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Building and steering binned template fits with cabinetry
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Abstract. The cabinetry library provides a Python-based solution for build-
ing and steering binned template fits. It tightly integrates with the pythonic High
Energy Physics ecosystem, and in particular with pyhf for statistical inference.
cabinetry uses a declarative approach for building statistical models, with a
JSON schema describing possible configuration choices. Model building in-
structions can additionally be provided via custom code, which is automatically
executed when applicable at key steps of the workflow. The library implements
interfaces for performing maximum likelihood fitting, upper parameter limit de-
termination, and discovery significance calculation. cabinetry also provides
a range of utilities to study and disseminate fit results. These include visual-
izations of the fit model and data, visualizations of template histograms and fit
results, ranking of nuisance parameters by their impact, a goodness-of-fit cal-
culation, and likelihood scans. The library takes a modular approach, allowing
users to include some or all of its functionality in their workflow.

1 Introduction

Statistical inference in High Energy Physics (HEP) is frequently performed with template fits.
In the case of binned templates, the required probability density functions (pdfs) are obtained
from a structure of histograms. Models used at the Large Hadron Collider (LHC) can require
tens of thousands of histograms or more; those histograms describe nominal distributions as
well as systematic variations for observables in different phase space regions and for various
different processes. A popular and frequently used statistical model is HistFactory [1].
This model defines a prescription for constructing pdfs from a small set of building blocks.
The resulting pdfs are sufficiently general to cover a wide range of HEP use cases.

Each HistFactory model can be serialized to a so-called workspace. The workspace
defines the associated pdf, and HistFactory together with RooFit [2] can translate a
workspace into a pdf. The pyhf [3, 4] Python library implements a JSON version of the
HistFactory workspace, and can also convert that into the associated pdf. It furthermore
includes utilities to translate between the ROOT [5] and JSON versions of a workspace, which
contain identical information.

Unbinned models are also used in HEP, and libraries like RooFit handle both binned and
unbinned cases. The cabinetry [6] library described in this document deals with binned
template fits. Since the two types of models are made up of different building blocks, the
restriction to binned fits allows for a more targeted interface design and a restricted scope.
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General:
Measurement: "Example"
InputPath: "input/{SamplePaths}"
HistogramFolder: "histograms/"
POI: "Signal_norm"

Regions:
- Name: "Signal_region"
Filter: "nJets >= 8"
Variable: "jet_pt"
Binning: [200, 300, 400, 500]

Samples:

- Name: "Data"
SamplePaths: "data.root"
Tree: "events"

Data: True

- Name: "Signal"
SamplePaths: "signal.root"

Systematics:
- Name: "Luminosity"

Up:
Normalization: 0.05
Down:
Normalization: -0.05
Samples: ["Signal", "Background"]
Type: "Normalization"

Name: "ModelingVariation"
Up:

Tree: "events_up"

Weight: "weight_modeling"
Down:

Tree: "events_down"

Weight: "weight_modeling"
Smoothing:

Algorithm: "353QH, twice"
Samples: "Background"
Type: "NormPlusShape"

Tree: "events"
Weight: "weight_nominal" NormFactors:
- Name: "Signal_norm"
- Name: "Background" Samples: "Signal"
SamplePaths: "background.root" Nominal: 1
Tree: "events" Bounds: [0, 10]
Weight: "weight_nominal"

Listing 1: Example of a cabinetry configuration file.

The cabinetry library provides a Python-based solution for building HistFactory
models and steering statistical inference with them. A modular design allows users to benefit
from the functionality they need, without requiring them to fully commit to cabinetry for
every step in their statistical analysis. A workspace is like a cabinet: it organizes data in
many bins, similar to drawers in a cabinet. The construction of such workspace "cabinets" is
cabinetry and gives the library its name.

The HistFitter [7] package provides functionality for handling HistFactory models
similar to cabinetry. In contrast to HistFitter, cabinetry uses a declarative approach
for defining a fit model. While HistFitter is based on the ROOT ecosystem, cabinetry
uses the scientific Python ecosystem, and in particular makes heavy use of the Python imple-
mentation of the HistFactory model provided by pyhf.

2 A declarative configuration for model definition

The creation of statistical models with cabinetry is steered by a declarative configuration.
A configuration example, serialized to YAML, is shown in listing 1. The serialization to YAML
is chosen here for its increased readability. Users may equally provide configuration files in
JSON format, or directly use a Python dictionary. The configuration contains multiple blocks:

e General contains global settings. This includes a template for the path to data from which
histograms can be built, and the path to the folder in which histograms will be saved. The
parameter of interest (POI) is also defined here, it is required for a valid HistFactory
workspace.
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e Regions is a list of phase space regions (also referred to as channels in HistFactory).
A typical analysis contains multiple such regions, each with a unique name. The Filter
specifies the selection that is applied to the input. Histograms for each region are binned in
an observable that is provided alongside the binning to be used.

e Samples is a list of different processes expected to contribute to an analysis, as well as
the observed data. Each sample is identified by a unique name, and a flag is used to dif-
ferentiate observed data from other samples. The SamplePaths values are combined with
the InputPath setting of the General block to obtain the full path to a file. The default
implementation for building histograms in cabinetry reads data from ROOT files, and the
Tree value specifies the tree containing the events for a sample. Event weights used for
histogram filling are also listed here, and can differ between samples.

e Systematics contains a list of settings defining systematic uncertainties. Each systematic
uncertainty can be identified with a unique name, and acts on one or multiple samples.
Systematics with Normalization type only change the normalization of samples (result-
ing in a normsys modifier in the pyhf workspace). The NormPlusShape type implements
correlated normalization and shape effects (additionally creating a histosys modifier with
pyhf). Systematic variations that do not modify the shape of a distribution, like the lumi-
nosity uncertainty in the example, are fully specified without requiring the generation of
additional template histograms. Other systematic variations require the creation of template
histograms, which are called up and down variations. The HistFactory model specifies
how to interpolate between and extrapolate beyond these templates to provide a pdf for
any parameter value. When building histograms for these variations, the settings speci-
fied for the variations override the nominal settings (obtained from the respective Regions
and Samples blocks). It is possible to define additional modifications to apply to template
histograms for systematic variations, including symmetrization and smoothing.

e NormFactors is a list of normalization factors that scale the normalization of samples. A
normalization factor can be applied to one or multiple samples, and its nominal value and
boundaries (to be used when performing fits) can also be defined.

The structure of regions, samples and systematics defines all template histograms needed
to build a HistFactory statistical model from a cabinetry configuration. It minimizes
duplication of information to retain readability of configuration files for complex statisti-
cal models. While the example in listing 1 is shown in YAML format, the cabinetry con-
figuration does not make use of any features outside the JSON specification. The required
configuration structure is specified by a JSON schema, which allows for static validation of
configurations.

The configuration only contains the minimum information required for building a pyhf
workspace. It defines the statistical model, but not the inference steps to be performed with
the model. The cabinetry Python API and command line interface (CLI) are used instead to
steer statistical inference. This ensures a consistent user experience regardless of whether an
analyzer has built a workspace with cabinetry or obtained a workspace in another fashion.

3 Workspace building

Workspaces are built with cabinetry in three steps:
e template histograms are created from columnar data,
e optional post-processing such as smoothing is applied to templates,

o the templates are assembled into a HistFactory workspace.
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cabinetry parses a configuration to determine which template histograms are required,
and simultaneously generates instructions for constructing each template from columnar data.
The instructions are carried out by a backend, which receives histogram building instructions
and returns a histogram. The default backend implementation makes use of uproot [§]
and boost-histogram [9] to create histograms from columnar data provided in ROOT for-
mat. The boost-histogram library is a core dependency of cabinetry alongside Awkward
Array [10]. In contrast to this, uproot is an optional dependency: it is only required when
using cabinetry to create histograms with the uproot backend. A coffea [11] backend is
being developed at the time of writing this document, and a further expansion of backends is
planned in the future.

An optional post-processing step can be performed next. This step produces new ver-
sions of template histograms from the histograms produced in the previous step. An example
operation to apply is template smoothing; this can be useful to avoid spurious constraints
originating from templates generated from a small number of simulated events and therefore
subject to large statistical fluctuations.

With all required templates produced, cabinetry constructs a HistFactory workspace,
which can be serialized to JSON (and optionally converted to ROOT format via pyhf). The
workspace combines information from the template histograms produced in the previous
steps and the cabinetry configuration.

4 Inference with cabinetry

cabinetry provides a range of utilities to study fit models and perform statistical inference.
This functionality can be used with any HistFactory workspace, regardless of whether it
was built with cabinetry, as described in section 3, or provided another way. No cabinetry
configuration is required for the following features either, since all relevant information is
included in the workspace or provided via the Python API or CLL

Beyond maximum likelihood fits, cabinetry includes interfaces for the following:

o discovery significance calculation for positive signals,
e calculation of observed and expected upper parameter limits,

e likelihood scans, where maximum likelihood fits are performed with one parameter held
fixed at various values within an interval,

¢ ranking of nuisance parameters by their impact on the POL

Figure 1 shows two examples of visualizations available for the results of maximum like-
lihood fits. The left part of the figure shows the best-fit results 6+ A@ for nuisance parameters.
Their nominal parameter values 8y = 0 are specified by the HistFactory model. The right
part of the figure visualizes correlations between parameters. In this example, parameters are
only included in the figure if the magnitude of their correlation with any other parameter is at
least 20%.

Figure 2 (left) shows an example of a visualization of a model and its associated uncertain-
ties after being fit to data. This figure requires some metadata not present in the HistFactory
workspace; neither bin edges nor the name of the observable are stored. cabinetry falls
back to default values when producing such a figure, but the corresponding metadata for bin
edges and the horizontal axis label can also be provided. This can be useful to visualize the
contents of unknown workspaces. Figure 2 (right) shows a likelihood scan performed with
cabinetry. The likelihood offset in each fit compared to the global maximum likelihood is
visualized and compared to a Gaussian approximation taken from the covariance matrix at
the global minimum.
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Figure 1. Visualizations for the result of a maximum likelihood fit: best-fit results for nuisance pa-
rameters (left) and correlations between parameters (right). A toy model is used for demonstration

purposes.
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Figure 2. Model predictions and associated uncertainties after a fit to data (left), results of a likelihood
scan (right). A toy model is used for demonstration purposes.

Figure 3 (left) visualizes both observed and expected CLg [12] values as a function of
the POI. The POI value at which the CLs = 5% crossing happens is determined with Brent
bracketing [13]. Figure 3 (right) shows nuisance parameters ranked by their impact on the
POI. The impact of a nuisance parameter 6 is defined as the shift in POI value between
different fits. It is given by the difference between the nominal maximum likelihood estimate
of the POI, and the POI values in fits where the nuisance parameter 6 is held fixed at values
6 + AP (pre-fit impact in up and down directions) and & + A8 (post-fit impact in up and down
directions).

5 Python APl and command line interface

Interactions with cabinetry happen through a Python API or a CLI. An example of us-
ing cabinetry via the Python API is shown in listing 2. The configuration steers the first
three steps required to build a workspace as described in section 3. Template histograms
are generated for the model specified in a configuration. Following a post-processing step, a
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Figure 3. Brent bracketing to determine 95% confidence level upper parameter limits (left), nuisance
parameters ranked by their impact on the POI (right). A toy model is used for demonstration purposes.

import cabinetry
config = cabinetry.configuration.load("config.yml")

# create template histograms
cabinetry.template_builder.create_histograms(config, method="uproot™)

# perform histogram post-processing
cabinetry.template_postprocessor.run(config)

# build a workspace
ws = cabinetry.workspace.build(config)

# fit for maximum likelihood estimate
model, data = cabinetry.model_utils.model_and_data(ws)
fit_results = cabinetry.fit.fit(model, data)

# visualize pulls and correlation matrix
cabinetry.visualize.pulls(fit_results)
cabinetry.visualize.correlation_matrix(fit_results, pruning_threshold=0.1)

# visualize the post-fit model prediction and data
cabinetry.visualize.data_MC(model, data, fit_results=fit_results)

Listing 2: Example of using cabinetry to build a workspace, perform a maximum likeli-
hood fit and visualize the results.

HistFactory workspace is built. The workspace defines the pdf (called model here) and the
data that this model is fit to. cabinetry stores the results of statistical inference, such as the
maximum likelihood fit performed in this example, in lightweight containers. The example
concludes with a visualization of fit results and of the model prediction after the fit to data,
resulting in figures like figure 1 and figure 2 (left).

The CLI provides access to core functionality of cabinetry with more limited control.
Its immediacy allows for quick exploration of unknown workspaces. The example in list-
ing 3 uses cabinetry to perform steps similar to listing 2: creation of template histograms,
generation of a workspace after histogram post-processing, maximum likelihood fit with vi-
sualization of fit results.
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cabinetry templates config.yml

cabinetry postprocess config.yml

cabinetry workspace config.yml workspace.json
cabinetry fit --pulls --corrmat workspace.json

R I N

Listing 3: Example of building a workspace and performing a maximum likelihood fit with
the cabinetry CLI.

import boost_histogram as bh
import cabinetry
import numpy as np

my_router = cabinetry.route.Router()

# define a custom template builder function that is executed for data samples
@my_router.register_template_builder(sample_name="Data")
def build_data_hist(
region: dict, sample: dict, systematic: dict, template: str
) -> bh.Histogram:
hist = bh.Histogram(
bh.axis.Variable(region["Binning"], underflow=False, overflow=False),
storage=bh.storage.Weight(),
)
yields = np.asarray([17, 12, 25, 20])
variance = np.asarray([1.5, 1.2, 1.8, 1.6])
hist[...] = np.stack([yields, variance], axis=-1)
return hist

config = cabinetry.configuration.load("config.yml")
cabinetry.template_builder.create_histograms(config, router=my_router)

Listing 4: Example of a custom function providing a histogram to cabinetry.

6 Beyond declarative specification

While the declarative configuration approach used by cabinetry to specify template build-
ing instructions is meant to support a wide range of use cases, additional flexibility may
sometimes be required. The limitations of the declarative approach can be circumvented via
a mechanism that allows execution of custom code provided to cabinetry. Users can write
functions that receive dictionaries containing the information about the template being pro-
cessed, and then register them to cabinetry via a decorator. cabinetry will call these
functions for all templates that match the pattern in the provided decorator. An arbitrary
amount of these custom functions can be supplied in this fashion, and they can be executed
for different phase space regions, samples, or systematic variations. When no user-provided
function is available for a given template histogram, cabinetry falls back to its default im-
plementation of sending the template building instructions to a backend for execution.

An example of the mechanism is shown in listing 4. The custom function is executed for
data samples with appropriate sample name and returns a histogram. More complex func-
tionality can be implemented by using the information provided via the function arguments.



EPJ Web of Conferences 251, 03067 (2021) https://doi.org/10.1051/epjcont/202125103067
CHEP 2021

7 Future directions

The version of cabinetry described in this document delivers workspaces in HistFactory
format. A single parameter is varied up and down within its uncertainty from an auxiliary
measurement to obtain the HistFactory template histograms used to interpolate and extrap-
olate systematic uncertainties.

One goal of future versions of cabinetry is to support a wider range of interpolations be-
tween template histograms. The most general case for this are template histograms obtained
when varying an arbitrary set of nuisance parameters by an arbitrary amount. A second goal
is to make model construction with cabinetry differentiable. The neos [14] project demon-
strates how automatic differentiation through multiple steps in a HEP workflow can be used
to optimize the sensitivity of an analysis via gradient descent. Improvements to the visual-
ization API of cabinetry are a short term goal, aiming to allow users to further customize
figures and enable the use of mplhep [15] for styling.

8 Conclusion

cabinetry is a Python library for building and steering binned template fits. It makes use of
the scientific Python ecosystem, and in particular of pyhf, to deliver its functionality. Statis-
tical models are defined in a declarative manner, but cabinetry allows breaking out of the
declarative system to implement custom functionality when needed. A Python API and a CLI
can be used to steer model building and statistical inference. cabinetry implements many
frequently used calculations and diagnostics to study and disseminate fit results. The included
visualization tools can be used to both quickly learn more about unknown workspaces, and
to study complex fits in detail. With its modular design, analyzers are free to choose whether
they only want to use a subset of the features provided by cabinetry, or make use of the full
library.

This work was supported by the U.S. National Science Foundation (NSF) Cooperative Agreement
OAC-1836650 (IRIS-HEP).
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