a(@th1stn) _ g)—al@itits)
< l Z/ (b = 5) ds
T = 1 — (@, thg1, b)) D1 — @, tr, b))
1 - tk+1 —a(®,ty,tn) tr tn — —a(x,ty,tn)
~ [ s .
7' p 1 —alx, tk, ty)) oy T(1 = a(zx, by, t,))
= J|+ JQ.

We bound the first term on the right-hand side by

n-! Tt tx —a(x,z,tn)
1 k+ k41 (tn 75) (x,z,
Ji=— / / 0 dz|ds
T ; tr tr Zr(l - OZ((L', Z7tn))

4.12)

n—1 that tn
SQZ ket |ln d —Q/ In(t |

o du (o


http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA

Kent State University and
Johann Radon Institute (RICAM)

NUMERICAL SCHEME FOR VARIABLE-ORDER FDE 661

The summands in .J5 are nonnegative. We further split J5 as

8)_a(w7tkatn) S)_O‘(aﬂtkfhtn)

J 1< tk+1 J ti (tn _ J
T 2:: [/ (1 —a(z, ty, tn)) T ‘/tkl Il — oz, tk-1,tn)) S}
n—1 —a(x,tr_1,tn k —o(x,ty,tn
+ 1 Z l:/ (t — 5) (@tk-1,tn) ds _/t (tn — 3) (@i tn) d8:|
T k te—1 F(l - O[(iL' Tk— lat )) te_1 P(l - a(w7tk7tn))

=1

4.13)

=: J2’1 + J272.

We note that the first term is a telescoping sum with respect to k to get

1 [t (t, — s) @@tno1,tn) (¢, — ) (®@to,tn)
0§J21=*/ (tn = 5) ds—/ (tn = 5) ds
’ T Jt F(l - a(ma tn—h tn)) 0 F(l - Oé(CL‘, to, tn))

- l /tn (tn _ S)—Ot(ahtn—lvtn)
tn—1

1)y T —alx,tn1,tn))

1 tn t o\ —a(mtn_1,tn) tn _ o —alzty,tn)
(4.14) S f/ (bn = 5) ) ds
’ T ), [ TA—a(x,th1,tn) T(1—oalx,t,,ty))

1 tn n (tn _ S —a(z,z,tn)
! o, dxd
+T/tnl/ T(L—a(@, 2 6,)

tn

<bpn+Q (tn, — 8)"% | In(ty, — s)|ds < by + Q.

tn—1

n—1

ds

We bound the second term on the right-hand side of (4.13) similarly to (4.12) by

) a(x,z,tn)

n

1—a(a:zt )

dzds < Q.

(4.15) | 22| < = Z/ /

We apply the estimates (4.14) and (4.15) to (4.13) and combine the resulting estimate
with (4.11) and (4.12) to conclude that 22;11 ’bmk“ — bn,k{ < by,n + Qo for a Qg that is
independent of 7, n, and N. We use this estimate to bound the second term on the right-hand
side of (4.9) by

n—1
2T Z (/in (b k1 — bn )&k, En)

n—1 n—1
(4.16) <7 < Z |bn,k+1 - bn,k|’€n§m §n> +7 Z (’Qn|bn,k+1 - bn,k|£k7 fk)
k=1 k=1
n—1
< T(”nbn,ngru gn) + QOT(fingny fn) +7 Z (Hnlbn,kJrl - bn,k|§k7 flc)

k=1
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We use the estimate (4.16) in (4.9), sum the resulting equations from n = 1 to m (< N), and
cancel the like terms to get

m

1€mll® + 7 (Knbnn&n:&n) +2TZ||V§n||2
n=1

m n—1
@17) <7y > (Kulbugrr = buglér: &) +Q172||£n||2+72IIGnIIHénII
n=2 k=1 n=1
m—1 m
=T (gk,sk > Fnlbnksr — bn,k|) + erz I€a 1% + TZ IGnllll€nll-
k=1 n=k+1 n=1 n=1

We bound the sum in the inner product in the first term on the right-hand side by

m
Z ﬁn‘bn,k—‘rl - bn,k|

n=k+1
((tnl _ S)—a(m,tk+1,tn) B (tn — S)—oz(a:,tk,tn) )ds
th_1 F(l 70‘(m7tk+1;tn)) F(l *O[(.’B,tk,tn))

"
R

(418) 7” (tn—l _ S)_o‘(mvtk+17tn) B (tn—l - 3)—04(537151@-,%) i
T Jtg_y F(l - CE(J:, tk+1, tn)) F(l — O[(il:’ ik, tn))
DI / tyog = ) OBt - (b, — )o@t
n=k+1 F<1 - a(m7tk7tn))
=: L1 + Lo.

We use the substitution of variable 6 := tj, + (s — t,—1) to bound L by

11— 8) a(z,z,tn)

oo (00 ti trt1
L < ||"0HL 11Kz (L) / / Z e
ki1 te—1 Jti l—oz(a:,z,tn))
m ln n |-
< Q / | d < Q /
nzk’;-l te—1 (t -1 S nzk;l-l o1 1 — S (1+a*)/2
do
D ol e ] T =t
nXk;I tur (0= 15) “*" )/2 0 — ty)(1+o/2

As the integrand of L in (4.18) is nonnegative, we split and bound L5 by

m _ Ly _ o\ —a(x,tr,tn)

o Kp — Kn—1 (th_1 —5)

0<Le= ) T / T —alzint)) &
n=k4+1 tr—1 ) sy bn

P 3 [ [l i),
T Jo, L T — oz, te, tn)) 'l — a(x, tk, th-1))

n i /tk |:K;Tl1 (tnfl — S)_a(wvtkytnfl) _ @ (tn ) a(wvtkvtn):|d8
e LT (1 — a(x, tr,trn-1)) T (1 — a(x, tr, t,))
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< Zm: Kn — Kn—1 /tk (tn—l _ S)—(x(m,tk,tn) ds
n=k+1 T te—1 F(l 7a($atkatn))
i Z Knp— 1/ { el — 5) a(®,ty,tn) B (tn—l _ S)*O&(w,tk,tn,l) i
n=k+1 I'(1— oz, te,tn)) 'l — oz, ty,tn-1))

@ ty (tk _ s)fa(m,tk,tk)
T P(l — Oé((l:,tk7tk))

ds =: La1 + Log + Kby k.

te—1

Here we have used the fact that the last term on the right-hand side of the equal sign is a
telescoping sum. We bound Lo; and Lo in a similar manner to (4.12) by

Ll tliml<e S [[7 2
Lo1| + [L22| £Q [/ —
te—1 (tnfl - S)Q*

e

We invoke these estimates in (4.18) to find that Z?:k-}-l Enlbn.k+1—bn.k| < Q2+ Kibrk
for some Q2 > 0 (independent of 7, k, m, and IN). Consequently, we bound the first term on
the right-hand side of (4.17) by

TZ (fk?gk Z K7L|bn k+1 —

n=k+1

- S) a(z,ty,z)

Z 1 — a(x, ty, 2))

dzds] < Q.

) < Qa1 Z I1€k1I* +7 Z (Fkbr k€ ) -

We invoke this in (4.17) and cancel the like terms to conclude that for 1 < m < N,

I€ml1? +27 Y T IVEN? < (@1 + Q)7 Y l&nll® +7 Y IGnllllénll-

n=1 n=1 n=1

We drop the second term on the left-hand side, choose 7 > 0 such that (Q1 + Q2)7 < 1/2,
and apply the discrete Gronwall inequality to obtain

(4.19) [€m])? < 26X @HITEN | Glll6nl,  1<m <N
n=1
Let ||, || := maxi<m<n [|&n || (assumed positive without loss of generality). Set m = m.,

in (4.19) and divide the resulting inequality by [|&,, || to arrive at (4.10).
Step 2. We use Theorem 3.3 to bound F,,, R,, and R,, introduced in (4.2) by

N Q N tn N tn )
LIEESY / JoRul(e ~ta)it <@ [ JoEuld < QG
n= tn— n=1"1tn-1

tr
SR < QZZ e / |03u(-. 0)||dbds
n=1 k—1

n=1k= fkl -

N k
QZ/t [02ul(-, \dGZ/ — (s
k=1"tr— th—1
N
2

tr .
[ 108, 0)1d0 < Qllulwasa) < QG

17tk—1
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N
Q Z [[wllwroo L2y Z/
n=1

tr—1

an(s) _ —Oén(t )
- (tn = 5) : ds
1 - an(s)) (1 — an(tr))

IA

N A
D IRl
n=1

<0 ZN: Z": /t’“ 8Z((tn - s)_%(Z)) T
n=1k=1"tk—1 P(l - Oén(Z)) 2=C

<Q (1+0‘*)/2d$ <

< ,; - QQ.

We use (4.1) to bound the remaining two terms in G,, in (4.9) by

t

(- m)atudtH < 0N ullyrnare) < QON2,

n—1

tr

N N

TZ 8-11a]| =

TZ ||5a<:c ), || = TZ i w(I —1I3) 8tudtH
k= th—1

N n te te

—1Ylk—1 k—1

k
Q> Z/ (tn — 8)~*ds||Opull L1ty tperr2)

—QhZZHUIIWHm i Z [ s
tp—1

We incorporate these local error estimates into (4.10) to obtain

N
1€l g 2y < Qe D (1Bl + 1 Rll + R | + 177l + 1155 ][)

< QQ(7 +h?).

(4.20)

We combine (4.20) with (4.1) to prove the estimate (4.8). a

5. Numerical experiments. We numerically test the convergence rate of the finite ele-
ment approximation (4.4) by measuring the error |[u—U||; - (12)- In all numerical experiments,
we apply a uniform spatial partition with rectangular elements of mesh size h in each direction.

TABLE 5.1
Convergence of the scheme (4.4) in Example 5.1 with a = 3 and fo = 0.

T h=1/36 conv.rate h 7 =1/360 conv.rate

1720 4.70e-02 1/8 3.12e-03

1730 3.22e-02 0.93 1/16  7.78e-04 2.00
1/40  2.41e-02 1.00 1724 3.44e-04 2.01
1/60  1.56e-02 1.07 1730 2.19e-04 2.03
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EXAMPLE 5.1 (Simulation of problem (1.2) in one space dimension). The data are
Q=(0,1),[0, 7] =[0,1], k(z,t) = 1, up(z) = sin(rz), f(x,t) = fo, and

a+s+2t (1 . sin(0.57r:r)>
10 10 ’

As closed-form solutions are not available, we use the scheme (4.4) with fine mesh sizes

= 1/240 and 7 = 1/360 to compute a reference solution to test the spatial convergence
rate of (4.4), and we use h = 1/36 and 7 = 1/360 to compute a reference solution to test the
temporal convergence rate. We present the numerical results in Tables 5.1-5.3 for a = 0 or 3,
respectively, which illustrates the second-order accuracy in space and the first-order accuracy
in time of the scheme (4.4) as proved in Theorem 4.1.

a(z,s,t) =

0<aceR.

TABLE 5.2
Convergence of the scheme (4.4) in Example 5.1 with a = 0 and fo = 0.

T h=1/36 conv.rate h 7=1/360 conv. rate

11720  4.97e-02 1/8 3.20e-03

1730 3.41e-02 0.93 1/16  7.97e-04 2.00
1/40  2.56e-02 1.00 1724 3.53e-04 2.01
1/60  1.65e-02 1.08 1730 2.24e-04 2.03

TABLE 5.3
Convergence of the scheme (4.4) in Example 5.1 with a = 0 and fo = 1.

T h=1/36 conv.rate h 7=1/360 conv. rate

1120  4.33e-02 1/8 4.35e-03

1730 2.97e-02 0.93 1/16  1.10e-03 1.99
1740 2.23e-02 1.00 1724 4.87e-04 2.00
1/60  1.44e-02 1.08 1730  3.10e-04 2.02

EXAMPLE 5.2 (Initial singularity of the solutions). We use the same model data as in
Example 5.1 with fo = 1 and plot the curves of the approximations of d;u(0.5,¢) near t = 0
under ¢ = 6 and @ = 0. Recall that ap := ||(+,0,0)| ze in Theorem 3.3, which implies
ap = 0.66 and ap = 0, respectively. We observe from Figure 5.1 that when oy = 0, the
function 0,u(0.5,t) appears to be smooth near the initial time, while when «g = 0.66, it
becomes steeper and thus exhibits an initial singularity. These observations demonstrate the
analysis in Theorem 3.3 in that a larger ag leads to a smaller p, which may imply a stronger
singularity of the solutions.

EXAMPLE 5.3 (Simulation for problem (1.2) in two space dimensions). The data are
Q= (0,1)2 [0,7] = [0, 1],

u0($7y> = Sin(ﬂ'l’) Sin(ﬂ.y)? f($7yat) = 07 a($7ya57t) = 821560'1(%—“!)/27
and
() k(z,y,t) = tey? or (i) K(z,y,t) = €' (1 +sinzcosy).

We focus on the temporal convergence rates of the scheme for problem (1.2) for the cases
(1)—(ii) and compute the reference solution with A = 1/24 and 7 = 1/240. We present
the numerical results in Table 5.4, which illustrates the first-order accuracy in time of the
scheme (4.4) as proved in Theorem 4.1.
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FIG. 5.1. Curves of approximations of 9zu(0.5,t) under g = 0.66 and g = 0 in Example 5.2.

TABLE 5.4

Temporal convergence of the scheme (4.4) in Example 5.3 under h = 1/24.

T @) conv. rate (i) conv. rate
1/30  2.00e-01 1.95e-01
1/40  1.50e-01 1.00 1.49e-01 0.94
1/48 1.23e-01 1.07 1.21e-01 1.14
1/60  9.49e-02 1.17 9.45e-02 1.10

Conflict of interest. The authors declare that they have no conflict of interest.

Appendix A. The proof of Lemma 3.2. We begin with 0 < ¢ < 1. A straightforward

calculation yields

(A.1) Rz 0y (k0™ Dw) = ROz ((9)

a(x,:,t

Jw + nataf‘(m’*%).

The second term in (A.1) is leading, which can be decomposed as

R05 (1007 @ w) = 0,11 (n0,05 V)
= I@'(.’L‘, t)atltlfsata?(m,z,t)w + (at,{)[tlfeata?(m,:,t)w

(A2)

o
0

" (e, s) — K(x, 1)
(1 —e)(t—s)*

D02 @)y ds.

We estimate the first term on the right-hand side since it dominates. As OItl_E and 9, are
commutative for an integrand vanishing at ¢ = 0 [25], we perform integration by parts on the
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right-hand side to obtain

8, I 20,02 @ Doy (a, t) = 92 o I} ~=0" @ Doy (, t)

_ 92 Pt—s)== [*® (sfy)*a(w,w) ol .
8/ F(l—e)/o 1“(1_@(337%8))3?; (z,y)dyd

Lt —s)%(s —y)~o@¥s)ds
= 82/ Oyw(x,y / ( dy
Yy F(l - 6)]'—\(]' - a(w,y, 8))

(t—s)"5(s — 0)@0:5) g
(A3) 8[ 8w””’// 1—5)F1—a(w95)) dey:()
5 (t—s5)"%(s — ) ®05)dsdh
/a ”// Di—or(—a(e.0.5)
) ) (t —s)~%(s — 0)~=09)dsdp
/6 my@// I1-¢e)r 1—a(ac,9,s)) dy

— )~ @9 dsdp
2
+atwmoa// 1—5 (1—a(xz,b,s))

y=t

To bound (A.3), we focus on evaluating the following term for 0 < y < ¢:

o [P [T (=) (s — 0) =09 dsdh
% /y /9 I'l1—-eI'(1 — a(x,0,s))

a2 Pt—s)"c [*(s— 9)—a(m,9,s)d0
= 0 /y r1—e) /y I'(1—a(z,0,s)) ds

B _aQ/t (t _ S)—s |:/s (8 _ e)a(m,s,s)—a(mﬂ,s) d(s _ 6)1—a(m,s,s):|ds
- t
y T(1—¢) |/, I'(l-—a(x,6,s)) 1—a(x,s,s)

a2 ¢ (t—S)_E (S—y)l a(z,y,s)
= 3t/y I'(l1—e) [(1 —a(x,s,s))T(1 — a(zx,y,s))

N /s (S _ 9)1—a(w,s,s) 89 (S _ e)a(w,s,s)—a(w,é,s)
y 1—alz,s,s) (1 —ax,6,s))

(A4)

dO] ds

= 8752]1 + 8?[2

Direct calculations show that /5 can be expressed as

t - s
(t— 3) 6/ L aee)
I == _ _ a(x,0,s K

? /y rl-e¢) J, (s —0) 2(x, 0, 5)d0ds,

(I —a(=,s, 5))~t
(A.5) @89 = T a(2,0,9))

[ — Oga(x,0,s)In(s — 0)

_am,s,s) —alz,0,s)
s—0
I'(1—a(x,6,s)dpa(x,0,s)
1l — a(x,0,s)) )
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We apply integration by parts to get

t 2 £
2L, = |9? (t— a 0) = @05) [¢) (22,0, 5)| dOds
t t 3_

Yy
(A.6) ‘/ (t—s) / )i @09) ) (2,0, 5)] dOds

<Q / (=) (s — y)"ds < Q(t — y)' .
y
We then split 7 as

t _ )¢ _ N\l—a(z,y,y)
e [0 e N
Yy

I(l1—¢) I'(2-a(z,y,y))

t _ s l1—a(x,y,z

(t—s) s/ (s —y) (®,y,2)

+/ a. dzds =: I4 + I1p.
y Tl=¢) ), "(1—-a(zz2)(1l-axy,z2))

(’93 I, can be bounded by

(t _ y)2—a(m,y,y)—s

2
I =
0ol = 10 S 5 oy ) —9)

o} < Q(t —y) o@yy)—e

83 I can be bounded in a similar manner to that of 83 I5. Furthermore, passing to the limit
t — 0 in problem (3.1) yields

(A7) Oyw(z,0) = f(x,0) + Aug.

We incorporate the estimates (A.4), (A.5), (A.6), (A.7), and the estimates for 8,52[ 1 into (A.3)
and combine the resulting estimate with (A.1) and (A.2) to prove (3.3) for 0 < ¢ < 1. The
estimate (3.3) with € = 0 can be obtained by letting € | 0 in (3.3).
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