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Abstract
Ultraslow diffusion describes the long-time diffusion of particles whose mean square displace-
ment (MSD) grows logarithmically in time. We prove the well-posedness of a Caputo–Hadamard
time-fractional diffusion model in multiple space dimensions, in which the MSD in time grows
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logarithmically and thus provides adequate descriptions for the ultraslow diffusion processes,
as well as the smoothing properties of the solutions.

Keywords : Ultraslow Diffusion; Mean Square Displacement; Caputo–Hadamard; Time-
Fractional Diffusion Equation.

1. INTRODUCTION

The classical Fickian diffusion partial differential
equation (PDE) governs the scaling limit of a ran-
dom walk where the underlying particle jumps have
a finite variance, which leads to a normal diffusion
that is characterized by a linear growth of the mean
square displacement (MSD) in time 〈x(t)2〉 � t.1

In many scenarios, e.g. the transport of solutes in
heterogeneous porous media, the diffusion is anoma-
lous characterized by a power-law growth of the
MSD in time 〈x(t)2〉 � tβ, where β < 1 and β > 1
correspond to the subdiffusion and superdiffusion,
respectively, and β = 1 reduces to the normal
diffusion.1,2 This explains why integer-order diffu-
sion PDEs do not accurately describe the diffusive
transport of solutes in heterogeneous media, which
are instead modeled by the time-fractional PDE
(TFPDE) ∂β

t u − Δu = f(x, t) with 0 < β < 1
where ∂β

t is the Caputo fractional differential oper-
ator defined by ∂β

t g := I1−β
t g′ with the convolution

I1−β
t g := (t−β/Γ(1 − β)) ∗ g.3
The two time-scale mobile–immobile TFPDE

model

ut + k(t)∂α
t u− Δu = f(x, t), 0 < α < 1

(1.1)

was derived in Ref. 4 to improve the modeling of
subdiffusive transport, in which k(t)∂α

t u describes
the subdiffusive transport consisting of k(t)/(1 +
k(t)) portion of the total solute mass and ut rep-
resents the Brownian motion consisting of 1/(1 +
k(t)) portion of the total solute mass. Fractional
differential equations have been applied in mod-
eling phenomena in many fields.5–10 Many diffu-
sive processes are strongly anomalous in that their
mean waiting time has a super-heavy tail, which
decays slower than any power-law decaying tail
does. Their MSD grows logarithmically in time
〈x(t)2〉 � logμ t for some μ > 0.11–13 In Refs. 14–16,
the Caputo–Hadamard fractional calculus with log-
arithmic kernel is introduced to describe the ultra-
slow kinetics. Inspired by the above considerations,
we consider the two time-scale mobile–immobile

Caputo–Hadamard TFPDE of 0 < α < 1

ut + k(t)aDα
t u− Δu = f(x, t),

(x, t) ∈ Ω × (a, T ];

u(x, a) = ua(x), x ∈ Ω;

u(x, t) = 0, (x, t) ∈ ∂Ω × [a, T ].

(1.2)

Here, Ω ⊂ R
d (d = 1, 2, 3) is a simply con-

nected bounded domain with a smooth boundary
∂Ω and convex corners, x := (x1, . . . , xd)�, a > 0
and |k(t)| ≤ K0. The Caputo–Hadamard fractional
derivative is defined by3,17

aDα
t f(t) =

1
Γ(1 − α)

∫ t

a

(
log

t

s

)−α

f ′(s)ds,

log(·) = loge(·).
We present several solution curves and MSDs to

illustrate the motivations of model (1.2). Let α =
0.5, f = 0, a = 1 and ua(x) = e−x2/(2×0.012)/(

√
2π×

0.01) in all models. In Fig. 1, we plot short-term
solutions to the Caputo–Hadamard TFPDE (1.2)
without ut term under k(t) = 1 and (1.2) with
k(t) = 100 on Ω = [−0.1, 0.1] during a short time
period [1, 1.01]. The left plot shows the initial singu-
larity of the solutions, which could be eliminated by
adding the ut term as shown in the right plot, even
though the coefficient of the fractional term is large
(k(t) = 100). In Fig. 2, we plot long-term solutions
to the TFPDE (1.1) and the Caputo–Hadamard
TFPDE (1.2) with k(t) = 100 on the space-time
domain (x, t) ∈ (−0.1, 0.1) × [1, 100], which shows
that the Caputo–Hadamard TFPDE (1.2) exhibits
weaker initial singularities and slower decay prop-
erties compared with the Caputo TFPDE (1.1).
We also explore the MSDs of TFPDEs with dif-
ferent k(t) on (x, t) ∈ (−10, 10) × [1, 100] in Fig. 3,
which indicates that the model (1.2) with k(t) →
0 models the classical Fickian diffusive transport,
while k(t) → ∞ models the ultraslow diffusion.
Equation (1.2) with k(t) = 1 switches smoothly
from the initial Fickian diffusion behavior to the
long-term ultraslow diffusion behavior. Therefore,
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Fig. 1 Short-term solutions to (left) TFPDE (1.2) without ut term under α = 0.5 and k(t) = 1 and (right) (1.2) with α = 0.5
and k(t) = 100.

Fig. 2 Long-term solutions to (left) TFPDE (1.1) and (right) the Caputo–Hadamard TFPDE (1.2) under α = 0.5 and
k(t) = 100.

Fig. 3 MSDs for the Caputo–Hadamard TFPDE (1.2) with (left) k = 0.01, (middle) k = 1 and (right) k = 100.

the two time-scale TFPDE (1.2) captures the long-
term ultraslow diffusion behavior while eliminat-
ing its non-physical initial weak singularity of the
Caputo TFPDE, and thus provides a physically rel-
evant extension of TFPDE models.

We prove the existence and uniqueness of the
initial-boundary value problem of the Caputo–
Hadamard TFPDE (1.2) in multiple space dimen-
sions, as well as the regularity of their solutions that
depends on the fractional order α. The rest of the
paper is organized as follows: In Sec. 2, we present
and prove notations, norms and useful lemmas. In

Sec. 3, we prove the mapping properties of inte-
gral operator with log-kernel. In Sec. 4, we prove
the well-posedness of a Caputo–Hadamard time-
fractional ordinary differential equation, based on
which we prove the well-posedness and regularity
of model (1.2) in Sec. 5.

2. PRELIMINARIES

Let m ∈ R, 0 ≤ μ < 1 ≤ p ≤ ∞ and I ⊂ R

be a bounded interval. Let Cm(I) be the space of
continuous functions with continuous derivatives up
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to order m equipped with

‖g‖C(I) := sup
t∈I

|g(t)|,

‖g‖Cm(I) := max
0≤n≤m

‖Dng‖C(I).

We also introduce the space Cγ,log(I) of log-
Hölder continuous functions on I equipped with the
norm3,18

‖g‖Cμ,log(I) := ‖g‖C(I)

+ sup
t1,t2∈I,t1 �=t2

|g(t2) − g(t1)|
| log t2 − log t1|μ .

Let L2(Ω) be the space of Lebesgue square inte-
grable functions on Ω and Hm(Ω) be the space of
functions with derivatives of order m in L2(Ω). Let
Hm

0 (Ω) be the completion of C∞
0 (Ω), the space of

infinitely differentiable functions with compact sup-
port in Ω, in Hm(Ω). For non-integer r ≥ 0, the
fractional Sobolev space Hr(Ω) is defined by inter-
polation.19,20 All the spaces are equipped with the
standard norms.

It is well known that the eigenfunctions {φi}∞i=1
of problem

−Δφi(x) = λiφi(x), x ∈ Ω; φi(x) = 0, x ∈ ∂Ω
(2.1)

form an orthonormal basis in L2(Ω).21 The eigenval-
ues {λi}∞i=1 are positive and form a non-decreasing
sequence that tend to ∞ with i. We use the the-
ory of sectorial operators to define the fractional
Sobolev spaces22,23

Ȟr(Ω) :=

{
w ∈ L2(Ω) : |v|2

Ȟr(Ω)
:= ((−Δ)rw,w)

=
∞∑
i=1

λr
i (w,φi)2 <∞

}
.

In this paper, we use Q to denote a generic pos-
itive constant that may assume different values at
different situations, and Ci, Mi and Qi to denote
fixed positive constants.

Lemma 2.1 (Generalized Grönwall inequal-
ity (Theorem 3 of Ref. 24)). Let 0 ≤ C0(t) ∈
Lloc(a, b) and C1 be a non-negative constant. Sup-
pose 0 ≤ g(t) ∈ Lloc(a, b) satisfies

g(t) ≤ C0(t) + C1

∫ t

a
g(s)(log t− log s)γ−1ds

s
,

∀ t ∈ (a, b), 0 < γ < 1.

Then g(t) can be bounded by

g(t) ≤ C0(t) + C1

∫ t

a

∞∑
n=1

(C1Γ(γ))n

Γ(nγ)

× (log t− log s)nγ−1C0(s)
ds

s
, ∀ t ∈ (a, b).

In particular, if C0(t) is non-decreasing, then

g(t) ≤ C0(t)Eγ,1(C1Γ(γ)(log(t/a))γ), ∀ t ∈ (a, b),

where Ep,q(t) represents the Mittag-Leffler function
defined by

Ep,q(t) :=
∞∑

k=0

tk

Γ(pk + q)
, t ∈ R, p ∈ R

+, q ∈ R.

We finally give a useful result to be frequently
used subsequently.

Lemma 2.2. The following relation holds for 0 <
ζ < η and p, q > 0:∫ η

ζ

(
log

η

t

)p−1
(

log
t

ζ

)q−1 dt

t

=
Γ(p)Γ(q)
Γ(p+ q)

(
log

η

ζ

)p+q−1

.

Proof. We omit the proof since it is obvious.

3. MAPPING PROPERTIES
OF THE LOG-KERNEL
INTEGRAL OPERATOR

We prove the mapping properties of the following
integral operator bJ γ

t
3 for 0 < γ < 1 and 0 < b ≤

t ≤ c <∞:

bJ γ
t f(t) =

1
Γ(γ)

∫ t

b

(
log

t

s

)γ−1

f(s)
ds

s

to facilitate the subsequent analysis.

Theorem 3.1. For g ∈ L∞(b, c), bJ γ
t g ∈ Cγ,log[b, c]

and

‖bJ γ
t g‖Cγ,log [b,c] ≤ Q‖g‖L∞(b,c), Q := Q(b, c, γ).

Proof. For b ≤ t1 ≤ t2 ≤ c, direct calculations
yield

[
bJ γ

t g(t)
]∣∣t=t2

t=t1
=

1
Γ(γ)

[∫ t2

b

(
log

t2
s

)γ−1

g(s)
ds

s

−
∫ t1

b

(
log

t1
s

)γ−1

g(s)
ds

s

]
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=
1

Γ(γ)

∫ t1

b

[(
log

t2
s

)γ−1

−
(

log
t1
s

)γ−1
]
g(s)

ds

s

+
1

Γ(γ)

[∫ t2

t1

(
log

t2
s

)γ−1

g(s)
ds

s

]

=: L1 + L2. (3.1)

Since (log t2
s )γ−1 − (log t1

s )γ−1 ≤ 0 for any b ≤ s ≤
t1, we bound L1 by the following:

|L1| ≤
‖g‖L∞(b,c)

Γ(γ)

∫ t1

b

[(
log

t1
s

)γ−1

−
(

log
t2
s

)γ−1
]
ds

s

=
‖g‖L∞(b,c)

Γ(1 + γ)

[(
log

t1
b

)γ

+
(

log
t2
t1

)γ

−
(

log
t2
b

)γ]

≤ 2‖g‖L∞(b,c)

Γ(1 + γ)

(
log

t2
t1

)γ

≤ Q

(
log

t2
t1

)γ

‖g‖L∞(b,c).

Next, we bound L2 by

|L2| ≤
‖g‖L∞(b,c)

Γ(γ)

∫ t2

t1

(
log

t2
s

)γ−1 ds

s

=
‖g‖L∞(b,c)

Γ(1 + γ)

(
log

t2
t1

)γ

≤ Q

(
log

t2
t1

)γ

‖g‖L∞(b,c),

which completes the proof.

Theorem 3.2. For g ∈ Cβ,log[b, c] with 0 < γ+β <
1, bJ γ

t (g(t) − g(b)) ∈ Cγ+β,log[b, c] and

‖bJ γ
t (g(t) − g(b))‖Cγ+β,log [b,c]

≤ Q‖g‖Cβ,log[b,c], Q := Q(b, c, γ, β). (3.2)

Proof. Since g ∈ Cβ,log[b, c], ḡ := g(t) − g(b) satis-
fies |ḡ| ≤ ‖g‖Cβ,log [b,c](log t

b)
β . For b ≤ t1 ≤ t2 ≤ c,

we rewrite (3.1) by the splitting g(s) = (g(s) −
g(t1)) + g(t1)

[
bJ γ

t ḡ
]∣∣t=t2

t=t1
g

(
log

t2
s

)γ−1 ds

s

=
1

Γ(γ)

∫ t1

b

[(
log

t2
s

)γ−1

−
(

log
t1
s

)γ−1
]

× (ḡ(s) − ḡ(t1))
ds

s

+
1

Γ(γ)

∫ t2

t1

(
log

t2
s

)γ−1

(ḡ(s) − ḡ(t1))
ds

s

+
ḡ(t1)
Γ(γ)

[∫ t2

b

(
log

t2
s

)γ−1 ds

s

−
∫ t1

b

(
log

t1
s

)γ−1 ds

s

]

=: H1 +H2 +H3.

If t1
b ≤ t2

t1
, we use the substitution y = log t1 − log s

to bound H1 by the following:

|H1| =

∣∣∣∣∣
∫ log

t1
b

0

ḡ(t1e−y) − ḡ(t1)
Γ(γ)

× (yγ−1 − (y + log t2 − log t1)γ−1)dy

∣∣∣∣∣
≤

∣∣∣∣∣
∫ log

t1
b

0

‖g‖Cβ,log[b,c]

Γ(γ)

(
log

(
t1

t1e−y

))β

× (yγ−1 − (y + log t2 − log t1)γ−1)dy

∣∣∣∣∣
=

∣∣∣∣∣
∫ log

t1
b

0

‖g‖Cβ,log[b,c]

Γ(γ)
yβ

× (yγ−1 − (y + log t2 − log t1)γ−1)dy

∣∣∣∣∣
≤ ‖g‖Cβ,log[b,c]

Γ(γ)

∣∣∣∣∣
∫ log

t1
b

0
2yγ−1yβdy

∣∣∣∣∣
=

2‖g‖Cβ,log [b,c]

Γ(γ)

(
log

t1
b

)γ+β

≤ QM‖g‖Cβ,log[b,c]

(
log

t2
t1

)γ+β

. (3.3)
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Otherwise, we split the first integral in (3.3) on
[0, t2

t1
] and [ t2t1 ,

t1
b ] to obtain

|H ′
1| =

∣∣∣∣∣
∫ log

t2
t1

0

ḡ(t1e−y) − ḡ(t1)
Γ(γ)

× (yγ−1 − (y + log t2 − log t1)γ−1)dy

+
∫ log

t1
b

log
t2
t1

ḡ(t1e−y) − ḡ(t1)
Γ(γ)

× (yγ−1 − (y + log t2 − log t1)γ−1)dy

∣∣∣∣∣
=: H ′

11 +H ′
12.

H ′
11 can be bounded by the right-hand side of (3.3)

by a similar technique. We bound H ′
12 by the sub-

stitution y = r log t2
t1

|H ′
12| ≤ Q‖g‖Cβ,log[b,c]

(
log

t2
t1

)γ+β

×
∫ +∞

1
(rγ−1 − (1 + r)γ−1)rβdr

≤ Q‖g‖Cβ,log[b,c]

(
log

t2
t1

)γ+β

×
∫ +∞

1

(
1 −

(
1 +

γ − 1
r

+ O
(

1
r2

)))

× rα+β−1dr

≤ Q‖g‖Cβ,log[b,c]

(
log

t2
t1

)γ+β ∫ +∞

1
rγ+β−2dr

≤ Q‖g‖Cβ,log[b,c]

(
log

t2
t1

)γ+β

.

We then bound H2 and H3 for b ≤ t1 < t2 ≤ c by

|H2| =
1

Γ(γ)

∫ t2

t1

(
log

t2
s

)γ−1

(ḡ(s) − ḡ(t1))
ds

s

≤ ‖g‖Cβ,log[b,c]

Γ(γ)

∫ t2

t1

(
log

t2
s

)γ−1 (
log

t2
s

)β ds

s

=
‖g‖Cβ,log[b,c]

Γ(γ)

(
log

t2
t1

)γ+β

and

|H3| =
|ḡ(t1)|
Γ(γ)

∣∣∣∣∣
∫ t2

b

(
log

t2
s

)γ−1 ds

s

−
∫ t1

b

(
log

t1
s

)γ−1 ds

s

∣∣∣∣∣
=

|ḡ(t1)|
Γ(1 + γ)

[(
log

t2
b

)γ

−
(

log
t1
b

)γ]

≤ Q‖g‖Cβ,log[b,c]

(
log

t1
b

)β

×
[(

log
t2
b

)γ

−
(

log
t1
b

)γ]
. (3.4)

For t1
b ≤ t2

t1
, we use xγ

2 − xγ
1 ≤ (x2 − x1)γ for 0 <

γ ≤ 1 and 0 ≤ x1 < x2 to bound the right-hand
side of (3.4) by

(
log

t1
b

)β [(
log

t2
b

)γ

−
(

log
t1
b

)γ]

≤
(

log
t2
t1

)γ+β

.

Otherwise, for t1
b > t2

t1
, we can use the mean value

theorem to obtain for some ζ ∈ (log t1
b , log

t2
b )

(
log

t1
b

)β [(
log

t2
b

)γ

−
(

log
t1
b

)γ]

=
(

log
t1
b

)β
[
γ

(
log

ζ

b

)γ−1

log
t2
t1

]

≤ Q

(
log

t1
b

)γ+β−1

log
t2
t1

= Q

(
log

t2
t1

)γ+β

.

Thus, the proof is completed.

Theorem 3.3. For g ∈ Cβ,log[b, c] with γ + β > 1,
bJ γ

t (g(t) − g(b)) ∈ C1[b, c] and

‖bJ γ
t (g(t) − g(b))‖C1 [b,c]

≤ Q‖g‖Cβ,log[b,c], Q := Q(b, c, γ, β). (3.5)

Proof. For 0 < σ � 1 and g ∈ Cβ,log[b, c],

gσ(t) :=
∫ t−σ

b
ḡ(s)

(
log

t

s

)α−1 ds

s

∈ C1[b+ σ, c] (3.6)
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is differentiable and

g′σ(t) =
γ − 1
t

∫ t−σ

b
ḡ(s)

(
log

t

s

)γ−2 ds

s

+
ḡ(t− σ)
t− σ

(
log

t

t− σ

)γ−1

=
γ − 1
t

∫ t−σ

b
(ḡ(s) − ḡ(t))

(
log

t

s

)γ−2 ds

s

+
(
ḡ(t− σ)
t− σ

− ḡ(t)
t

)(
log

t

t− σ

)γ−1

+
ḡ(t)
t

(
log

t

b

)γ−1

=: G1 +G2 +G3.

We use g ∈ Cβ,log[b, c] and β + γ > 1 to bound
G1 −G3 for t ∈ [b+ σ, c] by

|G1| ≤
∣∣∣∣∣γ − 1

t

∫ t−σ

a
(ḡ(s) − ḡ(t))

(
log

t

s

)γ−2ds

s

∣∣∣∣∣
≤ Q‖g‖Cβ,log [b,c]

∫ t−σ

b

(
log

t

s

)β

×
(

log
t

s

)γ−2 ds

s

≤ Q‖g‖Cβ,log [b,c], t ∈ [b+ σ, c],

|G2| =

∣∣∣∣∣
(
ḡ(t− σ)
t− σ

− ḡ(t)
t

)(
log

t

t− σ

)γ−1
∣∣∣∣∣

=

∣∣∣∣∣
(
ḡ(t− σ) − ḡ(t)

t− σ
+

ḡ(t)
t− σ

− ḡ(t)
t

)

×
(

log
t

t− σ

)γ−1
∣∣∣∣∣

≤ Q‖g‖Cβ,log [b,c]

(
log

t

t− σ

)β+γ−1

+
‖g‖C[b,c]σ

t(t− σ)

(
log

t

t− σ

)γ−1

.

We apply the variable substitution x = t
t−σ and use

the L’Hospital’s rule to calculate

lim
σ→0+

σ

(
log

t

t− σ

)γ−1

= lim
x→1+

t− t/x

(log x)1−α

= lim
x→1+

1/x2

(1 − γ)(log x)−γ/x

= lim
x→1+

1/x
(1 − γ)(log x)−γ

= 0.

Hence, we can conclude that G2 → 0 as σ → 0+.
Next, we bound G3 by

|G3| =
ḡ(t)
t

(
log

t

b

)γ−1

≤ Q‖g‖Cβ,log[b,c]
1
b

(
log

t

b

)γ+β−1

≤ Q‖g‖Cβ,log[b,c].

Thus, g′σ(t) is integrable on [b, c] for 0 < σ ≤ ε0 � 1
and is bounded by

|g′σ(t)| ≤ Q‖g‖Cβ,log[b,c]

[(
log

t

b

)β+γ−1

+
(

log
t

t− σ

)β+γ−1
]

≤ Q‖g‖Cβ,log[b,c].

Therefore, the limit function of g′σ(t)

y(t) := lim
σ→0+

g′σ(t)

=
γ − 1
t

∫ t

b
(ḡ(s) − ḡ(t))

(
log

t

s

)γ−2 ds

s

+
ḡ(t)
t

(
log

t

b

)γ−1

is continuous on [b, c] and can be bounded in terms
of ‖g‖Cβ,log [b,c]. Use the Lebesgue bounded conver-
gence theorem to obtain

lim
σ→0+

[gσ(t) − gσ(b+ σ)]

= lim
σ→0+

∫ t

b+σ
g′σ(s)ds =

∫ t

b
y(s)ds. (3.7)

Finally, we combine (3.6) with (3.7) to conclude
that

bJ γ
t ḡ(t) =

1
Γ(γ)

lim
σ→0+

[gσ(t) − gσ(b+ σ)]

=
1

Γ(γ)

∫ t

b
y(s)ds

is continuous differentiable on [b, c] with the esti-
mate (3.5).

Theorem 3.4. For 0 < γ < 1 and tg ∈ Cγ,log[b, c],
it holds g ∈ Cγ,log[b, c].
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Proof. For b ≤ t1 ≤ t2 ≤ c, we have

|g(t2) − g(t1)| =
∣∣∣∣ t2g(t2)t2

− t1g(t1)
t1

∣∣∣∣
=

∣∣∣∣
(
t2g(t2)
t2

− t2g(t2)
t1

)

+
(
t2g(t2)
t1

− t1g(t1)
t1

)∣∣∣∣
≤ Q|t2 − t1|‖tg‖C[b,c] +Q

(
log

t2
t1

)γ

×‖tg‖Cγ,log [b,c]

≤ Q

(
log

t2
t1

)γ

‖g‖Cγ,log [b,c].

Thus, we finish the proof.

4. ANALYSIS OF A
CAPUTO–HADAMARD
FRACTIONAL ODE

We prove the well-posedness of the initial value
problem of the Caputo–Hadamard fractional ODE
for α ∈ (0, 1) and 0 < λ <∞

ξ′(t) + k(t) aDα
t ξ(t) + λξ(t) = g(t),

t ∈ (a, T ]; ξ(a) = ξa. (4.1)

We multiply (4.1) by eλt and integrate the equation
from a to t to get

ξ(t) = ξa e
λa−λt − 1

Γ(1 − α)

∫ t

a
k(θ)eλ(θ−t)

×
∫ θ

a

(
log

θ

s

)−α

ξ′(s)dsdθ

+
∫ t

a
g(θ)eλ(θ−t)dθ. (4.2)

We differentiate (4.2) with respect to t to arrive at
the integral equation in terms of η = ξ′

η(t) = −λeλa−λtξa +
1

Γ(1 − α)

∫ t

a
λeλ(θ−t)k(θ)

×
∫ θ

a

(
log

θ

s

)−α

η(s)dsdθ

− k(t)
Γ(1 − α)

∫ t

a

(
log

t

s

)−α

η(s)ds

−
∫ t

a
λeλ(θ−t)g(θ)dθ + g(t). (4.3)

Here, ξ can be recovered in terms of η by ξ(t) =
ξa +

∫ t
a η(s)ds.

Theorem 4.1. If g ∈ C[a, T ] and k(t) ∈ C[a, T ]
holds, problem (4.1) has a unique solution ξ(t) ∈
C1[a, T ] such that

‖ξ(t)‖C1[a,T ] ≤ Q(λ|ξa| + ‖g‖C[a,T ]),

Q = Q(α, ‖k‖C[a,T ], T ). (4.4)

Proof. Define a approximation sequence {ηn}∞n=0

on [a, T ] by

η0(t) := −λeλa−λtξa −
∫ t

a
λeλ(θ−t)g(θ)dθ + g(t),

ηn(t) := η0(t) +
1

Γ(1 − α)

∫ t

a
λeλ(θ−t)k(θ)

×
∫ θ

a

(
log

θ

s

)−α

ηn−1(s)dsdθ

− k(t)
Γ(1 − α)

∫ t

a

(
log

t

s

)−α

ηn−1(s)ds.

We bound η0 by

‖η0‖C[0,T ] ≤M0 := λ|ξa| + 2‖g‖C[a,T ]. (4.5)

We subtract ηn(t) from ηn+1(t) to obtain the fol-
lowing equation for n ≥ 0:

|ηn+1(t) − ηn(t)|

=
∣∣∣∣
∫ t

a

λeλ(θ−t)k(θ)
Γ(1 − α)

∫ θ

a

(ηn(s) − ηn−1(s))
[log(θ/s)]α

dsdθ

− k(t)
Γ(1 − α)

∫ t

a

(ηn(s) − ηn−1(s))
[log(t/s)]α

ds

∣∣∣∣,
t ∈ [a, T ].

(4.6)

Here, η−1(s) := 0. We plug (4.5) into (4.6) with
n = 1 and use

∫ θ
a (log θ

s )−α ds
s = 1

1−α (log θ
a)1−α to

obtain

|η1(t) − η0(t)| ≤
∫ t

a

tλeλ(θ−t)|k(θ)|
Γ(1 − α)

×
∫ θ

a

|η0(s)|
[log(θ/s)]α

ds

s
dθ

+
t|k(t)|

Γ(1 − α)

∫ t

a

|η0(s)|
[log(t/s)]α

ds

s
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≤ t

∫ t

a

λeλ(θ−t)

Γ(1 − α)
K0M0

1 − α

(
log

t

a

)1−α

dθ

+
tK0

Γ(1 − α)

∫ t

a

M0

[log(t/s)]α
ds

s

≤ 2K0M0t(log t
a)1−α

Γ(2 − α)

≤ 2K0M0t(log T
a )1−α

Γ(2 − α)
, (4.7)

where we have used
∫ t
a λe

λ(θ−t)dθ = 1 − e−λ(t−a) ≤
1. Assume that for some n ≥ 1

|ηn(t) − ηn−1(t)| ≤
(2K0)nM0t

n
(
log t

a

)n(1−α)

Γ(1 + n(1 − α))
,

t ∈ [a, T ].
(4.8)

We combine (4.6)–(4.8) and use Lemma 2.2 to
obtain

|ηn+1(t) − ηn(t)|

≤ 2K0(2K0)nM0t

Γ(1 + n(1 − α))Γ(1 − α)

×
∫ t

a

(
log

t

s

)−α

sn
(
log

s

a

)n(1−α) ds

s

≤ 2K0(2K0)nM0t
n+1

Γ(1 + n(1 − α))Γ(1 − α)

×
∫ t

a

(
log

t

s

)−α (
log

s

a

)n(1−α) ds

s

=
(2K0)n+1M0t

n+1(log t
a)(n+1)(1−α)

Γ(1 + n(1 − α))Γ(1 − α)

×B(1 − α, 1 + n(1 − α))

≤ (2K0T )n+1M0(log t
a)(n+1)(1−α)

Γ(1 + (n+ 1)(1 − α))
.

By mathematical induction, (4.8) holds for any
n ∈ N. Using the boundedness of the Mittag-Leffler
function

∞∑
j=0

M0(2K0T )j(log t
a)j(1−α)

Γ(1 + j(1 − α))

= M0E1−α,1

[
2K0T

(
log

t

a

)1−α
]
<∞,

t ∈ [a, T ]

we conclude that the uniformly convergent limit η
given by

η(t) := lim
n→+∞ηn(t)

=
∞∑

n=1

(ηn(t) − ηn−1(t)) + η0(t) ∈ C[a, T ],

satisfies Eq. (4.3) with the estimate ‖η‖C[a,T ] ≤
Q(λ|ξa| + ‖g‖C[a,T ]), which further leads to (4.4).

If there exists another C1 solution ξ̃ to (4.1), then
ζ = ξ − ξ̃ ∈ C1[a, T ] satisfies

|ζ ′| =

∣∣∣∣∣ 1
Γ(1 − α)

∫ t

a
λeλ(θ−t)k(θ)

×
∫ θ

a

(
log

θ

s

)−α

ζ ′(s)dsdθ

− k(t)
Γ(1 − α)

∫ t

a

(
log

t

s

)−α

ζ ′(s)ds

∣∣∣∣∣
≤ Q(λ)

[ ∫ θ

a
|ζ ′(s)|ds

+
∫ t

a

(
log

t

s

)−α

|ζ ′(s)|ds
]

≤ Q(λ)
∫ t

a

(
log

t

s

)−α

|ζ ′(s)|ds.

By the Grönwall inequality in Lemma 2.1 we con-
clude that ζ ′ ≡ 0 and hence ζ ≡ 0 on [a, T ] by
the homogeneous initial condition, which proves the
uniqueness.

5. WELL-POSEDNESS AND
REGULARITY OF CAPUTO–
HADAMARD TFPDE

In this section, we prove the well-posedness of model
(1.2) and the regularity of its solutions.

Theorem 5.1. If ua ∈ Ȟr+2, f ∈ Hν(Ȟr) with
r > d/2 and ν > 1/2 and k(t) ∈ C[a, T ] holds,
then problem (1.2) has a unique solution u ∈
C1([a, T ]; Ȟr) and the stability estimate holds for
Q = Q(α, ‖k‖C[a,T ], T )

‖u‖C1([a,T ];Ȟs) ≤ Q(‖ua‖Ȟ2+s + ‖f‖Hν(Ȟs)),

0 ≤ s ≤ r.
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Proof. We express the solution u and f in (1.2) in
terms of {φi}∞i=1 as

u(x, t) =
∞∑
i=1

ui(t)φi(x), ui(t) := (u(·, t), φi),

t ∈ [a, T ],

f(x, t) =
∞∑
i=1

fi(t)φi(x), fi(t) := (f(·, t), φi),

t ∈ [a, T ],
(5.1)

where φi is the eigenfunction of problem defined in
(2.1). We plug these expansions into (1.2) to con-
clude that for (x, t) ∈ Ω × (a, T ]

∞∑
i=1

(u′i(t) + k(t)aDα
t ui(t))φi(x)

=
∞∑
i=1

(−λiui(t) + fi(t))φi(x). (5.2)

Hence, u is a solution to problem (1.2) if and only
if {ui}∞i=1 satisfy

u′i(t) + k(t) aDα
t ui(t) = −λiui(t) + fi(t),

t ∈ (a, T ],

ui(a) = ua,i := (ua, φi), i = 1, 2, . . . .

(5.3)

Note that the above equation has exactly the same
form as (4.1) with ξ, λ, g replaced by ui, λi, fi,
respectively. Then by Theorem 4.1, problem (5.3)
has a unique solution ui ∈ C1[a, T ] and the estimate
(4.4) holds by similarly modifying the data. For any
k ∈ N, we use Sobolev embedding and estimate
(4.4) to conclude that Sn(x, t) :=

∑n
i=1 ui(t)φi(x)

satisfies for n→ ∞
‖S′

n+k − S′
n‖2

C([a,T ];C(Ω̄))

≤ Q

∥∥∥∥∥
n+k∑

i=n+1

u′i(t)φi(x)

∥∥∥∥∥
2

C([a,T ];Hγ(Ω))

≤ Q
n+k∑

i=n+1

λγ
i ‖ui‖2

C1[a,T ]

≤ Q

n+k∑
i=n+1

λγ
i (λ2

i |ua,i|2 + ‖fi‖2
C[a,T ]) → 0.

Hence, the interchange of the differentiation with
the summation in (5.2) is satisfied, from which we

conclude that u defined in (5.1) belongs to C1(Hγ)
and satisfies problem (1.2). Moreover,

‖u‖2
C1(Ȟs)

≤ Q
∞∑
i=1

λs
i‖ui‖2

C1[a,T ]

≤ Q
∞∑
i=1

λs
i (λ

2
i u

2
a,i + ‖fi‖2

C[a,T ])

≤ Q(‖ua‖2
Ȟ2+s + ‖f‖2

Hν(Ȟs)
).

The uniqueness of the solution to problem (1.2)
follows from that of (5.3).

Theorem 5.2. If ua ∈ Ȟ4+s, f ∈ Hν(Ȟ2+s) ∩
H1+ν(Ȟs) for some s ≥ 0 and ν > 1/2 and k(t) ∈
C[a, T ] holds, k ∈ C1[a, T ], u ∈ C2((a, T ]; Ȟs)
and the following interior estimate holds for any
t ∈ (a, T ]:

‖u‖C2((a,T ];Ȟs)

≤ Q

(
log

t

a

)−α

(‖ua‖Ȟ4+s + ‖f‖Hν(Ȟ2+s)

+ ‖f‖H1+ν(Ȟs)), (5.4)

with Q = Q(α, ‖k‖C1 [a,T ], T ).

Proof. Similar to (4.1)–(4.3), (5.3) can be rewrit-
ten in terms of v = u′i(t)

v(t) = −λie
λia−λitua,i

+
1

Γ(1 − α)

∫ t

a
λie

λi(θ−t)k(θ)

×
∫ θ

a

(
log

θ

s

)−α

v(s)dsdθ

− k(t)
Γ(1 − α)

∫ t

a

(
log

t

s

)−α

v(s)ds

−
∫ t

a
λeλ(θ−t)fi(θ)dθ + fi(t). (5.5)

We first prove that v is differentiable. By Theo-
rem 4.1, Eq. (5.5) has s unique solution v ∈ C[a, T ]
and (4.4) holds. We multiply (5.5) by log t

a and use
log t

a = log s
a + log t

s to split the third term on the
right-hand side of (5.5) to reformulate (5.5) in terms
of v(t) log t

a

v(t) log
t

a
= −k(t)aJ 1−α

t

(
tv(t) log

t

a

)

2250005-10
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− k(t)
Γ(1 − α)

∫ t

a

(
log

t

s

)1−α

v(s)ds

+
log t

a

Γ(1 − α)

∫ t

a
λie

λi(θ−t)k(θ)

×
∫ θ

a

(
log

θ

s

)−α

v(s)dsdθ − log
t

a

×λie
−λitua,i − log

t

a

×
∫ t

a
λeλ(θ−t)fi(θ)dθ

+ log
t

a
fi(t).

As v ∈ C[a, T ], all but the first terms on the right-
hand side are in C1[a, T ]. Without loss of gener-
ality, let N ∈ N

+ be such that N(1 − α) < 1
and (N + 1)(1 − α) > 1. Then we apply Theorem
3.2 to conclude that v(t) log t

a ∈ C1−α,log[a, T ], and
we then employ Theorem 3.4 to find v(t) log t

a ∈
C1−α,log[a, T ]. We repeat this procedure N times
to conclude that v(t) log t

a ∈ CN(1−α),log[a, T ]. As
N(1 − α) + 1 − α > 1, Theorem 3.3 leads to
v(t) log t

a ∈ C1[a, T ], which means v is differentiable
for t ∈ (a, T ].

To differentiate (5.5), we first differentiate the
following integral:[∫ t

a

(
log

t

s

)−α

v(s)ds

]′

=
d

dt

[∫ t

a

(
log

t

s

)−α

sv(s)
ds

s

]

=
d

dt

[∫ t

a
sv(s)d

(
−(log t

s)
1−α

1 − α

)]

=
1
t

[
av(a)

(
log

t

a

)−α

+
∫ t

a

(
log

t

s

)−α

(v(s) + sv′(s))ds

]
.

We incorporate this to differentiate (5.5) as
v′(t) =

∑4
j=1 Fj where

F1(t) =
−1

Γ(1 − α)

∫ t

a
λ2

i e
λi(θ−t)k(θ)

×
∫ θ

a

(
log

θ

s

)−α

v(s)dsdθ,

F2(t) =
λik(t) − k′(t)

Γ(1 − α)

∫ t

a

(
log

t

s

)−α

v(s)ds,

F3(t) =
−k(t)

tΓ(1 − α)

[
av(a)

(
log

t

a

)−α

+
∫ t

a

(
log

t

s

)−α

(v(s) + sv′(s))ds

]
,

F4(t) = λ2
i e

−λitua,i + f ′i(t) − λifi(t)

+
∫ t

a
λ2

i e
λi(θ−t)fi(θ)dθ.

Let M0 be defined in (4.5). We use (4.4) to bound
F1 by

|F1| ≤ M0

Γ(1 − α)

∫ t

a
λ2

i e
λi(θ−t)k(θ)

×
∫ θ

a

(
log

θ

a

)−α

dsdθ

≤ M0t

Γ(1 − α)

∫ t

a
λ2

i e
λi(θ−t)k(θ)

×
∫ θ

a

(
log

θ

a

)−α ds

s
dθ

=
M0t

Γ(2 − α)

∫ t

a
λ2

i e
λi(θ−t)k(θ)

(
log

θ

a

)1−α

dθ

≤ M0K0T

Γ(2 − α)

(
log

t

a

)1−α

λi

∫ t

a
λie

λi(θ−t)dθ

≤ λiM0K0T

Γ(2 − α)

(
log

t

a

)1−α

≤ λiQM0.

We can similarly bound F2 by

|F2| =

∣∣∣∣∣λik(t) − k′(t)
Γ(1 − α)

∫ t

a

(
log

t

s

)−α

v(s)ds

∣∣∣∣∣
≤ 2λiM0K0T

Γ(2 − α)

(
log

t

a

)1−α

≤ λiQM0.

We bound F3 by

|F3| ≤
∣∣∣∣∣ −k(t)
tΓ(1 − α)

[
av(a)

(
log

t

a

)−α
]∣∣∣∣∣
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+

∣∣∣∣∣ M0K0

Γ(2 − α)

(
log

t

a

)1−α
∣∣∣∣∣

+

∣∣∣∣∣ K0T

Γ(1 − α)

∫ t

a

(
log

t

s

)−α

v′(s)
ds

s

∣∣∣∣∣
≤

∣∣∣∣∣ K0M0

Γ(1 − α)

(
log

t

a

)−α
∣∣∣∣∣

+
M0K0

Γ(2 − α)

(
log

t

a

)1−α

+

∣∣∣∣∣ K0T

Γ(1 − α)

∫ t

a

(
log

t

s

)−α

v′(s)
ds

s

∣∣∣∣∣
≤ QM0

(
log

t

a

)−α

+QM0

+

∣∣∣∣∣ K0T

Γ(1 − α)

∫ t

a

(
log

t

s

)−α

v′(s)
ds

s

∣∣∣∣∣ .
We bound F4 by

|F4| ≤ M1

:= Q(λi‖fi‖C[a,T ] + ‖f ′i‖C[a,T ] + λ2
i |ua,i|).

We incorporate the preceding estimates to bound
v′(t)

|v′(t)| ≤ Q

∫ t

a

(
log

t

s

)−α

v′(s)
ds

s

+QM1

(
log

t

a

)−α

, t ∈ (a, T ].

We apply Grönwall inequality (Lemma 2.1) to con-
clude that for t ∈ (a, T ]

|v′(t)| ≤ QM1

(
log

t

a

)−α

+QM1

∞∑
n=1

(QΓ(1 − α))n

Γ(n(1 − α))

×
∫ t

a

(
log

t

s

)−α (
log

s

a

)n(1−α)−1 ds

s

≤ QM1

(
log

t

a

)−α

+QM1

(
log

t

a

)−α

×
∞∑

n=1

[QΓ(1 − α)(log t
a)1−α]n

Γ((n+ 1)(1 − α))

≤ QM1

(
log

t

a

)−α

, t ∈ (a, T ].

We then prove estimate (5.4).
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