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Abstract. An efficient least-square support vector machine (LS-SVM) method for a two
time-scale variable-order time-fractional diffusion equation is developed. The method is
particularly suitable for problems defined on complex physical domains or in high spatial
dimensions. The problem is discretised by the L1 scheme and the Euler method. The
temporal semi-discrete problem obtained is reformulated as a minimisation problem.
The Karush-Kuhn-Tucker optimality condition is used to determine the minimiser of the
optimisation problem and, hence, the solution sought. Numerical experiments show the
efficiency and high accuracy of the method.
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1. Introduction

The classical Fickian diffusion partial differential equation (PDE) was derived under
the assumptions that the underlying particle jumps have a mean waiting time and a finite
variance [30]. The latter is characterised by solutions with Gaussian type symmetric and
exponentially decaying tails and have been observed for the diffusive transport of solute
in homogeneous porous media [2] under certain assumptions. However, the transport of
solute in heterogeneous porous media exhibits power-law decaying tails, which probably
do not accurately modelled by the Fickian diffusion PDE [30]. The time-fractional diffusion
equation (tFDE) is derived via a continuous time random walk under the assumption that
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the corresponding waiting time probability density function has a power-law decaying tail
—cf. [27,30],
ofu—Au=f(x,t), 0<a<l, (1.1D

where 9 is the Caputo fractional differential operator defined by

1 (" g
I'(a) ), (t—s)l-@

olfg(t) == ds, 9/ g(t):=ol7*g'()

and I'(a) refers to the Gamma function [31]. It can accurately describe the power-law
decaying behavior of the subdiffusive transport of solute in heterogeneous media. Fur-
thermore, in such applications as bioclogging [1], nonconventional hydrocarbon or gas
recovery [11], design of shape memory polymers [20], manufacturing of viscoelastic ma-
terials [31] and biomaterials in orthopedic implants [42], the structure of porous materials
may evolve in time. Since the order a of the tFDE (1.1) is related to the fractal dimen-
sion of the porous material via the Hurst index [27], these problems lead to variable-order
tFDEs [7, 24, 34,38, 44, 47].

As is recently shown [36,41,46], the two time-scale variable-order tFDEs

Buu+k(0)3 Du—Au=f(x,t), (x,t)eQx(0,T],
u(x,0) =up(x), x €qQ, (1.2)
u(x,t) = g(x,t), (x,t) €00 x[0,T]

retain the long-term subdiffusive behavior of the typical tFDE (1.1). Moreover they are able
to eliminate the nonphysical initial weak singularity behavior of the classical constant-order
tFDE (1.1) [8,12,22,23,32,33,37], which can properly address the impact of the deformed
porous media. Here, Q ¢ R? is a bounded domain with the boundary 82, x := (xy,..., Xq),
f, up, and g are prescribed source term, initial data, and boundary data, respectively. Ac-
cording to [24,34,38], the variable-order fractional differential operator 8ta(t)u is defined

t

88 Ou(x, t) = T _1a ) (fsi(:);‘iz) ds, 0<a(t)<a,<l. (1.3)
In this paper we develop a least-square support vector machine (LS-SVM) method for
the two time-scale variable-order tFDE (1.2) with a fast solution technique by exploring the
feature of the governing equation. Our goal is the simulation of problems on complex phys-
ical domains or in high spatial dimensions. The rest of the paper is organised as follows. In
Section 2 we reformulate the variable-order tFDE (1.2) as a minimisation problem and ob-
tain an LS-SVM spatial discretisation by enforcing the variable-order tFDE (1.2) at a series
of collocation points. In Section 3, we discretise the considered problem in time using the
L1 scheme and the Euler method, derive the Karush-Kuhn-Tucker (KKT) optimality condi-
tion and thus the numerical solution of the variable-order tFDE (1.2). Section 4 presents
a recently developed technique to improve the efficiency of the LS-SVM method. In Sec-
tion 5 we carry out numerical experiments to investigate the performance of the developed

LS-SVM scheme. Section 6 contains concluding remarks.
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2. An LS-SVM Spatial Discretisation

We carry out the spatial discretisation of the variable-order tFDE (1.2) by the LS-SVM
framework.

2.1. Brief review of LS-SVM framework

We begin with the linear regression model: Given {(x;, yi)}f’: , with the input data
x; € R and output data y; € R, let §; € R be predictive data. Then the linear regression
model

y;=wlx;+b, weR! beR, i=1,2,...,N (2.1)
can be reformulated as the following optimisation problem:

1 A
min —w 'w + —eTe,
w,b,e 2 2 (2.2)

s.t.yi=wai+b+ei, i=1,...,N,

where A > 0 is the penalty parameter and € = (€1, €,,...,€4) € R? the residual vector.
According to the LS-SVM framework — cf. [4,13,43], the linear model (2.1) can be gen-
eralised by introducing a feature map ¢ = [¢1, P, ..., Pg]" : R — RY, considering the
corresponding model

Ji=w'¢(x)+b, weR? i=12..N (2.3)

for the feature space and replacing (2.2) by the primal LS-SVM optimisation model for the
regression by using the nonlinear map (2.3), i.e. by

1 A
min —w'w+ —eTe,
w,be 2 2 (2.4)

st.y;=w ¢(x;)+b+e, i=1,...,N.

The construction of the feature space is motivated by the fact that any symmetric square
integrable kernel K(x, 2) can be expanded in the series of eigenfunctions of the correspond-
ing integral operator — i.e.

K(x,2) = >, 0:;(x)¢;(2).
i=1

It is worth noting that although the LS-SVM method relies on the functions ¢;, the resulting
scheme in the kernel method uses only information of the kernel K(x,z) but not explicit
representation of functions ¢;.
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2.2. LS-SVM spatial discretisation of variable-order tFDEs

We use (2.3) to define the approximate solution to the variable-order tFDE (1.2) at each
time t €[0,T] as

a(x, 0) :=w(t) p(x)+r(t) (2.5)

with undetermined parameters w(t)" and r(t). Consider the set N = N; 4+ Nj of collocation
points, where N; and Ny denote the sets of interior points %; := {x{ }?’:’1 C Q and boundary

points %5 := {xlB}i.VzBl C 9Q, respectively. It follows from (2.5) that
ax?,0)=gx?,0), i=1,2,...,N3, t€[0,T].

For any t € [0, T], the vector e(t) = [e;(t),... ,eNI(t)]T can be assembled by collecting the
residuals at each interior points x{ ,1.e.

ei(t) = da(x!, ) — k()3 Va(x!, t) — Ad(x!, ) — f(x],t), i=1,2,...,N;, te(0,T].

The LS-SVM minimisation model (2.4) now takes the form

I;l(itr)l %w(t)—rw(t) + %e(t)Te(t),

s.t. 9.(x!, ) — k()0 Vaxl, t) — Ad(x!, 6) = f(x, ) = (1), i=1,...,N],
a(x?,t)=g(xP,t), i=1,...,Np,

where 0(t) = {w(t),r(t),e(t)} [40].

3. A Fully-Discrete LS-SVM Scheme

Let us note that the accuracy of the kernel-based methods relies on the solution smooth-
ness. Therefore, specific kernel functions have to be chosen according to the solution prop-
erties. As is recently shown, the solution to the variable-order tFDE (1.2) may exhibit a non-
physical singularity at the initial time t = 0, which differs from its behavior in the spatial
domain [41]. Consequently, the kernel function for the variable-order tFDE (1.2) has to be
considered separately in space and in time. However, the fractional derivative of the kernel
function is expensive to compute. Moreover, the kernel function considered here, depends
on the spatial variables only. This is very different from the approach [28,29]. In what
follows, we use the well-known L1 scheme to discretise the variable-order time-fractional
derivative and develop a fully-discrete LS-SVM scheme. In the next section we show that
the efficiency of the L1 temporal discretisation scheme can be significantly improved. Thus
this efficient fully-discrete LS-SVM scheme is especially suitable for solving the tFDE (1.2)
in high spatial dimensional or irregular domains.
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3.1. A fully-discrete numerical scheme

Defining the uniform temporal partition on [0, T] by t,, := mt, m = 0,1,...,M with
the time step size T := T /M, we respectively discretise ,&t and 3, e mi at t = t,, by the
implicit Euler method and the L1 discretisation scheme [21,39], i.e

am(x) _ﬁm 1(x)

T

Sul(x, t) ~ 6 l,(x) =

9] uk(x)dt
r(a— a(tm)) (= t)a(tm)

- —alt —aft ,\
B F(Z——a(tm));[(tm_tk—l)l (m)_(tm_tk)l (m)]5fuk(x)

02 ma(x, ty) & XY, (x) 1= o

- e )~ a), 1sksm 1Sma M

Here, #,,(x) is the approximation to the solution of (1.2), f,,(x) := f(x,t,,) and
Dy 1= [(m — k + 1)17%0m) — (mm — k)@t ]/ pltn),

The fully-discrete numerical scheme for the problem (1.2) is stated as follows: Find ﬁm(xil ),
i=1,2,...,N; such that the equations

8ol (]) + k()82 (x) — Al (x]) = fiu(x]),
ﬁm(xf) = gm(xlB), i=1,2,...,Np

hold forallm=1,2,...,M
At each time step t,,, the residual vector e,, = [e;; 1,. .. ,em,NI]T is given by

emi 1= 8oty (%)) + k(t,)8% ), (x]) = Attyy(x]) = fu(x]), 1<i<N.

The fully-discrete analogue of (2.6) is formulated in a time-marching fashion as follows:
Form=1,2,...,M,

min 1wTw +&eTem,
0, 2 2
s.t. w;d)(xl. ) +r, = um_l(xl.l) — Tk(tm)5i‘(tm)ﬁm(x{) + TAﬁm(in) (3.1)
+ Tfm(xl.l) +7Teni;, 1=1,...,Np,
W@ (xF) + 1 = gm(xF), i=1,...,Ng,

where 0, = {w,,,r,,e,}
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3.2. The Karush-Kuhn-Tucker optimality condition

In order to find the solution of tFDE (1.2) [13], we employ the Karush-Kuhn-Tucker
(KKT) optimality condition and reformulate the minimisation problem (3.1) as a linear
system.

Theorem 3.1. Let K : R? x R? — R be a symmetric and positive-definite kernel function such
that K(x1,x5) := ¢ (x1)T ¢(x,) and A > 0 be a regularisation parameter. Then the solution
of the optimisation problem (3.1) is characterised by the linear system

Tm Pm (1 + .U’m)]-NI gm hm
Amvm = Pr—lr; S INB MNMm |=| & | = Fm) (3.2)
A+un)ly, 1 0 T 0

where matrix blocks T, P,,, and S are defined by

T, :=—(1+ ) Ko +27(1 + Ky — 72K, — T2/ A,

P, :=—(1+un)Kop+1Kyp, S:= [K (xlB’xf)]NBxNB ’
Ky := [Ad’ (x)' ¢(x;)]N1><N1’ Ko := [K(xil’x;)]N,xNI’ (3.3)
Ki=[a9 () 26(x])], o Kosi=[K(xhx})],

Tk(tm)bm,m

Kyp:= [Ad’ (in)T ¢ (xJB):INIxNB o Hme= F(Z——a(tm))

with the unknowns and the right-hand side having the form

gm = (gm’l’ T gm’NI)T < RNI’ 1N1 = (15 1, Y 1)T S RNI,
M 2= (N, 15 Mm25 " ﬂ?mNB)T R, Ny = (1,1, ,1)T e RN,
N Tk(t,,) . A

hm =Um—1— F(z a’(ntm)) (Z(bm kK™ m k+1)uk - bm,l“O) + Tfm;
T T

Um :( Um (xﬁz,)) ; S = (fm (X{),---,fm(x,{,l)) eRM,
T

gm =(g , ..’gm(xN )) E]RNB~

The solution ii,, can be represented as
N
am(x):_z gm,i(numK(x )_TAK x » X ) anl + s
i=1
or, in the vector form, as

i, :_[(1 +,um)K0+TKz]gm—KO,Bnm+rm1N1. (3.4)
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Proof. Define the objective functional L(®,,) of the problem (3.1) by
1 A
L(®,):= wTw + EeTe
S € L+ ) (W] (x1) 4 ) = 7] 80 (x]) — s
i=1
Tk(ty) . \
t—— = 1_,(2 a(tm)) (Z(bmk mk+1)uk_bm,1u0>_Tfm_Tem,i:|
Np
+ Z nm,i[w;l;d) (xlB) t7Tm—8&m (xlB) ];
i=1

where ©,, 1= {w,,, 7, €, & m, M} and &, M, are the Lagrange multipliers. Now we use
the KKT optimality condition. Since V,, L =0, we write

Ny Ng
—| 2 Emi(A ) () =726 () )+ D nmid ()| 35
i=1 i=1
It follows from V, L = Ae,, —1&,, =0 that

T
en =2 Em (3.6)

Analogously, the relations

yield
(1+u,) (quS(x{) +r )— TWTAd)(x;) — ﬁm_l(x;)
F(Z a(tm)) (Z(bmk mk+1)ak_bm,1ﬁ0>_Tfm(x;)_Tem,j :O, (37)

Ny Ng
Wi (xF) + 1 —gn(xF) =0, D A+ un)Emj+ D M =0
j=1 j=1
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In order to eliminate w,,, e,, in (3.7), we employ the representations of w,, and e,, from
(3.5), (3.6), thus obtaining

N
—[Zﬁm,i[(lwmw(x!) —ag(x!) ]+ an@(xB)T]
i=1
2

[(1+um)¢(x )—TAqS(xI):I E +(1+,um)r
=l (x]) - m (Z(bm,k — bir 1) — bm,lao) + T (),

[Zaml[(lwmw( N —rag(x) ]+ anld» B)] ¢(x7) +rm = gm(x]),

> A+ t)Em +an,j =0

j=1 j=1

The system (3.2) appears if we write these equations in the matrix form.
Finally, employing (3.5), we arrive at the representation

(%) = Wy (x;) + 1
-

N;
=—| > gn A +ue(x))—tad(x])) + an P(x)+ 1

=
:_ngl(um x},x;)—TAK xl,xj) anl xP,x;)+ T,

and the proof is complete. O

Note that the matrices K, K4, and K, 5 in the system (3.2) of the LS-SVM scheme
for the tFDE (1.2) involve the dot products of A¢(x;) with ¢(x,) or A¢(x,), respec-
tively. For the sake of implementation efficiency of the scheme, one can exploit the kernel
method and express these matrices via derivatives of K(x;,x,) [13,43]. Since K(x;,x5) =
¢ (x1)" @(x;), we have

T
(Axld)(xl)) P(x;) = Ale(xl,xz),
T
(Axld)(xl)) (sz‘i’(xz)) = AxlezK(xlyxz)-
Consequently, the matrices K5, K4, and K g in the system (3.2) take the form
I
K, = [ IK(x X ):IN1><N1
Kop = [Ax{K(xi % )]NszB ’

I o1
K,= [Ax{Ax;(xi)xj)]N .
1 1
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We are now in the position to present an algorithm for the solution of the linear system
(3.2) of the LS-SVM scheme for the variable-order tFDE (1.2) in a time-marching fashion
from the initial time t, to the final time step t,; = T.

Algorithm 3.1 LS-SVM scheme for the solution of problem (1.2)

Initial data: {x/,uy(x/ )}?’:’1: Boundary information {x?, g(x?)}i.vjl.
form=1,....M do

1: Compute h,, in (3.3) with the known initial data and the solutions already computed
at the previous time steps (g, @, , Uyp_1)-

2: Assemble matrix A,, in (3.2).

3: Assemble vector F,, = (h!,g”,0)".

4: Solve A, v,, = F,, in (3.2), where v,, = (§7 9T ,r, ).

5: Compute i, using (3.4).

end for

4. Fast Evaluation of LS-SVM Scheme

Let us discuss the computational complexity of systems (3.2) at any time step t,,. The
procedure involves two steps — viz.

@

(i)

Invert the stiffness matrix A,, to find the solution v,. Because of the kernel
method, the stiffness matrix is dense. Direct solvers usually have computational com-
plexity @(N?3) to invert the system. Besides, @(N?) of memory is needed to store the
corresponding matrix A,,,. As numerical examples show, the kernel method has a high
accuracy, so that only a small number of collocation points often suffice.

Form the right-hand sides. Due to the memory effects of tFDE, the construction
of the right-hand side of the system (3.2) requires to keep all numerical solutions
obtained at the previous time steps. Therefore, at the step t,, one needs &(mN)
memory and &(mN) computational complexity. Reaching the final time step t,; = T
requires @(MN) memory computational complexity @(M2N). This may well sur-
pass the computational complexity of @(MN?) for inverting the stiffness matrix, es-
pecially in long term simulation [45]. In fact, the current LS-SVM scheme falls into
the category where the number N of spatial unknowns is relatively small due to the
high-order accuracy of the kernel approximation [13,43]. Hence, the @(M2N) com-
putational complexity of forming the right-hand side is far more expensive than the
0(MN?) computational complexity of inverting the stiffness matrix. This effect is not
common in the numerical approximations of the integer-order PDEs.

Extensive research was carried out to develop fast numerical methods of constant-order
tFDE, by exploring their convolution [5,26] Toeplitz-like structures [3,6,10,15-17,19], or
by utilising rational function approximations to the Laplace transform of the power-law
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kernel of the fractional derivative that yields a finite sum-of-exponentials (SOE) approxi-
mation of the kernel [14,18,25,35]. These methods have the computational complexity
0(NMlog! M), 1 = 1,2. However, they rely on the Laplace transform or Toeplitz-like struc-
ture of the discretisation of the fractional derivatives. It is not clear how these methods
can be extended to variable-order tFDEs, since the corresponding numerical discretisations
do not have a convolution or Toeplitz-like structure. Hence, the Laplace transform of their
kernel cannot be written in a closed form.

We extend the shifted binary block partition (SBBP) method [9], coauthored by one
of the authors, to the fast evaluation of the LS-SVM scheme and compare with the SOE
method [18], where at every time step t,, the time-fractional derivative is split into in-
tegrals over the interval [t,,_,t,] and the interval [tq, t,,_;] , which contains historical
information of the solution and has no singularity in the kernel. The singular integral of
the first-order time derivative over current time interval [t,,_1, t,,,] is discretised by the L1
formula. The corresponding interval over the historical part [0, t,,_; ] may be reduced to
an integral, which can be approximated by a finite sum-of-exponential of &(log M) terms.
The development heavily relies on the Laplace transform of fractional derivatives. Conse-
quently, the method is not directly applicable to the tFDE (1.2).

The SBBP strategy began with a splitting, similar to the one in [18]. Split the variable-
order time derivative as an integral over few current intervals and intervals in the historical
part of the time interval. The difference comes from the treatment of the integral on the
historical interval, for which the SBBP method introduces an auxiliary shifted binary block
partition (SBBP) of the underlying temporal partition. This formats ¢(log M) macro time
intervals by clustering the ones, which are away from the current time interval. For the
macro time intervals of the SBBP partition, analysis shows that polynomial approximations
of a fixed degree can guarantee uniform convergence rates. We underscore that this method
does not use the Laplace transform or Toeplitz-like structures and can be applied to the
tFDE (1.2). In this work, we combine the LS-SVM scheme with the fast SBBP strategy to
develop a fast LS-SVM scheme for the two time-scale variable-order tFDE (1.2), which is
demonstrated in Algorithm 4.1.

The method was introduced in [9] for a finite difference approximations of variable-
order tFDEs with symmetric positive-definite sparse banded stiffness matrices. The corre-
sponding systems can be solved iteratively by a conjugate gradient method. In the current
LS-SVM discretisation, the kernel functions are global, so that the stiffness matrix is dense.
Furthermore, due to the introduction of a Lagrange multiplier and the least-square ap-
proach, the stiffness matrix reduces to a saddle-point problem and is highly ill-conditioned.
All of these issues are among the factors that substantially complicate the fast evaluation
algorithm, which have to be handled in this paper.

5. Numerical Experiments

We carry out numerical experiments to investigate the performance of the LS-SVM
scheme. All computations are implemented using MATLAB R2018a on a ThinkPad F431
laptop with Inter Core i5 (2.60 GHz) CPU and 8.0G RAM. In all experiments we measure
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Algorithm 4.1 A fast LS-SVM scheme for the solution of problem (1.2)

Initial data: {x/,uy(x/ )}?[;1: Boundary information {x, g(xf)}?’jl.
form=1,...,M do
1: Compute h,, in (3.3) with the known initial data and the solutions already computed
at the previous time steps (g, 1, , Up_1)-
2: Assemble matrix A,, in (3.2).
3.1: Calculate historical vector hrTn by using the fast SBBP algorithm in [9].
3.2: Assemble vector F,, = (h!,g" 0).
4: Solve A,,v,,, = F,, in (3.2), where v, = (§rTn,7)§1, ra)l.
5: Compute i, using (3.4).
end for

the temporal convergence rate x of the numerical scheme in the discrete L, norm of the
global truncation error at the terminal time T as

lu(ty) —dpylloo = max |u(x;, ty) — 1y (x;) < QM™),
1<i<N

where u(t,,) is the exact solution and {i,; is the approximate solution at the final time step
ty=T.

We choose the kernel function K (x,x5) = exp(—||x; —x||2/(202)) with || - ||, referring
to the Euclidean norm in RY [13,43]. Noting that the penalty parameter A depends on the
number of samples, in all numerical experiments we set A = 10N; to make the residual
error sufficiently small. We use the cross-validation strategy to determine parameter o. As
Fig. 1 shows, one can choose o = 1.5.

Error on validation set

0 1 2 3 4 5 6 7 8 9 10

Figure 1: Errors for different values o on validation set. The circle shows optimal value of o.

5.1. Convergence rate and fast computation of LS-SVM scheme

Consider the problem (1.3) on the square domain Q = (0,1)? in the plane and the

solution

2—a(t)

u(xq,xy,t) =t sin(7tx;) sin(7wx,).
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Besides, the time interval is [0,1], k(t) =1 and

a(t) = a(1) + (a(0) — a(1)) ((1 —t)— W) )

21

so that the corresponding source term can be determined. It was shown in [41] that the
solution to (1.2) can be sufficiently smooth with respect to time variable, provided that the
domain £ is simply-connected and a(t) has an integer limit as t approaches 0. In particular,
if a(t), k(t) € C'[0,T], a(0) = a’(0) = 0, lim,_,o+ a’(t)Int is finite and the initial value
and the source term are regular, then u(x, t) € C2[0, T] for every x € Q.

Since the kernel-based method has a high accuracy, we will use only 11 samples in every
spatial direction —i.e. N, =N, =11 and N = N, N,, for testing the temporal convergence
rate k. In Table 1, the time step size is reduced from 1/16 to 1/128 in order to check
the temporal convergence of the LS-SVM scheme. We observe that the developed LS-SVM
scheme has first-order temporal convergence rate, which is consistent with the theoretical
results. It is worth noting that the accuracy of the developed method can be improved by
using high-order temporal discretisation schemes [7].

We also test the spatial convergence rate for different spatial step sizes under M = 2000,
cf. Table 2. In order to compare the performance of the LS-SVM scheme and the finite
difference method (FDM), we list the results of the FDM errors and convergence order
in Table 3 for the same data as in the LS-SVM scheme. It is clear that the LS-SVM scheme
achieves a higher-order accuracy than the FDM. For example, for a(0) = 0.0 and a(1) = 0.9,
the numerical error of the LS-SVM method has order ¢(10~>), whereas the FDM has order
0(1073) only.

Next we consider the performance of fast LS-SVM and LS-SVM schemes with a con-
ventionally formulated right-hand side of (3.2). The consumed CPU time displayed in Ta-

Table 1: Temporal convergence of LS-SVM.

(a(0), a(1)) (0.1,0.9) (0.6,0.8) (0.3,0.7)
M N,=N,=11| « [N,=N,=11] « |[N=N,=11] «
16 5.50E-3 4.86E-3 4.32E-3
32 2.65E-3 1.05 2.32F-3 1.07 2.06E-3 1.06
64 1.32E-3 1.01 1.15E-3 1.01 1.03E-3 1.00
128 6.83E-4 0.95 6.01E-4 0.93 5.50E-4 0.91

Table 2: Spatial convergence of LS-SVM.

(a(0), a(1)) (0.0,0.9) (0.6,0.8) (0.3,0.7)
N, =N, M =2000 | Order | M =2000 | Order | M = 2000 | Order
6 1.31E-3 1.32E-3 1.32E-3
8 4.84E-4 2.46 5.06E-4 3.36 5.21E4 3.30
10 1.42E-4 4.26 1.51E-4 4.22 1.57E-4 4.16
12 7.09E-5 3.12 7.05E-5 3.40 7.10E-5 3.56
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Table 3: Spatial convergence of FDM.

(a(0), a(1)) (0.0,0.9) (0.6,0.8) (0.3,0.7)
N, =N, M =2000 | Order | M =2000 | Order | M = 2000 | Order
6 4.33E-2 4.35E-2 4.38E-2
8 1.90E-2 2.02 1.91E-2 2.02 1.93E-2 2.02
10 1.07E-2 2.00 1.07E-2 2.02 1.08E-2 2.02
12 6.83E-3 2.00 6.87E-3 2.00 6.91E-3 2.00

Table 4: Consumed CPU time (in seconds) of LS-SVM and fast LS-SVM.

M N, =N, LS-SVM fast LS-SVM
2x10% 5 3m1l8s 17 s
4% 10* 5 13m6s 35s
8 x10* 5 1h35s 1m10s
16 x 10* 5 4h2m16s 2m32s
32 x 10* 5 16h13m8s 5m39s

ble 4, shows a significant reduction of the CPU time of the fast LS-SVM. For instance, for
M = 32 x 10%, the fast LS-SVM scheme needs less than 6 minutes of CPU time to finish
the simulation, while the conventional LS-SVM scheme runs more than 16 hours. Another
observation is that the doubling the number of time steps quadruples CPU time of the LS-
SVM scheme. It is consistent with the computational complexity ¢(M2N) of the standard
time-marching method, which dominates the computational complexity @(MN?) of the in-
verting the linear systems for M > ¢(N?2). In contrast, the consumed CPU time of the fast
LS-SVM scheme is slightly higher than the double of the previous one. This also agrees with
the results showing that the fast SBBP method assembles the right-hand side of the linear
system (3.2) with the computational complexity ¢(MN log? M).

5.2. Simulations for non-convex multiply-connected domains

Consider the variable-order problem (1.2) on the domain bounded by two stars with
the polar coordinate representation

Q:={(r,0)]0.3+0.2sin(50) < r < 0.6+0.2sin(56), 0 < 6 < 21},
cf. Fig. 2. Other data are the same as in Section 5.1. We choose the analytical solution
u(xy, xo,t) = t2" W gin (xf + xg), (x1,x)€Q, te€[0,T],

and compute the corresponding source term f(xq, Xo, t).

To handle the complex domain, in the numerical experiments we introduce the collo-
cation points as follows. Considering the uniform partition 6 by 6, :=iAg4,i=0,1,...,20
with the step size Ay := /10 of the interval [0, 27 ], we then divide the interval [0.3,0.6]



158 Z. Yang, H. Liu, X. Guo and H. Wang

in the r direction by the subintervals of the size 0.1. In particular, r; = 0.4,0.5 and
rg = 0.3,0.6 correspond to the interior nodes and boundary nodes, respectively. After
that, we define the collocation points in the physical domain by

x! = (r; +0.25in(6;)) cos(6,),

x! == (r; +0.25in(6;)) sin(6)),

r; =0.4,0.5

for the interior nodes and by

xf’l. = (rB +0.2 sin(@i)) cos(6;),
sz’l. = (rB +0.2 sin(@i)) sin(6;),
ry =0.3,0.6

for the boundary nodes. In all cases, we leti =1,2,...,20, so that N; = 40, Nz = 40, and
N = N; + Nz = 80. We enforce the LS-SVM scheme at all these collocation points. Fig. 2
demonstrates he domain and the exact solution at terminal time T. Besides, Table 5 shows
that the LS-SVM scheme for the tFDE (1.2) on a complex non-convex multiply-connected
domain can achieve a high accuracy and the optimal convergence rate with only a few
collocation points.

x1

Figure 2: Left: Domain and collocation points; * and + show interior and boundary nodes, respectively.
Right: True solution profile at terminal time T.

Table 5: Temporal convergence of LS-SVM scheme on complex, non-convex domain.

(a(0), a(1)) (0.1,0.9) (0.6,0.8) (0.3,0.7)
M N =80 IN N =80 K N =80 IN
16 3.11E-4 2.62E-4 2.28E-4
32 1.52E-4 | 1.03 | 1.27E-5 | 1.04 | 1.11E-4 | 1.04
64 7.56E-5 | 1.00 | 6.26E-5 | 1.02 | 5.49E-5 | 1.01
128 3.38E-5 | 1.16 | 2.76E-5 | 1.17 | 2.43E-5 | 1.17
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5.3. Simulations for five-dimensional spatial domains

In this experiment we investigate the performance of the LS-SVM scheme for the va-
riable-order tFDE in a five spatial dimensions. The order function is the same as in Sec-
tion 5.1, 2 := (0,1)°> and [0,T] = [0,1]. We assume that the solution of the problem
is

5
u= > l_[ sin(x;),
i=1

and determine the corresponding source term. We use only 6 collocation nodes for each
coordinate, hence the total number of collocation points is N = 6°. Table 6 shows that
although only a few collocation points in spatial space is used, the method has the optimal
convergence order and allows to find a highly accurate approximate solution. Thus the
LS-SVM method can handle high-dimensional problems and achieve high accuracy and
efficiency, which is one of the most important advantages of the LS-SVM scheme.

Table 6: Temporal convergence of LS-SVM for high-dimensional variable-order tFDE.

(a(0), a(1)) (0.1,0.9) (0.6,0.8) (0.4,0.8)
M N=6" K N=6° K N=6" K
16 8.82E-5 6.04E-5 7.71E-5
32 4.34E-5 | 1.02 | 2.84E-5 | 1.08 | 3.60E-5 | 1.09
64 2.11E-5 | 1.04 | 1.19E-5 | 1.24 | 1.74E-5 | 1.05
128 9.31E-6 | 1.18 | 4.63E-6 | 1.37 | 7.13E-6 | 1.28

6. Concluding Remarks

We developed an efficient LS-SVM scheme for the two time-scale variable-order tFDE
(1.2) with meshless kernel functions used in the spatial discretisation and L1-formula in
the temporal discretisation. Reformulating the temporal semi-discrete scheme as a minimi-
sation problem, we derived the KKT optimality condition, so that the numerical solution
can be obtained by solving a linear system [40]. The scheme enjoys both the flexibility
and accuracy of the kernel approach and the efficiency of the recently developed SBBP
method for evaluating the variable-order fractional derivative [9, 13,29, 43]. Numerical
experiments show that the LS-SVM scheme has the optimal convergence rate in time and
generates accurate numerical solution of the equation considered on complex non-convex
multiply-connected domains or in high space dimensions. These features can play an im-
portant role in various applications.
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