
Blockchain-Based Mechanism for Robotic Cooperation Through Incentives:
Prototype Application in Warehouse Automation

Jonathan Grey
DePaul University
Chicago, IL, USA

Email: jgrey5302@gmail.com

Oshani Seneviratne
Rensselaer Polytechnic Institute

Troy, NY, USA
Email: senevo@rpi.edu

Isuru Godage
DePaul University
Chicago, IL, USA

Email: igodage@depaul.edu

Abstract—The use of blockchain in cyber-physical systems,
such as robotics, is an area with immense potential to address
many shortcomings in robotic coordination and control. In
traditional swarm robotic applications, where homogeneous
robots are utilized, it is possible to replace a robot if it
malfunctions, and it can be assumed that all robots are
interchangeable. However, in many real-world applications
spanning from search and rescue missions to future household
robotic appliances, heterogeneous robots will need to work
together with the other robots and human agents to achieve
specific tasks. Nevertheless, no such system exists. Therefore,
we propose a system that utilizes a token economy for robotic
agents that makes agents responsive to token acquisition as
an incentive for collaboration in achieving a given task. The
economy enables the system to self-govern, even under Byzan-
tine and adversarial settings. We further incorporate a novel
subcontracting framework within a blockchain environment
to allow the robotic agents to efficiently and cost-effectively
perform complex jobs requiring multiple agents with various
capabilities. We conducted a thorough evaluation of the system
in a prototype warehouse application scenario, and the results
are promising.

Index Terms—Smart contracts, Applications and services based
on blockchain, Blockchain in cyber-physical systems, Multi-
agent systems

1. Introduction

Ever since Unimation Inc. produced its first industrial
robot in 1956 [1], there have been innovations in the robots
in warehouses and industrial robotics space. The first robots
were large robotic arms that could move according to
some pre-set programming. However, in the past couple of
decades, robotics engineers have worked hard to combine
new technological developments, like Artificial Intelligence
(AI) and the Internet of Things (IoT), with automated
robotic technology. Innovative companies, such as Kiva Sys-
tems that Amazon later acquired, have provided innovations
in warehouses with highly effective automation [2]. Further-
more, anticipating upcoming semi- and fully- autonomous
robots, it is essential to follow a scalable and secure global

standard for communication agents (swarming robots and
human agents) for seamless and efficient collaboration ef-
forts. Then there is the problem of command architecture,
i.e., who takes priority and command, mainly when the
robots belong to mutually distrusting parties.

In this paper, we illustrate robotic coordination using
smart contracts on an Ethereum sidenet. Our system is capa-
ble of using agents of heterogeneous capabilities in order to
complete tasks. Autonomous agents similar to Autonomous
Mobile Robots (AMRs) [3] can carry payloads from a
particular location to another in a warehouse application,
and smart contracts will facilitate the robotic interactions.
The swarm can perform a relatively complex task without
a single individual component agent capable of completing
the task independently. The task is a sorting task motivated
by automated warehouse which involves moving boxes out
of a matrix of boxes of various colors into groups of
similar colors while avoiding the black boxes. Therefore, the
system’s extreme flexibility for varied tasks leads to a new
class of decentralized applications (dapps) for robotics with
vast practical potential in many automation applications.
The resulting robust movement infrastructure leverages the
multi-agent architecture upon which all high-level decisions
are made in real-time, such as deciding which of objects
should be fetched, which of the robots should pick up the
object, and which of the picking stations should be used
to ‘fulfill’ an order modeled as the final destination for the
blocks.

2. Related Work

There are several blockchain approaches to solving col-
lective decision-making problems in robotics. Some of the
notable works include decision-making programs [4], [5],
[6], [7], managing Byzantine robots in a swarms’ collective
decision-making scenario [8], machine-machine communi-
cation in cyber-physical [9], and black box logging [10]. In
all of these systems, a new blockchain system is introduced
without utilizing an existing community-adopted platform
like Ethereum, and no economic incentive is proposed
to motivate the autonomous robotic agents. Fernandes et
al. [11] discuss the integration of multiple possible inter-
faces with multiple data formats used in robotics with a



particular emphasis on using smart contracts and AI to im-
prove the performance of distributed robotic systems using
tezos technology for robot event management in industrial
applications [12]. Blockchain technology for robot swarms
on shared knowledge and reputation management system for
joint estimation is introduced in [13]. Shared knowledge is
a critical feature in our system, but we have utilized a more
scalable method for reputation management. Work has been
performed with trust systems on the blockchain as protection
against Byzantine actors by Cameron et al. [14]. They use
smart contracts to establish which accounts are Byzantine by
re-centralizing the identification through the contract itself.
Cardenas et al [15] explore an interaction model that enables
a robot to engage in human-like financial transactions and
enter into agreements with a human counterpart. Grey et al.
introduced Swarm Contracts to solve limitations in central-
ized robotic planning applications [16] with adjudication and
rewards. We have adopted a similar model in our work to
compensate the robotic agents. However, in our work, we
cater to heterogeneous agents with varying behaviors that
provide a good approximation for real-world applications.

3. Contract Framework

We designed our system with a warehouse application
in mind, which informed many of the design decisions for
agents within the framework. We have outlined below the
definitions and the smart contracts-based “Robotic Cooper-
ative Environment” that is depicted in Figure 1.

3.1. Definitions

The smart contract system is based fundamentally on
the operation of blockchain devices, including blockchain
robots that interact with the application. These nodes can
access information that is located on the blockchain. Some
of these nodes interact with the physical world using robotic
components and control software. These nodes interact with
the contract and its data through the various function ser-
vices it contains. The data defines and enables work to be
performed with respect to the function services the contract
offers. The nodes and services provide the basis for the busi-
ness agents: oracles, workers, chiefs, and chargers. These
business agents, using their nodes, interact with the contract
to further their profit-seeking interest and provide services
to other agents in the system. Agents act in their perceived
interest by choosing a strategy, either fair or adversarial.
Each strategy has the potential to earn money, but the
actions of other agents determine which strategy is ideal.
The specific agents in the system are as follows:
Chargers initialize requests as well as receive money as the
cost of worker movement. Within the warehouse use-case,
the charger represents a customer who desires something
from the warehouse, or in the case of the simulation, two
customers - one for each color of payload. There is no
significance to the colors beyond adding some complexity
to the system.

Workers are the agents that perform the work in the environ-
ment. Specifically, we have two types of workers: cowboy
and driver workers. They have an identical purpose: moving
an object from where it is currently located to somewhere
else, but their difference lies where they are allowed to move
(See Figure 3). Despite looking identical, the two subtypes
of workers have different roles.

Cowboys accept contracts because they are uniquely able to
navigate the warehouse and move the appropriate payload to
an empty and reachable place. These workers are incapable
of moving the payload to the final position, and they can
only bring boxes out of their starting positions in the ware-
house and move them to intermediate positions. The driver,
on the other hand, can only put boxes in the appropriate
piles from the intermediate positions and cannot enter the
warehouse. This design decision has several implications:
first, certain worker types have different considerations when
deciding to accept or not accept contracts, and second, jobs
can be made more complex to require the skills of both
types of robots. Because of the blockchain, workers can be
considered to work at-will and voluntarily.

Chiefs break down large requests into smart contracts a
worker can understand and use. The chief represents a
typical warehouse management software with knowledge of
both the warehouse area itself and the orders being fulfilled.
The chief interacts with the blockchain by issuing contracts
which are voluntarily accepted by workers.

Oracles evaluate the completion of contracts. Chargers,
chiefs, and oracles exist only as accounts and have no
presence in the physics simulation. Oracles, in the context
of the warehouse application, represent management and
assurance.

Subcontracting is when an agent who has accepted a smart
contract issues a contract to similar ends for the contract the
agent accepted. The subcontract refers to the smart contract
issued by the cowboy worker and accepted by the driver
worker. The supercontract refers to the smart contract issued
by the chief and accepted by the cowboy worker. The sub-
contracting process allows for the splitting of contract work,
which is impossible for the accepting agent to perform, yet
still possible with a swarm. The charger-chief relationship
already constituted a facsimile of a subcontracting system in
[16], but the procedure in this simulation between cowboys
and workers used a smart subcontract on the blockchain to
properly subcontract the work.

Blockchain Devices are a representation of a device that
is connected to the blockchain, and therefore can interact
with the blockchain and by extension, all other devices con-
nected to the blockchain. Generally speaking, all agents are
virtually run in blockchain devices. Blockchain robots are a
subset of blockchain devices which have a relevant physical
presence in the simulated environment. Only workers which
intend to work need to have a robot.



Figure 1. The Architecture of the Robotic Cooperative Environment

3.2. Process

We illustrate the process for smart contract evaluation
using a warehouse use case. There is a tremendous legal and
reputational burden for not correctly delivering a package,
and many delivery businesses have started taking pictures
of packages on doorsteps to create a body of evidence that
items were indeed delivered to a location. Existing delivery
businesses have internal or external contract evaluation when
a dispute arises as to the delivery results. Our system pro-
vides a decentralized, mutually trusted contract evaluation
service specified beforehand using smart contracts.

First, the charger issues a request for the final state of
the simulation. This request details which payloads should
be moved to specific positions. The request is comprised of
ten discrete parts, equal to the number of payloads, each of
which details a specific payload to be moved to a specific
location. The chief receives this request and divides it into

discrete contracts. Each contract is worth 2Ξ (Ξ is the
unit used for tokens). Contracts are then available on the
blockchain to be accepted by workers. After the cowboy
worker has delivered the payload from the warehouse to
the staging area, it issues a subcontract against the initial
contract accepted; the value of the subcontract is 1Ξ. This
subcontract contains nearly identical data to the original
accepted contract but is slightly different. The target po-
sition is the same as the supercontract, but the remainder
of the data is flagged to indicate that it can be moved
by a driver worker. After the length of the contract has
passed, the contracts are evaluated. The subcontract has a
shorter length and is evaluated first in all cases because
there might be potential attacks should it be evaluated
after the supercontract. Such an attack would consist of
making the job incomplete. Therefore, early subcontract
evaluation is a valuable safety feature to ensure successful
task completion by guaranteeing the incentives of the two



parties (i.e., the sub- and super-contractors) are aligned for
at least the duration of the subcontract. The supercontract is
then evaluated, with all directly involved parties noting the
evaluation results for their trust data. Trust increases when
the oracles act positively towards an agent. The simulation
then iterates, with all parties saving their data about trust
but the simulation itself resetting all payloads and workers
to their original positions.

4. Evaluation Framework

Evaluative tests were performed in a realistic virtual
environment, which allowed for ease of iterative testing au-
tonomously while still maintaining some of the complexity
of a real-world environment, such as friction and minor
inaccuracies. The virtual environment was designed so that it
could easily be transferred to a real-world environment with
limited refactoring. The simulation was built principally in
the pybullet framework [17], a python wrapper for the Bullet
Physics engine, and the Ganache [18] test net, which is an
Ethereum local test net and blockchain testing environment.

The simulation environment has a flat, planar space that
represents the terrain. There are a specific amount of colored
payloads in a grid. These payloads (represented as boxes
in the simulation environment) can be black, red, or cyan,
which allows for identification and sorting tasks (Figure 2-
1).

The robots in the simulation take the form of wheeled
vehicles. These vehicles have a box-shaped manipulator
device on the front (Figure 2-2). The manipulator device
is most similar to a lasso both in topology and in function.
The lasso is a stable set of barriers that prevent the box from
sliding in a different direction when the vehicle moves. The
robots can use this manipulator device to capture a box and
move it to a different location (Figure 2-3). The lasso control
mechanism is similar in operation to a forklift. The lasso
is held in an elevated position until needed and is dropped
vertically into position. The lasso is square with a side length
approximately twice the diameter of the payloads. If there
were slight inaccuracies in the virtual robot’s reckoning of
location, it would still allow for successful payload captures.
All workers can capture a box by lowering its lasso around
it. The robots utilize a simplified dynamic path-planning
algorithm. The algorithm would be best described as a
greedy object avoidance algorithm, i.e., the robot will move
in a direction that minimizes the distance between itself and
its goal point, but only on lines in the cardinal directions
at meter intervals. At each meter-interval intersection, it
computes the next point it should go to. If another robot
or a payload is at the best point, it chooses the next optimal
point.

Within the warehouse application, the matrix of payloads
is a representation of the aisles and stacks of items in
a warehouse (Figure 3-1). Payloads have different colors,
which represent relevance. Black items physically exist in
the environment, but are not useful to the completion of
a job because, within the use case, a customer would not
want every item within the warehouse. Cyan and red items

are useful to the completion of jobs, and are distinguishable
from each other. These bright colors represent relevance,
while the difference between the colors represents two dis-
tinct but coinciding jobs, which might be likened to two
separate orders by separate customers from the warehouse
(the final configuration shown in Figure 3-3).

The two different types of robots represent the two legs
of the journey an item takes from the warehouse, first taken
out of the warehouse to a staging area, then shipped the
“last mile” to its final destination (Figure 3-2). In this way,
the cowboy worker robot might be likened to warehousing
robots (or even human-controlled machines) which identify
and move essential items from their ordered location to a
loading bay. The driver worker robot might be likened to a
delivery robot (or again a human-controlled machine) which
brings an item to the place it is wanted.

Non-physical agents have a presence within the virtual
environment, but this is limited to observation without di-
rect influence. Both oracles and chiefs may observe the
environment and determine the position of payloads and
workers. Their impact on the environment is limited to what
is necessary in order to perform their jobs. They may be
likened to a UAV or a remote monitoring camera network
system within the use-case of the warehouse.

This system was subjected to two tests as outlined in
Section 5. The first test was designed to portray an ideal
or equilibrium system to ensure that the system can work
without the distraction of potential adversaries. The second
test was designed to determine the system’s resilience and
measure the system’s ability to prevent attacks and recover
from attacks.

5. Results

5.1. Evaluation Criteria

The goals of the experiment were to prove firstly that
the contract was applicable in different situations, secondly
that the contract is applicable to heterogeneous robots, and
finally that the workers are capable of issuing and accepting
subcontracts. The simulation proved these hypotheses.

The basic evaluation metric for the system was the
completion rate of the request. The request is made up of ten
sub-units, the ten payloads which need to be moved. Each
payload can be evaluated independently, giving a completion
rate compared to a perfect completion of the simulation by
the workers. This measure effectively covers both the natural
contracts and the subcontracts because the nature of the
simulation dictates that the workers complete the contract
by issuing and completing a subcontract and must work
together to do so.

Completion rate is an appropriate metric because it
adequately measures the experimental goals. The qualitative
measures are evidenced by completion in general since
the proper completion of a contract is evidence of the
proper usage and application of the contract as well as
the subcontract. However, the completion rate allows for



Figure 2. 1) The Three Types of Payloads in the Environment 2) The Vehicle Representing the Robotic Component of a Worker Agent 3) The
Vehicle With the Red Payload Captured in Its Manipulator

Figure 3. 1) Map of the Environment, 2) The Cowboy Stages a Payload,
the Driver Brings It to Its Final Destination, 3) All Payloads Are
in Their Final Position. (An annotated video that shows the running of
the idealized system test can be found at https://bit.ly/Warehouse-Smart-
Contract-Demo.)

a quantitative measure for measuring trust over iterations. It
is also an appropriate metric for the warehousing use case.
The end goal of a supply chain scenario is to facilitate the
transfer of goods from a producer or warehouse to the final
customer. Therefore success should only be measured by the
achievement of that end. In the simulation, the end goal is
the delivery of the payload to the final area.

5.2. Idealized System Test

The idealized system test has no adversarial behavior
in order to determine if the subcontracting scheme was
appropriate. In an idealized test, the system performed well
within the expectations of the design as described below.
The contract was highly applicable to the experimental de-
sign, with minimal changes added to generalize the contract.
The more specific x and y fields were replaced with a
data field, which was a number that corresponded to an
external data storage scheme. In essence, this change made
the contract as generic as possible, widening its application
to the simulation for utilizing smart contracts in robotic
applications.

The subcontracting system worked properly in several
ways. Subcontracts were able to be issued and evaluated
properly: the generic and anonymous trust system allowed
for a worker acting as a chief to issue contracts that were
accepted without prejudice, and the oracles were able to
evaluate the completion of each contract on its own. The
latter point is especially worthy of discussion. The prob-
lem with subcontracting is that contract evaluation does
not consider the means of getting the job done, only the
end completion or non-completion of the job. Therefore,
subcontracts have to be carefully constructed, so they are
efficient while accurately reflecting the job—the scheme of
constructing the subcontract with the exact target location
allowed for an interference-free incentive structure. Workers
were determined to be able to react to subcontracts and
accept them in a manner commensurate with their abili-
ties, which is significant proof of the self-governance and
cooperation facilitation of the contracting system.

5.3. Adversarial Tests

Adversarial tests were also performed. An adversarial
test includes adversaries which attack the system, creating



TABLE 1. TRIAL COMPOSITION

Trial Adversarial
Workers

Fair
Oracles

Owner-biased
Oracles

Worker-biased
Oracles

1 2 5 2 2
2 2 4 4 4
3 4 5 2 2
4 4 4 4 4

non-ideal conditions which reflect the possibilities outside
of a lab environment in order to determine the robustness
of the system to withstand and recover from attacks. Each
adversarial test was conducted with one cowboy worker, one
driver worker, one fair chief, and other agents whose number
and type varied with the test. The exact composition of each
test can be found in Table 1.

Throughout iterations, two results emerged. First, there
was a significant and marked increase in the objective
completion percentage of the sorting task. This measure was
obtained by measuring the objective position of the payloads
after the contracts, observing if payloads were at the appro-
priate position, and dividing by the number of contracts. The
measure sharply increased in all tests. Second, adversarial
agents either posted losses or failed to profit like their fair
peers. These measures prove that the system is both self-
governing and self-improving through the power of incen-
tives. While the system does suffer initial “growing pains”
while establishing trust, it eventually becomes resilient to
attacks, even though the contract issuers and acceptors do
not recognize or track each other’s identities, making them
effectively anonymous.

The most significant results are from the worker data,
shown in Table 2. Since the workers carry out the work
in the system, and therefore their successes or failures are
most relevant. Across all trials, the cowboy earned less than
the driver, but the adversarial workers attained losses (on
average, losing 5.27Ξ in Trial 1, 0.21Ξ in Trial 2, 4.38Ξ in
Trial 3, and 3.69Ξ in Trial 4). The number of transactions
is a proxy for the amount of interaction within the system
each worker type has, and it can be seen that the broadly
the fair types (cowboy and driver) have incredibly high
average transactions when compared against the adversarial
type (376 and 243 more, respectively, in Trial 1, 299 and
173 more in Trial 2, 334 and 213 more in Trial 3, and 900
and 588 more in Trial 4).

As for the oracle agents, similar results were observed
for the number of average transactions as is shown in Table
3. There is a significant difference amongst the adversarial
subtypes, however. The difference can be attributed to the
relative number of adversarial workers between the trials.
In trials with a lower number of adversarial workers, those
adversarial oracles that had a bias towards workers per-
formed better and interacted more with the system (43.5
compared to 12 and 28.25 compared to 12). In trials with a
higher number of adversarial workers, owner-biased oracles
interacted more with the system (21.5 compared to 8.5 and
17.25 compared to 10.75). The most likely mechanism of
action for this correlation was the utility of the respec-

tive type of adversarial oracle towards the fair contract
issuers. In an environment in which there are a relatively
large amount of fair workers when compared to adversarial
workers, worker-biased oracles often give evaluations that
reflect objective reality, despite their bias, meaning they have
a greater utility to fair contract issuers. Similarly, in an
environment in which there are a more significant number of
adversarial workers relative to fair workers, owner-biased
oracles evaluate findings which are against the adversarial
workers, again reflecting objective reality despite bias.

It is worth noting that the cowboy had significantly lower
earnings than the driver in all tests (as little as a difference
of 12.68Ξ but as much of a difference as 33.86Ξ). There are
several reasons for this. The first reason is the nature of the
contracts and prices for work. The oracle scheme is similar
to the adjudicators in [16], in which oracles take a share
of the contract price as payment for services. The cowboy
worker accepts a larger contract, effectively agreeing to pay
more in evaluation fees, but splits the contract price in
half when offering a subcontract. The driver’s subcontract
incurs evaluation fees as well, but they are half as large
as the cowboy’s relative to the size of the expected gross
profit before fees are considered. The second reason for
lower earnings is that the cowboy, acting as the super-
contractor, shoulders a much larger burden of risk. When
the driver accepts the subcontract, the driver must complete
the contract under penalty of losing the collateral stipulated
in the contract, as is the case in [16]. However, the cowboy
accepts the super contract, which is incumbent upon the
completion of its respective task in addition to the eventual
completion of the task by the driver. In other words, its
payout is dependent on the correct functioning of both itself
and another worker.

Figure 4. The Completion Rates of Each Trial at Different Iterations

The graph of completion rate versus iteration in Figure 4
shows the expected sharp increase when trust was estab-
lished. There are several points in the graph which require
explanation. The first iteration has a completion rate of zero.
The rate is zero because adversaries have no physical form
and conduct blockchain-based attacks, which gives them a
full license and the opportunity to accept as many contracts
as possible in the hopes of finding some that would pay.
In Trial 4, it can be seen that the first iteration starts with
a completion rate of 0.1, which is purely due to random



TABLE 2. PROFITS AND INTERACTION LEVELS AMONG WORKERS

Trial 1 Trial 2 Trial 3 Trial 4

Worker Type Avg.
Profit

Avg.
Txs

Avg.
Profit

Avg.
Txs

Avg.
Profit

Avg.
Txs

Avg.
Profit

Avg.
Txs

Cowboy 44.78 383 9.84 312 21.1 339 67.31 908
Driver 57.26 250 43.7 186 33.58 218 99.45 586
Adversarial -5.27 6.5 -0.21 13 -4.38 5.25 -3.69 7.75

TABLE 3. INTERACTION LEVELS AMONG ORACLES

Trial 1 Trial 2 Trial 3 Trial 4

Oracle Type Avg.
Txs

Avg.
Txs

Avg.
Txs

Avg.
Txs

Fair 136.8 127 133.8 441.5
Owner-biased 12 12 21.5 17.25
Worker-biased 43.5 28.25 8.5 10.75

chance; it just so happened that fair workers managed to
accept the contract first and complete it.

Each of the lines in Figure 4 then shows a marked
increase that is due to the lack of will on the part of
the adversaries to lose more money. By these iterations,
the chief and the cowboy worker, who issue contracts and
select the oracles, have developed trust for oracles that rule
against adversarial workers, even as adversarial workers
have learned which oracles can be trusted through the trust
development mechanisms described in [16]. The result of
this is a precipitous drop in adversarial worker participation.
Since there is no adversarial competition for accepting con-
tracts, fair workers (cowboy and driver) are the only workers
left willing to accept contracts, leading to an increase in the
overall completion rate.

Each line experiences a drop after the initial spike, which
is caused by the differing trust for owner-biased adversarial
oracles. Owner-biased oracles were able to temporarily
slip through trust-establishing algorithms despite their bias
because their nature caused them to side with owners when
evaluating contracts. In the starting iterations, when adver-
saries accepted contracts, this aligned with objective reality,
making them equally as important as a fair oracle. However,
when adversarial workers began to distrust all oracles trusted
by the chief, owner-biased oracles became useless as fair
workers would not accept a job evaluated by an owner-
biased oracle.

As soon as these problems are dealt with, the simulation
reaches a trust equilibrium. The only subsequent drops
happened as a result of robot error. A noteworthy example
is Trial 3, in which a stable system had a significant drop,
followed by a subsequent return to normalcy, which was
determined to be caused by a known but rare flaw in the
simulation in which minor errors compounded and made a
robot fail to complete a task. However, this trial shows the
resiliency of the system as a whole. Even though an adverse
environmental event prevented robots from completing the
contract and subcontract, the system as a whole was able
to continue developing the expected behavior in completing
the tasks outlined in the smart contracts.

6. Conclusion and Future Work

IoT and AMRs have become pervasive in many in-
dustrial applications. They utilize many autonomous robots
that work on command and control settings. However, they
have become increasingly complex, where there are multiple
types of robots, complex interactions among them, and in
many cases, previously unestablished trust relationships due
to aspects such as ownership of the autonomous robots. We
have designed and implemented a blockchain-based system
that can accept agents of varying types and enable their
cooperation in complex tasks, making it a successful method
for facilitating cooperation in various settings, including
robotic applications. Over an iterated simulation, the system
developed resilience to adversarial attacks. The contract
itself did not change between the simulations except in
the data it stored that had no effects on its function and
is therefore consistent with the findings in [16]. Therefore,
we ascertain that properly structured incentive models and
voluntarism create a robotic swarm in a manner superior to
a centrally mandated system. The system, furthermore, is
fully capable of handling imperfect scenarios, given even
simple models for establishing trust. It also creates a valu-
able system of self-governance among the agents enabling
cooperation in the face of adversaries and insurance against
their attacks.

Future work and development might include implement-
ing the virtual system in a physical system or creating a
more advanced environment for more complex cooperative
interactions. Developing the physical system would deter-
mine the effectiveness of a natural environment in which
novel errors can occur. A more complex system would
determine the system’s effectiveness against far more risk-
prone contracts and prompt the further development of anti-
risk measures to protect agents. More developed adversar-
ial attacks could yield insight into the possible additional
vulnerabilities and drawbacks of the system. Within the
warehouse use-case specifically, future work could be done
by making the environment more irregular, perhaps irregular
enough to require a greater variety of robots. It would
be possible to include special-purpose robots that extend
the chain of subcontracts. It also would be possible to
include very general-purpose robots, such as a conveyor
belt robot, which could invite different economic problems
such as common-carrier or free-rider problems. Therefore,
we believe the system described in the paper would be a
valuable addition to provide an additional trust layer for
scenarios requiring dapps for heterogeneous cooperation and
robotic automation.



Acknowledgments

This work is supported in part by the National Sci-
ence Foundation (NSF) Grants IIS–1718755, IIS–2008797,
CMMI–2048142, and CMMI–2132994.

References

[1] G. O’Regan, “Unimation,” in Pillars of Computing. Springer, 2015,
pp. 219–223.

[2] R. D’Andrea, “Guest editorial: A revolution in the warehouse: A
retrospective on kiva systems and the grand challenges ahead,” IEEE
Transactions on Automation Science and Engineering, vol. 9, no. 4,
pp. 638–639, 2012.

[3] A. Liaqat, W. Hutabarat, D. Tiwari, L. Tinkler, D. Harra, B. Morgan,
A. Taylor, T. Lu, and A. Tiwari, “Autonomous mobile robots in
manufacturing: Highway code development, simulation, and testing,”
The International Journal of Advanced Manufacturing Technology,
vol. 104, no. 9, pp. 4617–4628, 2019.

[4] T. T. Nguyen, A. Hatua, and A. H. Sung, “Blockchain approach to
solve collective decision making problems for swarm robotics,” in
International Congress on Blockchain and Applications. Springer,
2019, pp. 118–125.

[5] A. Mokhtar, N. Murphy, and J. Bruton, “Blockchain-based multi-
robot path planning,” in 2019 IEEE 5th World Forum on Internet of
Things (WF-IoT). IEEE, 2019, pp. 584–589.

[6] N. Teslya and A. Smirnov, “Blockchain-based framework for
ontology-oriented robots’ coalition formation in cyberphysical sys-
tems,” in MATEC Web of Conferences, vol. 161. EDP Sciences,
2018, p. 03018.

[7] E. C. Ferrer, “The blockchain: a new framework for robotic swarm
systems,” in Proceedings of the future technologies conference.
Springer, 2018, pp. 1037–1058.

[8] V. Strobel, E. Castelló Ferrer, and M. Dorigo, “Managing byzantine
robots via blockchain technology in a swarm robotics collective
decision making scenario,” in Proceedings of the 17th International
Conference on Autonomous Agents and MultiAgent Systems. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems,
2018, pp. 541–549.

[9] M. Y. Afanasev, Y. V. Fedosov, A. A. Krylova, and S. A. Shorokhov,
“An application of blockchain and smart contracts for machine-to-
machine communications in cyber-physical production systems,” in
2018 IEEE Industrial Cyber-Physical Systems (ICPS), May 2018, pp.
13–19.

[10] R. White, G. Caiazza, A. Cortesi, Y. Im Cho, and H. I. Christensen,
“Black block recorder: Immutable black box logging for robots via
blockchain,” IEEE Robotics and Automation Letters, vol. 4, no. 4,
pp. 3812–3819, 2019.

[11] M. Fernandes and L. A. Alexandre, “Robotchain: Using tezos tech-
nology for robot event management,” Ledger, vol. 4, 2019.

[12] L. Goodman, “Tezos—a self-amending crypto-ledger white paper,”
URL: https://www. tezos. com/static/papers/white paper. pdf, 2014.

[13] M. Dorigo et al., “Blockchain technology for robot swarms: A
shared knowledge and reputation management system for collective
estimation,” in Swarm Intelligence: 11th International Conference,
ANTS 2018, Rome, Italy, October 29–31, 2018, Proceedings, vol.
11172. Springer, 2018, p. 425.

[14] A. Cameron, M. Payne, and B. Prela, “Research and implementation
of multiple blockchain byzantine secure consensus protocols for robot
swarms,” URL: http://agnescameron.info/, 2018.

[15] I. S. Cardenas and J. H. Kim, “Robot-human agreements and financial
transactions enabled by a blockchain and smart contracts,” in Com-
panion of the 2018 ACM/IEEE International Conference on Human-
Robot Interaction, 2018, pp. 337–338.

[16] J. Grey, I. Godage, and O. Seneviratne, “Swarm Contracts: Smart
Contracts in Robotic Swarms with Varying Agent Behavior,” in
Proceedings of the 2020 IEEE Blockchain Conference. IEEE, 2020.

[17] PyBullet Developers. Bullet Real-Time Physics Simulation. [Online].
Available: https://pybullet.org

[18] ConsenSys Software Inc. 2021. Ganache – One Click Blockchain.
[Online]. Available: https://www.trufflesuite.com/ganache


