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Abstract

Ultraslow diffusion describes the long-time diffusion of particles whose mean square displace-
ment (MSD) grows logarithmically in time. We prove the well-posedness of a Caputo-Hadamard
time-fractional diffusion model in multiple space dimensions, in which the MSD in time grows
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logarithmically and thus provides adequate descriptions for the ultraslow diffusion processes,
as well as the smoothing properties of the solutions.

Keywords: Ultraslow Diffusion; Mean Square Displacement; Caputo-Hadamard; Time-

Fractional Diffusion Equation.

1. INTRODUCTION

The classical Fickian diffusion partial differential
equation (PDE) governs the scaling limit of a ran-
dom walk where the underlying particle jumps have
a finite variance, which leads to a normal diffusion
that is characterized by a linear growth of the mean
square displacement (MSD) in time (x(t)?) ~ ¢I

In many scenarios, e.g. the transport of solutes in
heterogeneous porous media, the diffusion is anoma-
lous characterized by a power-law growth of the
MSD in time (z(t)2) ~ t, where 8 < 1 and 8 > 1
correspond to the subdiffusion and superdiffusion,
respectively, and 8 = 1 reduces to the normal
diffusion ™2 This explains why integer-order diffu-
sion PDEs do not accurately describe the diffusive
transport of solutes in heterogeneous media, which
are instead modeled by the time-fractional PDE
(TFPDE) 0/u — Au = f(z,t) with 0 < 8 < 1
where ﬁtﬁ is the Caputo fractional differential oper-
ator defined by 8? g := Itlfﬂ ¢’ with the convolution
[ 7Pg = (t77/T(1 = B)) * g "

The two time-scale mobile-immobile TFPDE
model

ur + k(t)0fu — Au = f(x,t), 0<a<l

(1.1)

was derived in Ref. 4 to improve the modeling of
subdiffusive transport, in which k(¢)0f'u describes
the subdiffusive transport consisting of k(t)/(1 +
k(t)) portion of the total solute mass and wu; rep-
resents the Brownian motion consisting of 1/(1 +
k(t)) portion of the total solute mass. Fractional
differential equations have been applied in mod-
eling phenomena in many fields®™0 Many diffu-
sive processes are strongly anomalous in that their
mean waiting time has a super-heavy tail, which
decays slower than any power-law decaying tail
does. Their MSD grows logarithmically in time
(z(t)?) ~ logH t for some pu > 013 In Refs. 14116,
the Caputo-Hadamard fractional calculus with log-
arithmic kernel is introduced to describe the ultra-
slow kinetics. Inspired by the above considerations,
we consider the two time-scale mobile-immobile

Caputo-Hadamard TFPDE of 0 < oo < 1
ug + k(t)oDffu — Au = f(x, 1),

(x,t) € Q x (a,T]; 12)

u(z,a) =uq(x), x€

u(@,t) =0, (z,t) € 9N x [a,T).

Here, @ C R? (d = 1,2,3) is a simply con-
nected bounded domain with a smooth boundary
09 and convex corners, T = (r1,...,74)", a > 0
and |k(t)| < Ky. The Caputo-Hadamard fractional
derivative is defined b

it [ (o)
log(-) = log. ().

We present several solution curves and MSDs to
illustrate the motivations of model ([L2]). Let o =
0.5, f =0, a=1and ug(z) = e/ (@x001%) (/57 x
0.01) in all models. In Fig. [[l we plot short-term
solutions to the Caputo-Hadamard TFPDE (L2)
without u; term under k(t) = 1 and (L2) with
E(t) = 100 on © = [—0.1,0.1] during a short time
period [1, 1.01]. The left plot shows the initial singu-
larity of the solutions, which could be eliminated by
adding the u; term as shown in the right plot, even
though the coefficient of the fractional term is large
(k(t) = 100). In Fig. 2 we plot long-term solutions
to the TFPDE (1) and the Caputo-Hadamard
TFPDE (L2)) with k(t) = 100 on the space-time
domain (z,t) € (—0.1,0.1) x [1,100], which shows
that the Caputo-Hadamard TFPDE (L2) exhibits
weaker initial singularities and slower decay prop-
erties compared with the Caputo TFPDE (L.
We also explore the MSDs of TFPDEs with dif-
ferent k(t) on (x,t) € (—10,10) x [1,100] in Fig. 3
which indicates that the model ([2)) with k(t) —
0 models the classical Fickian diffusive transport,
while k(t) — oo models the ultraslow diffusion.
Equation (L2) with k(t) = 1 switches smoothly
from the initial Fickian diffusion behavior to the
long-term ultraslow diffusion behavior. Therefore,

oD (1) =
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Caputo—Hadamard Time-Fractional Diffusion Equations

Fig. 1 Short-term solutions to (left) TFPDE (2] without u; term under o = 0.5 and k(t) = 1 and (right) (I2)) with « = 0.5

and k(t) = 100.

Fig. 2 Long-term solutions to (left) TFPDE () and (right) the Caputo-Hadamard TFPDE (L2)) under o = 0.5 and

k(t) = 100.

—a=09
=05
‘—a=01

s Slope=1 [ —e=09
a — q H*GZO-? a —Slope =09
:‘zs s —Slope =09 E‘LQ:O,E’)
i‘, g - ipgl— ~ =01
ZZ;‘pel: 01 - Slope=0.1
logt) log(logt) log{log )

Fig. 3 MSDs for the Caputo-Hadamard TFPDE (L2)) with (left) £ = 0.01, (middle) £ = 1 and (right) k& = 100.

the two time-scale TFPDE (IZ2)) captures the long-
term ultraslow diffusion behavior while eliminat-
ing its non-physical initial weak singularity of the
Caputo TFPDE, and thus provides a physically rel-
evant extension of TFPDE models.

We prove the existence and uniqueness of the
initial-boundary value problem of the Caputo—
Hadamard TFPDE (L2]) in multiple space dimen-
sions, as well as the regularity of their solutions that
depends on the fractional order «. The rest of the
paper is organized as follows: In Sec. Pl we present
and prove notations, norms and useful lemmas. In

Sec. B we prove the mapping properties of inte-
gral operator with log-kernel. In Sec. d, we prove
the well-posedness of a Caputo-Hadamard time-
fractional ordinary differential equation, based on
which we prove the well-posedness and regularity

of model (I2) in Sec. B

2. PRELIMINARIES

Llet m e RO < pu<l<p<oxandI C R
be a bounded interval. Let C"™(I) be the space of
continuous functions with continuous derivatives up

2250005-3
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to order m equipped with

lgllcq = sup lg(t)],

lgllem @ = jmax |D"gllcw-

We also introduce the space C. 1o5(I) of log-
Holder continuous functions on I equipped with the

norm>18

9llc, o, = llgllem

to) — g(t
+ sup lg(t2) — g(t1)| .
t1,t2€lt1 #ta ‘ IOg t2 - IOg t1|'u

Let L?(2) be the space of Lebesgue square inte-
grable functions on  and H™ () be the space of
functions with derivatives of order m in L*(Q). Let
H{* () be the completion of C§°(€2), the space of
infinitely differentiable functions with compact sup-
port in Q, in H™(Q2). For non-integer r > 0, the
fractional Sobolev space H"(2) is defined by inter-
polation T#20 A1l the spaces are equipped with the
standard norms.

It is well known that the eigenfunctions {¢;}3°,
of problem

—Adi(x) = Nidi(x), T € Pi(x) =0, @ €N
(2.1)

form an orthonormal basis in L?(Q) 20 The eigenval-
ues {\;}9°, are positive and form a non-decreasing
sequence that tend to oo with i. We use the the-
ory of sectorial operators to define the fractional
Sobolev spaced?223

H"(Q) := {w € L*(Q): \v%r(ﬂ) = ((—A)"w,w)

= Z)\z(w,@)? < oo}
i=1

In this paper, we use ) to denote a generic pos-
itive constant that may assume different values at
different situations, and C;, M; and ); to denote
fixed positive constants.

Lemma 2.1 (Generalized Grénwall inequal-
ity (Theorem 3 of Ref. 24)). Let 0 < Cy(t) €
Lioc(a,b) and C1 be a non-negative constant. Sup-
pose 0 < g(t) € Lioc(a,b) satisfies

t
g(t) < Co(t) + Cl/ g(s)(logt — log S)vfl%’

Vte (a,b), 0<~vy<L.

Then g(t) can be bounded by
(CT (v
g(t) < Colt +cl/ 2 ! ;
ds

x (logt —log s)™ 1 Cy(s) S vVt e (a,b).

In particular, if Cy(t) is non-decreasing, then
g(t) < Co(t)Ey 1 (ChT(y)(log(t/a))”), Vit € (a,b),

where Ey, 4(t) represents the Mittag-Leffler function
defined by

tk
= - teR RT R.
) kzor(pk+q)’ €ER, peR™, g€

We finally give a useful result to be frequently
used subsequently.

Lemma 2.2. The following relation holds for 0 <
¢ <nandp,qg>0:

n -1 g—1
AY 0y
/( <log t) <log C) ;

_I(pI(q) (, n\""!
- T(p+q) <IOgC) '

Proof. We omit the proof since it is obvious. O

3. MAPPING PROPERTIES
OF THE LOG-KERNEL
INTEGRAL OPERATOR

We prove the mapping properties of the following
integral operator bjﬂ'z' for0<vy<land0<b<
t<c<oco:

ST COINCE

to facilitate the subsequent analysis.

Theorem 3.1. Forg € L(b,¢), 1T, g € Cy10g[b, ]

and
Q = Q(b7 C7 ’Y)

Proof. For b < t1 < t5 < ¢, direct calculations
yield

~ /b " <10 %)“ g(s)d—;]

16T 9llc 1ogltnd) < QUYL= (b,c)s

2250005-4
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=: L1+ Lo. (31)

Since (log 2)7™! — (log )71 < 0 for any b < 5 <
t1, we bound L; by the following:

91l Loc b,e) /tl ( t1>“
| 1| F(’Y) b S
< t2> ]ds
log —
S
Hg”L"o(bc) t1)” ta)”
= L= | (g 1L log 2
(1 +7) (Ogb A
to
1
(s3]
2(lgl 1o (b0 g
- 191l Lo (b,c) <10gt_2)
F(1+’7) tl
t Y
scz(logf) 9]z e

Next, we bound Lo by

L] < W9li= 00 /tQ <log tﬁ)“ ds
- I'(y) g 5 5
o v
_ lgllze e <10g t_g)
F(l —i—"}/) t1
t Y
<Q (10g i) 191l oo (b,e)

which completes the proof. |

Theorem 3.2. For g € Cgog[b, c] with 0 < v+ <
L J (g(t) — g(b) € Cyyp0glbs ¢] and

16T (9(t) = 90D e s g 10g b
<Qlgllcy g, Q= QD,c7,B). (3.2)

Proof. Since g € Cg1og[b, ¢], g := g(t) — g(b) satis-
fies |g] < llgllcy oy (log £)7. For b <t <ty <,

Caputo—Hadamard Time-Fractional Diffusion Equations

we rewrite ([B]) by the splitting g(s) = (g(s) —
9(t1)) + 9(t1)

[bT} ]\Hg<1g ) s

S

ot (o) )]

v (1gt—) (9(5) ~ 9(:)

e
_/bt1 <log %)H %]

=: H) + Hy + Hs.

If & < t—2 , we use the substitution y = logt; — log s
to bound H 1 by the following:

(y + logty — log tl)"**l)dy

og 1L
- /1 &0 19005 soglbl (10g (t—1)>ﬁ
A T'(y) bie™

% (wal _

(y +logty —logty)"™')dy

t
- /1og o gllcp 0. 0
0 I'(v)

% (yv—l _

(y + logts — logty)")dy
1915 105 ,c)

Iog%1 L 3
2y7 yPdy
I'(v) /0

 2liglleg g <1 t_1>v+,8
L'(v)

Ogb

to v+B8
< QM|gllcs ol (10g E) : (3.3)

2250005-5
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Otherwise, we split the first integral in (B.3) on

[0, i—f] and [:2, 81 to obtain

’o log g(tie™?) — g(t1)
mi= || :

L(y
x (3771 — (y +logty — logty)? ™ )dy

[t e st
Iogi—f F(V)

< (7! = (y +logty — logty)" ™ )dy

H{, can be bounded by the right-hand side of (33
by a similar technique. We bound HJ, by the sub-
stitution y = r log i—i

, tQ Y+B
Hial < Qllgley e (108
+oo
X / (7”_1 - (14 T)V_l)rﬁdr
1

S QHg”C,B,log[bﬂc

()
[
(10g

2
1
i

Y+8

t

— 10

r
x rotP=1gy
Y8+
E—Q) /OOWJFﬁzdr
1 1

t ~v+08
< Qllgllog oo <10g E) :

We then bound Hy and Hg for b < t; <ty < ¢ by

= [ (s2) " @t - gt

I'(v) $

 9lCs gt [ <log 2)7_
F(fy) t1 S
B

191l C 105, ( t2>7+
= 2 (log =
L'(7) 3]

t2 T 1d8

S Q Hg”Cﬁ,log [bvc}

and

S

_ gyl Y (1)

BNES L log 3
t1\”

< Qllgllcs ogba | log 0

) - ()]

For 31 < t—2, we use zg — ] < (xg — x1)7 for 0 <
v <1 and 0 < x1 < w9 to bound the right-hand
side of ([34) by

Otherwise, for t—l >
theorem to obtaln for some ( € (log %, log %2)

B
(o) [(e5) - (=5 |
] -1
= <log %) [’y <log %)7 log i—i]

2 we can use the mean value

tl y+8-1 tQ
< log — log =
Q (og b) &
t y+8
-ofu)
31
Thus, the proof is completed. O

Theorem 3.3. For g € Cgogb,c] with v+ 3 > 1,
v T (9(t) — g(b)) € C'[b,c] and

67" (9(t) = g(0))llc pv,e

S QHgHCﬁ,log[bvc}’

Q= Q(b’ Ca’Ya/B)' (35)

Proof. For 0 <o < 1 and g € Cg gD, ¢,

sl 2

€ Cb+o,q (3.6)

2250005-6
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is differentiable and

v—1 t=o t\"7?ds
go(t) = —— g(s) <1Og —) —

t b s s
gt — o) t !
1
+ t—o <Ogt—0>
v—1 t=o t\"7?ds
=L - —g(t) | log = bl
[ e a0 (est) S

=: G171+ G + Gs.

We use g € Cgloglb,c] and §+ v > 1 to bound
G1—Gsforte[b+o,c| by

ROl (T

S S
t—o t B
< Qllgllcs joglb.d /b <1Og g)
( t)7_2 ds
x | log — —
S S
< Qlgllcs b tEb+od,
gt —o) gt t \"!
|G| = (% — &> <log —)
-0 t t—o

_ (é(t—a)—g(t) O g(t))

t—o t—o t

(i5)
X logt
— 0

< Qllgllcy oz b (10g - U)

v—1
+||g\|0[b,c10 <10g t ) ‘

t(t—o) t—o

|G1| <

We apply the variable substitution 2 = - and use

tf
the L’Hospital’s rule to calculate 7
v—1
t—t
N
t—o z—1+ (log z)1—«
1 2
= lim [z
a—1+ (1 —)(logz)=7/x

lim o <log

o—0t

Caputo—Hadamard Time-Fractional Diffusion Equations
. 1/x
= lim /
a—1+ (1 —v)(log z)=7
=0.

Hence, we can conclude that Go — 0 as ¢ — 0.
Next, we bound G35 by

BOYOAY
|G3| = " <1Ogb>

1 t y+6-1
< Qllgllcs sy <1Og 5)

S Q”gHCﬁ,log[bvc].

Thus, ¢/ (t) is integrable on [b, ¢ for 0 < o < ¢y < 1
and is bounded by

B+y—1
t
9,01 < Qlgllc i [(mg ;)

+ <log > ]
t—o

< Qllgllcs oplb.a-
Therefore, the limit function of g. ()

Pp— 3 /
y(t) = lim_g,(t)

= 22 [ g —aten (g2

t b S

0 (1)

is continuous on [b, ] and can be bounded in terms
of ||gllcy 1oglb.c- Use the Lebesgue bounded conver-
gence theorem to obtain

m [g5(t) — go(b+ 0)]

li
o—0t

—2
T2 ds

S

— lim [ gi(s)ds = /b y(s)ds.  (3.7)

o=0" Jpto

Finally, we combine [30) with [B.7) to conclude
that

Va(t) = — 1 _
oJ9() = Ty i 190 () = 90 (b + )]
1 /t
=—— [ y(s)ds
I'(y) Jb R
is continuous differentiable on [b,¢] with the esti-
mate ([B.5). O

Theorem 3.4. For 0 <y <1 and tg € C, 10D, ],
it holds g € Cy 1060, c|.

2250005-7
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Proof. For b <t; <ty < ¢, we have

ottz) — gltr)] = | 200%2) ot
_ ‘(tgg(tg) B tgg(tQ))
to t1
tag(t2)  tig(t1)
" ( : tl : a : tl 1 >|

t Yy
< Qlta — tilltgllope + @ (1og ;)

X [tgllc, 1og bl

ta\”
<Q logﬂ 19llc, rog b.cl-

Thus, we finish the proof. |

4. ANALYSIS OF A
CAPUTO-HADAMARD
FRACTIONAL ODE

We prove the well-posedness of the initial value
problem of the Caputo-Hadamard fractional ODE
for a € (0,1) and 0 < A < 00

€'(t) +k(t) oDPE(L) + AE(E) = g(t),
€(aT]; &la)=%&. (41
We multiply (@I by e and integrate the equation

from a to t to get
1 ! A(O—t)
—— [ k(0 -
I'l-a) /a (6)e

9 —Q
x/ <log§) ¢ (s)dsdo

t
- / g(6)eN=ag. (4.2)

We differentiate (£2)) with respect to ¢ to arrive at
the integral equation in terms of n = &'

LT e
i / APk (9)

a

[ i —Q
X / <log —> n(s)dsdd
a s

_ / t AN g(0)dO + g(t). (4.3)

a

f(t) — fa eAa—At

n(t) _ _)\e)\af)\té-a +

Here, £ can be recovered in terms of n by &£(t) =

Ea+ [Tn(s)ds

Theorem 4.1. If g € Cla,T] and k(t) € Cla, T
holds, problem (&Il has a unique solution &(t) €
Ca, T) such that

1€@)Ic1(am) < QUAISal + llgllcta,r));
Q= Q(Oé, Hk”C[a,T]aT)- (44)

Proof. Define a approximation sequence {n,}22,
on [a,T] by

t
no(t) = —AediMe, / ANODg(0)d0 + g(t),

a

m®) =m0+ g [ AMkO)

0 0 —«
x/ <log;> Mn—1(s)dsdf

We bound ng by

Imollcio,r < Mo == Aéal + 2[|9llcfar- (4:5)

We subtract n,,(t) from 7,4+1(t) to obtain the fol-
lowing equation for n > 0:

’nn—l—l(t) - (t)‘
PRl /9 (1(s) = (5))

Il —a) [log(0/s)]*
k() — Nn-1(5))
CT(1-a) / 10gt/s ds,
t € la,T).

(4.6)

Here, n_1(s) := 0. We plug (£H) into ([L6]) with
n = 1 and use ff(logg)_a% = 2-(log £)172 to
obtain

t g\ AO—1)
\m(t)—no(t)\g/ %
X/a Tog(@/s)]° 5
@ [ () ds
|

I'l—a) log(t/s)]* s

2250005-8
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EANOY KoMy ('
<t log—) df
- /(IF(I—a)l—OC(Ogc)

tKo t My ds
+m—a)/a log(t/s)]" s

2KOM0t(10g é)l—a

- I'2-a)
2KOM0t(10g %)17&
- r'2-a) ’ (4.7)

where we have used f(f A0 gh = 1 — e~ At-a) <
1. Assume that for some n > 1
(2K)" Mot (log L)~
F'(14+n(l-a)) ’
t € la,T].
(4.8)
We combine (L6)-([@8) and use Lemma to
obtain
Mn+1() — 0 (1)
2K o(2K)" Mot
“T1+n(1—-a)l(1 -«

t -« n(l—a)
X / <log E) s" <log f) ds
a S a S

2K (2Kq)" Mot
“T(A+n(l—a)l(l—a)

t AN n(l-a) d
X / <log —) <log f) @
a S a S

(2K0)n+1MOtn+1(log é)(nJrl)(lfa)
'l+n(l—-a)'(l -«
xB(l—a,14+n(l—a))

(2KoT)" ! My (log £)(+D1=e)
- '+ (n+1)(1—-a)
By mathematical induction, (A38) holds for any

n € N. Using the boundedness of the Mittag-Leffler
function

> Mo(2KoT) (log £)1(1=)
2 L(1+4(1-a))

7 (£) — np—1(£)] <

J=0

= MyE1 a1

¢ 11—«
2KoT <log —) ] < 00,
a

t€la,T]

Caputo—Hadamard Time-Fractional Diffusion Equations

we conclude that the uniformly convergent limit 7
given by

n(t) = lim_ (1)

n—+o0o
= 3" nt) = 1 () + mo(t) € Cla, T,

satisfies Eq. ([@J) with the estimate [ncp <

Q(M&al + ll9llcfa,r)), which further leads to (E.4).

If there exists another C L solution 5 to (@.J), then
¢ =¢&— €€ Cla,T) satisfies

1 ! AO-0)
fi—a / A k(6)

a

x / ' <log g) h ¢'(s)dsdd

0
sQ(A)[ / 1¢'(s)lds

" / t <log 3) \c'(s)\ds]

<o [ (1ost) " I¢s)as.

By the Gronwall inequality in Lemma 2] we con-
clude that ¢’ = 0 and hence ¢ = 0 on [a,T] by
the homogeneous initial condition, which proves the
uniqueness. O

<] =

5. WELL-POSEDNESS AND
REGULARITY OF CAPUTO-
HADAMARD TFPDE

In this section, we prove the well-posedness of model
(I2) and the regularity of its solutions.

Theorem 5.1. If u, € H™*2 f € HY(H") with
r > d/2 and v > 1/2 and k(t) € Cla,T| holds,
then problem ([L2)) has a unique solution u €
CY([a,T); H") and the stability estimate holds for

Q = Q(Oé, Hk”C[a,T]aT)

lullos oz < @Utall zase + 1 o))
0<s<r.

2250005-9
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Proof. We express the solution v and f in (L2) in
terms of {¢;}:°, as

u(®,t) = Zui(t)@(w), ui(t) = (ul(;t), 6i),

t€la,T],
flat) = fi)gi(@),  fi(t) = (F( 1), b0),
i=1
t € la,T],
(5.1)

where ¢; is the eigenfunction of problem defined in
(21)). We plug these expansions into (L2) to con-
clude that for (z,t) € Q x (a,T]

[e.9]

D (i) + k(t)a D ui(t)) di (@)

- Z(_)‘i“i(t) + fi(t)di(x).  (5.2)

Hence, u is a solution to problem (L2) if and only
if {u;}2°, satisfy

wl(t) + k(t) o« Dfui(t) = —Nui(t) + fi(t),
te(a,T], (5.3)

ui(a) = ug; = (Ua, ¢i), 1=1,2,....

Note that the above equation has exactly the same
form as ([@J]) with &, A, g replaced by wu;, A, fi,
respectively. Then by Theorem E] problem (5.3))
has a unique solution u; € C''[a, T] and the estimate
(#4) holds by similarly modifying the data. For any
k € N, we use Sobolev embedding and estimate

[4) to conclude that Sy (x,t) :== > 1" | ui(t)di(x)
satisfies for n — oo
2
150 = Sullesga 000

n+k

Z ui(t)pi(z)

i=n-+1

<@

C([a,T];HY ()
n+k

<@ Z )\ZHUiH%ﬂ[a,T}

i=n-+1

n+k

< Q Z )\Z()\ZQ\%,JQ + HfZH%'[a,T}) — 0.
i=n-+1

Hence, the interchange of the differentiation with
the summation in (5.2) is satisfied, from which we

conclude that u defined in (5.1]) belongs to C'*(H7)
and satisfies problem (L2]). Moreover,

Hu”él(ﬁs) <@ Z )‘f”ul”%l [a,T)
i=1

<QY N, + Ifillm)
i=1

< QUlallyors + 1712z

The uniqueness of the solution to problem (2]
follows from that of (5.3). O

Theorem 5.2. If u, € H*™ f ¢ HY(H*™) N
HYY(H?®) for some s > 0 and v > 1/2 and k(t) €
Cla,T] holds, k € C'a,T], u € C?*((a,T); H®)
and the following interior estimate holds for any
t € (a,T):

Hu”C2((a7T];HS)

t —Q
<0 (1og 5) (allgoss + 11 o iz

AN v ) (5.4)
with Q = Q(Oé, ||kHCI[a,T]aT)'

Proof. Similar to (ZI)-{3)), (53) can be rewrit-

ten in terms of v = w(t)

v(t) = —)\ie)‘iaf)‘ituw-

1 WO
+m/a )\16 k(@)

[ i —Q
x/ <10gg) v(s)dsdf

- % /at (log é)  o(s)ds

_ / t A=Y £(0)do + fi(t). (5.5)

We first prove that v is differentiable. By Theo-
rem [T} Eq. (&3] has s unique solution v € C|a, T
and (@) holds. We multiply (E.5) by log £ and use
logg = log 2 + log§ to split the third term on the
right-hand side of (5.3]) to reformulate (5.5) in terms
of v(t)log £

o(t) 1og2 — k()u T (tv(t) log 2)

2250005-10
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- % /at <log g) Y s)s

gt [t
0og a / )\ZeAZ(G_t)k(H)

* 'l —a)
2] —«
X / <log Q) v(s)dsdf — log f
“ s a
it t
X A\je v Uq,i — 10g -
a

t
X / A0 £:(0)do

t
log — f;(t).
+0gaf()

As v € Cla,T], all but the first terms on the right-
hand side are in C'[a,T]. Without loss of gener-
ality, let N € NT be such that N(1 — «a) < 1
and (N + 1)(1 —a) > 1. Then we apply Theorem
to conclude that v(t) logé € Ci—a,logla, T, and
we then employ Theorem B4 to find v(t)logt €
Ci—a,ogla, T]. We repeat this procedure N times
to conclude that v(t)logt € CN(1—a)logla; T]. As
N1 —-a)+1—-a > 1, Theorem leads to
v(t)log £ € C*a, T], which means v is differentiable
for t € (a,T].

To differentiate (B0, we first differentiate the
following integral:

[ [ (e g)‘ms)ds]’
4 [ / t <1gt) ()d—]
= [ oo (-2
! [av@,) (s 2)
o [ (o) s SUWS] |

We incorporate this to differentiate (5.5) as
V'(t) = Z?:l F; where

—1 "2 ne—t)
F(l—a)/a Aje k()

0 0 -«
x/ <log;) v(s)dsdb,

Fi(t) =

Caputo—Hadamard Time-Fractional Diffusion Equations

Fy(t) = % /at <log é)  (s)ds,

Rt = s [av(a) (10s2)

N / t (10g é) o) + sv’(s))ds] ,

Fi(t) = Ne Nlug ;4 f1(t) — Nifi(t)

t
+ / 22X 00 1,(9)do.

a

Let My be defined in ([@.5]). We use (£4) to bound
F1 by

M. t
Al < ey [ 28O0k

—a)

0 0 —«
X / <log —) dsdf
o a

Mot ! 2 \i(6-t)
< _ . Z
a ) /a Aje k()

] —Q
X / <log g) @dﬁ
a a s

M t 11—«
_ Mot / A2Xi0=t)f(p) <log Q) do
a a

I'2-a)
11—« t

< Mol [ L), / A 0D dg

I'2-a) a “

) -«

_ NMEOT

I'2—a) a
< AiQMo.

We can similarly bound F> by

Nk(t) — (1) [ o
|F2‘ = |- F((tl) — a)(t) / (]og é) U(S)dS
2\ MoKoT (|t I=a
- I'2-w < a)
< \iQ M.

We bound F3 by

|F3| < % [av(a) <log 2) ]

2250005-11
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MoKy t\'
7070 (e 2
i I'2—a) (Oga>
K()T t t e ds
- log — "(g) =
* F(l—a)/a <Ogs) vi(s) 5
KoMy t\ “
< |=—(log -
(1 -« (0ga)
MoK, e
00 (1pe =
+I’(2—o¢) <Oga)
K()T t t e ’ ds
T(1—a) /a <1°g E) e
t —Q
< @My <log a) + QMo

% /at <log 2) h v'(s)df .

We bound Fy by

+

+

|Fy| < My
= Q\illfillclar) + Il cfar) + Afluail)-

We incorporate the preceding estimates to bound
v'(t)

voi<a [ (12) "9

t —Q
+ QM (log 5) , t€(a,T].

We apply Gronwall inequality (Lemma 2] to con-
clude that for t € (a, T

W' (1) < QM <log 2) : L QM, Z (g(l;b(l——oz))”
n=1

(1-a))
t o n(l—a)—1
x/ <log E) (log f) ds
o S a s
t\ t\
< QM (log —> + QM <log —)
a a

> [QU(1 — a)(log §)' )"
Z F(n+1)(1—a)

< QM <log E) , te(a,T).
a

We then prove estimate (5.4)). |
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