
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2022 1

RRT*-based Path Planning for Continuum Arms
Brandon H. Meng, Isuru S. Godage, and Iyad Kanj

Abstract—Continuum arms are bio-inspired devices that ex-
hibit continuous, smooth bending and generate motion through
structural deformation. Rapidly-exploring random trees (RRT)
is a traditional approach for performing efficient path planning.
RRT approaches are usually based on exploring the configuration
space (C-Space) of the robot to find a desirable work space (W-
Space) path. Due to the complex kinematics and the highly non-
linear mapping between the C-Space and W-Space of continuum
arms, a high-quality path in the C-Space (e.g., a linear path) may
not correspond to a desirable path/movement in the W-Space.
Consequently, the C-Space RRT approaches that are based on
C-Space cost functions do not lead to reliable and effective path
planning when applied to continuum arms. In this paper, we
propose a RRT* path planning approach for continuum arms
that is based on exploring the W-Space of the robot as opposed to
its C-Space. We show the successful applications of the proposed
W-Space RRT* path planner in performing path planning with
obstacle avoidance and in performing trajectory tracking. In all
the aforementioned tasks, the quality of the paths generated by
the proposed planner is superior to that of previous approaches
and to its counterpart C-Space based RRT* approach, while the
paths are generated in substantially less time.

Index Terms—Motion and Path Planning, Task and Motion
Planning, Flexible Robotics

I. INTRODUCTION

CONTINUUM arms are bio-inspired manipulators [1] that
exhibit continuous and smooth bending. They generate

motion through structural deformation in a similar fashion
to organic appendages such as elephant trunks and octopus
arms. In this paper, we study the path planning problem for
pneumatically-actuated human-scale continuum arms. Fig. 1
shows an example of the prototype of the multisection con-
tinuum arm under consideration in this paper. This arm is ac-
tuated by soft pneumatic muscle actuators (PMA) to facilitate
smooth bending and to assume complex poses. Additionally,
the inherent safety of soft material means that these continuum
arms are well suited to serve as “co-robots” [2] in human-
robot collaborative domains. Multisection continuum arms are
constructed by serially attaching multiple continuum sections.
Consequently, as each continuum section can bend in any
plane, they can achieve a wide variety of spatial-shapes.
Continuum arm-related research has seen rapid growth in
recent years [3].

Path planning is the problem of computing a trajectory for
the robot to traverse while avoiding obstacles and obeying

Manuscript received: February, 24, 2022; Revised May, 5, 2022; Accepted
April, 20, 2022.

This paper was recommended for publication by Editor Hanna Kurniawati
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported in part by the National Science Foundation (NSF) grants
IIS-1718755, IIS-2008797, CMMI-2048142, CMMI-2132994 and National
Institute of Health (NIH) R01 grant 5R01NS116148-02.

The authors are affiliated with the School of Computing, DePaul University,
Chicago, IL 60604, USA. {bmeng1,igodage,ikanj}@depaul.edu.

Digital Object Identifier (DOI): see top of this page.

Fig. 1. Left: Five positions of a 3-section, pneumatically-actuated, continuum
arm shown avoiding two obstacles. Right: The corresponding view in a
simulated environment. The image on the left was generated by superimposing
several static spatial-shapes.

the physical constraints of the system. As reported in [4],
the kinematics of continuum arms – the mapping between
their configurations space (C-Space), or the corresponding
joint-space, and work space (W-Space) – is highly nonlinear
and complex. As a result, generated trajectories may include
undesired or unnecessary movement that can quickly become
unstable or infeasible to track when run on a prototype
manipulator or a dynamic model thereof. Consequently, path
planning for continuum arms is an ongoing research challenge.

A. Related Work
Inverse kinematics (IK) maps the W-Space to the C-Space

and has been used extensively for path planning across a
wide array of robotic models. A closed-form solution for the
IK of the multisection continuum arms under consideration
exists [5], but has major shortcomings. Notably, the approach
discussed in [5] may not produce a solution, as the formulation
does not take into account the geometrical constraints among
the curve parameters. Additionally, this approach produces
only one solution, though many solutions may be desirable for
calculating a smooth trajectory. In [4], the authors discuss the
shortcomings of the above approach and instead present an IK
approach that relies on numerical techniques such as iterative
optimization. However, this numerical approach, when used
for path planning of continuum arms, leads to problems related
to local minima, and the authors in [6] demonstrated its
unreliability. Several graph-theoretic approaches were recently
proposed to overcome the above-mentioned issues with the
use of IK; these approaches relied on brute force (with an
offline look-up table) [6] or refined IK [7] to generate a very
rich and dense set of configurations. While such approaches
proved successful for performing path planning, they suffer
significantly from extensive computation time. In all the afore-
mentioned approaches [6], [7], finding a high-quality path may
take several hours of computation time, and hence, cannot be

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2022

useful for any real-time applications of path planning for mul-
tisection continuum arms. We mention that there exist planners
that forgo the aforementioned IK approaches and instead rely
on iterative, Jacobian-based methods to map the W-Space to
the C-Space. For instance, the authors in [8] performed path
planning with obstacle avoidance using repulsive forces in
addition to the Jacobian-based method. Similarly, the authors
in [9] used a Jacobian-based method to perform path planning
with obstacle avoidance in very tight spaces.

Rapidly-exploring random trees (RRT) [10] is a traditional
path planning approach that has been widely studied and
applied to numerous robotic models. RRT is known for its
simplicity, efficiency, and effectiveness, as random exploration
allows for very efficient path planning with minimal compu-
tational requirements. In particular, the algorithm can be run
entirely “online” with no offline storage or pre-computation
needed. This algorithm is probabilistically complete, meaning
that the probability of not finding a path decreases towards
0 as the number of samples heads towards infinity [11]. A
notable variant of RRT, called RRT*, shares the benefits of
RRT (notably probabilistic completeness) while proven to be
asymptotically optimal [11], meaning that it converges to an
optimal solution “almost surely” as the number of samples
heads towards infinity. RRT has been extensively studied
in a wide variety of domains since its introduction [12]–
[15]. Moreover, it has been shown that RRT works well for
redundant manipulators [16], [17].

There is a significant amount of work on RRT and Prob-
abilistic Road Map (PRM) approaches for concentric tube
robots, which is another notable type of continuum arms.
For instance, the work reported in [18], [19] implemented a
RRT approach for concentric tube robots and used precom-
puted roadmaps for rapid exploration. Additionally, the authors
in [20] implemented a RRT* approach for a single section
tendon-driven arm with 3 degrees of freedom (DoF) that rested
on a mobile base. We note that there are major differences
between concentric tube robots, tendon-driven continuum
arms, and the continuum arm model under consideration. For
example, concentric tube robots rely on tube translation (exten-
sion/contraction) operation, whereas tendon-driven continuum
arms have “coupled” kinematics in the joint space due to the
overlap of tendons actuating different sections. On the other
hand, the continuum arm model under consideration has fixed-
length, and individual continuum sections are kinematically
independent in the joint-space. However, the C-Space, denoted
by curve-parameters [4], for both tendon or PMA actuated
fixed-length continuum arms are similar with decoupled kine-
matics. Thus, the path planning algorithm proposed herein can
be generalized to tendon actuated continuum arms as well as
any robotic manipulator with decoupled kinematics.

Many of the RRT (and PRM) approaches, including the
above-mentioned ones for concentric tubes and tendon-driven
arms are based on exploring the C-Space of the robot to find
a desirable W-Space path (e.g., see [18], [19], [21]–[23]).
Due to the complex kinematics and the highly non-linear
mapping between the C-Space and W-Space of continuum
arms, a high-quality path in the C-Space (e.g., a linear path)
may not correspond to a desirable path/movement in the W-

Fig. 2. Left: The curve parameters and their relationship to the arm’s shape.
Right: Schematic of a multisection continuum arm with 3 sections. Note that,
as Li is constant, λi =

Li
ϕi

.

Space. Consequently, the RRT approaches that are based on
C-Space cost functions do not lead to reliable and effective
path planning when applied to continuum arms.

B. Contributions
We propose a W-Space based RRT* path planner for

multisection continuum arms. The crux of our approach is a
Jacobian-based method of configuration generation, allowing
for W-Space search without the need for direct IK. This
method may have further applications for other continuum
manipulators as well. Additionally, goal-biasing and random
variance (added through the use of the null space of the
Jacobian) are employed to allow for rapid exploration while
refining the quality of the generated paths. We demonstrate
the success of our planner in path planning with obstacle
avoidance and trajectory tracking and evaluate the planner
efficiency and the quality of the generated paths. To assess
the quality of a generated path, we use the same methodology
from [7] that utilizes an accurate spatial dynamic model since
real-time control for this prototype arm does not yet exist.

We show that the proposed planner generates superior-
quality paths, while providing a substantial speedup over
existing approaches with a more than 60% decrease in compu-
tation time over the approach in [6] while removing the need
for offline computation. Furthermore, the proposed approach
achieves a more than 90% decrease in computation time over
the approach reported in [7]. Additionally, we demonstrate
that our W-Space RRT* approach overcomes the shortcomings
of a C-Space RRT* approach by implementing a C-Space
RRT* path planner and comparing it to the W-Space RRT*
planner. The W-Space RRT* path planner outperforms the C-
Space RRT* one substantially, with improvements in both path
quality and computation time.

II. SYSTEM MODEL
A. Kinematic Model

The continuum arm to which we develop the proposed path
planner is shown in Fig. 1. It has three sections – similar
to prior works [6], [7] – and each section is actuated by 3
extension-mode, PMAs arranged around an inextensible rigid-
linked chain (i.e., backbone) at 2π

3 radians apart. Refer to [6]
for more information about the manipulator design.

MENG et al.: RRT*CONTINUUM 3

Without losing generality, consider any ith section where
i ∈ {1, 2, 3}. The differential length of PMAs – due to applied
pressure – causes a section to bend in a circular arc shape.
Unlike the continuum/soft section designs without backbones,
such as [4], that require three curve parameters to describe
the shape, only two parameters, namely ϕi ∈ [0, π], and θi ∈
[0, 2π), describe a section’s bending angle subtended by the
arc and bending plane angle, respectively (see Fig. 2). The cur-
vature radius, λi, can be determined simply through the fixed-
length Li of a section and the curve parameter ϕi as λi =

Li

ϕi
.

Thus, in contrast to the designs reported in [4], only two length
change variables are needed to describe the pose of a section.
Additionally, the curve parameters have a direct mapping to
PMA length changes [6]. In this model, the curve parameters
make up the C-Space, and the length changes constitute the
joint space. For length changes lij where i ∈ {1, 2, 3} is the
section number and j ∈ {1, 2} is an actuator number, the curve
parameters are derived as θi = arctan(li2

√
3, 2li1 − li2), and

ϕi = (2
√
l2i1 − li1li2 + l2i2)/(ri

√
3) where ri is the radius of

a section. Though there are 3 actuators in each section, the
inclusion of the backbone introduces an over-constrained sys-
tem such that the length of l3 can be described by the lengths
of l1 and l2. Due to this, l3 can be disregarded [6]. Given this
formulation, a configuration of the arm can be described using
curve parameters as c = (ϕ1, θ1, ϕ2, θ2, ϕ3, θ3).

As we have a one-to-one mapping between the length
parameters and curve parameters, we will use curve parameters
to formulate the planning algorithm in this work. Using
curve parameters instead of length changes to describe the
arm is desirable as they provide a more intuitive explana-
tion of the arm’s shape. Additionally, length changes are
subject to constraints (as described in [6]), whereas curve
parameters are only bounded. A homogeneous transforma-
tion matrix (HTM) can be constructed using a configuration
for forward kinematics. Given the fixed length of a section
Li, the HTM T is constructed as T = T1T2T3 where
Ti = RZ (θi)PX (Li/ϕi)RY (ξiϕi)PX (−Li/ϕi)RZ (θi).
We denote by PX the translation along the +X axis and
by RZ and RY the rotations about the +Z and +Y axes,
respectively. The parameter ξi ∈ [0, 1] denotes the posi-
tion/displacement of a point on the i-th section of the con-
tinuum arm (with respect to the base of the i-th section). This
HTM can determine the coordinates of points along the arm,
including the tip. Further information about the robotic model
and its kinematics can be found in [6].

III. PRELIMINARIES

A. RRT and RRT*
Rapidly-exploring random tree (RRT) [10] uses random

sampling to explore the C-space of a robot. Starting from an
initial node, corresponding to the starting point/configuration
of the robot in this space, a “tree” T of nodes is grown
in which nodes are inserted so that they are within some
parameter distance ϵ from their parent nodes. For a given
node n and target node t in T , steering (at n) is the process
of creating a new node n′ that is on the line nt and within
distance ϵ from n.

RRT* [11] is a variant of RRT that employs a cost measure
to indicate the quality of the tree T and distinguish between a
low-quality and high-quality path while refining the tree during
exploration. The cost between two nodes is a metric specifying
the cost of transitioning between these two nodes. The cost
between two nodes n,m ∈ T is denoted ζ(n,m). For a node
n in T , let P = (ns = n0, n1, . . . , nk = n) be the unique
path in T from the starting node ns to n. We define the path
cost of n as

υ(n) =

k−1∑
i=0

ζ(ni, ni+1). (1)

To refine the tree, upon inserting a new node n′, we check to
see if n′ “opens up” shorter paths to some existing nodes in
T . This process of examining the vicinity or neighborhood of
a newly-inserted node and changing edges in the tree is called
rewiring. The neighborhood is defined by a distance α ≥ 0.
More formally, when a node n′ is inserted in T , if some node
m within distance α of n′ satisfies ζ(n′,m) + υ(n′) < υ(m),
then a shorter path exists to m (via n′). In this case, we replace
the parent of m in T with n′, and update the cost of m to
reflect this change.

IV. W-SPACE RRT*
RRT* is a widely-used algorithm for path planning that

is often employed to explore the C-Space of a robot. A C-
Space based RRT* implementation for continuum arms faces
several challenges, primarily due to their complex and highly
non-linear kinematics. For instance, a linear trajectory in the
C-Space may correspond to a highly-undesirable, non-linear
path in the W-Space. Additionally, reorientation, when the
arm makes large shifts in the pose without progressing along
the path, can occur when two unrelated configurations occur
sequentially in a path. This poses inherent hindrances for a
C-Space-based implementation of RRT* that is capable of
achieving high-quality path planning. Therefore, for contin-
uum arms, an RRT* implementation should preferably be
based on W-Space exploration, especially when obstacles are
present in the environment.

Generating a mapping from the W-Space to the C-Space
of continuum arms is a challenging task. For instance, a
straightforward mapping of W-Space points to C-Space points
by separate invocation of IK does not work, as separate
invocations may produce uncoordinated spatial shapes; this
issue can create an undesired movement for the continuum
arm. There exist schemes for W-Space to C-Space mappings
based on Jacobians that do not require the use of IK [4], [17].
Though this approach may also run into issues of convergence,
it is possible to overcome these issues using randomness.

In this paper, we overcome the above challenges and present
a RRT* algorithm for continuum arms that is based on
W-Space exploration. This algorithm uses a Jacobian-based
method to iteratively estimate the IK solutions, along with
considerations for hyper-redundancy, to make tree growth
easier. Variance is added to the Jacobian-based method to
avoid “getting stuck” in valleys of the W-Space and C-Space.

To start, a tree is grown outward from a starting con-
figuration. Candidate nodes are created by sampling the W-

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2022

Space, steering and then using the Jacobian-based method to
find suitable corresponding configurations. On some iterations,
the target point is considered in the formulation, instead of
a randomly sampled point, to bias the tree growth towards
the target. Nodes that are found to collide with obstacles are
discarded, and a queue of unsuccessful nodes is kept to avoid
unnecessary exploration of unpromising tree branches. The
procedure continues until the tree reaches the target point, and
a corresponding configuration of the target point is computed.
We now proceed to the details.

A. W-Space - C-Space Projection Via Jacobians
This method uses C-Space and W-Space displacements and

velocities with their corresponding Jacobian to find a new
configuration using a starting configuration and a desired
change in tip position. Using forward kinematics, the con-
tinuum arm tip position, p, can be extracted from T(q) =
[R(q) p(q); 0 1] where q is a configuration and T is the HTM
mapping the C-Space to the W-Space. The tip velocity can be
described as ṗ = J(q)q̇ where q̇ is configuration velocity.
Given a change in configuration δq, we can approximate
a change in the position vector of the tip of the arm as
δp ≈ J(q)δq where J is the Jacobian of p. Similarly, we
can approximate a change in configuration δq as

δq ≈ Jw(q)
†δp, (2)

where Jw(q) is a weighted Jacobian [24] that ensures the
validity of configurations generated using this method and
[]† denotes the Moore-Penrose pseudo-inverse operator. As
δp increases, so does the error in this approximation. Using
(2), we can use a small change in tip position to calculate a
new configuration q′ = q + δq as

q + δq ≈ q + Jw(q)
†δp. (3)

Thus, the new configuration vector will be adjacent to the
current configuration q. To use this formulation, an initial
configuration q with corresponding tip p must first be selected.
Then, a target point p̂ is also selected, and δp is calculated as
δp = p̂−p. These values are plugged into (3), and we find a
new configuration q′ = q + δq that places the tip of the arm
at p̂. We refer to this process as the Jacobian configuration-
generation method (JCG).

B. Null Space
In the context of the continuum arm, the null space can

correspond to the redundancy of the arm, or rather to the
configurations that produce the same result at the tip. We can
exploit the null space to modify the position/spatial shape of
the intermediate sections of the arm while still producing the
desired change in tip position.

We can describe the null space of the aforementioned
Jacobian as I − J†J, where I is the rank 3 identity matrix.
With the consideration of the null space, variance can be
added to (3) using random configuration velocities. We start
with the initial configuration q. First, a random configuration
k is picked from the C-Space. Then, k is used to create a
“random” configuration velocity. A configuration k′ is found
that is within some small distance from q on the vector

−→
qk.

Next, a random C-Space velocity µ is found by calculating
µ = k′−q. Lastly, the null space I−J†J is multiplied by µ.
We apply µ to (3) and obtain the following approximation

q + δq ≈ q + J†
wδp+ (I− J†J)µ. (4)

C. W-Space Exploration
Exploration of the W-Space space only occurs using viable

C-Space points that correspond to the tip of the continuum
arm. This ensures the tree contains only feasible nodes. The
exploration is performed using a tree of nodes T where each
node represents a valid C-Space and W-Space vector pairs.

A tree is grown outward from some initial node ns with
corresponding configuration s. To perform exploration, we
start by randomly selecting a point r in the W-Space. A node
n is found in the tree whose tip point has the shortest distance
to r. We then use the steering process to find a point on the
vector −→nr at distance δ from n; a new node n′ is inserted
into T that corresponds to that point. Using the difference
between n′ and n and the configuration c of n, we apply the
JCG method to find a configuration c′ corresponding to n′.

Given that the JCG method computes an approximate solu-
tion, it may be that the distance between n′ and the W-Space
point corresponding to c′ is large. If this distance is larger than
a certain threshold (specified based on the simulation results),
we say that the invocation of the JCG method “failed” and
deem the configuration c′ “invalid.” Given the aforementioned
use of random null space vectors, it may be that the JCG
method both succeeds and fails for the same input on different
invocations. Assuming that the configuration is acceptable, we
compute and update n′ using c′. Additionally, the distance δ
is selected to be small such that the error produced by the
JCG method is also small.

During the rewiring process, a node m may be rewired so
that a new node n′ becomes the parent of m. Therein, we
calculate a new configuration for m (using the JCG method)
between n′ and m. If the JCG method fails and the distance
between the current and new tip position of m is large, m is
not updated. We explore the W-Space with the goal of finding
a target point t and inserting it into T . When a node n′ is
inserted into T , the Euclidean distance between t and n′ is
calculated. If this distance is within some small acceptable
margin, n′ is marked as the target node nt. There now exists
a path from the initial node ns to the target node nt in T .

Cost: To maximize the quality of a generated path, movement
at the tip must proceed smoothly while minimizing unneces-
sary movement in the intermediate sections of the arm. The
cost ζ(m,n) between two nodes m,n ∈ T is defined as the
Euclidean distance between their corresponding arm tip points.
Note that this does not take into account movement in the
intermediate sections of the arm.

Goal-Biasing: The growth of the tree can be directed to-
wards the target using Goal-biasing. In this scheme, random
sampling occurs every ω − 1 iterations of RRT*. However,
in the ωth iteration, the random node is replaced with the
target node/point. In some applications where quality paths

MENG et al.: RRT*CONTINUUM 5

are prioritized over exploration, randomness can be reduced by
decreasing ω. We refer to the process of selecting the target
instead of a random node as guiding, and the ωth iteration
is called a guiding iteration. If a guiding iteration using the
target point t and a node n that is closest to t fails to produce
a configuration (due to obstacle collision, local minima, etc.),
then no additional node is added. In a future iteration, it may
be possible that the same node n is attempted again if no other
node is closer to t, meaning that if the tree has not grown
in the direction of the target, the algorithm could become
stuck. Although repeated invocations of the JCG method can
produce different results (due to the null space variance), it is
possible that there is no feasible configuration, and n would
be repeatedly attempted with no forward progress/growth. To
avoid this scenario, a queue is created that has a size equaling
some fixed percentage of T ’s size. Any node in this queue
cannot be used during a guiding iteration. This encourages
guided tree growth in other sections of the tree.

Starting Configurations: Since the JCG method relies on an
initial configuration to produce a result, additional starting
configurations or auxiliary nodes can be added to increase
the diversity of the configurations included in the tree. This
increased diversity can be useful in certain domains, like
obstacle avoidance, where having a wide variety of spatial-
shapes is important. These nodes are generally selected so
that their corresponding tip points inhabit different areas of
the W-Space.

Obstacles: Obstacles may or may not be present in the W-
Space during path planning. If obstacles are present, collisions
can be checked before the node is inserted into the tree.
Using the configuration corresponding to a node n′ and the
HTM, points along the intermediate sections of the arm can
be calculated. Each of these points is checked for collision
with obstacles. If such a collision exists, n′ is not inserted
into the tree. As a consequence of choosing the step size δ to
be small (to minimize the error produced by the JCG method),
the tree grows slowly with small gaps between nodes. With
small changes in tip position, collision detection is performed
at very small intervals.

D. The RRT* Algorithm
The algorithm (see Alg. 1) starts with an initial configura-

tion s, a target tip position t, and the minimum number of
iterations i. A tree is created, and the starting node ns and
auxiliary starting nodes are inserted (lines 1-2). Then in line
3, the expansion of the tree begins with goal-biasing occurring
every ω iterations. During guided iterations (lines 4-11), t is
selected as the target point. The node n with the smallest
Euclidean distance between n’s tip and t is selected (line 5).
The JCG method is used with n to create a new node n′

assuming this node is valid and does not collide with obstacles
(lines 7-8). The rewire routine is invoked (line 9). During non-
guided iterations (lines 12-20), a random W-Space point r is
sampled. Next, the node n with the smallest Euclidean distance
between n’s tip and r is found (line 14). The tip of n is steered
towards r then the JCG method is invoked with n to create a
new node n′ assuming the node is valid and does not collide

Algorithm 1: WRRT*
Input: Initial configuration s; target point t; minimum

number of iterations i
Output: A sequence of configurations as a path P

1 Create tree T using s and t;
2 Create auxiliary starting-configurations and add to T ;
3 while t not in T and number of iterations < i do
4 if guiding iteration then
5 Find a node n nearest to t;
6 Create a new node n′ by steering from n to t;
7 if n′ is valid and is obstacle-free then
8 Calculate a configuration for n′ using the

JCG method;
9 Insert n′ into T and rewire;

10 else
11 Generate a random W-Space point r;
12 Find a node n nearest to r;
13 Create a new node n′ by steering from n to r;
14 if n′ is valid and is obstacle-free then
15 Calculate a configuration for n′ using the

JCG method;
16 Insert n′ into T and rewire;
17 Check to see if t has been reached;
18 Generate a path P by following T from target;
19 return P ;

with obstacles (lines 16-17). After a node is added to the tree,
the rewire subroutine is invoked (line 18).

V. C-SPACE RRT*
As another basis for comparison with other relevant ap-

proaches, a C-Space RRT* approach for the continuum arm
model under consideration was implemented. The C-Space
implementation follows to a large extent the description of
the W-Space RRT* implementation (i.e., in terms of steering,
goal-biasing, etc.), except that the tree growth occurs in the
C-Space (and hence, there is no need for the invocation of the
JCG method). Note that nodes in the tree T will still need to
be mapped to the W-Space to perform tasks such as obstacle
detection. Once a path to a target node in T is found, no
additional mapping is required as the corresponding sequence
of configurations can simply be outputted.

Although C-Space RRT/RRT* approaches are the standard
for many robotic models, there are model-specific challenges
that prevent a C-Space RRT* approach for the model under
consideration from generating a high-quality path as alluded
to in Sec. IV. Since path planning requires specifying a target
end-effector position, IK must be employed to generate the
corresponding configuration. While this behaves well in free
path planning, it becomes a serious issue in trajectory tracking.
In this task, the arm tip must stop a series of intermediate
points or stops to have the effect of “tracking.” To accomplish
this task, multiple invocations of IK are needed to generate
configurations corresponding to each of the stops. These invo-
cations are performed with random starting configurations as
chaining together IK invocations leads to the knotting problem

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2022

alluded to earlier. This leads to an uncoordinated movement
along the trajectory, resulting in poor-quality paths, as shown
by our simulation results in Sec. VI.

Some considerations are made to mitigate the above-
mentioned issues in the implementation. First, The cost
ζ(m,n) is updated so that, between two nodes m,n ∈ T , it is
defined as the Euclidean distance between their corresponding
configurations. Second, to address the issue of uncoordinated
movement along the trajectory, multiple (as opposed to one)
configurations corresponding to each intermediate trajectory
point were generated, and the best configuration (w.r.t. the
Euclidean distance from the previous point) is chosen.

VI. METHODOLOGY AND RESULTS

A. Other Approaches
We compare our W-Space RRT* to the Look-up Table and

the IK-based approaches introduced in [6] and [7], respec-
tively, as well as the C-Space RRT* approach described in
Sec. V. All these approaches were designed specifically for
the continuum arm model under consideration. We summarize
the approaches in [6], [7] briefly for the sake of comparison.

The approaches in [6], [7] are graph theoretic and rely on a
decomposition of the W-Space. The Look-up Table approach
works by first computing a discretization of the C-Space,
calculating the corresponding tip points, and then storing the
configurations and points in a look-up table. Next, the W-
Space is discretized into a grid of cubes, and a path is found
in the grid. Then, configurations are mapped to cubes if
the corresponding tip position falls inside the cube. Lastly,
a layered graph is constructed where each layer consists of
all of the configurations in one of the cubes in the path of
cubes. The paper in [7] introduced two IK-based approaches
that had very similar results; we only discuss/compare one of
them for the sake of brevity and refer to it as the Refined-IK
approach. The Refined-IK approach is similar to the Look-up
Table approach [6], but trades the look-up table for real-time
invocation of IK. A cube is “populated” with configurations
using repeated invocations of IK. Refined-IK specifically uses
the configurations from one cube as a starting point for
additional invocations of IK. Both approaches suffer from
runtime issues. The Look-up Table approach requires the
generation of an offline look-up table which, depending on
the density, can take more than 30 minutes to compute. The
Refined-IK approach, on the other hand, requires repeated calls
to IK, which requires substantial computation time.

B. Test Framework
We extend the continuum arm dynamic model developed

in [25] to model the inextensible continuum manipulator dy-
namics. The model was implemented on the Matlab Simulink
environment with jointspace PI controller for each DoF (pro-
portional gain, P = 7 and integral grain, I = 420). Here, the
dynamic model incorporates the PMA dynamics [26], where
input pressure controls the length variation of PMAs. Thus,
in the controller design, we employed joint value saturation
limits (0−6 bars to imitate the 6-bar input pressure limitation),
joint slew rate (from experimental data showing ±1 bar/sec),

and 25 ms delay to the sensor feedback loop. In order to
verify the quality of paths generated using our algorithm, we
use the dynamic simulations on the trajectories generated by
path planners to assess their quality. This simulator tracks
the arm under realistic dynamics. To judge the quality of a
path, we expand or compress the execution time of the path
until the dynamic simulator is able to track the arm with
less than 0.01 cm root mean squared error at the tip. If two
paths are otherwise identical, a shorter time would indicate
higher quality. The dynamic simulator requires that a time be
associated with every transition between configurations. We
employ the method discussed in [7] to compute the path times.
We refer to the time outputted by the dynamic simulator as
DynSim-time and use it to measure the quality of a path.

C. Comparison of Approaches
Each of the algorithms is evaluated using two categories

of tests. They will be evaluated by both their computation
time (the amount of time required to compute a solution)
and DynSim-time (the output of the dynamic simulator). In
some of these tests, the arm will start in a “resting” position.
The resting configuration or resting position corresponds to
the configuration (0, 0, 0, 0, 0, 0) where the arm has a neutral
shape and is not bent or rotated. The corresponding arm tip po-
sition is (0, 0, 0.45) m. Note that the feasible W-Space of our
robotic model is in the range of [−0.30, 0.30], [−0.30, 0.30],
[−0.10, 0.45] m for the x, y, and z coordinates, respectively

The first category of tests evaluates obstacle avoidance.
In these scenarios, the respective algorithms will be tasked
with finding a path from the initial resting configuration to
a point that is selected randomly for each scenario and is
within the feasible W-Space. In addition, spherical obstacles
will be placed randomly in the W-Space. We report the mean
computation time needed by each algorithm to produce a
solution to each of the trials. Additionally, the mean DynSim-
time and its variance σ2 are reported.

The second category of tests is for trajectory tracking.
A collection of challenging shapes are selected and then
represented as a trajectory in the W-Space. Each algorithm
was used to produce a path that traces the prescribed tra-
jectory. The computation time needed to produce a solution
will be recorded alongside the DynSim-time. Additionally,
given the randomness inherent to RRT*, the two RRT*-based
approaches will be run 100 times on on each trajectory. The
mean computation time and DynSim-time will be reported
alongside the variance σ2 of the DynSim-time. Throughout
the tables of results, we refer to the Look-up Table approach,
Refined-Ik approach, C-Space RRT* approach, and W-Space
RRT* approach as LT, REF-IK, C-RRT*, and W-RRT*, re-
spectively. The algorithms discussed above were implemented
and tested on a 64-bit Windows 10 PC using an Intel i7-9700K
8 core 3.60GHz CPU with 32 GB of RAM. The Look-up
Table and Refined-IK approaches are implemented following
the description in [7].

D. Category 1: Obstacle Avoidance
A group of 100 random trials was performed in which the

algorithms were tasked to produce a path from a random

MENG et al.: RRT*CONTINUUM 7

TABLE I
SUMMARY OF COMPUTATION TIME FOR OBSTACLE AVOIDANCE†

Approach DynSim-Time [s] σ2 Computation-time [s]
C-RRT* 40.98 441.53 607.8
W-RRT* 13.11 43.62 50.61

†For each approach, the mean DynSim-time, the corresponding variance σ2,
and the mean computation time for 100 random trials in seconds.

Fig. 3. A comparison of a trajectory produced by the W-Space RRT* (left)
and C-Space RRT* (right) for the obstacle avoidance task, respectively. The
target point is shown in purple.

starting configuration (chosen from within the feasible C-
Space) to a random target point (from within the feasible W-
Space). Obstacles were represented as spheres. Six spheres
of random radius [5, 12] were placed randomly in the W-
Space. Note that for the RRT*-based approaches, the amount
of random sampling dictated by ω is set at 10.

Table I shows the results from these trials. Note that both
approaches successfully produced a solution to each scenario.
The mean DynSim-time, the corresponding variance, and the
mean computation times are shown. Note that the W-Space
RRT* approach has much lower DynSim-times, indicating that
these paths are of higher quality. Additionally, the computation
time is lower for these cases. Though the C-Space RRT*
approach is capable of finding a solution, the undesired
ancillary movement introduced by the C-Space exploration
causes the quality to be much lower. Additionally, since this
ancillary movement can cause the path to be longer, the C-
Space RRT* trajectories take a longer amount of computation
time to produce.

An example is given in Fig. 3 of the W-Space and C-Space
RRT* approaches performing the obstacle avoidance task. The
path produced by the C-Space approach in this example is
nearly linear when plotted with respect to time. However,
this path, when mapped back to the W-Space, corresponds
to undesirable behavior that introduces a lot of unnecessary
movement. In fact, many C-Space RRT* simulation results
exhibited far worse behavior than the example reported above.

E. Category 2: Trajectory Tracking
We select a collection of “demonstrative” shapes that are

challenging for the arm to trace to demonstrate trajectory
tracking. These are circles, figure-8 shapes (the shape resem-
bling the infinity symbol), and cubes that have been rotated.
Versions that are both large and small are generated. For

TABLE II
SUMMARY OF DYNSIM-TIME RESULTS FOR SMALL SHAPES (ABOVE LINE)

AND LARGE SHAPES (BELOW LINE).†

Approach LT REF-IK C-RRT* σ2 W-RRT* σ2

Circle 13.8 11.0 39.60 1607 9.9 1.1
Figure-8 20.8 17.0 97.40 276.6 16.1 7.1
Rot Cube 110.1 86.5 516.35 4354.97 71.5 106.5
Circle Failure 57.71 191.70 1339 51.9 5.3
Figure 8 81.61 53.71 503.5 7.1e3 51.0 2.6
Rot Cube 245.34 116.78 941.5 1.8e4 118.3 295

†All numbers represent the DynSim-time in seconds. Variance is included
for the RRT* approaches.

TABLE III
SUMMARY OF COMPUTATION TIME RESULTS FOR SMALL SHAPES (ABOVE

LINE) AND LARGE SHAPES (BELOW LINE).†

Approach LT REF-IK C-RRT* W-RRT*
Circle 549.02 22450 27.31 14.26
Figure-8 255 22809 21.3 19.8
Rot Cube 2414 103914 126.6 98.3
Circle N/A 79286 171.95 180.6
Figure 8 218.47 52966 66.3 180.8
Rot Cube 923.03 83927 316.6 191.75

†All numbers represent computation time in seconds.

example, the “small circle” is located at z = 0.15 m and
has a radius of 0.1 m, whereas the “large circle” is located at
z = 0.25 m and has a radius of 0.345 m. These shapes are
passed as trajectories to each of the algorithms. Note that for
the RRT*-based approaches, the amount of random sampling
dictated by ω is set at 3.

Table II shows the DynSim-times for each of the approaches
on all of the shapes. Table III shows the computation times for
each of the methods for each of the shapes. The DynSim-times
and computation times for the two RRT*-based approaches
are averages after simulating each scenario 100 times. The
average DynSim-time is reported alongside the variance σ2.
The “Failure” in the table indicates that the Look-up Table
approach was not able to complete the task, as some of the
cubes did not have any configurations, and therefore a path
could not be produced. Fig. 4 shows a comparison between
the approaches tracking a rotated cube.

The Look-up Table, Refined-IK, and W-Space RRT* ap-
proaches have similar quality, though our proposed W-Space
RRT* approach has the best overall. However, the W-Space
RRT* approach substantially improves computation time over
the other two methods. The numbers highlighted in the table
for the small circle show that W-Space RRT* is a 95%
decrease in computation time over the next best result while
also having a 26% reduction in DynSim-time relative to Look-
up Table. Note also the inferior performance of the C-Space
RRT* approach. As discussed, the reorientation required from
this approach creates low-quality paths, which is reflected in
the DynSim-times. Additionally, the computation time is sur-
prisingly high for C-Space RRT*. This is due to the numerous
invocation of IK discussed in Sec. V. Though the C-Space
RRT* approach does have a better computation time than the
W-Space RRT* approach for the large circle, the difference in
DynSim-time between the two approaches is immense, with
the W-Space RRT* approach producing a much higher quality
path. Please see the associated video for examples of the four

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED MAY, 2022

Fig. 4. A comparison of a trajectory traced by the Look-up Table (top left),
the Refined-IK (top right), C-Space RRT* (bottom left), and W-Space RRT*
(bottom right).

approaches performing trajectory tracking.

VII. CONCLUSIONS
We introduced a W-Space version of RRT* that was able

to perform path planning for multisection continuum arms.
Our approach is based on a Jacobian-based projection method
of configuration generation to perform W-Space exploration.
We demonstrated the effectiveness of the proposed planner
in performing path planning tasks, including simple path
planning, path planning with obstacle avoidance, and trajectory
tracking. Additionally, we evaluated the paths generated via
the proposed planner using a dynamic simulator and verified
the quality of the trajectories generated in this manner. We
demonstrated that our approach is able to produce high-
quality paths with significantly less computation time than
other approaches. Future work will focus on further improving
the speed of RRT* through parallelization while extending it
to additional applications, such as dynamic obstacle avoidance,
anticipatory path planning, and/or multi-robot environments.

REFERENCES

[1] B. Jones and I. Walker, “Kinematics for multisection continuum robots,”
IEEE Transactions on Robotics, vol. 22, no. 1, pp. 43–55, 2006.

[2] E. S. Boy, E. Burdet, C. L. Teo, and J. E. Colgate, “The Learning
Cobot,” ser. ASME International Mechanical Engineering Congress and
Exposition, vol. Dynamic Systems and Control, 11 2002, pp. 867–873.
[Online]. Available: https://doi.org/10.1115/IMECE2002-33833

[3] S. Kolachalama and S. Lakshmanan, “Continuum robots for manipula-
tion applications: A survey,” Journal of Robotics, vol. 2020, pp. 1–19,
07 2020.

[4] I. S. Godage, G. Medrano-Cerda, D. Branson, E. Guglielmino, and
D. Caldwell, “Modal kinematics for multisection continuum arms,”
Bioinspiration & biomimetics, vol. 10, p. 035002, 06 2015.

[5] S. Neppalli, M. A. Csencsits, B. A. Jones, and I. D. Walker, “Closed-
form inverse kinematics for continuum manipulators,” Advanced
Robotics, vol. 23, no. 15, pp. 2077–2091, 2009. [Online]. Available:
https://doi.org/10.1163/016918609X12529299964101

[6] J. Deng, B. H. Meng, I. Kanj, and I. S. Godage, “Near-optimal smooth
path planning for multisection continuum arms,” in IEEE International
Conference on Soft Robotics (RoboSoft), 2019, pp. 416–421.

[7] B. H. Meng, I. S. Godage, and I. Kanj, “Smooth path planning for
continuum arms,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA), 2021, pp. 7809–7814.

[8] I. S. Godage, D. T. Branson, E. Guglielmino, and D. G. Caldwell, “Path
planning for multisection continuum arms,” in 2012 IEEE International
Conference on Mechatronics and Automation, 2012, pp. 1208–1213.

[9] J. Zhang, K. Lu, J. Yuan, J. di, and G. He, “Kinematics modeling and
motion planning of tendon driven continuum manipulators,” Journal of
Artificial Intelligence and Technology, vol. 1, 12 2020.

[10] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” in
Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C), vol. 1, 1999, pp. 473–479 vol.1.

[11] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The International Journal of Robotics Research,
vol. 30, pp. 846 – 894, 2011.

[12] X. Zhao, Z. Cao, W. Geng, Y. Yu, M. Tan, and X. Chen, “Path planning
of manipulator based on rrt-connect and bezier curve,” in 2019 IEEE 9th
Annual International Conference on CYBER Technology in Automation,
Control, and Intelligent Systems (CYBER), 2019, pp. 649–653.

[13] J. Xu, Z. Tian, W. He, and Y. Huang, “A fast path planning algorithm
fusing prm and p-bi-rrt,” in 2020 11th International Conference on
Prognostics and System Health Management (PHM-2020 Jinan), 2020,
pp. 503–508.

[14] M. Yu, J. Luo, M. Wang, and D. Gao, “Spline-rrt*: Coordinated motion
planning of dual-arm space robot,” vol. 53, 01 2020, pp. 9820–9825.

[15] Z. Wang, J. Chang, B. Li, C. Wang, and C. Liu, “Application of improved
rapidly-exploring random trees (rrt) algorithm for obstacle avoidance
of snake-like manipulator,” in 2020 IEEE International Conference on
Mechatronics and Automation (ICMA), 2020, pp. 490–495.

[16] Z. Chen, Y. Yang, X. Xu, and A. Rodic, “Path planning of redundant
series manipulators based on improved RRT algorithms,” in 2019 IEEE
International Conference on Robotics and Biomimetics (ROBIO), 2019,
pp. 553–557.

[17] M. Vande Weghe, D. Ferguson, and S. S. Srinivasa, “Randomized path
planning for redundant manipulators without inverse kinematics,” in
2007 7th IEEE-RAS International Conference on Humanoid Robots,
2007, pp. 477–482.

[18] C. Bergeles and P. E. Dupont, “Planning stable paths for concentric
tube robots,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2013, pp. 3077–3082.

[19] K. Wu, L. Wu, and H. Ren, “Motion planning of continuum tubular
robots based on centerlines extracted from statistical atlas,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2015, pp. 5512–5517.

[20] Z. Hawks, C. Frazelle, K. E. Green, and I. D. Walker, “Motion planning
for a continuum robotic mobile lamp: Defining and navigating the
configuration space,” in 2019 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2019, pp. 2559–2566.

[21] L. G. Torres, C. Baykal, and R. Alterovitz, “Interactive-rate motion plan-
ning for concentric tube robots,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA), 2014, pp. 1915–1921.

[22] A. Kuntz, A. W. Mahoney, N. E. Peckman, P. L. Anderson, F. Maldon-
ado, R. J. Webster, and R. Alterovitz, “Motion planning for continuum
reconfigurable incisionless surgical parallel robots,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2017, pp. 6463–6469.

[23] K. Leibrandt, C. Bergeles, and G.-Z. Yang, “Concentric tube robots:
Rapid, stable path-planning and guidance for surgical use,” IEEE
Robotics Automation Magazine, vol. 24, no. 2, pp. 42–53, 2017.

[24] J. Wan, J. Yao, L. Zhang, and H. Wu, “A weighted gradient projection
method for inverse kinematics of redundant manipulators considering
multiple performance criteria,” Strojniški vestnik - Journal of Mechanical
Engineering, vol. 64, no. 7-8, pp. 475–487, 2018.

[25] I. S. Godage, G. A. Medrano-Cerda, D. T. Branson, E. Guglielmino, and
D. G. Caldwell, “Dynamics for variable length multisection continuum
arms,” The International Journal of Robotics Research, vol. 35, no. 6,
pp. 695–722, 2016.

MENG et al.: RRT*CONTINUUM 9

[26] I. S. Godage, Y. Chen, and I. D. Walker, “Dynamic control of pneumatic
muscle actuators,” ArXiv, vol. abs/1811.04991, 2018.

