

WELL-POSEDNESS AND REGULARITY OF CAPUTO–HADAMARD TIME-FRACTIONAL DIFFUSION EQUATIONS

ZHIWEI YANG

*School of Mathematical Sciences, Fudan University
Shanghai 200433, P. R. China
zhiweiyang@fudan.edu.cn*

XIANGCHENG ZHENG

*School of Mathematical Sciences
Peking University
Beijing 100871, P. R. China
zhengxch@outlook.com*

HONG WANG*

*Department of Mathematics
University of South Carolina
Columbia, SC 29208, USA
hwang@math.sc.edu*

Received February 18, 2021
Accepted September 8, 2021
Published January 22, 2022

Abstract

Ultraslow diffusion describes the long-time diffusion of particles whose mean square displacement (MSD) grows logarithmically in time. We prove the well-posedness of a Caputo–Hadamard time-fractional diffusion model in multiple space dimensions, in which the MSD in time grows

*Corresponding author.

logarithmically and thus provides adequate descriptions for the ultraslow diffusion processes, as well as the smoothing properties of the solutions.

Keywords: Ultraslow Diffusion; Mean Square Displacement; Caputo–Hadamard; Time-Fractional Diffusion Equation.

1. INTRODUCTION

The classical Fickian diffusion partial differential equation (PDE) governs the scaling limit of a random walk where the underlying particle jumps have a finite variance, which leads to a normal diffusion that is characterized by a linear growth of the mean square displacement (MSD) in time $\langle \mathbf{x}(t)^2 \rangle \simeq t$.¹¹

In many scenarios, e.g. the transport of solutes in heterogeneous porous media, the diffusion is anomalous characterized by a power-law growth of the MSD in time $\langle \mathbf{x}(t)^2 \rangle \simeq t^\beta$, where $\beta < 1$ and $\beta > 1$ correspond to the subdiffusion and superdiffusion, respectively, and $\beta = 1$ reduces to the normal diffusion.^{11,12} This explains why integer-order diffusion PDEs do not accurately describe the diffusive transport of solutes in heterogeneous media, which are instead modeled by the time-fractional PDE (TFPDE) $\partial_t^\beta u - \Delta u = f(\mathbf{x}, t)$ with $0 < \beta < 1$ where ∂_t^β is the Caputo fractional differential operator defined by $\partial_t^\beta g := I_t^{1-\beta} g'$ with the convolution $I_t^{1-\beta} g := (t^{-\beta}/\Gamma(1-\beta)) * g$.³

The two time-scale mobile–immobile TFPDE model

$$u_t + k(t) \partial_t^\alpha u - \Delta u = f(\mathbf{x}, t), \quad 0 < \alpha < 1 \quad (1.1)$$

was derived in Ref. 4 to improve the modeling of subdiffusive transport, in which $k(t) \partial_t^\alpha u$ describes the subdiffusive transport consisting of $k(t)/(1 + k(t))$ portion of the total solute mass and u_t represents the Brownian motion consisting of $1/(1 + k(t))$ portion of the total solute mass. Fractional differential equations have been applied in modeling phenomena in many fields.^{5–10} Many diffusive processes are strongly anomalous in that their mean waiting time has a super-heavy tail, which decays slower than any power-law decaying tail does. Their MSD grows logarithmically in time $\langle \mathbf{x}(t)^2 \rangle \simeq \log^\mu t$ for some $\mu > 0$.^{11,13} In Refs. 14–16, the Caputo–Hadamard fractional calculus with logarithmic kernel is introduced to describe the ultraslow kinetics. Inspired by the above considerations, we consider the two time-scale mobile–immobile

Caputo–Hadamard TFPDE of $0 < \alpha < 1$

$$\begin{aligned} u_t + k(t) {}_a \mathcal{D}_t^\alpha u - \Delta u &= f(\mathbf{x}, t), \\ (\mathbf{x}, t) &\in \Omega \times (a, T]; \\ u(\mathbf{x}, a) &= u_a(\mathbf{x}), \quad \mathbf{x} \in \Omega; \\ u(\mathbf{x}, t) &= 0, \quad (\mathbf{x}, t) \in \partial\Omega \times [a, T]. \end{aligned} \quad (1.2)$$

Here, $\Omega \subset \mathbb{R}^d$ ($d = 1, 2, 3$) is a simply connected bounded domain with a smooth boundary $\partial\Omega$ and convex corners, $\mathbf{x} := (x_1, \dots, x_d)^\top$, $a > 0$ and $|k(t)| \leq K_0$. The Caputo–Hadamard fractional derivative is defined by^{3,17}

$$\begin{aligned} {}_a \mathcal{D}_t^\alpha f(t) &= \frac{1}{\Gamma(1-\alpha)} \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} f'(s) ds, \\ \log(\cdot) &= \log_e(\cdot). \end{aligned}$$

We present several solution curves and MSDs to illustrate the motivations of model (1.2). Let $\alpha = 0.5$, $f = 0$, $a = 1$ and $u_a(\mathbf{x}) = e^{-x^2/(2 \times 0.01^2)} / (\sqrt{2\pi} \times 0.01)$ in all models. In Fig. 1, we plot short-term solutions to the Caputo–Hadamard TFPDE (1.2) without u_t term under $k(t) = 1$ and (1.2) with $k(t) = 100$ on $\Omega = [-0.1, 0.1]$ during a short time period $[1, 1.01]$. The left plot shows the initial singularity of the solutions, which could be eliminated by adding the u_t term as shown in the right plot, even though the coefficient of the fractional term is large ($k(t) = 100$). In Fig. 2, we plot long-term solutions to the TFPDE (1.1) and the Caputo–Hadamard TFPDE (1.2) with $k(t) = 100$ on the space-time domain $(\mathbf{x}, t) \in (-0.1, 0.1) \times [1, 100]$, which shows that the Caputo–Hadamard TFPDE (1.2) exhibits weaker initial singularities and slower decay properties compared with the Caputo TFPDE (1.1). We also explore the MSDs of TFPDEs with different $k(t)$ on $(\mathbf{x}, t) \in (-10, 10) \times [1, 100]$ in Fig. 3, which indicates that the model (1.2) with $k(t) \rightarrow 0$ models the classical Fickian diffusive transport, while $k(t) \rightarrow \infty$ models the ultraslow diffusion. Equation (1.2) with $k(t) = 1$ switches smoothly from the initial Fickian diffusion behavior to the long-term ultraslow diffusion behavior. Therefore,

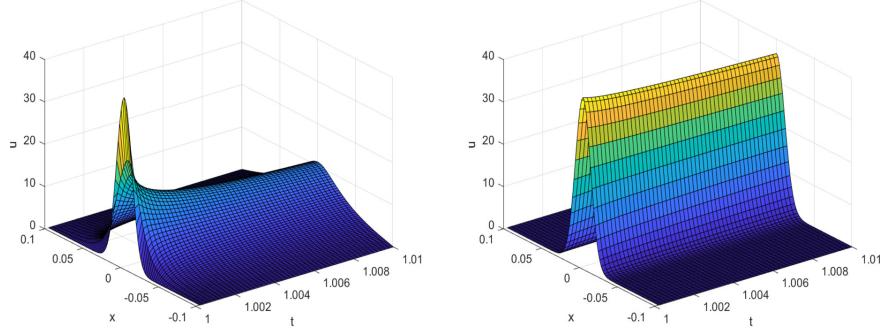


Fig. 1 Short-term solutions to (left) TFPDE (1.2) without u_t term under $\alpha = 0.5$ and $k(t) = 1$ and (right) (1.2) with $\alpha = 0.5$ and $k(t) = 100$.

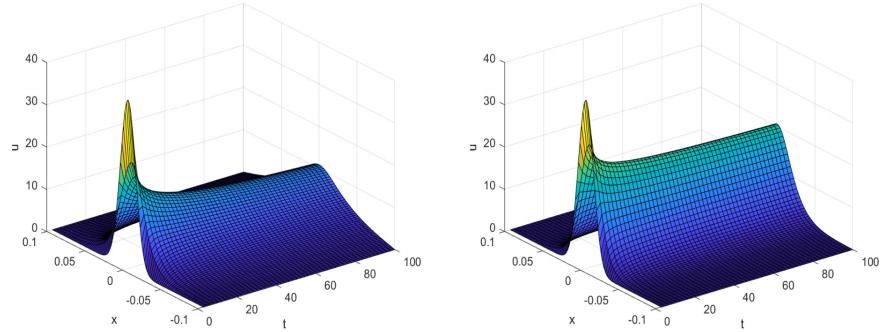


Fig. 2 Long-term solutions to (left) TFPDE (1.1) and (right) the Caputo–Hadamard TFPDE (1.2) under $\alpha = 0.5$ and $k(t) = 100$.

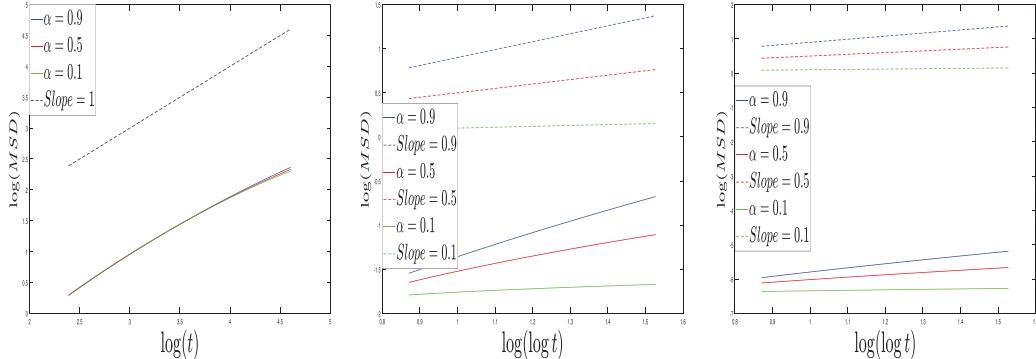


Fig. 3 MSDs for the Caputo–Hadamard TFPDE (1.2) with (left) $k = 0.01$, (middle) $k = 1$ and (right) $k = 100$.

the two time-scale TFPDE (1.2) captures the long-term ultraslow diffusion behavior while eliminating its non-physical initial weak singularity of the Caputo TFPDE, and thus provides a physically relevant extension of TFPDE models.

We prove the existence and uniqueness of the initial-boundary value problem of the Caputo–Hadamard TFPDE (1.2) in multiple space dimensions, as well as the regularity of their solutions that depends on the fractional order α . The rest of the paper is organized as follows: In Sec. 2, we present and prove notations, norms and useful lemmas. In

Sec. 3, we prove the mapping properties of integral operator with log-kernel. In Sec. 4, we prove the well-posedness of a Caputo–Hadamard time-fractional ordinary differential equation, based on which we prove the well-posedness and regularity of model (1.2) in Sec. 5.

2. PRELIMINARIES

Let $m \in \mathbb{R}$, $0 \leq \mu < 1 \leq p \leq \infty$ and $I \subset \mathbb{R}$ be a bounded interval. Let $C^m(I)$ be the space of continuous functions with continuous derivatives up

to order m equipped with

$$\begin{aligned}\|g\|_{C(I)} &:= \sup_{t \in I} |g(t)|, \\ \|g\|_{C^m(I)} &:= \max_{0 \leq n \leq m} \|D^n g\|_{C(I)}.\end{aligned}$$

We also introduce the space $C_{\gamma, \log}(I)$ of log-Hölder continuous functions on I equipped with the norm [18]

$$\begin{aligned}\|g\|_{C_{\mu, \log}(I)} &:= \|g\|_{C(I)} \\ &+ \sup_{t_1, t_2 \in I, t_1 \neq t_2} \frac{|g(t_2) - g(t_1)|}{|\log t_2 - \log t_1|^\mu}.\end{aligned}$$

Let $L^2(\Omega)$ be the space of Lebesgue square integrable functions on Ω and $H^m(\Omega)$ be the space of functions with derivatives of order m in $L^2(\Omega)$. Let $H_0^m(\Omega)$ be the completion of $C_0^\infty(\Omega)$, the space of infinitely differentiable functions with compact support in Ω , in $H^m(\Omega)$. For non-integer $r \geq 0$, the fractional Sobolev space $H^r(\Omega)$ is defined by interpolation. [19, 20] All the spaces are equipped with the standard norms.

It is well known that the eigenfunctions $\{\phi_i\}_{i=1}^\infty$ of problem

$$-\Delta \phi_i(\mathbf{x}) = \lambda_i \phi_i(\mathbf{x}), \quad \mathbf{x} \in \Omega; \quad \phi_i(\mathbf{x}) = 0, \quad \mathbf{x} \in \partial\Omega \quad (2.1)$$

form an orthonormal basis in $L^2(\Omega)$. [21] The eigenvalues $\{\lambda_i\}_{i=1}^\infty$ are positive and form a non-decreasing sequence that tend to ∞ with i . We use the theory of sectorial operators to define the fractional Sobolev spaces [22, 23]

$$\begin{aligned}\check{H}^r(\Omega) &:= \left\{ w \in L^2(\Omega) : |v|_{\check{H}^r(\Omega)}^2 := ((-\Delta)^r w, w) \right. \\ &\quad \left. = \sum_{i=1}^\infty \lambda_i^r (w, \phi_i)^2 < \infty \right\}.\end{aligned}$$

In this paper, we use Q to denote a generic positive constant that may assume different values at different situations, and C_i , M_i and Q_i to denote fixed positive constants.

Lemma 2.1 (Generalized Grönwall inequality (Theorem 3 of Ref. [\[24\]](#))). *Let $0 \leq C_0(t) \in L_{\text{loc}}(a, b)$ and C_1 be a non-negative constant. Suppose $0 \leq g(t) \in L_{\text{loc}}(a, b)$ satisfies*

$$\begin{aligned}g(t) &\leq C_0(t) + C_1 \int_a^t g(s) (\log t - \log s)^{\gamma-1} \frac{ds}{s}, \\ \forall t &\in (a, b), \quad 0 < \gamma < 1.\end{aligned}$$

Then $g(t)$ can be bounded by

$$\begin{aligned}g(t) &\leq C_0(t) + C_1 \int_a^t \sum_{n=1}^\infty \frac{(C_1 \Gamma(\gamma))^n}{\Gamma(n\gamma)} \\ &\quad \times (\log t - \log s)^{n\gamma-1} C_0(s) \frac{ds}{s}, \quad \forall t \in (a, b).\end{aligned}$$

In particular, if $C_0(t)$ is non-decreasing, then

$g(t) \leq C_0(t) E_{\gamma, 1}(C_1 \Gamma(\gamma) (\log(t/a))^\gamma)$, $\forall t \in (a, b)$, where $E_{p, q}(t)$ represents the Mittag-Leffler function defined by

$$E_{p, q}(t) := \sum_{k=0}^\infty \frac{t^k}{\Gamma(pk + q)}, \quad t \in \mathbb{R}, \quad p \in \mathbb{R}^+, \quad q \in \mathbb{R}.$$

We finally give a useful result to be frequently used subsequently.

Lemma 2.2. *The following relation holds for $0 < \zeta < \eta$ and $p, q > 0$:*

$$\begin{aligned}\int_\zeta^\eta \left(\log \frac{\eta}{t} \right)^{p-1} \left(\log \frac{t}{\zeta} \right)^{q-1} \frac{dt}{t} \\ = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)} \left(\log \frac{\eta}{\zeta} \right)^{p+q-1}.\end{aligned}$$

Proof. We omit the proof since it is obvious. \square

3. MAPPING PROPERTIES OF THE LOG-KERNEL INTEGRAL OPERATOR

We prove the mapping properties of the following integral operator ${}_b\mathcal{J}_t^\gamma$ for $0 < \gamma < 1$ and $0 < b \leq t \leq c < \infty$:

$${}_b\mathcal{J}_t^\gamma f(t) = \frac{1}{\Gamma(\gamma)} \int_b^t \left(\log \frac{t}{s} \right)^{\gamma-1} f(s) \frac{ds}{s}$$

to facilitate the subsequent analysis.

Theorem 3.1. *For $g \in L^\infty(b, c)$, ${}_b\mathcal{J}_t^\gamma g \in C_{\gamma, \log}[b, c]$ and*

$$\|{}_b\mathcal{J}_t^\gamma g\|_{C_{\gamma, \log}[b, c]} \leq Q \|g\|_{L^\infty(b, c)}, \quad Q := Q(b, c, \gamma).$$

Proof. For $b \leq t_1 \leq t_2 \leq c$, direct calculations yield

$$\begin{aligned}[{}_b\mathcal{J}_t^\gamma g(t)]|_{t=t_1}^{t=t_2} &= \frac{1}{\Gamma(\gamma)} \left[\int_b^{t_2} \left(\log \frac{t_2}{s} \right)^{\gamma-1} g(s) \frac{ds}{s} \right. \\ &\quad \left. - \int_b^{t_1} \left(\log \frac{t_1}{s} \right)^{\gamma-1} g(s) \frac{ds}{s} \right]\end{aligned}$$

$$\begin{aligned}
&= \frac{1}{\Gamma(\gamma)} \int_b^{t_1} \left[\left(\log \frac{t_2}{s} \right)^{\gamma-1} \right. \\
&\quad \left. - \left(\log \frac{t_1}{s} \right)^{\gamma-1} \right] g(s) \frac{ds}{s} \\
&\quad + \frac{1}{\Gamma(\gamma)} \left[\int_{t_1}^{t_2} \left(\log \frac{t_2}{s} \right)^{\gamma-1} g(s) \frac{ds}{s} \right] \\
&=: L_1 + L_2. \tag{3.1}
\end{aligned}$$

Since $(\log \frac{t_2}{s})^{\gamma-1} - (\log \frac{t_1}{s})^{\gamma-1} \leq 0$ for any $b \leq s \leq t_1$, we bound L_1 by the following:

$$\begin{aligned}
|L_1| &\leq \frac{\|g\|_{L^\infty(b,c)}}{\Gamma(\gamma)} \int_b^{t_1} \left[\left(\log \frac{t_1}{s} \right)^{\gamma-1} \right. \\
&\quad \left. - \left(\log \frac{t_2}{s} \right)^{\gamma-1} \right] \frac{ds}{s} \\
&= \frac{\|g\|_{L^\infty(b,c)}}{\Gamma(1+\gamma)} \left[\left(\log \frac{t_1}{b} \right)^\gamma + \left(\log \frac{t_2}{t_1} \right)^\gamma \right. \\
&\quad \left. - \left(\log \frac{t_2}{b} \right)^\gamma \right] \\
&\leq \frac{2\|g\|_{L^\infty(b,c)}}{\Gamma(1+\gamma)} \left(\log \frac{t_2}{t_1} \right)^\gamma \\
&\leq Q \left(\log \frac{t_2}{t_1} \right)^\gamma \|g\|_{L^\infty(b,c)}.
\end{aligned}$$

Next, we bound L_2 by

$$\begin{aligned}
|L_2| &\leq \frac{\|g\|_{L^\infty(b,c)}}{\Gamma(\gamma)} \int_{t_1}^{t_2} \left(\log \frac{t_2}{s} \right)^{\gamma-1} \frac{ds}{s} \\
&= \frac{\|g\|_{L^\infty(b,c)}}{\Gamma(1+\gamma)} \left(\log \frac{t_2}{t_1} \right)^\gamma \\
&\leq Q \left(\log \frac{t_2}{t_1} \right)^\gamma \|g\|_{L^\infty(b,c)},
\end{aligned}$$

which completes the proof. \square

Theorem 3.2. For $g \in C_{\beta,\log}[b,c]$ with $0 < \gamma + \beta < 1$, ${}_b\mathcal{J}_t^\gamma(g(t) - g(b)) \in C_{\gamma+\beta,\log}[b,c]$ and

$$\begin{aligned}
&\|{}_b\mathcal{J}_t^\gamma(g(t) - g(b))\|_{C_{\gamma+\beta,\log}[b,c]} \\
&\leq Q\|g\|_{C_{\beta,\log}[b,c]}, \quad Q := Q(b, c, \gamma, \beta). \tag{3.2}
\end{aligned}$$

Proof. Since $g \in C_{\beta,\log}[b,c]$, $\bar{g} := g(t) - g(b)$ satisfies $|\bar{g}| \leq \|g\|_{C_{\beta,\log}[b,c]} (\log \frac{t}{b})^\beta$. For $b \leq t_1 \leq t_2 \leq c$,

we rewrite (3.1) by the splitting $g(s) = (g(s) - g(t_1)) + g(t_1)$

$$\begin{aligned}
&[{}_b\mathcal{J}_t^\gamma \bar{g}]|_{t=t_1}^{t=t_2} g \left(\log \frac{t_2}{s} \right)^{\gamma-1} \frac{ds}{s} \\
&= \frac{1}{\Gamma(\gamma)} \int_b^{t_1} \left[\left(\log \frac{t_2}{s} \right)^{\gamma-1} - \left(\log \frac{t_1}{s} \right)^{\gamma-1} \right] \\
&\quad \times (\bar{g}(s) - \bar{g}(t_1)) \frac{ds}{s} \\
&\quad + \frac{1}{\Gamma(\gamma)} \int_{t_1}^{t_2} \left(\log \frac{t_2}{s} \right)^{\gamma-1} (\bar{g}(s) - \bar{g}(t_1)) \frac{ds}{s} \\
&\quad + \frac{\bar{g}(t_1)}{\Gamma(\gamma)} \left[\int_b^{t_2} \left(\log \frac{t_2}{s} \right)^{\gamma-1} \frac{ds}{s} \right. \\
&\quad \left. - \int_b^{t_1} \left(\log \frac{t_1}{s} \right)^{\gamma-1} \frac{ds}{s} \right] \\
&=: H_1 + H_2 + H_3.
\end{aligned}$$

If $\frac{t_1}{b} \leq \frac{t_2}{t_1}$, we use the substitution $y = \log t_1 - \log s$ to bound H_1 by the following:

$$\begin{aligned}
|H_1| &= \left| \int_0^{\log \frac{t_1}{b}} \frac{\bar{g}(t_1 e^{-y}) - \bar{g}(t_1)}{\Gamma(\gamma)} \right. \\
&\quad \times (y^{\gamma-1} - (y + \log t_2 - \log t_1)^{\gamma-1}) dy \left. \right| \\
&\leq \left| \int_0^{\log \frac{t_1}{b}} \frac{\|g\|_{C_{\beta,\log}[b,c]} \left(\log \left(\frac{t_1}{t_1 e^{-y}} \right) \right)^\beta}{\Gamma(\gamma)} \right. \\
&\quad \times (y^{\gamma-1} - (y + \log t_2 - \log t_1)^{\gamma-1}) dy \left. \right| \\
&= \left| \int_0^{\log \frac{t_1}{b}} \frac{\|g\|_{C_{\beta,\log}[b,c]} y^\beta}{\Gamma(\gamma)} \right. \\
&\quad \times (y^{\gamma-1} - (y + \log t_2 - \log t_1)^{\gamma-1}) dy \left. \right| \\
&\leq \frac{\|g\|_{C_{\beta,\log}[b,c]}}{\Gamma(\gamma)} \left| \int_0^{\log \frac{t_1}{b}} 2y^{\gamma-1} y^\beta dy \right| \\
&= \frac{2\|g\|_{C_{\beta,\log}[b,c]}}{\Gamma(\gamma)} \left(\log \frac{t_1}{b} \right)^{\gamma+\beta} \\
&\leq QM\|g\|_{C_{\beta,\log}[b,c]} \left(\log \frac{t_2}{t_1} \right)^{\gamma+\beta}. \tag{3.3}
\end{aligned}$$

Otherwise, we split the first integral in (3.3) on $[0, \frac{t_2}{t_1}]$ and $[\frac{t_2}{t_1}, \frac{t_1}{b}]$ to obtain

$$\begin{aligned} |H'_1| &= \left| \int_0^{\log \frac{t_2}{t_1}} \frac{\bar{g}(t_1 e^{-y}) - \bar{g}(t_1)}{\Gamma(\gamma)} \right. \\ &\quad \times (y^{\gamma-1} - (y + \log t_2 - \log t_1)^{\gamma-1}) dy \\ &\quad + \int_{\log \frac{t_2}{t_1}}^{\log \frac{t_1}{b}} \frac{\bar{g}(t_1 e^{-y}) - \bar{g}(t_1)}{\Gamma(\gamma)} \\ &\quad \times (y^{\gamma-1} - (y + \log t_2 - \log t_1)^{\gamma-1}) dy \Big| \\ &=: H'_{11} + H'_{12}. \end{aligned}$$

H'_{11} can be bounded by the right-hand side of (3.3) by a similar technique. We bound H'_{12} by the substitution $y = r \log \frac{t_2}{t_1}$

$$\begin{aligned} |H'_{12}| &\leq Q \|g\|_{C_{\beta, \log}[b, c]} \left(\log \frac{t_2}{t_1} \right)^{\gamma+\beta} \\ &\quad \times \int_1^{+\infty} (r^{\gamma-1} - (1+r)^{\gamma-1}) r^\beta dr \\ &\leq Q \|g\|_{C_{\beta, \log}[b, c]} \left(\log \frac{t_2}{t_1} \right)^{\gamma+\beta} \\ &\quad \times \int_1^{+\infty} \left(1 - \left(1 + \frac{\gamma-1}{r} + \mathcal{O}\left(\frac{1}{r^2}\right) \right) \right) \\ &\quad \times r^{\alpha+\beta-1} dr \\ &\leq Q \|g\|_{C_{\beta, \log}[b, c]} \left(\log \frac{t_2}{t_1} \right)^{\gamma+\beta} \int_1^{+\infty} r^{\gamma+\beta-2} dr \\ &\leq Q \|g\|_{C_{\beta, \log}[b, c]} \left(\log \frac{t_2}{t_1} \right)^{\gamma+\beta}. \end{aligned}$$

We then bound H_2 and H_3 for $b \leq t_1 < t_2 \leq c$ by

$$\begin{aligned} |H_2| &= \frac{1}{\Gamma(\gamma)} \int_{t_1}^{t_2} \left(\log \frac{t_2}{s} \right)^{\gamma-1} (\bar{g}(s) - \bar{g}(t_1)) \frac{ds}{s} \\ &\leq \frac{\|g\|_{C_{\beta, \log}[b, c]}}{\Gamma(\gamma)} \int_{t_1}^{t_2} \left(\log \frac{t_2}{s} \right)^{\gamma-1} \left(\log \frac{t_2}{s} \right)^\beta \frac{ds}{s} \\ &= \frac{\|g\|_{C_{\beta, \log}[b, c]}}{\Gamma(\gamma)} \left(\log \frac{t_2}{t_1} \right)^{\gamma+\beta} \end{aligned}$$

and

$$|H_3| = \frac{|\bar{g}(t_1)|}{\Gamma(\gamma)} \left| \int_b^{t_2} \left(\log \frac{t_2}{s} \right)^{\gamma-1} \frac{ds}{s} \right|$$

$$\begin{aligned} &- \int_b^{t_1} \left(\log \frac{t_1}{s} \right)^{\gamma-1} \frac{ds}{s} \Big| \\ &= \frac{|\bar{g}(t_1)|}{\Gamma(1+\gamma)} \left[\left(\log \frac{t_2}{b} \right)^\gamma - \left(\log \frac{t_1}{b} \right)^\gamma \right] \\ &\leq Q \|g\|_{C_{\beta, \log}[b, c]} \left(\log \frac{t_1}{b} \right)^\beta \\ &\quad \times \left[\left(\log \frac{t_2}{b} \right)^\gamma - \left(\log \frac{t_1}{b} \right)^\gamma \right]. \end{aligned} \quad (3.4)$$

For $\frac{t_1}{b} \leq \frac{t_2}{t_1}$, we use $x_2^\gamma - x_1^\gamma \leq (x_2 - x_1)^\gamma$ for $0 < \gamma \leq 1$ and $0 \leq x_1 < x_2$ to bound the right-hand side of (3.4) by

$$\begin{aligned} &\left(\log \frac{t_1}{b} \right)^\beta \left[\left(\log \frac{t_2}{b} \right)^\gamma - \left(\log \frac{t_1}{b} \right)^\gamma \right] \\ &\leq \left(\log \frac{t_2}{t_1} \right)^{\gamma+\beta}. \end{aligned}$$

Otherwise, for $\frac{t_1}{b} > \frac{t_2}{t_1}$, we can use the mean value theorem to obtain for some $\zeta \in (\log \frac{t_1}{b}, \log \frac{t_2}{b})$

$$\begin{aligned} &\left(\log \frac{t_1}{b} \right)^\beta \left[\left(\log \frac{t_2}{b} \right)^\gamma - \left(\log \frac{t_1}{b} \right)^\gamma \right] \\ &= \left(\log \frac{t_1}{b} \right)^\beta \left[\gamma \left(\log \frac{\zeta}{b} \right)^{\gamma-1} \log \frac{t_2}{t_1} \right] \\ &\leq Q \left(\log \frac{t_1}{b} \right)^{\gamma+\beta-1} \log \frac{t_2}{t_1} \\ &= Q \left(\log \frac{t_2}{t_1} \right)^{\gamma+\beta}. \end{aligned}$$

Thus, the proof is completed. \square

Theorem 3.3. For $g \in C_{\beta, \log}[b, c]$ with $\gamma + \beta > 1$, ${}_b \mathcal{J}_t^\gamma(g(t) - g(b)) \in C^1[b, c]$ and

$$\begin{aligned} &\|{}_b \mathcal{J}_t^\gamma(g(t) - g(b))\|_{C^1[b, c]} \\ &\leq Q \|g\|_{C_{\beta, \log}[b, c]}, \quad Q := Q(b, c, \gamma, \beta). \end{aligned} \quad (3.5)$$

Proof. For $0 < \sigma \ll 1$ and $g \in C_{\beta, \log}[b, c]$,

$$\begin{aligned} g_\sigma(t) &:= \int_b^{t-\sigma} \bar{g}(s) \left(\log \frac{t}{s} \right)^{\alpha-1} \frac{ds}{s} \\ &\in C^1[b + \sigma, c] \end{aligned} \quad (3.6)$$

is differentiable and

$$\begin{aligned}
g'_\sigma(t) &= \frac{\gamma-1}{t} \int_b^{t-\sigma} \bar{g}(s) \left(\log \frac{t}{s} \right)^{\gamma-2} \frac{ds}{s} \\
&\quad + \frac{\bar{g}(t-\sigma)}{t-\sigma} \left(\log \frac{t}{t-\sigma} \right)^{\gamma-1} \\
&= \frac{\gamma-1}{t} \int_b^{t-\sigma} (\bar{g}(s) - \bar{g}(t)) \left(\log \frac{t}{s} \right)^{\gamma-2} \frac{ds}{s} \\
&\quad + \left(\frac{\bar{g}(t-\sigma)}{t-\sigma} - \frac{\bar{g}(t)}{t} \right) \left(\log \frac{t}{t-\sigma} \right)^{\gamma-1} \\
&\quad + \frac{\bar{g}(t)}{t} \left(\log \frac{t}{b} \right)^{\gamma-1} \\
&=: G_1 + G_2 + G_3.
\end{aligned}$$

We use $g \in C_{\beta, \log}[b, c]$ and $\beta + \gamma > 1$ to bound $G_1 - G_3$ for $t \in [b + \sigma, c]$ by

$$\begin{aligned}
|G_1| &\leq \left| \frac{\gamma-1}{t} \int_a^{t-\sigma} (\bar{g}(s) - \bar{g}(t)) \left(\log \frac{t}{s} \right)^{\gamma-2} \frac{ds}{s} \right| \\
&\leq Q \|g\|_{C_{\beta, \log}[b, c]} \int_b^{t-\sigma} \left(\log \frac{t}{s} \right)^\beta \\
&\quad \times \left(\log \frac{t}{s} \right)^{\gamma-2} \frac{ds}{s} \\
&\leq Q \|g\|_{C_{\beta, \log}[b, c]}, \quad t \in [b + \sigma, c], \\
|G_2| &= \left| \left(\frac{\bar{g}(t-\sigma)}{t-\sigma} - \frac{\bar{g}(t)}{t} \right) \left(\log \frac{t}{t-\sigma} \right)^{\gamma-1} \right| \\
&= \left| \left(\frac{\bar{g}(t-\sigma) - \bar{g}(t)}{t-\sigma} + \frac{\bar{g}(t)}{t-\sigma} - \frac{\bar{g}(t)}{t} \right) \right. \\
&\quad \times \left. \left(\log \frac{t}{t-\sigma} \right)^{\gamma-1} \right| \\
&\leq Q \|g\|_{C_{\beta, \log}[b, c]} \left(\log \frac{t}{t-\sigma} \right)^{\beta+\gamma-1} \\
&\quad + \frac{\|g\|_{C[b, c]} \sigma}{t(t-\sigma)} \left(\log \frac{t}{t-\sigma} \right)^{\gamma-1}.
\end{aligned}$$

We apply the variable substitution $x = \frac{t}{t-\sigma}$ and use the L'Hospital's rule to calculate

$$\begin{aligned}
\lim_{\sigma \rightarrow 0^+} \sigma \left(\log \frac{t}{t-\sigma} \right)^{\gamma-1} &= \lim_{x \rightarrow 1^+} \frac{t-t/x}{(\log x)^{1-\alpha}} \\
&= \lim_{x \rightarrow 1^+} \frac{1/x^2}{(1-\gamma)(\log x)^{-\gamma}/x} \\
&= \lim_{x \rightarrow 1^+} \frac{1/x^2}{(1-\gamma)(\log x)^{-\gamma}/x}
\end{aligned}$$

$$\begin{aligned}
&= \lim_{x \rightarrow 1^+} \frac{1/x}{(1-\gamma)(\log x)^{-\gamma}} \\
&= 0.
\end{aligned}$$

Hence, we can conclude that $G_2 \rightarrow 0$ as $\sigma \rightarrow 0^+$. Next, we bound G_3 by

$$\begin{aligned}
|G_3| &= \frac{\bar{g}(t)}{t} \left(\log \frac{t}{b} \right)^{\gamma-1} \\
&\leq Q \|g\|_{C_{\beta, \log}[b, c]} \frac{1}{b} \left(\log \frac{t}{b} \right)^{\gamma+\beta-1} \\
&\leq Q \|g\|_{C_{\beta, \log}[b, c]}.
\end{aligned}$$

Thus, $g'_\sigma(t)$ is integrable on $[b, c]$ for $0 < \sigma \leq \epsilon_0 \ll 1$ and is bounded by

$$\begin{aligned}
|g'_\sigma(t)| &\leq Q \|g\|_{C_{\beta, \log}[b, c]} \left[\left(\log \frac{t}{b} \right)^{\beta+\gamma-1} \right. \\
&\quad \left. + \left(\log \frac{t}{t-\sigma} \right)^{\beta+\gamma-1} \right] \\
&\leq Q \|g\|_{C_{\beta, \log}[b, c]}.
\end{aligned}$$

Therefore, the limit function of $g'_\sigma(t)$

$$\begin{aligned}
y(t) &:= \lim_{\sigma \rightarrow 0^+} g'_\sigma(t) \\
&= \frac{\gamma-1}{t} \int_b^t (\bar{g}(s) - \bar{g}(t)) \left(\log \frac{t}{s} \right)^{\gamma-2} \frac{ds}{s} \\
&\quad + \frac{\bar{g}(t)}{t} \left(\log \frac{t}{b} \right)^{\gamma-1}
\end{aligned}$$

is continuous on $[b, c]$ and can be bounded in terms of $\|g\|_{C_{\beta, \log}[b, c]}$. Use the Lebesgue bounded convergence theorem to obtain

$$\begin{aligned}
&\lim_{\sigma \rightarrow 0^+} [g_\sigma(t) - g_\sigma(b + \sigma)] \\
&= \lim_{\sigma \rightarrow 0^+} \int_{b+\sigma}^t g'_\sigma(s) ds = \int_b^t y(s) ds. \quad (3.7)
\end{aligned}$$

Finally, we combine (3.6) with (3.7) to conclude that

$$\begin{aligned}
{}_b \mathcal{J}_t^\gamma \bar{g}(t) &= \frac{1}{\Gamma(\gamma)} \lim_{\sigma \rightarrow 0^+} [g_\sigma(t) - g_\sigma(b + \sigma)] \\
&= \frac{1}{\Gamma(\gamma)} \int_b^t y(s) ds
\end{aligned}$$

is continuous differentiable on $[b, c]$ with the estimate (3.5). \square

Theorem 3.4. For $0 < \gamma < 1$ and $tg \in C_{\gamma, \log}[b, c]$, it holds $g \in C_{\gamma, \log}[b, c]$.

Proof. For $b \leq t_1 \leq t_2 \leq c$, we have

$$\begin{aligned}
|g(t_2) - g(t_1)| &= \left| \frac{t_2 g(t_2)}{t_2} - \frac{t_1 g(t_1)}{t_1} \right| \\
&= \left| \left(\frac{t_2 g(t_2)}{t_2} - \frac{t_2 g(t_2)}{t_1} \right) \right. \\
&\quad \left. + \left(\frac{t_2 g(t_2)}{t_1} - \frac{t_1 g(t_1)}{t_1} \right) \right| \\
&\leq Q|t_2 - t_1| \|tg\|_{C[b,c]} + Q \left(\log \frac{t_2}{t_1} \right)^\gamma \\
&\quad \times \|tg\|_{C_{\gamma,\log}[b,c]} \\
&\leq Q \left(\log \frac{t_2}{t_1} \right)^\gamma \|g\|_{C_{\gamma,\log}[b,c]}.
\end{aligned}$$

Thus, we finish the proof. \square

4. ANALYSIS OF A CAPUTO–HADAMARD FRACTIONAL ODE

We prove the well-posedness of the initial value problem of the Caputo–Hadamard fractional ODE for $\alpha \in (0, 1)$ and $0 < \lambda < \infty$

$$\begin{aligned}
\xi'(t) + k(t) {}_a\mathcal{D}_t^\alpha \xi(t) + \lambda \xi(t) &= g(t), \\
t \in (a, T]; \quad \xi(a) &= \xi_a.
\end{aligned} \tag{4.1}$$

We multiply (4.1) by $e^{\lambda t}$ and integrate the equation from a to t to get

$$\begin{aligned}
\xi(t) &= \xi_a e^{\lambda a - \lambda t} - \frac{1}{\Gamma(1 - \alpha)} \int_a^t k(\theta) e^{\lambda(\theta - t)} \\
&\quad \times \int_a^\theta \left(\log \frac{\theta}{s} \right)^{-\alpha} \xi'(s) ds d\theta \\
&\quad + \int_a^t g(\theta) e^{\lambda(\theta - t)} d\theta.
\end{aligned} \tag{4.2}$$

We differentiate (4.2) with respect to t to arrive at the integral equation in terms of $\eta = \xi'$

$$\begin{aligned}
\eta(t) &= -\lambda e^{\lambda a - \lambda t} \xi_a + \frac{1}{\Gamma(1 - \alpha)} \int_a^t \lambda e^{\lambda(\theta - t)} k(\theta) \\
&\quad \times \int_a^\theta \left(\log \frac{\theta}{s} \right)^{-\alpha} \eta(s) ds d\theta \\
&\quad - \frac{k(t)}{\Gamma(1 - \alpha)} \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} \eta(s) ds \\
&\quad - \int_a^t \lambda e^{\lambda(\theta - t)} g(\theta) d\theta + g(t).
\end{aligned} \tag{4.3}$$

Here, ξ can be recovered in terms of η by $\xi(t) = \xi_a + \int_a^t \eta(s) ds$.

Theorem 4.1. If $g \in C[a, T]$ and $k(t) \in C[a, T]$ holds, problem (4.1) has a unique solution $\xi(t) \in C^1[a, T]$ such that

$$\begin{aligned}
\|\xi(t)\|_{C^1[a,T]} &\leq Q(\lambda|\xi_a| + \|g\|_{C[a,T]}), \\
Q &= Q(\alpha, \|k\|_{C[a,T]}, T).
\end{aligned} \tag{4.4}$$

Proof. Define a approximation sequence $\{\eta_n\}_{n=0}^\infty$ on $[a, T]$ by

$$\begin{aligned}
\eta_0(t) &:= -\lambda e^{\lambda a - \lambda t} \xi_a - \int_a^t \lambda e^{\lambda(\theta - t)} g(\theta) d\theta + g(t), \\
\eta_n(t) &:= \eta_0(t) + \frac{1}{\Gamma(1 - \alpha)} \int_a^t \lambda e^{\lambda(\theta - t)} k(\theta) \\
&\quad \times \int_a^\theta \left(\log \frac{\theta}{s} \right)^{-\alpha} \eta_{n-1}(s) ds d\theta \\
&\quad - \frac{k(t)}{\Gamma(1 - \alpha)} \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} \eta_{n-1}(s) ds.
\end{aligned}$$

We bound η_0 by

$$\|\eta_0\|_{C[0,T]} \leq M_0 := \lambda|\xi_a| + 2\|g\|_{C[a,T]}. \tag{4.5}$$

We subtract $\eta_n(t)$ from $\eta_{n+1}(t)$ to obtain the following equation for $n \geq 0$:

$$\begin{aligned}
&|\eta_{n+1}(t) - \eta_n(t)| \\
&= \left| \int_a^t \frac{\lambda e^{\lambda(\theta - t)} k(\theta)}{\Gamma(1 - \alpha)} \int_a^\theta \frac{(\eta_n(s) - \eta_{n-1}(s))}{[\log(\theta/s)]^\alpha} ds d\theta \right. \\
&\quad \left. - \frac{k(t)}{\Gamma(1 - \alpha)} \int_a^t \frac{(\eta_n(s) - \eta_{n-1}(s))}{[\log(t/s)]^\alpha} ds \right|, \\
&\quad t \in [a, T].
\end{aligned} \tag{4.6}$$

Here, $\eta_{-1}(s) := 0$. We plug (4.5) into (4.6) with $n = 1$ and use $\int_a^\theta (\log \frac{\theta}{s})^{-\alpha} \frac{ds}{s} = \frac{1}{1-\alpha} (\log \frac{\theta}{a})^{1-\alpha}$ to obtain

$$\begin{aligned}
|\eta_1(t) - \eta_0(t)| &\leq \int_a^t \frac{t \lambda e^{\lambda(\theta - t)} |k(\theta)|}{\Gamma(1 - \alpha)} \\
&\quad \times \int_a^\theta \frac{|\eta_0(s)|}{[\log(\theta/s)]^\alpha} \frac{ds}{s} d\theta \\
&\quad + \frac{t |k(t)|}{\Gamma(1 - \alpha)} \int_a^t \frac{|\eta_0(s)|}{[\log(t/s)]^\alpha} \frac{ds}{s}
\end{aligned}$$

$$\begin{aligned}
&\leq t \int_a^t \frac{\lambda e^{\lambda(\theta-t)}}{\Gamma(1-\alpha)} \frac{K_0 M_0}{1-\alpha} \left(\log \frac{t}{a} \right)^{1-\alpha} d\theta \\
&\quad + \frac{t K_0}{\Gamma(1-\alpha)} \int_a^t \frac{M_0}{[\log(t/s)]^\alpha} \frac{ds}{s} \\
&\leq \frac{2 K_0 M_0 t (\log \frac{t}{a})^{1-\alpha}}{\Gamma(2-\alpha)} \\
&\leq \frac{2 K_0 M_0 t (\log \frac{T}{a})^{1-\alpha}}{\Gamma(2-\alpha)}, \tag{4.7}
\end{aligned}$$

where we have used $\int_a^t \lambda e^{\lambda(\theta-t)} d\theta = 1 - e^{-\lambda(t-a)} \leq 1$. Assume that for some $n \geq 1$

$$\begin{aligned}
|\eta_n(t) - \eta_{n-1}(t)| &\leq \frac{(2K_0)^n M_0 t^n (\log \frac{t}{a})^{n(1-\alpha)}}{\Gamma(1+n(1-\alpha))}, \\
t &\in [a, T]. \tag{4.8}
\end{aligned}$$

We combine (4.6)–(4.8) and use Lemma 2.2 to obtain

$$\begin{aligned}
&|\eta_{n+1}(t) - \eta_n(t)| \\
&\leq \frac{2K_0(2K_0)^n M_0 t}{\Gamma(1+n(1-\alpha))\Gamma(1-\alpha)} \\
&\quad \times \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} s^n \left(\log \frac{s}{a} \right)^{n(1-\alpha)} \frac{ds}{s} \\
&\leq \frac{2K_0(2K_0)^n M_0 t^{n+1}}{\Gamma(1+n(1-\alpha))\Gamma(1-\alpha)} \\
&\quad \times \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} \left(\log \frac{s}{a} \right)^{n(1-\alpha)} \frac{ds}{s} \\
&= \frac{(2K_0)^{n+1} M_0 t^{n+1} (\log \frac{t}{a})^{(n+1)(1-\alpha)}}{\Gamma(1+n(1-\alpha))\Gamma(1-\alpha)} \\
&\quad \times B(1-\alpha, 1+n(1-\alpha)) \\
&\leq \frac{(2K_0 T)^{n+1} M_0 (\log \frac{T}{a})^{(n+1)(1-\alpha)}}{\Gamma(1+(n+1)(1-\alpha))}.
\end{aligned}$$

By mathematical induction, (4.8) holds for any $n \in \mathbb{N}$. Using the boundedness of the Mittag-Leffler function

$$\begin{aligned}
&\sum_{j=0}^{\infty} \frac{M_0 (2K_0 T)^j (\log \frac{T}{a})^{j(1-\alpha)}}{\Gamma(1+j(1-\alpha))} \\
&= M_0 E_{1-\alpha,1} \left[2K_0 T \left(\log \frac{T}{a} \right)^{1-\alpha} \right] < \infty, \\
t &\in [a, T]
\end{aligned}$$

we conclude that the uniformly convergent limit η given by

$$\begin{aligned}
\eta(t) &:= \lim_{n \rightarrow +\infty} \eta_n(t) \\
&= \sum_{n=1}^{\infty} (\eta_n(t) - \eta_{n-1}(t)) + \eta_0(t) \in C[a, T],
\end{aligned}$$

satisfies Eq. (4.3) with the estimate $\|\eta\|_{C[a,T]} \leq Q(\lambda|\xi_a| + \|g\|_{C[a,T]})$, which further leads to (4.4).

If there exists another C^1 solution $\tilde{\xi}$ to (4.1), then $\zeta = \xi - \tilde{\xi} \in C^1[a, T]$ satisfies

$$\begin{aligned}
|\zeta'| &= \left| \frac{1}{\Gamma(1-\alpha)} \int_a^t \lambda e^{\lambda(\theta-t)} k(\theta) \right. \\
&\quad \times \int_a^{\theta} \left(\log \frac{\theta}{s} \right)^{-\alpha} \zeta'(s) ds d\theta \\
&\quad \left. - \frac{k(t)}{\Gamma(1-\alpha)} \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} \zeta'(s) ds \right| \\
&\leq Q(\lambda) \left[\int_a^{\theta} |\zeta'(s)| ds \right. \\
&\quad \left. + \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} |\zeta'(s)| ds \right] \\
&\leq Q(\lambda) \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} |\zeta'(s)| ds.
\end{aligned}$$

By the Grönwall inequality in Lemma 2.1 we conclude that $\zeta' \equiv 0$ and hence $\zeta \equiv 0$ on $[a, T]$ by the homogeneous initial condition, which proves the uniqueness. \square

5. WELL-POSEDNESS AND REGULARITY OF CAPUTO–HADAMARD TFPDE

In this section, we prove the well-posedness of model (1.2) and the regularity of its solutions.

Theorem 5.1. *If $u_a \in \check{H}^{r+2}$, $f \in H^\nu(\check{H}^r)$ with $r > d/2$ and $\nu > 1/2$ and $k(t) \in C[a, T]$ holds, then problem (1.2) has a unique solution $u \in C^1([a, T]; \check{H}^r)$ and the stability estimate holds for $Q = Q(\alpha, \|k\|_{C[a,T]}, T)$*

$$\|u\|_{C^1([a,T];\check{H}^s)} \leq Q(\|u_a\|_{\check{H}^{2+s}} + \|f\|_{H^\nu(\check{H}^s)}), \quad 0 \leq s \leq r.$$

Proof. We express the solution u and f in (1.2) in terms of $\{\phi_i\}_{i=1}^\infty$ as

$$\begin{aligned} u(\mathbf{x}, t) &= \sum_{i=1}^\infty u_i(t) \phi_i(\mathbf{x}), \quad u_i(t) := (u(\cdot, t), \phi_i), \\ &\quad t \in [a, T], \\ f(\mathbf{x}, t) &= \sum_{i=1}^\infty f_i(t) \phi_i(\mathbf{x}), \quad f_i(t) := (f(\cdot, t), \phi_i), \\ &\quad t \in [a, T], \end{aligned} \quad (5.1)$$

where ϕ_i is the eigenfunction of problem defined in (2.1). We plug these expansions into (1.2) to conclude that for $(\mathbf{x}, t) \in \Omega \times (a, T]$

$$\begin{aligned} \sum_{i=1}^\infty (u'_i(t) + k(t) {}_a\mathcal{D}_t^\alpha u_i(t)) \phi_i(\mathbf{x}) \\ = \sum_{i=1}^\infty (-\lambda_i u_i(t) + f_i(t)) \phi_i(\mathbf{x}). \end{aligned} \quad (5.2)$$

Hence, u is a solution to problem (1.2) if and only if $\{u_i\}_{i=1}^\infty$ satisfy

$$\begin{aligned} u'_i(t) + k(t) {}_a\mathcal{D}_t^\alpha u_i(t) &= -\lambda_i u_i(t) + f_i(t), \\ t \in (a, T], \end{aligned} \quad (5.3)$$

$$u_i(a) = u_{a,i} := (u_a, \phi_i), \quad i = 1, 2, \dots$$

Note that the above equation has exactly the same form as (4.1) with ξ, λ, g replaced by u_i, λ_i, f_i , respectively. Then by Theorem 4.1, problem (5.3) has a unique solution $u_i \in C^1[a, T]$ and the estimate (4.4) holds by similarly modifying the data. For any $k \in \mathbb{N}$, we use Sobolev embedding and estimate (4.4) to conclude that $S_n(\mathbf{x}, t) := \sum_{i=1}^n u_i(t) \phi_i(\mathbf{x})$ satisfies for $n \rightarrow \infty$

$$\begin{aligned} &\|S'_{n+k} - S'_n\|_{C([a, T]; C(\bar{\Omega}))}^2 \\ &\leq Q \left\| \sum_{i=n+1}^{n+k} u'_i(t) \phi_i(\mathbf{x}) \right\|_{C([a, T]; H^\gamma(\Omega))}^2 \\ &\leq Q \sum_{i=n+1}^{n+k} \lambda_i^\gamma \|u_i\|_{C^1[a, T]}^2 \\ &\leq Q \sum_{i=n+1}^{n+k} \lambda_i^\gamma (\lambda_i^2 |u_{a,i}|^2 + \|f_i\|_{C[a, T]}^2) \rightarrow 0. \end{aligned}$$

Hence, the interchange of the differentiation with the summation in (5.2) is satisfied, from which we

conclude that u defined in (5.1) belongs to $C^1(H^\gamma)$ and satisfies problem (1.2). Moreover,

$$\begin{aligned} \|u\|_{C^1(\check{H}^s)}^2 &\leq Q \sum_{i=1}^\infty \lambda_i^s \|u_i\|_{C^1[a, T]}^2 \\ &\leq Q \sum_{i=1}^\infty \lambda_i^s (\lambda_i^2 u_{a,i}^2 + \|f_i\|_{C[a, T]}^2) \\ &\leq Q (\|u_a\|_{\check{H}^{2+s}}^2 + \|f\|_{H^\nu(\check{H}^s)}^2). \end{aligned}$$

The uniqueness of the solution to problem (1.2) follows from that of (5.3). \square

Theorem 5.2. *If $u_a \in \check{H}^{4+s}$, $f \in H^\nu(\check{H}^{2+s}) \cap H^{1+\nu}(\check{H}^s)$ for some $s \geq 0$ and $\nu > 1/2$ and $k(t) \in C[a, T]$ holds, $k \in C^1[a, T]$, $u \in C^2((a, T]; \check{H}^s)$ and the following interior estimate holds for any $t \in (a, T]$:*

$$\begin{aligned} &\|u\|_{C^2((a, T]; \check{H}^s)} \\ &\leq Q \left(\log \frac{t}{a} \right)^{-\alpha} (\|u_a\|_{\check{H}^{4+s}} + \|f\|_{H^\nu(\check{H}^{2+s})} \\ &\quad + \|f\|_{H^{1+\nu}(\check{H}^s)}), \end{aligned} \quad (5.4)$$

with $Q = Q(\alpha, \|k\|_{C^1[a, T]}, T)$.

Proof. Similar to (4.1)–(4.3), (5.3) can be rewritten in terms of $v = u'_i(t)$

$$\begin{aligned} v(t) &= -\lambda_i e^{\lambda_i a - \lambda_i t} u_{a,i} \\ &\quad + \frac{1}{\Gamma(1-\alpha)} \int_a^t \lambda_i e^{\lambda_i(\theta-t)} k(\theta) \\ &\quad \times \int_a^\theta \left(\log \frac{\theta}{s} \right)^{-\alpha} v(s) ds d\theta \\ &\quad - \frac{k(t)}{\Gamma(1-\alpha)} \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} v(s) ds \\ &\quad - \int_a^t \lambda e^{\lambda(\theta-t)} f_i(\theta) d\theta + f_i(t). \end{aligned} \quad (5.5)$$

We first prove that v is differentiable. By Theorem 4.1, Eq. (5.5) has a unique solution $v \in C[a, T]$ and (4.4) holds. We multiply (5.5) by $\log \frac{t}{a}$ and use $\log \frac{t}{a} = \log \frac{s}{a} + \log \frac{t}{s}$ to split the third term on the right-hand side of (5.5) to reformulate (5.5) in terms of $v(t) \log \frac{t}{a}$

$$v(t) \log \frac{t}{a} = -k(t) {}_a\mathcal{J}_t^{1-\alpha} \left(t v(t) \log \frac{t}{a} \right)$$

$$\begin{aligned}
& -\frac{k(t)}{\Gamma(1-\alpha)} \int_a^t \left(\log \frac{t}{s} \right)^{1-\alpha} v(s) ds \\
& + \frac{\log \frac{t}{a}}{\Gamma(1-\alpha)} \int_a^t \lambda_i e^{\lambda_i(\theta-t)} k(\theta) \\
& \times \int_a^\theta \left(\log \frac{\theta}{s} \right)^{-\alpha} v(s) ds d\theta - \log \frac{t}{a} \\
& \times \lambda_i e^{-\lambda_i t} u_{a,i} - \log \frac{t}{a} \\
& \times \int_a^t \lambda e^{\lambda(\theta-t)} f_i(\theta) d\theta \\
& + \log \frac{t}{a} f_i(t).
\end{aligned}$$

As $v \in C[a, T]$, all but the first terms on the right-hand side are in $C^1[a, T]$. Without loss of generality, let $N \in \mathbb{N}^+$ be such that $N(1-\alpha) < 1$ and $(N+1)(1-\alpha) > 1$. Then we apply Theorem 3.2 to conclude that $v(t) \log \frac{t}{a} \in C_{1-\alpha, \log}[a, T]$, and we then employ Theorem 3.4 to find $v(t) \log \frac{t}{a} \in C_{1-\alpha, \log}[a, T]$. We repeat this procedure N times to conclude that $v(t) \log \frac{t}{a} \in C_{N(1-\alpha), \log}[a, T]$. As $N(1-\alpha) + 1 - \alpha > 1$, Theorem 3.3 leads to $v(t) \log \frac{t}{a} \in C^1[a, T]$, which means v is differentiable for $t \in (a, T]$.

To differentiate (5.5), we first differentiate the following integral:

$$\begin{aligned}
& \left[\int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} v(s) ds \right]' \\
& = \frac{d}{dt} \left[\int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} s v(s) \frac{ds}{s} \right] \\
& = \frac{d}{dt} \left[\int_a^t s v(s) d \left(-\frac{(\log \frac{t}{s})^{1-\alpha}}{1-\alpha} \right) \right] \\
& = \frac{1}{t} \left[a v(a) \left(\log \frac{t}{a} \right)^{-\alpha} \right. \\
& \quad \left. + \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} (v(s) + s v'(s)) ds \right].
\end{aligned}$$

We incorporate this to differentiate (5.5) as $v'(t) = \sum_{j=1}^4 F_j$ where

$$\begin{aligned}
F_1(t) & = \frac{-1}{\Gamma(1-\alpha)} \int_a^t \lambda_i^2 e^{\lambda_i(\theta-t)} k(\theta) \\
& \times \int_a^\theta \left(\log \frac{\theta}{s} \right)^{-\alpha} v(s) ds d\theta,
\end{aligned}$$

$$\begin{aligned}
F_2(t) & = \frac{\lambda_i k(t) - k'(t)}{\Gamma(1-\alpha)} \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} v(s) ds, \\
F_3(t) & = \frac{-k(t)}{t \Gamma(1-\alpha)} \left[a v(a) \left(\log \frac{t}{a} \right)^{-\alpha} \right. \\
& \quad \left. + \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} (v(s) + s v'(s)) ds \right], \\
F_4(t) & = \lambda_i^2 e^{-\lambda_i t} u_{a,i} + f_i'(t) - \lambda_i f_i(t) \\
& \quad + \int_a^t \lambda_i^2 e^{\lambda_i(\theta-t)} f_i(\theta) d\theta.
\end{aligned}$$

Let M_0 be defined in (4.5). We use (4.4) to bound F_1 by

$$\begin{aligned}
|F_1| & \leq \frac{M_0}{\Gamma(1-\alpha)} \int_a^t \lambda_i^2 e^{\lambda_i(\theta-t)} k(\theta) \\
& \quad \times \int_a^\theta \left(\log \frac{\theta}{a} \right)^{-\alpha} ds d\theta \\
& \leq \frac{M_0 t}{\Gamma(1-\alpha)} \int_a^t \lambda_i^2 e^{\lambda_i(\theta-t)} k(\theta) \\
& \quad \times \int_a^\theta \left(\log \frac{\theta}{a} \right)^{-\alpha} \frac{ds}{s} d\theta \\
& = \frac{M_0 t}{\Gamma(2-\alpha)} \int_a^t \lambda_i^2 e^{\lambda_i(\theta-t)} k(\theta) \left(\log \frac{\theta}{a} \right)^{1-\alpha} d\theta \\
& \leq \frac{M_0 K_0 T}{\Gamma(2-\alpha)} \left(\log \frac{t}{a} \right)^{1-\alpha} \lambda_i \int_a^t \lambda_i e^{\lambda_i(\theta-t)} d\theta \\
& \leq \frac{\lambda_i M_0 K_0 T}{\Gamma(2-\alpha)} \left(\log \frac{t}{a} \right)^{1-\alpha} \\
& \leq \lambda_i Q M_0.
\end{aligned}$$

We can similarly bound F_2 by

$$\begin{aligned}
|F_2| & = \left| \frac{\lambda_i k(t) - k'(t)}{\Gamma(1-\alpha)} \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} v(s) ds \right| \\
& \leq \frac{2 \lambda_i M_0 K_0 T}{\Gamma(2-\alpha)} \left(\log \frac{t}{a} \right)^{1-\alpha} \\
& \leq \lambda_i Q M_0.
\end{aligned}$$

We bound F_3 by

$$|F_3| \leq \left| \frac{-k(t)}{t \Gamma(1-\alpha)} \left[a v(a) \left(\log \frac{t}{a} \right)^{-\alpha} \right] \right|$$

$$\begin{aligned}
& + \left| \frac{M_0 K_0}{\Gamma(2-\alpha)} \left(\log \frac{t}{a} \right)^{1-\alpha} \right| \\
& + \left| \frac{K_0 T}{\Gamma(1-\alpha)} \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} v'(s) \frac{ds}{s} \right| \\
& \leq \left| \frac{K_0 M_0}{\Gamma(1-\alpha)} \left(\log \frac{t}{a} \right)^{-\alpha} \right| \\
& + \frac{M_0 K_0}{\Gamma(2-\alpha)} \left(\log \frac{t}{a} \right)^{1-\alpha} \\
& + \left| \frac{K_0 T}{\Gamma(1-\alpha)} \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} v'(s) \frac{ds}{s} \right| \\
& \leq Q M_0 \left(\log \frac{t}{a} \right)^{-\alpha} + Q M_0 \\
& + \left| \frac{K_0 T}{\Gamma(1-\alpha)} \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} v'(s) \frac{ds}{s} \right|.
\end{aligned}$$

We bound F_4 by

$$\begin{aligned}
|F_4| & \leq M_1 \\
& := Q(\lambda_i \|f_i\|_{C[a,T]} + \|f'_i\|_{C[a,T]} + \lambda_i^2 |u_{a,i}|).
\end{aligned}$$

We incorporate the preceding estimates to bound $v'(t)$

$$\begin{aligned}
|v'(t)| & \leq Q \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} v'(s) \frac{ds}{s} \\
& + Q M_1 \left(\log \frac{t}{a} \right)^{-\alpha}, \quad t \in (a, T].
\end{aligned}$$

We apply Grönwall inequality (Lemma 2.1) to conclude that for $t \in (a, T]$

$$\begin{aligned}
|v'(t)| & \leq Q M_1 \left(\log \frac{t}{a} \right)^{-\alpha} + Q M_1 \sum_{n=1}^{\infty} \frac{(Q \Gamma(1-\alpha))^n}{\Gamma(n(1-\alpha))} \\
& \times \int_a^t \left(\log \frac{t}{s} \right)^{-\alpha} \left(\log \frac{s}{a} \right)^{n(1-\alpha)-1} \frac{ds}{s} \\
& \leq Q M_1 \left(\log \frac{t}{a} \right)^{-\alpha} + Q M_1 \left(\log \frac{t}{a} \right)^{-\alpha} \\
& \times \sum_{n=1}^{\infty} \frac{[Q \Gamma(1-\alpha) (\log \frac{t}{a})^{1-\alpha}]^n}{\Gamma((n+1)(1-\alpha))} \\
& \leq Q M_1 \left(\log \frac{t}{a} \right)^{-\alpha}, \quad t \in (a, T].
\end{aligned}$$

We then prove estimate (5.4). \square

ACKNOWLEDGMENTS

This work was partially funded by the ARO MURI Grant No. W911NF-15-1-0562, by the National Science Foundation under Grant No. DMS-2012291, by the National Natural Science Foundation of China under Grant No. 11971272, by the China Postdoctoral Science Foundation Nos. 2021TQ0017 and 2021M700244, and by the International Postdoctoral Exchange Fellowship Program (Talent-Introduction Program) No. YJ20210019.

REFERENCES

1. R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, *Phys. Rep.* **339** (2000) 1–77.
2. R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, *J. Phys. A Math. Gen.* **37** (2004) R161–R208.
3. A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, *Theory and Applications of Fractional Differential Equations*, Vol. 204 (Elsevier, 2006).
4. R. Schumer, D. A. Benson, M. M. Meerschaert and B. Baeumer, Fractal mobile/immobile solute transport, *Water Resour. Res.* **39** (2003) 1–12.
5. Z. Liu, X. Li and X. Zhang, A fast high-order compact difference method for the fractal mobile/immobile transport equation, *Int. J. Comput. Math.* **97** (2020) 1860–1883.
6. J. Jia and H. Wang, A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes, *Comput. Math. Appl.* **78** (2019) 1345–1356.
7. J. Jia and H. Wang, Analysis of a hidden memory variably distributed-order space-fractional diffusion equation, *Appl. Math. Lett.* **124** (2022) 107617.
8. Z. Yang, X. Zheng and H. Wang, A variably distributed-order time-fractional diffusion equation: Analysis and approximation, *Comput. Methods Appl. Mech. Eng.* **367** (2020) 113118.
9. X. Zheng and H. Wang, A hidden-memory variable-order fractional optimal control model: Analysis and approximation, *SIAM J. Control Optim.* **59** (2021) 1851–1880.
10. X. Zheng and H. Wang, Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions, *IMA J. Numer. Anal.* **59** (2021) 1522–1545.
11. S. I. Denisov and H. Kantz, Continuous-time random walk theory of superslow diffusion, *Europhys. Lett.* **92** (2010) 30001.

12. J. Dräger and J. Klafter, Strong anomaly in diffusion generated by iterated maps, *Phys. Rev. Lett.* **84** (2000) 5998.
13. F. Iglói, L. Turban and H. Rieger, Anomalous diffusion in aperiodic environments, *Phys. Rev. E* **59** (1999) 1465.
14. C. Li, Z. Li and Z. Wang, Mathematical analysis and the local discontinuous Galerkin method for Caputo–Hadamard fractional partial differential equation, *J. Sci. Comput.* **85** (2020) 1–27.
15. L. Ma and C. Li, On Hadamard fractional calculus, *Fractals* **25** (2017) 1750033.
16. Z. Yang, X. Zheng and H. Wang, Well-posedness and regularity of Caputo–Hadamard fractional stochastic differential equations, *Z. Angew. Math. Phys.* **72** (2021) 141.
17. J. Hadamard, Essai sur l'étude des fonctions, données par leur développement de Taylor, *J. Pure Appl. Math.* **4** (1892) 101–186.
18. Y. Adjabi, F. Jarad, D. Baleanu and T. Abdeljawad, On Cauchy problems with Caputo–Hadamard fractional derivatives, *J. Comput. Anal. Appl.* **21** (2016) 661–681.
19. R. A. Adams and J. J. F. Fournier, *Sobolev Spaces* (Elsevier, San Diego, 2003).
20. C. Bennett and R. C. Sharpley, *Interpolation of Operators* (Academic Press, 1988).
21. L. C. Evans, *Partial Differential Equations*, Graduate Studies in Mathematics, Vol. 19 (American Mathematical Society, Providence, RI, 1998).
22. Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, *Fract. Calc. Appl. Anal.* **15** (2012) 141–160.
23. K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, *J. Math. Anal. Appl.* **82** (2011) 426–447.
24. J. Vanterler, C. Sousa and C. E. De Oliveira, A Gronwall inequality and the Cauchy type problem by means of ψ -Hilfer operator, *Differ. Equ. Appl.* **11** (2019) 87–106.