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Abstract. Novel discoveries of biomarkers predictive of drug-specific
responses not only play a pivotal role in revealing the drug mechanisms
in cancers, but are also critical to personalized medicine. In this study,
we identified drug-specific biomarkers by integrating protein expression
data, drug treatment data and survival outcome of 7076 patients from
The Cancer Genome Atlas (TCGA). We first defined cancer-drug groups,
where each cancer-drug group contains patients with the same cancer and
treated with the same drug. For each protein, we stratified the patients
in each cancer-drug group by high or low expression of the protein, and
applied log-rank test to examine whether the stratified patients show
significant survival difference. We examined 336 proteins in 98 cancer-
drug groups and identified 65 protein-cancer-drug combinations involving
55 unique proteins, where the protein expression levels are predictive
of drug-specific survival outcomes. Some of the identified proteins were
supported by published literature. Using the gene expression data from
TCGA, we found the mRNA expression of ∼11% of the drug-specific
proteins also showed significant correlation with drug-specific survival,
and most of these drug-specific proteins and their corresponding genes
are strongly correlated.
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1 Introduction

The high inter-individual variability in drug response makes it a great challenge
to develop personalized treatment strategies for individual patients [1]. There-
fore, personalized medicine is a research area of great interest in terms of optimiz-
ing therapeutic options and improving patient clinical outcomes. One essential
aspect for personalized medicine is to identify biomarkers that are predictive
of drug treatment responses [2]. Rapid technological advances in cancerogenic
research have facilitated the discovery of genetic variants as predictive and prog-
nostic biomarkers associated with drug efficacy and patient clinical outcomes [3].
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In the literature, numerous pharmacogenetic studies have investigated the rela-
tionship between molecular expression profiles and patient survival outcomes,
and identified prognostic biomarkers in cancers [4]. Most of the existing studies
chose to include as many subjects relevant to their scopes as possible, while fre-
quently ignoring the fact that these patients might receive different treatments.
In our opinion, there are two main reasons for such choices. First, population-
based studies with a larger sample size often have increased statistical power
for identification of biomarkers [5]. Second, drug treatment data is often either
unavailable or in non-standardized formats that are difficult to incorporate. As a
result, cancer survival biomarkers identified in existing studies are often general
to the cancer being studied, but not specific to any drug treatments. However,
studying biomarkers in a drug-specific manner has the potential to reveal the
underlying cancer mechanisms and inform designs of personalized medicine.

The Cancer Genome Atlas (TCGA) is one of the most powerful cancer
genomics programs to date [6], which provides massive data to expand our knowl-
edge of tumourigenesis. TCGA has generated a large public collection of multiple
types of omic data on ∼11,000 cancer patients across 33 different cancer types.
The omic data types include mutation, copy number variation, methylation, gene
expression, miRNA expression and protein expression data. TCGA also provides
drug treatment data and survival outcomes of the patients. In the drug treat-
ment data in TCGA, there are nomenclature problems (i.e., alternative names,
abbreviations and misspellings), making it difficult for bioinformatics analysis.
In our previous study [7–9], we manually standardized the drug names in the
drug treatment data, which enabled us to examine the potential for gene copy
number and gene expression as biomarkers of drug-specific survival.

Here, we focused on investigating the potential of proteins as drug-specific
predictive biomarkers, since proteins are the functional units in the central
dogma of molecular biology. And it has already been hypothesized that pro-
teomic profiling more directly addresses biological and pharmacologic problems
in cancer [10]. In recent years, proteomics efforts have led to proteins that
can serve as cancer biomarkers. Several lines of evidence have shown that the
expression level of proteins is frequently associated with drug response. One
example is MRP1, which is associated with drug resistance or poor patient out-
comes in a variety of cancers [23]. MRP3 is the ABC transporter that is most
closely related to MRP1. For both MRP3 and MRP1, their protein expression
levels correlated with decreased sensitivity of lung cancer cell lines to doxoru-
bicin [11]. Another well-characterized example is eight protein signatures that
were identified for the prediction of drug response to 5-fluorouracil, including
CDH1, CDH2, KRT8, ERBB2, MSN, MVP, MAP2K1, and MGMT. All of these
proteins, except for KRT8, are involved in the pathogenesis of colon cancer [12].

In this study, we performed survival analyses on patients with the same can-
cer and were exposed to the same drug, and identified proteins whose expression
levels are associated with drug-specific survival outcome. Some of the identified
protein markers were further supported in the literature, where we found multi-
ple published papers indicating their relationship with drug response in cancers.
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However, we also found a few drug-specific proteins that are inconsistent with
previously reported findings in terms of the direction of correlation with survival
outcomes. In addition, using the gene expression data in TCGA, we explored the
regulatory mechanism of predictive protein markers by examining their coding
genes.

2 Results

2.1 Significant Proteins Predictive of Drug-Specific Survival

To identify proteins correlated with drug-specific survival outcomes, we grouped
patients who suffered from the same cancer and received the same drug together,
which we call cancer-drug groups. Across the 33 cacner types in TCGA and
the 254 unique drug names from our previous manual standardization of the
drug treatment data [7–9], a large number of cancer-drug groups contained 0 or
very small number of patients, because not all drugs were applied to treat all
cancer types. We imposed a minimum sample size requirement of 15, and only
considered cancer-drug groups whose number of patients exceeded this threshold.
Therefore, a total of 98 cancer-drug groups were considered for the subsequent
analysis to identify protein markers for drug-specific survival.

Next, we binarized the protein expression data in TCGA, which was needed
in our survival analysis. For each of the 336 proteins measured by TCGA, we
applied StepMiner [13] to binarize its expression data across all patients in all
cancer types. Specifically, for each protein, we sorted its expression data for
all patients and then fitted a step function to the sorted data that minimizes
the square error between the original and the fitted values. The step function
provided a threshold to binarize the expression of the protein.

Finally, we performed survival analysis to evaluate each protein’s ability to
predict the survival outcome of patients in each cancer-drug group. Patients in
the cancer-drug group were stratified into a highly-expressed class and a lowly-
expressed class based on the binarized data of the protein. To minimize undesired
statistical bias, we only performed survival analysis on proteins in cancer-drug
groups with at least 5 lowly-expressed patients and 5 highly-expressed patients.
In total, 17,812 protein-cancer-drug combinations were tested in our analysis,
which involved 23 cancer types and 41 drugs. We applied log-rank test to deter-
mine the statistical significance of survival difference between highly-expressed
class and lowly-expressed class. 90 proteins exceeding an FDR threshold of
< 0.1 were selected as predictive markers whose expression levels were related to
patients’ survival outcome in a drug-specific manner. In order to identify proteins
that are specifically related to individual drugs, we performed the same analysis
on all patients in each cancer type, and identified proteins that are predictive of
cancer-specific survival irrespective of drug treatment. Among the 90 proteins
significant for drug-specific survival, 25 were also identified in the cancer-specific
analysis. In our subsequent analysis, we excluded the 25, and only included the
protein markers that were significant in cancer-drug groups but not significant
in the corresponding cancer types.
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Table 1. 65 Significant protein-cancer-drug combinations identified in cancer-drug
groups

Cancer-drug groups Protein markers for drug-specific survival Number of patients

BLCA-Gemcitabine YWHAE,AKT1-3,CDK1,MAPK1 75

BRCA-Carboplatin AKT1 24

BRCA-Doxorubicin CDK1 282

CESC-Cisplatin TP53BP1,Tubulins,BAP1,CTNNB1,COL6A1,
CDH1,EIF4G1,HSPA1A,KU80,MRE11,CDH2,
SERPINE1,TSC2

61

COAD-Oxaliplatin EIF4EBP1 82

HNSC-Carboplatin BCL2,CLDN7,FOXM1,MSH2 22

KIRC-Sorafenib KDR 16

LGG-Bevacizumab EIF4EBP1,ETS1,FASN,TIGAR,TSC2 41

LGG-Irinotecan ETS1,KU80,SRSF1,FYN 20

LGG-Lomustine CTNNA3,AR,CDKN1A,BRAF 31

LUAD-Cisplatin NF2 66

LUSC-Gemcitabine ABL1 26

LUSC-Cisplatin CCNE2,PEA15 54

OV-Docetaxel CCNE1,RBM15 69

OV-Carboplatin CASP7,RICTOR 290

OV-Doxorubicin CDH1,GAB2,RBM15 106

OV-Vinorelbine AKT1-3,CDK1,ERCC5 19

PAAD-Gemcitabine CDKN1B,MAPK11 73

PAAD-Fluorouracil BECN1,GAPDH,ERBB3,CDKN1B,MAPK11,
MAPK12,PTEN,SRC,PARP1

24

STAD-Cisplatin DPP4 48

STAD-Etoposide INPP4B 19

As showed in Table 1, a total of 65 significant protein-cancer-drug combina-
tions were identified in 21 cancer-drug groups, which involved 55 unique proteins.
We found 13 significant proteins predictive of cisplatin response in cervical squa-
mous cell carcinoma and endocervical adenocarcinoma (CESC), and 9 protein
markers are associated with fluorouracil response in pancreatic adenocarcinoma
(PAAD). Interestingly, there are 11 proteins that turned out to be significant in
multiple cancer-drug groups, which may potentially serve as key biomarkers to
drug responses in multiple cancer types. Among the proteins that were signifi-
cant in more than one cancer-drug group, we observed that CDH1 was related to
the sensitivity of cisplatin in CESC and also associated with the overall survival
of Doxorubicin-treated patients in ovarian serous cystadenocarcinoma (OV). We
also found that CDK1 was correlated with drug response to gemcitabine in
bladder urothelial carcinoma (BLCA), doxorubicin in Breast invasive carcinoma
(BRCA), and vinorelbine in OV.
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Fig. 1. Kaplan-Meier curves of overall survival for patients treated with fluorouracil at
low or high expressed classes stratified by PTEN or SRC in the PAAD.

2.2 Literature Support of Predictive Protein Markers

To assess whether there are previous research that supported the identified pro-
tein markers predictive of drug response, we conducted a comprehensive litera-
ture survey on the PubMed database for each of the 65 protein-drug combina-
tions. We found supportive evidence for multiple protein-drug combinations in
various cancer contexts.

In particular, our analysis suggested that high-expressed CDKN1B was able
to increase drug response to gemcitabine in pancreatic adenocarcinoma (PAAD).
This is consistent with previous studies that the re-expression of CDKN1B was
related to the sensitization of pancreatic cancer cells to gemcitabine leading to a
significant induction of apoptosis, which could be a superior potential treatment
for pancreatic cancer [14,15]. Another literature support is about PTEN. PTEN
was first discovered as a tumor suppressor, and its loss of function is strongly
associated with tumor growth and survival. Figure 1A shows how PTEN expres-
sion correlated with PAAD patients in TCGA, that PTEN over-expression led to
increased sensitivity of fluorouracil. This observation is supported by previous
studies which showed that PTEN was involved in promoting 5-Fluorouracil-
induced apoptosis, and the reduced expression of PTEN was associated with
increased malignancy grade in PAAD, whereas maintenance of PTEN expres-
sion showed a trend toward a longer survival [16]. In addition, it has been shown
that the inhibition of TAP subsequently promoted the expression of PTEN that
increase sensitivity to chemotherapeutic agents in cancer [17]. A third example
is VEGFR2, which was previously reported to be predictive of sorafenib efficacy
in patients with metastatic renal cell carcinoma (mRCC) and was associated
with longer overall survival of patients those treated with sorafenib [18]. In our
analysis, we found that the repressed VEGFR2 resulted in prolonged survival
outcomes of patients exposed to sorafenib in Kidney renal clear cell carcinoma
(KIRC), which reveals the potential prediction of VEGFR2 on gemcitabine in
other diseases.
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Fig. 2. Correlation between Bcl-2 and BCL2 in expression level and survival outcomes.
A-B. Kaplan-Meier curves of overall survival for patients treated with fluorouracil at
low or high expressed classes stratified by Bcl-2 or BCL2 in the HNSCC. C. Consistency
of Bcl-2 and BCL2 correlation in expression levels for patients in HNSCC-carboplatin
group.

We also found literature that showed inconsistent direction of survival impact
compared to two of the protein-drug combinations we identified. Our analysis
suggested that decreased SRC was related to poor overall survival of patients in
PAAD and treated with Fluorouracil, shown in Fig. 1B. However, a recent study
that involved fluorouracil and a few other drugs showed that SRC expression
up-regulation in some Pancreatic ductal adenocarcinoma (PDAC) patients was
associated to relatively poor patient outcome [19]. The second inconsistency was
related to BCL2. Our analysis demonstrated that the over-expression of BCL2
resulted in better survival outcomes of patients with Head and Neck squamous
cell carcinoma (HNSCC) and exposed to carboplatin (Fig. 2A), and the high-
expressed BCL2-coding gene was also associated with prolonged overall survival
of patients with HNSCC (Fig. 2B). In contrast, a previous study observed that
BCL2 could inhibit apoptosis induced by cisplatin, carboplatin and paclitaxel,
making HNSCC that express BCL2 resistant to rapamycin, carboplatin and
paclitaxel [20]. Despite of these inconsistencies in the direction of correlation
with survival, the literature did indicate the relevance of our identified proteins
to drug responses in cancer patients.
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2.3 Correlation Between Predictive Proteins and Their Coding
Genes

To understand the roles of drug-specific proteins during carcinogenesis and phar-
macotherapy, we investigated the regulatory mechanism of identified protein
markers by examining their corresponding coding genes. We performed survival
analysis on the genes coded the protein markers, in the same cancer-drug context
where the protein markers were identified. Specificity, for each of the 65 identified
protein-cancer-drug combinations, we extracted the binarized gene expression
data of the corresponding gene for patients in that cancer-drug group, strati-
fied the patients to high-expressed and low-expressed classes according to the
binarized gene expression data, and performed log-rank test to examine whether
there is a significant difference in survival outcome between the two classes. We
applied p-value threshold of < 0.05 to identify genes whose expression were also
predictive of drug-specific survival outcomes. Similar to our analysis of proteins,
survival analysis was only performed on the corresponding genes if there were
at least 5 highly-expressed patients and 5 lowly-expressed patients in the corre-
sponding cancer-drug group. 7 genes were identified whose expression were also
predictive of drug-specific survival, in the same context as its associated protein-
cancer-drug combinations. Therefore, this result suggests ∼11% of the identified
proteins also showed significance in their corresponding genes.

To elucidate the relationships between significant proteins and their corre-
sponding genes in each cancer-drug group, we examined the correlation between
the expression levels of protein and gene in each of the 7 significant protein-gene
pair. Correlation analysis was performed between log-transformed gene expres-
sion data and protein expression data by using R package ‘lm’. Among the 7
protein markers whose gene expression also correlated with survival in the same
cancer-drug groups, we noticed that 4 (BCL2, CCNE2, ETS1, GAB2) showed
positive correlation between gene expression level and protein expression level,
while the remaining 3 (MAPK3, TIGAR, CTNNB1) showed negative correla-
tion.

We also examined the consistency between the survival analyses based on
the proteins and the genes. For example, for a particular protein-cancer-drug
combination whose corresponding gene was also predictive of drug-specific sur-
vival, we examined the direction of their correlation with survival outcome. If
high expression of the protein led to better survival in the cancer-drug group, we
considered the protein to be positively correlated with survival outcome. If high
expression of the corresponding gene also led to better survival in the cancer-
drug group, the gene was also positively correlated with survival outcome. In
this case, the protein and its corresponding gene showed consistency in terms
of their directions of the survival outcome. However, if high protein expression
and low gene expression led to better survival, or low protein expression and
high gene expression led to better survival, the protein and its corresponding
gene were inconsistent in their directions of the survival outcome. Similar to the
correlation analysis above, out of the 7 proteins whose corresponding genes were
also predictive of drug-specific survival outcomes, 4 showed consistent survival
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directions between genes and proteins, whereas the remain 3 showed inconsistent
survival direction. This is not surprising, given mixed reports in the literature on
the concordance and discordance between gene expression and protein expression
in various contexts [21,22].

3 Materials and Methods

3.1 Data Access

TCGA protein expression data and gene expression data were obtained from
Genomic Data Commons (GDC) database using the GDC Data Transfer Tool.
Clinical data were also downloaded from GDC, which included patients’ drug
treatment records and survival outcomes. After removing duplicates in the
molecular data and filtering for samples with treatment and survival data, we
finally used a total of 31 cancer types in this study.

3.2 Data Preprocessing

The gene expression data downloaded from TCGA have been normalized by
FPKM-UQ, and we subsequently preprocessed the gene expression data by log-
transformation. The protein expression data available from TCGA have already
been properly normalized and transformed. For each gene and each protein, we
used the StepMiner algorithm [13] to compute a global threshold for all patients
across all cancer types. Specifically, we sorted the expression data across all
patients from low to high for each gene or protein, and then a step function was
fitted to minimize the square error between the original and the fitted values.
Using the threshold, the normalized protein and gene expression data are bina-
rized, so that patients can be divided into two classes (high-expressed class vs.
low-expressed class) based on expression levels of each individual protein and
gene features.

3.3 Survival Analysis

For each protein, patients who suffered from the same cancer and received the
same drug were stratify into highly- or lowly-expressed classes according to the
binarized data of that protein. We used log-rank test to compare the survival
differences between patients in highly- and lowly-expressed classes. Benjamini-
Hochberg multiple tests were used to calibrate the false discovery rate (FDR)
for the significance. Proteins with FDR < 0.1 were identified as drug-specific
markers whose expression expression levels were predictive of patients’ survival
outcome in a drug-specific manner. Kaplan-Meier analysis and log-rank test in
this study were conducted using the R package ‘survival’.
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3.4 Literature Search

We performed literature searches on PubMed database to find articles that men-
tioned proteins interacting with drugs in the cancer-drug context from which
the proteins were identified. We used a Python script with the Bio.Entrez pack-
age from Biopython, and programmatically searched the National Library of
Medicine PubMed database (http://www.ncbi.nlm.nih.gov/pubmed). Keywords
for the searches were drug AND protein markers in all fields, including the title,
abstract and main texts of the articles.

4 Conclusion

In this study, we integrated multiple data types in TCGA to perform survival
analysis for patients who belonged to the same type of cancer and exposed to the
same drug. This analysis identified predictive protein markers whose expression
levels are associated with drug-specific survival outcomes in various cancer types.
Notably, our results included proteins that have been previously reported to
be predictive biomarkers for drug sensitivity and resistance in cancers, as well
as the novel ones that have not been proposed in the literature. In addition,
we examined gene expression of the identified proteins in terms of both the
correlations between their expression levels and their correlations with survival.
Overall, the drug-specific proteins identified in this analysis may be effective
biomarkers predictive of drug response and survival outcomes in cancers. Further
validation investigation on these protein markers can help guide clinical decisions
for individual patients.
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