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Abstract

Transfer learning is a concept whereby data-driven models can be developed for tasks (e.g.
molecular properties) with limited data availability (target task) by sharing information
from a related task. In the context of chemical engineering, the two tasks can either pertain
to related properties or to the same property calculated or measured in two different ways
(with differing accuracies or resolution). Using an ensemble of linear and interpretable
models, in this work, we present a conceptual study to explicate when transfer learning
can be beneficial. We show that a large overlap of the underlying features of the two tasks
(specifically greater than 50%) is required for transfer learning to improve the model for
the target task. On the other hand, transferring information (in particular, information
regarding salient features) from an uncorrelated task can be detrimental to train a model
for the target task. Subsequently, we present three illustrative examples of transfer learning
for molecular property prediction and rationalize the usefulness of transferred information
based on the inferences from our conceptual studies. This work, thus, provides a simplified
analysis of the concept of transfer learning for building molecular property models.

Keywords: Transfer learning, Machine learning, Molecular property

1. Introduction

Supervised learning has achieved great success in many machine learning applications,
such as classification of images (Li et al., 2018; He et al., 2019; Raj et al., 2020), clustering
of text (Yao et al., 2019; Yang et al., 2019b), materials discovery (Nikolaev et al., 2016; Xue
et al., 2016; Kollmann et al., 2020; Ryan et al., 2018; Hegde, 2020; Jablonka et al., 2020; Cova
and Pais, 2019; Meyer et al., 2018) and drug discovery (Korkmaz, 2020; Gentile et al., 2020;
Janet and Kulik, 2017). In chemical engineering and related disciplines, supervised learning
has been widely developed to map the molecular structure, such as atom coordinates or
molecular fragments, to various property metrics (Mater and Coote, 2019; Hansen et al.,
2015; Duvenaud et al., 2015; Gómez-Bombarelli et al., 2018; Coley et al., 2017; Yang et al.,
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2019a; Christensen et al., 2020; Zubatyuk et al., 2019; Westermayr and Marquetand, 2020).
These models have been shown to achieve high levels of accuracy (Schutt et al., 2018;
Bogojeski et al., 2020; Bartók et al., 2017; Christensen et al., 2020; Unke and Meuwly, 2019;
Lubbers et al., 2018); however, they also require large amounts of data. Often, however, data
are scarce and expensive to acquire, which then can limit the accuracy and generalizability
of the models developed with traditional supervised learning methods.

One could look at human learning to address this challenge. Humans tend to apply
previous experience and acquired knowledge to a new task, thereby “transferring” knowl-
edge between related tasks. The concept of transfer learning works in a similar manner. In
particular, if (1) data for a particular target task is limited, (2) there exists one or more
related tasks whose domains or distributions are well correlated (but not necessarily identi-
cal), and (3) there is a sufficiently large amount data pertaining to these related tasks, then
the performance of data-driven models of the target task can be improved by transferring
information such as features, model structure, or parameters from related tasks. Examples
of transfer learning can be found for image recognition (Bird et al., 2020; Kan et al., 2014),
self-driving cars (Kim and Park, 2017; Xing et al., 2018), robotics (Rusu et al., 2017) and
chemistry and drug design (Turki et al., 2017; Ward et al., 2019; Han and Choi, 2021; Peng
et al., 2019; Cai et al., 2020).

Many properties, e.g. bulk molecular properties such as boiling and melting points or en-
thalpy and entropy of formation, likely have similar underlying features or data embeddings.
Conceivably, transfer learning can work in such instances whereby models can be built for
those properties for which data are scarce by leveraging information from related properties
for which larger datasets are available (Iovanac and Savoie, 2020; Grambow et al., 2019).
Further, since a molecular property can be estimated in multiple ways, e.g. via computa-
tions and experiments or by using two different levels of theory, multiple non-overlapping
datasets of differing size and fidelity may be available for property of interest. Often, in
these cases, the more accurate method is also more expensive and, consequently, the high
fidelity property data set is significantly smaller in size than the relatively low fidelity one.
In such instances, transfer learning can be employed to build models on the smaller (and
relatively high fidelity) data set while concurrently harnessing information from the larger
(low fidelity) dataset to ultimately build accurate multi-fidelity models.

For molecular and material property prediction, transfer learning is often applied in the
context of training a neural network model (Smith et al., 2019). Typically, the first step is
to pre-train a model with sufficient data in a related task. It is argued that, in these neural
network models, the underlying features are learned in the first few layers (e.g. convolutional
layers), therefore, to pass knowledge from the related task to the target task, the structure
of these initial layers is transferred to the new model and the corresponding parameters
are either frozen (or sometimes fine-tuned with some regularization). Subsequently, a few
additional layers are added and the model is trained with the limited data of the target task.
This way, the number of parameters that need to be tuned for the target model is minimized.
For example, to develop a neural network for predicting the water solubility of molecules,
Lentelink and Palkovits (2020) pre-trained a neural network for predicting molecular weight
on a subset of the GDB17 database (Ruddigkeit et al., 2012) and transferred the first few
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layers to the new model that was then trained on the ESOL dataset (Delaney, 2004). Lee
and Asahi (2021) trained a graph convolutional neural network on the heat of formation
to learn the representation of the crystal structures, and then used it as the transferred
knowledge to predict multiple properties associated with crystals such as bulk moduli and
dielectric constants. Grambow et al. (2019) showed that, by learning the embeddings and
parameters with sufficient data from a lower level of theory (B3LYP) from the QM9 dataset
(Ramakrishnan et al., 2014), the prediction of the heat of formation and other properties
with the higher level of theory (CCSD(T)) could be improved with transfer learning. Further,
Yamada et al. (2019) developed a library called XenonPy.MDL, which contains many pre-
trained models including various properties for small molecules. They demonstrated that
these models could improve the prediction of material properties of organic and inorganic
chemistry.

The principal contribution of this work to provide a fundamental conceptual understand-
ing of the requirements on the datasets for transfer learning to be beneficial. Specifically,
using interpretable linear models, we first discuss the following conceptual question: consider
two different properties, ρ1 and ρ2, which depend on a similar (partially overlapping) set of
features, with the first having a large dataset while the other has a relatively small dataset
for training data-driven models M1 and M2 respectively. Then, (1) to what extent can the
model M1 provide additional information (transferred knowledge) about important features
to the training process for the second property so that a superior model (M ′

2) relative to
M2 can be trained? and (2) how does the extent of overlap in features between the two
properties or the size of the training set for ρ2 influence the performance of M ′

2 relative to
M2? We assume that the true relationships between the properties and the features are
linear and the space of plausible features is much larger than the true number of features
that the two properties depend on. While most properties are highly nonlinear functions
of their features that are often best captured by neural networks, we reckon that these
assumptions/simplifications are not too restrictive for the purpose of developing a concep-
tual understanding of transfer learning for molecular or material properties. Subsequently,
we demonstrate three illustrative examples of transfer learning in molecular property pre-
diction covering instances of both beneficial and detrimental effects of using “transferred
information” and we rationalize these observations based on insights from the conceptual
study.

2. Methods

In this section, we primarily discuss the methods employed in the conceptual case study;
however, the description of building sparse linear models is also relevant for the three transfer
learning examples.

Data generation:. For our conceptual study, our approach to address the problem defined
above is to carefully synthesize the datasets D1 and D2 to allow for a systematic quantifica-
tion of the difference between a transfer learned model M ′

2 and the original model M2. The
detailed steps for dataset creation are as follows. We first generate a random data matrix
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X with the dimension of (n × p, n ≈ p), where n is the number of data points and p is
the cardinality of a parent set of features, P , i.e. p = |P |. Then two column-subsets of X,
viz. X1 and X2, of dimensions (n × p1) and (n × p2) respectively are constructed, where
we set p1 = p2 for simplicity. The two respective subsets of features, P1 and P2, have some
overlap that is pre-determined, and is quantified by a ratio, α, defined as α = |P1∩P2|

p1
. Two

sets of coefficients, β1 and β2, are then sampled from a uniform distribution to generate the
vectors of property values, yi = Xiβi, to which we add some uniform noise to ultimately
obtain the synthetic datasets. In particular, Di = {Xi, yi}. It should be noted that all the
data points in D1 are used for training/validation for M1 while a random subset of D2, viz.
Dtr

2 containing m data points, where m << n, is chosen for training/validation of M2. This
ensures that the dataset used to train data-driven models of property ρ2 is substantially
smaller than D1; the rest of the data points in D2, n −m, are simply used for testing the
predictive accuracy of both M2 and M ′

2.

Transfer learning analysis:. Once D1 and D2 are generated, the transfer learning study is
formulated by comparing the performance of models trained on Dtr

2 with different levels
of knowledge about the potential features involved. We assume that the true features P2

are unknown, therefore, we train M2 directly on Dtr
2 by identifying a sparse linear model

(following the procedure described below) from the set of “plausible” features, P . For the
transfer learned model M ′

2, we “estimate” P2 using M1, then a sparse model is built starting
from this set of plausible features. If the estimated P2 is accurate and smaller than P , the
sparse model starts with fewer parameters and a small dataset Dtr

2 is sufficient to train it
accurately. In such a case, transfer learning is beneficial. If the estimated P2 is poorly
representative of the true features, then learning a sparse model starting from this incorrect
set will expectedly lead to a poor model. We compare three cases of transfer learned models
(M ′

2) with respect to a sparse model M2 directly trained only on Dtr
2 . These cases are: (1)

M ′
2 is trained on D2 but assuming that P1 is known a priori and only these features matter

for ρ2 (i.e. assuming P1 ⊇ P2); (2)M
′
2 is trained on D2 but assuming that, while P1 ⊇ P2,

P1 is also unknown and needs to be inferred by training a sparse model M1 on D1; and
(3) a model trained on D2, but assuming that, while P1 + P2, the features in P1 have a
higher likelihood of also being important for property ρ2. It should be noted that sparsity
theoretically enforces (as discussed below) the selection of only relevant features in M1 or
M2, however, the noise in the data may result in some true features being missed or incorrect
features being selected, which may in turn have implications on the effectiveness of transfer
learning.

Parameter settings for the conceptual study:. In this work, the number of data points, n,
and the cardinality of a parent set of features, p, of the parent data matrix X were set to
be 1000. The dimension for features, p1 and p2, of the two constructed column-subsets X1

and X2 was set to be 200. After D1 and D2 are generated, all 1000 data points in D1 are
available for the model M1; for D2, unless otherwise specified, we set m = 300 for Dtr

2 where
200 data points are used for training and the rest 100 are for validation to determine the
optimal penalty λ during LASSO regression. The remaining 700 points in D2 then are used
as the testing set to compare the performance of the models M2 and M ′

2.
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Building sparse linear models:. We build our data-driven models using the least absolute
shrinkage and selection operator (LASSO), which extends standard linear least-squares re-
gression by introducing a penalty value λ into the objective function of linear regression.
For instance, the coefficients β1 of M1 are determined by:

β̂1 = arg min
β1

{

1

n
‖y1 −X1β1‖

2

2
+ λ ‖β1‖1

}

(1)

The penalty λ allows for pushing insignificant features to zero; thus, we assume all
features of P are plausible to begin with and let the model determine the important features
whose coefficient values remain non-zero. The value of λ determines the balance between
model accuracy and model compactness. Larger λ leads to fewer features but the resulting
model may not have a high level of accuracy; on the other hand, smaller values of λ might
end up discarding many of the truly insignificant features in P . The optimal λ is found
by performing a grid search on the validation set, where a range of λ values are tested
and compared. While LASSO offers an automated way to balance the trade-off between
model accuracy and compactness, there are ways to regularize or design neural networks to
minimize the number of nodes and obtain a compact representation vector for the inputs
which, in turn, can be transferred between models.

Finally, we note that (1) the values of X are sampled uniformly between 0 and 1, (2)
the coefficients β1 and β2 are sampled uniformly between 0.5 and 1, and (3) the noises
are of the distribution N ∼ {0, 1}. The range for the grid search for LASSO is defined
as {(2i) |i = iupper : ilow : −1}, where different values of λ are tested on a validation set by
decreasing from 2iupper to 2ilow and divided by 2 iteratively. We further note that the accuracy
of the models is determined using the root mean squared error (RMSE).

3. Results and discussion

3.1. Conceptual study for transfer learning

As discussed earlier, our goal is to investigate if the knowledge gained from a related
task (i.e. building M1) could help to learn the target task (i.e. building M2) better. To this
end, we here discuss systematic case studies to quantify the difference between a transfer
learned model M ′

2 and the original model M2, where the comparison involves different levels
of transferred knowledge from D1 as well as the different extent of overlap between P1 and
P2, i.e. different values of α. We consider three case studies involving different assumptions
about P1 and P2.

3.1.1. Case 1: Transfer learning assuming P1 ⊇ P2 and P1 is known

We start the analysis with the most straightforward case, where we assume the set of
features P1 of ρ1 is known a priori and is the same as P2. Figure 1 shows the performance
of M2 and M ′

2 in terms of the root mean square error, or RMSE, on the testing set as the
overlap between features of D1 and D2, determined by α, increases. Here, for simplicity, we
fix D2 and modify D1 to modulate α; therefore, the performance of M2 is independent of α.
For small overlap of features (i.e. for small values of α), the transfer learned model performs
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Figure 1: Comparison of the performance of the direct learning model M2 (’Direct’) with transfer learned
models M

′

2
in 3 cases; Case 1: Transfer learning assuming P1 ⊇ P2 and P1 is known. Case 2: Transfer

learning assuming P1 ⊇ P2 but P1 is unknown. Case 3: Transfer learning assuming P1 + P2 but P1 is
unknown. The feature overlap α reflects the percentage of the overlapped features in P1 and P2. The bar
plot at the top shows the number of additional features in the model M ′

2
in Case 3 compared to that in

Case 2.

poorly compared to the directly learned model as the features in P1 are not sufficient to
capture ρ2. That is, the knowledge of P1 misguides M ′

2 in this instance. On the other hand,
for large values of α, indicative of substantial overlap of true features between the properties,
the transfer learned model performs significantly better than M2. That is, transfer learning
of the model M ′

2 is beneficial in this instance. The crossover (or the intersection) between
the two curves occurs roughly at α ∼ 0.5. This is a critical point because it essentially
determines when transfer learning becomes useful.

This crossover point is dependent on the size of the training set available for M2. Figure
2 shows that as the training set size increases, the crossover point shifts to a larger value
of α. This is because, the performance of M2 progressively becomes better and the line
corresponding to M2 in Figure 1 shifts down (thereby shifting the point of intersection
further to the right). This effectively means that transferring knowledge from M1 becomes
progressively less effective in improving the model for the property ρ2. Indeed, as the training
set size increases to become comparable to D1, the crossover value of α reaches 1.0 indicating
that D2 is large enough that unless P1 ≡ P2, there is no advantage gained from transfer
learning.
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Figure 2: Crossover value of the feature overlap α corresponding to different size of the training set of Dtr

2

for the three cases. Each point represents the minimum value of α at which the direct learned model M2

starts performing worse than the transfer learned model M ′

2
for a given training set size. Note that only the

training portion of Dtr

2
is plotted on the x-axis, the validation set is kept constant at 100 and the remaining

points in D2 are used for testing.

3.1.2. Case 2: Transfer learning assuming P1 ⊇ P2 but P1 is unknown

We demonstrated the effectiveness of transfer learning where we know the important
features a priori. In reality, such information may not be readily available and P1 needs
to be estimated via unsupervised or supervised learning. Here, we use LASSO on ρ1 to
generate a model M1 and thereby identify the important features P1. The LASSO feature
selection is carried out by randomly splitting D1 into the 0.8/0.2 ratio of train/validation
set, and a grid search is performed on the validation set to find the optimal λ. Given the
noise in the training set, we expect that the identified set of features, P̂1, is not the true P1;
the primary question then is to understand the impact of this noise in transfer learning.

Figure 1 shows the performance of M2 and M ′
2 for this case, assuming P̂1 ⊇ P2. We

can observe that M ′
2 in Case 2 outperforms the corresponding model in Case 1 for small α,

while it underperforms relative to Case 1 for larger values of α, especially after the crossover
point. Interestingly, in this case, we found that the optimal LASSO model selected ∼ 400
features, i.e. |P̂1| ∼ 400, while the true number of features for ρ1 is 200, i.e., |P1| = 200;
however, all features in P1 were selected by LASSO despite the noise in the data. Clearly,
this explains why the qualitative behavior is similar to the first case. However, the relative
performance of the transfer learned models of Case 1 and Case 2 suggests that the extra
features identified for M1, viz. P̂1 − P1, aids transfer learning at low feature overlap in
Case 2 while a smaller set of features (viz. P1) used for Case 1 aids in transfer learning
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at large values of α. This is because, at low overlap between P1 and P2, there is likely a
larger overlap of features between P̂1 and P2; therefore, transfer learning from P̂1 provides a
larger set of feature choices for developing M ′

2. On the other hand, this extra set of features
is detrimental at larger overlap because the noise in the data results in the LASSO model
picking incorrect features from P̂1 to build M ′

2.

3.1.3. Case 3: Transfer learning assuming P1 + P2 but P1 is unknown

Here, we further extend the transfer learning investigation by allowing for the more
realistic situation that there are features that influence ρ2 which are not important for
ρ1. We accomplish this by training M ′

2 on all features (similar to M2) but prioritizing
the features in P̂1 (found by LASSO) by assigning a relatively higher penalty (λ) for the
unselected features (i.e. those in P − P̂1) than for those in P̂1. This forces LASSO to favor
those features in P̂1 but allows for selecting other features if they are critical. The optimal
values of the two penalties, say λ1 for those in P̂1 and λ2 for the rest, are computed by a
grid search to minimize the errors in the validation set but we constrain the ratio of the
penalties, i.e. λ2 : λ1 ≥ k. Here, we set k = 2.

Figure 3: Comparison of the performance of the transfer learned modelM ′

2
in Case 2 and Case 3 by increasing

D
tr

2
(training set) size from 200 to 400. The RMSE of the M

′

2
prediction on the remaining set of D2 are

reported.

Ideally, such a procedure of prioritization should produce models that are at least as good
as the direct model (M2) for small values of α while retaining or surpassing the performance
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of M ′
2 from Case 2 for larger values of α. Figure 1 shows the results for this case; we can

note that transfer learning with such prioritization of features leads to improved performance
compared to the transfer learned model of Case 2. Beyond the crossover point, the transfer
learned models for Cases 2 and 3 are nearly identical. This is also seen from the bar graph in
Figure 1 which shows that no (or very few) additional unselected features had to be included
in the new model (compared to M ′

2 from Case 2). For smaller values of α, on the other hand,
the new M ′

2 performs better than in Case 2 but it is still not as good as the direct model
M2. Furthermore, LASSO adds almost fifty new features from the unselected set, which
along with the features in P̂1 is able to partially overcome the low overlap between the true
features in P1 and P2. Decreasing the ratio k may move the transfer learned model closer
to M2 for smaller values of α but may make it worse for larger values of α. Finally, the
transfer learned model in Case 1 still outperforms Case 3 for larger values of α indicating the
importance of having a smaller set of features to choose from when the overlap of features
between P1 and P2 is large. Nevertheless, in the absence of information regarding feature
overlap or about P1, case 3 offers the best overall performance.

Figure 2 shows that crossovers occur earlier in Case 3 compared to Case 2 regardless
of the training set size. Since the m = 300 (200 for training, 100 for validation) setting
is the only instance where the crossover points of Case 2 and Case 3 are nearly the same,
we further examined these two cases for m = 500 (400 for training and 100 for validation).
The results are in Figure 3. Unlike in Figure 1, for most values of α, additional features
(over and above that in Case 2) were needed for Case 3, and the performance of the model
from Case 3 surpasses the performance from Case 2 even beyond the crossover point. Thus,
crossover points occur earlier for Case 3.

Since the three cases were evaluated using a single randomly generated pair of datasets
(D1 and D2), we evaluated the generalizability of these results by considering an ensemble
of 100 different synthesized datasets. The results, discussed in detail in the supporting
information (S1), clearly shows that α = 0.5 is the typical crossover point for Case 1, while
lower values of α are sufficient for the other two cases, consistent with the results presented
above. This shows that our results should generalize well as evident from the illustrative
examples considered next.

3.2. Illustrative examples of transfer learning

Table 1: Comparison of direct and transfer learning for three illustrative examples

examples datasets
RMSE
(direct)

RMSE
(transfer)

D1 LASSO
features

D2 LASSO
features

common
features (α)

1
D2 : Hf (G4MP2)
D1 : Hf (B3LYP)

5.61
(kcal/mol)

4.81 169 164 147 (0.90)

2
D2: BP
D1: MP

33.57
(C)

31.36 181 209 94 (0.45)

3
D2: BP
D1: Hf (G4MP2)

33.57
(C)

34.20 110 209 61 (0.29)
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Using the insights from the conceptual study, we present and discuss three examples of
transfer learning as given below.

• Example 1: Developing a model for the heat of formation (Hf ) using data at the
G4MP2 level of theory by transfer learning from a larger (and less accurate) B3LYP
dataset. We use the first thousand (1000) smallest C, O, and H containing molecules
from the QM9 dataset whose heats of formation values are available at the B3LYP
level of theory. We use the G4MP2 values for these molecules from a recently reported
work (Narayanan et al., 2019).

• Example 2: Developing a model for the boiling point (BP) of C, N, O, and H con-
taining molecules by transfer learning from a larger (and related) melting point (MP)
dataset. We use the first thousand (1000) small molecules (heavy atoms ≤ 9) from the
PHYSPROP database (Mansouri et al., 2018; Agency, 2014) for BP and MP properties
separately.

• Example 3: Developing a model for the boiling point (as in the previous example)
while transfer learning from a larger heats of formation dataset (at the G4MP2 level).
In this case, the BP data set was the same as in the previous example while the G4MP2
data set is the first thousand (1000) smallest C, O, N and H containing molecules from
Narayanan et al. (2019).

In each case, the transfer learning model M ′
2 is built similar to Case 3 considered earlier,

i.e. (1) assuming P1 + P2 and P1 needs to be inferred from the sparse model M1 trained on

D1, and (2) unselected features P − P̂1 have a relatively higher penalty λ to be included in
training M ′

2. Note that in Example 1, D1 and D2 share the same molecules with different
level of properties, while in Example 2 and 3, only part of molecules in D1 and D2 are the
same. The parent features, P are obtained by generating the pathway fingerprints of each
of the molecules in both datasets using Open Babel (O’Boyle et al., 2011) and collecting all
the unique paths. For a given molecule, the pathway fingerprints enumerate the atoms and
the linear substructure of path length ranging from 1 to 7. For example, given the molecule
”OC=N”, i.e., its pathway fingerprints would be O, C, N atoms (corresponding to the path
length of 1), OC, C=N groups for the path of length 2, and OC=N fragments for the path
of length 3. The maximum length of pathway fingerprints is set to 7 in this work, which is
the default length in most cases and works well from our experience (Li and Rangarajan,
2019). This is sufficient to allow for a rigorous identification of the potential fragments,
instead of manually picking fragments as has been done in the past. The performance of
M ′

2 is compared to model M2 that is directly built from the parent set of features P .
The results for these examples are tabulated in Table 1, where the root mean square error

(RMSE) is used to compare M ′
2 (transfer) and M2 (direct). Consistent with the conceptual

study, we set m = 300 for Dtr
2 (200 for training, 100 for validation) in the examples and

use the remainder of the data (i.e. 700 points for testing). Given that these models are
linear, we note that they are not as accurate as the state-of-the-art neural network-based
models (Ward et al., 2019; Yang et al., 2019a; Schütt et al., 2018). Nevertheless, being
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interpretable and additive, these models offer the necessary insights about transfer learning.
We can observe that in the first two examples, M ′

2 has a lower RMSE than M2 indicating
that transfer learning is beneficial. The better performance is intuitive given that the two
tasks are closely related in both examples, i.e. properties from different levels of theories
(Hf from B3LYP and G4MP2) are intrinsically correlated, while MP and BP are both
thermodynamic properties involving phase change. The first example is an instance of
multi-fidelity modeling via data fusion, whereby two datasets containing the same property
but at two different levels of accuracy (or resolution) are combined (or fused) to build a
predictive model. Typically, the dataset with a higher accuracy (or greater resolution) is
smaller (i.e., it is the “D2” set) than that with the relatively lower “fidelity” data (which
is then the set “D1”). The second example is the more typical instance of transfer learning
between two related properties. In the third example, transferring information between the
two properties, Hf and BP, is actually worse than directly learning a model, likely because
these two properties are fundamentally different (BP is related to phase change while Hf is
essentially an enthalpy).

In the conceptual study, we noticed that transfer learned model M ′
2 behaves better than

directly learned model M2 given a high value of ratio α between the true features P1 and
P2, i.e., when the target task D2 is closely related to the data-rich task D1. We can use this
finding to further understand the results of these illustrative examples.

While α could be easily computed for the conceptual study, it is hard to do so for the
real datasets used in the illustrative examples as the true features are unknown. Therefore,
we estimate P̂1 and P̂2 for the two datasets by developing a LASSO model on the entire
dataset (i.e. splitting the 1000 data points in the ratio 0.8:0.2 for training and validation)
in a manner identical to how we estimate P̂1 in Case 2 of the conceptual study.

The results of feature selection for the datasets is shown in Table1. Not surprisingly,
the features identified for Hf from D1 (B3LYP) and D2 (G4MP2) have 147 out of 164 (P̂2)
in common, which suggests a high value of α (∼ 0.90). In the third example, α is 0.29,
quantitatively indicating that the properties depend on fundamentally different features.
These two examples clearly show the extremes of transfer learning situations. In the second
example, the overlap of features is somewhere in the middle, and is likely to be a common
scenario. Indeed, the value of α for this example is 0.45; while this is not high, we still see
that transfer learning leads to better performance. To understand this better, we identified
the most important features in P̂2 (by selecting only those features whose absolute weights
are larger than the average of all features in the set). There were 58 features in this subset,
of which 29 also exist in P̂1. By only considering the important features, α = 0.50 which
plausibly explains the observed positive effect of transfer learning.

The correlation between estimated α and the benefit from transfer learning in the three
examples suggests a simple empirical way to determine if two properties are related, in the
absence of prior domain knowledge. In particular, simple linear sparse models, e.g. using
LASSO, can be easily developed using available data to determine if there is sufficient overlap
of features, even if subsequently data-driven features are learnt (e.g. from convolutional
neural networks). The feature overlap can, in turn, provide a qualitative determination, a
priori, about whether or not transfer learning will work.
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In summary, transfer learning requires a large overlap of the underlying features; in
particular, we require that α ≥ 0.5. Since knowing α a priori is hard, one may have to rely
on domain expertise to judge if two tasks are related. This is easy to judge in the context of
multi-fidelity modeling where the comparison is between two different ways of measuring the
same property but is expected to be harder while comparing physical, chemical, or biological
properties. We, therefore, propose that approaches similar to Case 3 are the most efficient.
In general, transfer learning should allow for the consideration of a larger space of features
and model structures (especially for more sophisticated nonlinear models) but concurrently
place higher emphasis (e.g. through larger weights) on information that is being transferred
from the related task. In principle, for other problems, especially nonlinear examples, a
similar conclusion could be inferred where there is a certain value/range of α that makes
features in two tasks related enough for applying transfer learning. However, a similar study
is required to determine the value of α and our quantitative result (i.e. the overlap of
50%) cannot be generalized to them without a systematic analysis. We finally Note that
transferred information could potentially be used in active learning, especially in a diversity-
maximizing exploratory step to identify a broad yet compact collection of molecules to be
included in the training set (Li and Rangarajan, 2019).

3.3. Conceptual study of transfer learning for nonlinear models

We further extend our conceptual study to a nonlinear model built with a neural network.
We create a synthetic dataset with a nonlinear relationship between inputs and outputs, then
follow a similar process to the conceptual case studies for the linear models to evaluate the
effect of transfer learning. Basically, we apply a polynomial expansion on the original data
matrix to introduce nonlinearity into the dataset, while using a neural network to train the
model and transfer the feature knowledge from M1 to M ′

2 in the form of weights of M1’s
first layer. We assume a complete overlap of features to investigate the extreme scenario of
whether M ′

2 by learning the important features from M1. Our results show that compared
to the directly learned model, M2, whose weights were initialized randomly, transfer learning
the first layer weights (parameters) from M1 to M ′

2 leads to better performance both on the
training set as well as the test set. The details of this exercise can be found in the supporting
information (SI).

4. Conclusions

Using simplified, interpretable linear models, we carried out a conceptual study to un-
derstand the requirements for transfer learning to be favorable while building accurate and
generalizable molecular property models with scarce data. Through three case studies, we
find that a substantial overlap of features (i.e. ≥ 50% of features being common) is essential
for transfer learning to be beneficial. We subsequently considered three illustrative examples
wherein we showed that (i) heats of formation at a higher level of theory (G4MP2) can be
better learned using transferred information (salient features) from a relatively low level of
theory (B3LYP) because the estimated feature overlap was 90%; (ii) learning a boiling point
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model will be negatively impacted if information is transferred from a model of heats of for-
mation model because their estimated feature overlap was less than 30%; and (iii) melting
point data can be used to learn a better boiling point model because the estimated overlap
was 45 - 50%. In the absence of information regarding the salient features (P1) of the related
(data-rich) task, it appears that the best approach to train a model for the data-poor target
task is the third case considered in our study. By doing this, we allow for all plausible
features P to be included in the machine-learned model but place a greater emphasis on
those features that were identified (via LASSO) to be important for the related task. These
insights are also useful while developing neural network models; indeed, the third case study
suggests some form of mild or regularized fine-tuning will be beneficial while reusing the
transferred neural network layers of the model of a related task.

5. Supplementary material

The python codes for the three cases of the conceptual study and the three illustrative
examples, as well as the nonlinear model study are provided in the supplementary material.
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A., Adams, R.P., 2015. Convolutional networks on graphs for learning molecular fingerprints. arXiv
preprint arXiv:1509.09292 .

Gentile, F., Agrawal, V., Hsing, M., Ton, A.T., Ban, F., Norinder, U., Gleave, M.E., Cherkasov, A., 2020.
Deep docking: a deep learning platform for augmentation of structure based drug discovery. ACS central
science 6, 939–949.
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