
Reframing Jet Physics with New Computational Methods

Kyle Cranmer1, Matthew Drnevich1, Sebastian Macaluso1,∗, and Duccio Pappadopulo
1New York University

Abstract. We reframe common tasks in jet physics in probabilistic terms, in-
cluding jet reconstruction, Monte Carlo tuning, matrix element – parton shower
matching for large jet multiplicity, and efficient event generation of jets in com-
plex, signal-like regions of phase space. We also introduce Ginkgo, a simplified,
generative model for jets, that facilitates research into these tasks with tech-
niques from statistics, machine learning, and combinatorial optimization. We
also review some of the recent research in this direction that has been enabled
with Ginkgo. We show how probabilistic programming can be used to efficiently
sample the showering process, how a novel trellis algorithm can be used to
efficiently marginalize over the enormous number of clustering histories for the
same observed particles, and how the dynamic programming and reinforcement
learning can be used to find the maximum likelihood clusterinng in this enor-
mous search space. This work builds bridges with work in hierarchical clustering,
statistics, combinatorial optmization, and reinforcement learning.

1 Introduction
Jets are the most copiously produced objects at physics colliders, such as the Large Hadron
Collider (LHC) or the Relativistic Heavy Ion Collider (RHIC), and the subject of intense
experimental and theoretical study. Improvements to our understanding and treatment of
jets can have significant impact on the physics program of the LHC and RHIC, as well as
future colliders; however, various computational bottlenecks appear in this quest. Below we
will discuss a few areas where such computational bottlenecks appear and identify emerging
computational techniques that may be able to address them. We hope that this may challenge
some assumptions about the computational demands of simulation, reconstruction, and analysis
of collider physics data when jets are involved.

1.1 Reframing jet physics in probabilistic terms
Monte Carlo event generators (e.g. simulators like PYTHIA [1], Herwig [2], and Sherpa
[3]) encode a physics model for the fragmentation and hadronization of quarks and gluons
produced at colliders. In statistical and machine learning language, they are generative models
for jets. Following the notation of Ref. [4, 5], we denote the parameters of the (Monte Carlo)
simulation θ, the observable output of the simulator x, and latent variables (aka Monte Carlo
truth record or showering history) z. The simulators typically evolve the latent state sequentially
as a Markov process and model the physics of each splitting, clustering, etc. In the original
parton showers based on successive 1 → 2 splittings, the joint likelihood for the parton shower
can be expressed as:

p(x, z|θ) = p(x|zleaves)
∏

s∈splittings
p(zs,L, zs,R|zs,P) , (1)

∗e-mail: seb.macaluso@nyu.edu

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 251, 03059 (2021) https://doi.org/10.1051/epjconf/202125103059
CHEP 2021



where zs,P, zs,L, and zs,R, and are respectively the data needed to encode the state of the parent
and left and right children for the sth splitting and zleaves are the terminal leaves of the showering
process. The hadronization and detector simulation fit in this framing as well, but we do not
discuss it explicitly in this work.

We find it elucidating to reframe the following concepts in jet physics in probabilistic
terms:

• Joint likelihood for latent shower and observed constituents p(x, z|θ)
• Marginal likelihood for observed constituents p(x|θ) =

∫
dz p(x, z|θ)

• Maximum likelihood showering history ẑ = argmaxz p(x|z, θ)
• Maximum likelihood parameters for the model θ̂ = argmaxθ p(x|θ) = argmaxθ

∫
dz p(x, z|θ)

• Posterior distribution on showering histories p(z|x, θ)
A few challenges present themselves in this framing of jet physics.

First of all, the joint likelihood p(x, z|θ) and the likelihood of individual splittings
p(zs,L, zs,R|zs,P) is not exposed in a way that is convient to access. The joint likelihood corre-
sponds to what is coded in PYTHIA [1], Herwig [2], and Sherpa [3], but often in terms of
accept-reject sampling and procedural code that does not explicitly expose the probabilities
themselves. This motivates Ginkgo, which provides convenient access to these quantities in a
simplified parton shower.

Secondly, the joint likelihood p(x, z|θ) is not immediately of interest to experimentalists
since the (latent) showering history z is not observed. Quantities such as the marginal likleihood
p(x|θ) and the maximum likelihood parameter θ̂ involve integration (sums) over all possible
showering histories. The number of possible showering histories grows factorially with the
number of jet constituents. This super-exponential growth in the number of showering histories
is at the heart of many computational bottlenecks in jet physics, making the marginalization
and maximization over the latent space z of showering histories typically intractable.

Next we will review some common tasks in jet physics framed in these probabilistic terms.
We will identify the computational challenges and the potential for emerging computational
techniques to address them. In Section2 we will describe Ginkgo’s simplified probabilistic
model for the parton shower. Finally, we will review some of the recent research into these
problems enabled with Ginkgo.

1.1.1 Jet clustering

Jet reconstruction can be thought of as estimating the latent state (showering history) z from
the observed particles x. Traditionally, given a set of final state particles, jets are reconstructed
using one of the generalized kt clustering algorithms [6–9]. These algorithms sequentially
cluster jet constituents by merging the closest pair based on the distance measure dαi j,

dαi j = min(p2αti , p
2α
t j )

∆R2
i j

R2 (2)

where ∆Ri j is the angular distance for the pair 〈i, j〉, R is a fixed value for the jet radius and
α = {−1, 0, 1} specifies the anti-kt, Cambridge/Aachen (C/A) and kt algorithms respectively.
This traditional approach doesn’t make explicit reference to the probability model for the
jet, but intuitively the kt and C/A algorithms cluster together two constituents that are likely
to have emerged from the same parent. 1 We can formulate the intuition for the kt and C/A
algorithms as saying that the distance measure dαi, j is monotonically decreasing with the
splitting likelihood p(zs,L, zs,R|zs,P).

1In contrast, the anti-kt algorithm focuses more on having desirable global properties for the jets than reconstructing
a physically motivated showering history.

2

EPJ Web of Conferences 251, 03059 (2021) https://doi.org/10.1051/epjconf/202125103059
CHEP 2021



where zs,P, zs,L, and zs,R, and are respectively the data needed to encode the state of the parent
and left and right children for the sth splitting and zleaves are the terminal leaves of the showering
process. The hadronization and detector simulation fit in this framing as well, but we do not
discuss it explicitly in this work.

We find it elucidating to reframe the following concepts in jet physics in probabilistic
terms:

• Joint likelihood for latent shower and observed constituents p(x, z|θ)
• Marginal likelihood for observed constituents p(x|θ) =

∫
dz p(x, z|θ)

• Maximum likelihood showering history ẑ = argmaxz p(x|z, θ)
• Maximum likelihood parameters for the model θ̂ = argmaxθ p(x|θ) = argmaxθ

∫
dz p(x, z|θ)

• Posterior distribution on showering histories p(z|x, θ)
A few challenges present themselves in this framing of jet physics.

First of all, the joint likelihood p(x, z|θ) and the likelihood of individual splittings
p(zs,L, zs,R|zs,P) is not exposed in a way that is convient to access. The joint likelihood corre-
sponds to what is coded in PYTHIA [1], Herwig [2], and Sherpa [3], but often in terms of
accept-reject sampling and procedural code that does not explicitly expose the probabilities
themselves. This motivates Ginkgo, which provides convenient access to these quantities in a
simplified parton shower.

Secondly, the joint likelihood p(x, z|θ) is not immediately of interest to experimentalists
since the (latent) showering history z is not observed. Quantities such as the marginal likleihood
p(x|θ) and the maximum likelihood parameter θ̂ involve integration (sums) over all possible
showering histories. The number of possible showering histories grows factorially with the
number of jet constituents. This super-exponential growth in the number of showering histories
is at the heart of many computational bottlenecks in jet physics, making the marginalization
and maximization over the latent space z of showering histories typically intractable.

Next we will review some common tasks in jet physics framed in these probabilistic terms.
We will identify the computational challenges and the potential for emerging computational
techniques to address them. In Section2 we will describe Ginkgo’s simplified probabilistic
model for the parton shower. Finally, we will review some of the recent research into these
problems enabled with Ginkgo.

1.1.1 Jet clustering

Jet reconstruction can be thought of as estimating the latent state (showering history) z from
the observed particles x. Traditionally, given a set of final state particles, jets are reconstructed
using one of the generalized kt clustering algorithms [6–9]. These algorithms sequentially
cluster jet constituents by merging the closest pair based on the distance measure dαi j,

dαi j = min(p2αti , p
2α
t j )

∆R2
i j

R2 (2)

where ∆Ri j is the angular distance for the pair 〈i, j〉, R is a fixed value for the jet radius and
α = {−1, 0, 1} specifies the anti-kt, Cambridge/Aachen (C/A) and kt algorithms respectively.
This traditional approach doesn’t make explicit reference to the probability model for the
jet, but intuitively the kt and C/A algorithms cluster together two constituents that are likely
to have emerged from the same parent. 1 We can formulate the intuition for the kt and C/A
algorithms as saying that the distance measure dαi, j is monotonically decreasing with the
splitting likelihood p(zs,L, zs,R|zs,P).

1In contrast, the anti-kt algorithm focuses more on having desirable global properties for the jets than reconstructing
a physically motivated showering history.

Figure 1. Schematic representation of the tree struc-
ture of a jet generated with Ginkgo and the resulting
tree for some clustering algorithm. For a given algo-
rithm, z labels the different variables that determine
the latent structure of the tree. The tree leaves x are
labeled in red and the inner nodes in green.

In the probabilistic language, the natural goal is to find the most likely clustering ẑ. In that
light, the generalized-kt algorithms are greedy algorithms for finding the maximum likelihood
clustering. Greedy algorithms aren’t guaranteed to find the maximum likelihood clustering
because they don’t consider the tree globally. More sophisticated algorithms like beam search,
which are used widely in natural language processing, look more than one step ahead and
consider multiple possible clusterings in memory as they proceed. They are guaranteed to
recover jet clusterings that are at least as good as the greedy algorithm, and can be expected
to improve upon them. But to do this, one needs a way to score the combination of multiple
clusterings. It’s not clear how one would combine the distance measure dαi, j for two splittings,
but there is an natural rule for combining the splitting likelihood p(zs,L, zs,R|zs,P) (i.e. their
product). This is one of the advantages of the probabilistic formulation: it allows us to recast
the objective of greedy clustering algorithms like kt and extend them to more sophisticated
algorithms.

Jet clustering can also be framed as a hierarchical clustering task. In that framing, the
generalized-kt algorithms are considered (bottom-up) hierarchical agglomerative clustering
(HAC) algorithms.

Later we will review the research in jet clustering enabled by Ginkgo including a novel
trellis data structure and dynamic programming model, a novel A∗ search algorithm that makes
use of the trellis data structure and an admissible heuristic, and a few reinforcement learning
algorithms including Monte Carlo Tree Search and Behavioral Cloning.

1.1.2 Tuning the parameters of the shower model

Monte Carlo tuning can be thought of as estimating θ given a dataset of {xi}. Ideally, if we
wanted to fit (tune) the parameters θ of PYTHIA [1], Herwig [2], or Sherpa [3] (and we had
infinite computing power), then we would compute the maximum likelihood θ̂ based on the
high dimensional jet data x. Since we do not, we resort to tools like Professor [10], which
compare projections of complicated events to individual variables (marginal distributions),
which is blind to various forms of mismodelling in the high-dimensional structure of the jets.
The marginalizaton over the latent space is implicit when forming the histograms of these
individual differential distributions. The fact that tuning the generators is itself a bottleneck
suppresses the motivation to add even more flexibility and parameters to the shower models,
even if they might lead to more accurate description of the jets.

The first emerging technique in this direction is likelihood-free inference or simulation-
based inference [4, 11, 12]. Recent progress in this direction includes likelihood-free inference
methods [4, 5, 11, 12]. These methods approximate the intractable p(x|θ) using machine
learning and bypass an explicit marginalization over the latent state z. The techniques can
exploit the joint likelihood p(x, z|θ) if it is available. An implementation of these techniques
for events simulated with Pythia was introduced in Refs. [13]. A closely related approach was
outlined in Ref. [14]

An alternate approach to this problem would be to use probabilistic programming tech-
niques to efficiently approximate the intractable integrals. The first prototypes of integrating
probabilistic programming with the Monte Carlo generators (specifically Sherpa) was per-
formed in Refs. [15, 16]

3

EPJ Web of Conferences 251, 03059 (2021) https://doi.org/10.1051/epjconf/202125103059
CHEP 2021



1.1.3 Event Generation for events with large jet multiplicity

The enormous number of possible showering histories is a bottleneck in the simulation of
multijets events [17, 18] and shower deconstruction [19–21]. When implementing the CKKW-
L matching algorithm [17, 18], parton final states need to be reweighted with the corresponding
Sudakov form factors of each history, p(x, z|θ). The standard algorithm typically becomes
infeasible for parton level configurations that exceed the complexity of W/Z+ 6 jet final state
[22] due to the super-exponential growth in the number of clustering histories.

To ameliorate these bottlenecks we introduced in [23], a novel data structure and algorithms,
called hierarchical cluster trellis, that can be used to efficiently represent the distribution over
trees. The trellis can be used to compute the marginal likelihood p(x|θ) or the exact maximum
likelihood showering history ẑ in time and memory proportional to the significantly smaller
powerset of the number of jet constituents, i.e. 2N . In particular, we showed that the trellis
allows us to perform these operations for larger values of N where the naive iteration over the
(2N − 3)!! trees is impractical. Thus far the implementation is based on binary trees, 1 → 2
splittings; however, it is possible to extend the cluster trellis to consider 2 → 3 splittings
required in the CKKW-L algorithm.

The trellis data structure also provides an efficient dynamic programming algorithm to
find the maximum likelihood shower history ẑ, which provides a principled alternative to the
generalized kt algorithms, which are based on a greedy sequential clustering algorithm as
described in Sec. 1.1.1.

1.1.4 Simulating jet backgrounds in signal-rich regions of phase space

Simulating sufficient numbers of multijet background events is a computational challenge due
to the enormous rate of multijet events and their steeply falling spectra. The experimental
collaborations have traditionally sliced the phase space into exclusive regions (eg. based on the
pT of the leading jet at parton level). This is an effective strategy for populating the tails of that
distribution, but it is not effective for populating complicated phase space regions (eg. QCD
events that satisfy the cut on a boosted top-tagger). Generating enough background Monte
Carlo events in these signal-like regions of phase space is one of the computational challenges
for the LHC and HL-LHC.

Denote passing an event selection cut with the indicator function 1(x). In our probabilistic
language, we are interested in efficiently sampling the showering histories z ∼ p(z|1(x), θ) so
that we do not waste computing resources on the expensive detector simulation for events
that won’t satisfy the cuts. When the phase space regions are not aligned with parton level
quantities, then we must perform importance sampling in the parton shower itself, and the
ideal importance distribution would be the unfolded p(z|1(x), θ), which is difficult to estimate
when working with cuts based on complicated jet observables.

Recent developments in probabilistic programming systems offer a potential way to address
these challenges. Probabilistic programming systems provide tools for inferring the latent state
of a simulator based on some observations (e.g., p(z|x, θ)), and they use the simulator directly
during inference. As mentioned above, the pyprob probabilistic programming system was
integrated with the Sherpa event generator via the ppx protocol [15, 16]. By instrumenting
Sherpa with ppx, the pyprob system is able to bias the control flow of the event generator to
perform advanced forms of importance sampling. In Refs. [15, 16] a large recurrent neural
network learned an efficient importance sampling distribution q(z|x); however, the target was τ
lepton decay instead of jet physics. More recently, we have instrumented our Ginkgo generator
with pyprob, which we will describe below.

4

EPJ Web of Conferences 251, 03059 (2021) https://doi.org/10.1051/epjconf/202125103059
CHEP 2021



1.1.3 Event Generation for events with large jet multiplicity

The enormous number of possible showering histories is a bottleneck in the simulation of
multijets events [17, 18] and shower deconstruction [19–21]. When implementing the CKKW-
L matching algorithm [17, 18], parton final states need to be reweighted with the corresponding
Sudakov form factors of each history, p(x, z|θ). The standard algorithm typically becomes
infeasible for parton level configurations that exceed the complexity of W/Z+ 6 jet final state
[22] due to the super-exponential growth in the number of clustering histories.

To ameliorate these bottlenecks we introduced in [23], a novel data structure and algorithms,
called hierarchical cluster trellis, that can be used to efficiently represent the distribution over
trees. The trellis can be used to compute the marginal likelihood p(x|θ) or the exact maximum
likelihood showering history ẑ in time and memory proportional to the significantly smaller
powerset of the number of jet constituents, i.e. 2N . In particular, we showed that the trellis
allows us to perform these operations for larger values of N where the naive iteration over the
(2N − 3)!! trees is impractical. Thus far the implementation is based on binary trees, 1 → 2
splittings; however, it is possible to extend the cluster trellis to consider 2 → 3 splittings
required in the CKKW-L algorithm.

The trellis data structure also provides an efficient dynamic programming algorithm to
find the maximum likelihood shower history ẑ, which provides a principled alternative to the
generalized kt algorithms, which are based on a greedy sequential clustering algorithm as
described in Sec. 1.1.1.

1.1.4 Simulating jet backgrounds in signal-rich regions of phase space

Simulating sufficient numbers of multijet background events is a computational challenge due
to the enormous rate of multijet events and their steeply falling spectra. The experimental
collaborations have traditionally sliced the phase space into exclusive regions (eg. based on the
pT of the leading jet at parton level). This is an effective strategy for populating the tails of that
distribution, but it is not effective for populating complicated phase space regions (eg. QCD
events that satisfy the cut on a boosted top-tagger). Generating enough background Monte
Carlo events in these signal-like regions of phase space is one of the computational challenges
for the LHC and HL-LHC.

Denote passing an event selection cut with the indicator function 1(x). In our probabilistic
language, we are interested in efficiently sampling the showering histories z ∼ p(z|1(x), θ) so
that we do not waste computing resources on the expensive detector simulation for events
that won’t satisfy the cuts. When the phase space regions are not aligned with parton level
quantities, then we must perform importance sampling in the parton shower itself, and the
ideal importance distribution would be the unfolded p(z|1(x), θ), which is difficult to estimate
when working with cuts based on complicated jet observables.

Recent developments in probabilistic programming systems offer a potential way to address
these challenges. Probabilistic programming systems provide tools for inferring the latent state
of a simulator based on some observations (e.g., p(z|x, θ)), and they use the simulator directly
during inference. As mentioned above, the pyprob probabilistic programming system was
integrated with the Sherpa event generator via the ppx protocol [15, 16]. By instrumenting
Sherpa with ppx, the pyprob system is able to bias the control flow of the event generator to
perform advanced forms of importance sampling. In Refs. [15, 16] a large recurrent neural
network learned an efficient importance sampling distribution q(z|x); however, the target was τ
lepton decay instead of jet physics. More recently, we have instrumented our Ginkgo generator
with pyprob, which we will describe below.

2 Ginkgo: A simplified generative model for jets

At present, it is very hard to access the joint likelihood in state-of-the-art parton shower
generators in full physics simulations, e.g. PYTHIA [1], Herwig [2], and Sherpa [3]. Also,
typical implementations of parton showers involve sampling procedures that destroy the
analytic control of the joint likelihood. Thus, to aid in machine learning research for jet
physics, a python package for a toy generative model of a parton shower, called Ginkgo, was
introduced in [24]. Ginkgo has a tractable joint likelihood, and is as simple and easy to describe
as possible but at the same time captures essential ingredients of parton shower generators in
full physics simulations. It also ensures permutation invariance and momentum conservation.
Ginkgo was designed to enable implementations of probabilistic programming, differentiable
programming, dynamic programming and variational inference. Within the analogy between
jets and NLP, Ginkgo can be thought of as ground-truth parse trees with a known language
model.

Ginkgo implements a recursive algorithm to generate a binary tree, where each node is
represented by an energy-momentum vector and the leaves are the jet constituents. We want
our model to represent the following features:

• Momentum conservation: the total momentum of the jet (root of the tree) is obtained from
adding the momentum of all of its constituents.

• Running of the splitting scale: each splitting is characterized by a scale t that decreases
when evolving down the tree from root to leaves (t is the invariant squared mass, t = m2).

We also want our model to lead to a natural analogue of the generalized kt clustering
algorithms [6–9] for the generated jets. These algorithms are characterized by

• Permutation invariance: the jet momentum should be invariant with respect to the order in
which we cluster its constituents.

• Distance measure: the angular separation between two jet constituents is typically used
as a distance measure among them. In particular, traditional jet clustering algorithms are
based on a measure given by di j ∝ ∆R2

i j where ∆Ri j is the angular separation between two
particles.

We build our model as follows. During the generative process, starting from the root of
the tree, each parent node is split, generating a left (L) and a right (R) child. At each splitting
we sample squared invariant masses for the children, tL, tR from a decaying exponential. We
require the constraint

√
tL +

√
tR <

√
tP, where

√
tP is the parent mass. Then we implement

a 2-body decay in the parent center-of-mass frame. The children direction is obtained by
uniformly sampling a unit vector on the 2-sphere (in the parent center-of-mass frame the
children move in opposite directions). Finally, we apply a Lorentz boost to the lab frame,
to obtain the 4 dimensional vector pµ = (E, px, py, pz) that characterizes each node. This
prescription ensures momentum conservation and permutation invariance.

2.1 The generative process

The generative process depends on the following input parameters:

• pµ0: four-momentum of the jet (input value for the root node of the tree).
• t0: initial squared mass.
• tcut: cut-off squared mass to stop the showering process.
• λ: decaying rate for the exponential distribution.

Next, we describe the splitting of a node as follows:

5

EPJ Web of Conferences 251, 03059 (2021) https://doi.org/10.1051/epjconf/202125103059
CHEP 2021



1. Draw tL and tR from an exponential distribution as follows,

tL ∼ f (t|λ, tP) =
1

1 − e−λ
λ

tP
e−

λ
tP
t (3)

tR ∼ f (t|λ, tP, tL) =
1

1 − e−λ
λ

(
√
tP −

√
tL)2

e
− λ

(
√
tP−

√
tL )2

t
(4)

and define mL =
√
tL and mR =

√
tR. We apply a veto on sampled values where tL � tP

and tR � (
√
tP −

√
tL)2. For inference, given two particles, we assign tL → max{tL, tR}

and tR → min{tL, tR}.
2. Compute a 2-body decay in the parent rest frame.
3. Apply a Lorentz boost to each of the children, with γ =

Ep√
tP
and γβ = |�pp|/

√
tP.

4. If tL (tR) is greater than tcut repeat the process.

The algorithm is outlined in Algorithm 1. After running, the final binary tree for the jet is
obtained.

Algorithm 1: Toy Parton Shower Generator
1 function NodeProcessing (pµp, tP, tcut, λ, tree)
Input :parent momentum �pp, parent mass squared tp, cut-off mass squared tcut, rate

for the exponential distribution λ, binary tree tree
2 Add parent node to tree.
3 if tp > tcut then
4 Sample tL and tR from the decaying exponential distribution.
5 Sample a unit vector from a uniform distribution over the 2-sphere.
6 Compute the 2-body decay of the parent node in the parent rest frame.
7 Apply a Lorentz boost to the lab frame to each child.
8 NodeProcessing (pµp, tL, tcut, λ, tree)
9 NodeProcessing (pµp, tR, tcut, λ, tree)

2.2 Reconstruction: The Likelihood for a Proposed Jet Clustering

In addition to the generative model described above, which is used for generating data with
Monte Carlo, we also need to be able to assign a likelihood value to a proposed jet clustering. To
do this we use the same general form for the jet’s likelihood based on a product of likelihoods
over each splitting as in Eq. 1. In order to evaluate this we need to first reconstruct the parent
from the left and right children. Then we use the same equations described above (Eq. 3 and
4) for the splitting probabilities that are used in the generative model. The Ginkgo library
provides functions to evaluate the joint likelihood p(x, z|λ, tcut) of any proposed hierarchical
clustering of the observed final state particles.

2.3 Greedy and beam search algorithms

As described in Sec. 1.1.1, we can reframe the goal of jet clustering as finding the maximum
likelihood estimate (MLE) for the latent structure of a jet, given a set of constituents (leaves).
Different algorithms will return different tree-like hierarchical clusterings zshower, and we
can compare the performance of various algorithms. We study approximate solutions for
bottom-up agglomerative clustering like the generalized-kt algorithms (which are a class of
greedy algorithms that locally maximize the likelihood at each step in the clustering process)
and beam search (which maximize the likelihood of multiple steps before choosing what to
cluster).

6

EPJ Web of Conferences 251, 03059 (2021) https://doi.org/10.1051/epjconf/202125103059
CHEP 2021



1. Draw tL and tR from an exponential distribution as follows,

tL ∼ f (t|λ, tP) =
1

1 − e−λ
λ

tP
e−

λ
tP
t (3)

tR ∼ f (t|λ, tP, tL) =
1

1 − e−λ
λ

(
√
tP −

√
tL)2

e
− λ

(
√
tP−

√
tL )2

t
(4)

and define mL =
√
tL and mR =

√
tR. We apply a veto on sampled values where tL � tP

and tR � (
√
tP −

√
tL)2. For inference, given two particles, we assign tL → max{tL, tR}

and tR → min{tL, tR}.
2. Compute a 2-body decay in the parent rest frame.
3. Apply a Lorentz boost to each of the children, with γ =

Ep√
tP
and γβ = |�pp|/

√
tP.

4. If tL (tR) is greater than tcut repeat the process.

The algorithm is outlined in Algorithm 1. After running, the final binary tree for the jet is
obtained.

Algorithm 1: Toy Parton Shower Generator

1 function NodeProcessing (pµp, tP, tcut, λ, tree)
Input :parent momentum �pp, parent mass squared tp, cut-off mass squared tcut, rate

for the exponential distribution λ, binary tree tree
2 Add parent node to tree.
3 if tp > tcut then
4 Sample tL and tR from the decaying exponential distribution.
5 Sample a unit vector from a uniform distribution over the 2-sphere.
6 Compute the 2-body decay of the parent node in the parent rest frame.
7 Apply a Lorentz boost to the lab frame to each child.
8 NodeProcessing (pµp, tL, tcut, λ, tree)
9 NodeProcessing (pµp, tR, tcut, λ, tree)

2.2 Reconstruction: The Likelihood for a Proposed Jet Clustering

In addition to the generative model described above, which is used for generating data with
Monte Carlo, we also need to be able to assign a likelihood value to a proposed jet clustering. To
do this we use the same general form for the jet’s likelihood based on a product of likelihoods
over each splitting as in Eq. 1. In order to evaluate this we need to first reconstruct the parent
from the left and right children. Then we use the same equations described above (Eq. 3 and
4) for the splitting probabilities that are used in the generative model. The Ginkgo library
provides functions to evaluate the joint likelihood p(x, z|λ, tcut) of any proposed hierarchical
clustering of the observed final state particles.

2.3 Greedy and beam search algorithms

As described in Sec. 1.1.1, we can reframe the goal of jet clustering as finding the maximum
likelihood estimate (MLE) for the latent structure of a jet, given a set of constituents (leaves).
Different algorithms will return different tree-like hierarchical clusterings zshower, and we
can compare the performance of various algorithms. We study approximate solutions for
bottom-up agglomerative clustering like the generalized-kt algorithms (which are a class of
greedy algorithms that locally maximize the likelihood at each step in the clustering process)
and beam search (which maximize the likelihood of multiple steps before choosing what to
cluster).

Figure 2. 2D heat clustermap visualizations where the leaves ordering corresponds to the order to access
them when traversing the truth tree (columns) and each clustering algorithm (rows), where we show
beam search (left) and kt (right).

We provide implementations of these algorithms to jet physics in [25]. We also developed
a visualization package in [26] and show examples below. In Fig. 2 we show 2D heat
clustermaps where the color scale specifies the total number of steps needed to connect any
two leaves through their closest common ancestor using the truth-level jet tree. The better
the truth tree latent structure is reconstructed, the more the heat map structure looks block
diagonal.

3 Examples of Research Enabled with Ginkgo

In this section we highlight some of recent research that has been enabled with Ginkgo.

3.1 Hierarchical Cluster Trellis Algorithm

Jet clustering in high-energy physics is a siloed sub-field of research, which is ironic given
that hierarchical clustering is a common task in many areas of science and can be effectively
abstracted. Hierarchical clustering is often used to discover meaningful structures, such as
phylogenetic trees of organisms [27], taxonomies of concepts [28], and subtypes of cancer
[29].

We define a hierarchical clustering as a recursive splitting of a dataset of elements, X =

{xi}Ni=1 into subsets until reaching singletons, e.g. leaves of a binary tree. This can equivalently
be viewed as starting with the set of singletons and repeatedly taking the union of sets until
reaching the entire dataset.

The authors of Ref. [23] consider an energy-based probabilistic model for hierarchical
clustering. The model is based on measuring the compatibility of each pair of sibling nodes,
described by a potential function ψ : 2X × 2X → R+. We also denote the potential function for
a hierarchical clustering H and dataset X as φ(X|H). Then, the probability of H for the dataset X,
P(H|X), is equal to the unnormalized potential of H normalized by the partition function, Z(X):

P(H|X) = φ(X|H)
Z(X)

with φ(X|H) =
∏

XL,XR∈siblings(H)
ψ(XL, XR) (5)

where the partition function is given by Z(X) =
∑

H∈H(X) φ(X|H).
Next they define MAP hierarchy as the maximum likelihood hierarchical clustering given

a dataset X. Typically, we want to exactly find the MAP hierarchy and the partition function.

7

EPJ Web of Conferences 251, 03059 (2021) https://doi.org/10.1051/epjconf/202125103059
CHEP 2021



However, a straightforward approach employing a brute force method to enumerate all hier-
archical clusterings over N elements becomes infeasible because the number of hierarchies
grows extremely rapidly, namely (2N − 3)!! [30, 31].

To overcome the computational burden, a cluster trellis data structure for hierarchical
clustering was introduced in [23]. The trellis computes these quantities in the O(3N) time,
without having to iterate over each possible hierarchy. While still exponential, this is feasible
in regimes where enumerating all possible trees would be infeasible, and is to our knowledge
the fastest exact MAP/partition function result, making practical exact inference for datasets
on the order of 20 points (~3 × 109 operations vs ~1022 trees) or fewer.

We briefly review novel dynamic-programming algorithms for exact (and approx.) in-
ference in hierarchical clustering introduced in [23]. The trellis allows us to compute the
partition function Z(X) and MAP inference, i.e. find the maximum likelihood tree structure.
The Cluster Trellis package is available at https://github.com/SebastianMacaluso/ClusterTrellis.
Each node in the trellis corresponds to all subsets of elements (jet constituents). A schematic
representation and the assignment between nodes in a binary tree and nodes in the trellis is
shown in Fig. 6.

Figure 3. Schematic representation of the
trellis and node assignment between the
trellis and a binary tree.

Computing the Partition Function.Given a dataset of elements, X = {xi}Ni=1, the partition
function, Z(X), for the set of hierarchical clusterings over X, H(X), is given by Equation
3.1. The partition function for every node in the trellis is computed in order (in a bottom-up
approach), memoizing the partial value at each node.

Computing the Maximum Likelihood Hierarchical Clustering. The MAP hierarchy
for dataset X, H�(X), is H�(X) = argmaxH∈H(X) P(H|X) = argmaxH∈H(X) φ(H).

Sampling from the Posterior Distribution. Drawing samples from the true posterior
distribution P(H|X) is also difficult because of the extremely large number of trees. However,
there is a sampling procedure implemented using the trellis which gives samples from the
exact true posterior without enumerating all possible hierarchies.

3.1.1 Sparse Cluster Trellis

The authors of Ref. [23] also introduced a sparse trellis data structure, which allows the
algorithms to scale to larger datasets by controlling the sparsity index, i.e. the fraction of
the total number of possible clusterings beingn considered. Most clusterings have likelihood
values orders of magnitude smaller than the MAP clustering making their contribution to
the partition function negligible. As a result, if we build a sparse trellis that considers the
most relevant hierarchies, we could find approximate solutions for inference in datasets where
implementing the full trellis is not feasible. The sparse trellis can be constructed from samples
(e.g., ground truth from a simulator, greedy, or beam search trees) or randomly sample pairwise
splittings for the children of a node.

3.1.2 Results

In Fig. 4 (left) we show the partition function versus the MAP hierarchy for each set of leaves
from a Ginkgo dataset. Figure 4 (right) shows the results from sampling 105 hierarchies (black

8

EPJ Web of Conferences 251, 03059 (2021) https://doi.org/10.1051/epjconf/202125103059
CHEP 2021



However, a straightforward approach employing a brute force method to enumerate all hier-
archical clusterings over N elements becomes infeasible because the number of hierarchies
grows extremely rapidly, namely (2N − 3)!! [30, 31].

To overcome the computational burden, a cluster trellis data structure for hierarchical
clustering was introduced in [23]. The trellis computes these quantities in the O(3N) time,
without having to iterate over each possible hierarchy. While still exponential, this is feasible
in regimes where enumerating all possible trees would be infeasible, and is to our knowledge
the fastest exact MAP/partition function result, making practical exact inference for datasets
on the order of 20 points (~3 × 109 operations vs ~1022 trees) or fewer.

We briefly review novel dynamic-programming algorithms for exact (and approx.) in-
ference in hierarchical clustering introduced in [23]. The trellis allows us to compute the
partition function Z(X) and MAP inference, i.e. find the maximum likelihood tree structure.
The Cluster Trellis package is available at https://github.com/SebastianMacaluso/ClusterTrellis.
Each node in the trellis corresponds to all subsets of elements (jet constituents). A schematic
representation and the assignment between nodes in a binary tree and nodes in the trellis is
shown in Fig. 6.

Figure 3. Schematic representation of the
trellis and node assignment between the
trellis and a binary tree.

Computing the Partition Function.Given a dataset of elements, X = {xi}Ni=1, the partition
function, Z(X), for the set of hierarchical clusterings over X, H(X), is given by Equation
3.1. The partition function for every node in the trellis is computed in order (in a bottom-up
approach), memoizing the partial value at each node.

Computing the Maximum Likelihood Hierarchical Clustering. The MAP hierarchy
for dataset X, H�(X), is H�(X) = argmaxH∈H(X) P(H|X) = argmaxH∈H(X) φ(H).

Sampling from the Posterior Distribution. Drawing samples from the true posterior
distribution P(H|X) is also difficult because of the extremely large number of trees. However,
there is a sampling procedure implemented using the trellis which gives samples from the
exact true posterior without enumerating all possible hierarchies.

3.1.1 Sparse Cluster Trellis

The authors of Ref. [23] also introduced a sparse trellis data structure, which allows the
algorithms to scale to larger datasets by controlling the sparsity index, i.e. the fraction of
the total number of possible clusterings beingn considered. Most clusterings have likelihood
values orders of magnitude smaller than the MAP clustering making their contribution to
the partition function negligible. As a result, if we build a sparse trellis that considers the
most relevant hierarchies, we could find approximate solutions for inference in datasets where
implementing the full trellis is not feasible. The sparse trellis can be constructed from samples
(e.g., ground truth from a simulator, greedy, or beam search trees) or randomly sample pairwise
splittings for the children of a node.

3.1.2 Results

In Fig. 4 (left) we show the partition function versus the MAP hierarchy for each set of leaves
from a Ginkgo dataset. Figure 4 (right) shows the results from sampling 105 hierarchies (black

−60 −50 −40 −30
� = log p(x,HMAP)

−50

−45

−40

−35

−30

−25
lo
g
Z
=
lo
g
∑
p(
x,
H
)

5

6

7

8

9

10

N
um

be
ro

fl
ea
ve
s

−36 −34 −32 −30
� = log p(x,H)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

p(
�
|x

)

Ground Truth
Sampled
Expected

Figure 4. Left: scatter plot of the partition function Z vs. the maximum log likelihood for a Ginkgo
dataset, with up to 10 jet constituents. The color indicates the number of leaves of each hierarchical
clustering. Right: comparison of the posterior distribution for a specific jet with five leaves for sampling
105 hierarchies (black dots with small error bars) and expected posterior distribution (in green). The log
likelihood for the ground truth tree is a vertical dashed red line.

10−4 10−3 10−2 10−1 100

Sparsity

−0.5

0.0

0.5

1.0

1.5

lo
g
p(
x,
H

∗ )
re
la
tiv

e
to

gr
ee
dy

Full Trellis
BS
Greedy
BS Trellis (pT )
Sim. Trellis (pT )

Figure 5. Trellises MAP hierarchy log likelihood
(values are relative to the greedy algorithm) vs their
sparsity. Each value corresponds to the mean over
100 trees of a test dataset. We show the Simulator
(Sim.) and the Beam Search (BS) trellises.

dots) and the expected distribution Figure 5 shows the performance of the sparse trellis to
calculate the MAP values on a set of 100 Ginkgo jets with 9 leaves. Even though beam search
has a good performance for trees with a small number of leaves, we see that both sparse
trellises quickly improve over beam search, with a sparsity index of only about 2%.

3.2 Hierarchical clustering through reinforcement learning

In this section we review results from [32] that cast hierarchical clustering as a Markov Deci-
sion Process (MDP) and adapted reinforcement learning algorithms to solve it. In particular,
Monte-Carlo Tree Search (MCTS) guided by a neural network policy was adapted to the prob-
lem of jet clustering. This approach closely follows the AlphaZero algorithm [33–35], which
achieved superhuman performance in a range of board games, demonstrating its ability to
efficiently search large combinatorial spaces. While (model-free) RL methods have been used
in the context of jet grooming, i.e. pruning an existing tree to remove certain backgrounds [36],
they have not yet been used for clustering, that is, the construction of the binary tree itself.

3.2.1 Jet clustering as a Markov Decision Process

The authors of Ref. [32] used the ingredients of Ginkgo to recast the problem of clustering as
an MDP, which is defined by the quartet (S,A, P,R):

• The state space S is given by all possible particle sets at any given point during the clustering
process, s = zt.

• The actions A are the choice of two particles a = (i, j) with 1 ≤ i < j ≤ nt to be merged.

• The state transitions P are deterministic and update zt to zt−1 by replacing the particles pt,i
and pt, j with a parent pt−1,i = pt,i + pt, j. All other particles are left unchanged, each state
transition thus reduces the number of particles by one.

9

EPJ Web of Conferences 251, 03059 (2021) https://doi.org/10.1051/epjconf/202125103059
CHEP 2021



10

3

10

4

10

5

Cost (splitting likelihood evaluations)

96

95

94

93

T
r
e
e
 
l
o
g
 
l
i
k
e
l
i
h
o
o
d

Greedy

Beam search

MCTS

10 15

Number of leaves

0

1

2

3

4

T
r
e
e
 
l
o
g
 
l
i
k
e
l
i
h
o
o
d
 
r
e
l
a
t
i
v
e
 
t
o
 
g
r
e
e
d
y

MLE

Random

Greedy

Beam search

MCTS

BC

10 15

150

100

50

0

Figure 6.Mean log likelihood of clustered jets (larger is better). Left: against the computational cost,
measured as the number of evaluations of the splitting likelihood ps required by the different algorithms.
Right: as a function of the number of final-state particles (leaves of the tree), using the best-performing
(and most computationally expensive) hyperparameter setup for each algorithm. MCTS (solid, red) gives
the highest-quality jet clusterings.

• The rewards R are the splitting probabilities, R(s = zt, a = (i, j)) = log ps(zt |zt−1(i, j)).
• The MDP is episodic and terminates when only a single particle is left.

An agent solves the jet clustering problem by first considering the state of all observed,
final-state particles and choosing which two to merge into a parent. It receives the log likelihood
of this splitting as reward. Next, it considers the reduced set of particles where the two chosen
particles have been replaced by their proposed parent, chooses the next pair of particles to
merge, and so on. Rolling out an episode leads to a proposed clustering tree z = {z1, . . . , zN},
with the total received reward being equal to the log likelihood of this tree following Eq. (1).

The formulation of jet clustering as an MDP allows us to use any (model-free) reinforce-
ment learning (RL) algorithm to tackle it. Since the state transition model is known (and
deterministic), they instead use a model-based planning approach to leverage this knowledge.
They chose Monte Carlo Tree Search (MCTS) [33], which builds a search tree over possible
clusterings z by rolling out a number of clusterings. In addition, the authors considered a
clustering algorithm based on imitation learning, specifically Behavioral Cloning (BC): a
policy π is trained to imitate the actions that reconstruct the true trees, which we can extract
from the generative model, by maximizing log π(s, atruth).

3.2.2 Results

We present a comparison of the different clustering algorithms on a dataset of Ginkgo jets
taken from [32]. They compare MCTS (with c = 1) and BC agents to a greedy algorithm
that at each state picks the action with the maximum splitting likelihood ps, a beam search
algorithm that maintains the b = 1000 most likely clusterings while descending down the
search tree, and a random policy. For jets with a small number of final-state particles we also
compute the trellis exact maximum likelihood tree (MLE) following Ref. [23].

Fig. 6 shows the log likelihood of the clustering against the computational cost of the
clustering algorithms (left) and against the number of final-state particles (right). While the
greedy and beam search baselines lead to a robust performance at low computational cost,
MCTS planning can generate hierarchical clusterings of a markedly higher likelihood. This
advantage is more pronounced at larger number of final-state particles, showing that MCTS
can explore large combinatorial spaces better than the baselines.

3.3 Probabilistic Programming

The Monte Carlo simulators implicitly describe the complicated distribution p(x, z|θ) and
implement sampling through random number generators. Probabilistic programming extends

10

EPJ Web of Conferences 251, 03059 (2021) https://doi.org/10.1051/epjconf/202125103059
CHEP 2021



10

3

10

4

10

5

Cost (splitting likelihood evaluations)

96

95

94

93

T
r
e
e
 
l
o
g
 
l
i
k
e
l
i
h
o
o
d

Greedy

Beam search

MCTS

10 15

Number of leaves

0

1

2

3

4

T
r
e
e
 
l
o
g
 
l
i
k
e
l
i
h
o
o
d
 
r
e
l
a
t
i
v
e
 
t
o
 
g
r
e
e
d
y

MLE

Random

Greedy

Beam search

MCTS

BC

10 15

150

100

50

0

Figure 6.Mean log likelihood of clustered jets (larger is better). Left: against the computational cost,
measured as the number of evaluations of the splitting likelihood ps required by the different algorithms.
Right: as a function of the number of final-state particles (leaves of the tree), using the best-performing
(and most computationally expensive) hyperparameter setup for each algorithm. MCTS (solid, red) gives
the highest-quality jet clusterings.

• The rewards R are the splitting probabilities, R(s = zt, a = (i, j)) = log ps(zt |zt−1(i, j)).
• The MDP is episodic and terminates when only a single particle is left.

An agent solves the jet clustering problem by first considering the state of all observed,
final-state particles and choosing which two to merge into a parent. It receives the log likelihood
of this splitting as reward. Next, it considers the reduced set of particles where the two chosen
particles have been replaced by their proposed parent, chooses the next pair of particles to
merge, and so on. Rolling out an episode leads to a proposed clustering tree z = {z1, . . . , zN},
with the total received reward being equal to the log likelihood of this tree following Eq. (1).

The formulation of jet clustering as an MDP allows us to use any (model-free) reinforce-
ment learning (RL) algorithm to tackle it. Since the state transition model is known (and
deterministic), they instead use a model-based planning approach to leverage this knowledge.
They chose Monte Carlo Tree Search (MCTS) [33], which builds a search tree over possible
clusterings z by rolling out a number of clusterings. In addition, the authors considered a
clustering algorithm based on imitation learning, specifically Behavioral Cloning (BC): a
policy π is trained to imitate the actions that reconstruct the true trees, which we can extract
from the generative model, by maximizing log π(s, atruth).

3.2.2 Results

We present a comparison of the different clustering algorithms on a dataset of Ginkgo jets
taken from [32]. They compare MCTS (with c = 1) and BC agents to a greedy algorithm
that at each state picks the action with the maximum splitting likelihood ps, a beam search
algorithm that maintains the b = 1000 most likely clusterings while descending down the
search tree, and a random policy. For jets with a small number of final-state particles we also
compute the trellis exact maximum likelihood tree (MLE) following Ref. [23].

Fig. 6 shows the log likelihood of the clustering against the computational cost of the
clustering algorithms (left) and against the number of final-state particles (right). While the
greedy and beam search baselines lead to a robust performance at low computational cost,
MCTS planning can generate hierarchical clusterings of a markedly higher likelihood. This
advantage is more pronounced at larger number of final-state particles, showing that MCTS
can explore large combinatorial spaces better than the baselines.

3.3 Probabilistic Programming

The Monte Carlo simulators implicitly describe the complicated distribution p(x, z|θ) and
implement sampling through random number generators. Probabilistic programming extends

Figure 7. Histogram of the number of jet
constituents (leaves) for jets generated with
Ginkgo. We show the distribution of the num-
ber of constituents with no constraints (blue)
and the one when using importance sampling
with the limits on the number of leaves defined
by the red dashed lines (orange).

this functionality with the ability to condition on the values of some of the random variables x
or z [37], and it achieves this by hijacking the random number generators. This controlling
inference algorithm uses those hooks to bias the simulator towards the desired output (e.g.
importance sampling [38]) or through Monte Carlo sampling. In particular, it provides the
ability to sample latent variables conditioned on observations, i.e. z ∼ p(z|x, θ), and obser-
vations conditioned on latent variables, i.e. x ∼ p(x|z, θ). For example, this technique can
be used to efficiently sample the tails of backgrounds in signal-rich regions of phase space
z ∼ p(z|1(x), θ).

As a proof of concept, we chose to use the PyProb framework [39] (applied to the Sherpa
event generator in Refs. [40]) to implement probabilistic programming in Ginkgo. After
integrating PyProb and Ginkgo, we successfully sampled jets while conditioning on variables,
such as the jet transverse momentum and the number of constituents. The histogram in Fig.
3.3 demonstrates one simple example of the effectiveness of this framework for sampling
tails of distributions. Using PyProb, we are able to force Ginkgo to only produce samples of
jets with fewer than eight or more than twenty-six constituents. We can see that importance
sampling accurately samples the desired regions of the distribution, i.e. with the same relative
probabilities as the original distribution. Though this is a simple example, this method is
powerful enough to allow us to condition on any sampled value within the generator, including
latent variables, and condition on those values or arbitrary combinations of them.

4 Conclusion
This paper introduces a framing of common tasks in jet physics in probabilistic terms. We
present Ginkgo, a simplified generative model for jets designed to facilitate research into
new computational techniques for jet physics. A novel trellis data structure and dynamic
programming algorithms that have been developed for hierarchical clustering motivated by
this work. The Ginkgo library has been interfaced with both an implementation of the trellis
algorithm and the Open AI Gym reinforcement learning library. We presented comparisons
of jet clustering using greedy, beam search, Monte Carlo Tree Search, and the sparse and
full cluster trellis. These new algorithms provide a principled alternative to the generalized
kt algorithms, which are based on a greedy sequential clustering algorithm. Additionally, we
show that the trellis allows to marginalize and sample from the true posterior distribution
of clustering histories for a set of jet constituents. This could ameliorate bottlenecks when
implementing the CKKW-L matching algorithm for events with large jet multiplicity. Finally,
we presented how complicated regions of phase space could be sampled using probabilistic
programming.

Acknowledgements

We would like to thank Craig S. Greenberg, Nicholas Monath, Ji-Ah Lee, Patrick Flaherty,
Andrew McGregor, and Andrew McCallum for their collaboration on efficient maximum

11

EPJ Web of Conferences 251, 03059 (2021) https://doi.org/10.1051/epjconf/202125103059
CHEP 2021



likelihood estimation on Ginkgo with a trellis. We are grateful for the support of the National
Science Foundation under the awards ACI-1450310, OAC-1836650, and OAC-1841471, the
Moore-Sloan data science environment at NYU, as well as the NYU IT High Performance
Computing resources, services, and staff expertise.

References

[1] T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel,
C.O. Rasmussen, P.Z. Skands, Comput. Phys. Commun. 191, 159 (2015), 1410.3012

[2] J. Bellm et al., Eur. Phys. J. C 76, 196 (2016), 1512.01178
[3] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, J. Winter,

JHEP 02, 007 (2009), 0811.4622
[4] J. Brehmer, K. Cranmer, G. Louppe, J. Pavez, Phys. Rev. D 98, 052004 (2018),

1805.00020

[5] K. Cranmer, J. Brehmer, G. Louppe, The frontier of simulation-based
inference (National Academy of Sciences, 2020), ISSN 0027-8424,
https://www.pnas.org/content/early/2020/05/28/1912789117.full.pdf

[6] M. Cacciari, G.P. Salam, G. Soyez, JHEP 04, 063 (2008), 0802.1189
[7] S. Catani, Y.L. Dokshitzer, M.H. Seymour, B.R. Webber, Nucl. Phys. B 406, 187 (1993)
[8] Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, JHEP 08, 1 (1997), 9707323
[9] S.D. Ellis, D.E. Soper, Phys. Rev. D 48, 3160 (1993), 9305266

[10] A. Buckley, H. Hoeth, H. Lacker, H. Schulz, J.E. von Seggern, Eur. Phys. J. C 65, 331
(2010), 0907.2973

[11] J. Brehmer, K. Cranmer, G. Louppe, J. Pavez, Phys. Rev. Lett. 121, 111801 (2018),
1805.00013

[12] J. Brehmer, G. Louppe, J. Pavez, K. Cranmer (2018), 1805.12244
[13] A. Andreassen, B. Nachman, Phys. Rev. D 101, 091901 (2020), 1907.08209
[14] G. Louppe, J. Hermans, K. Cranmer (2017), 1707.07113
[15] A.G. Baydin et al., Etalumis: Bringing Probabilistic Programming to Scientific Simula-

tors at Scale (2019), 1907.03382
[16] A.G. Baydin et al. (2018), 1807.07706
[17] S. Catani, F. Krauss, R. Kuhn, B. Webber, JHEP 11, 063 (2001), hep-ph/0109231
[18] L. Lonnblad, JHEP 05, 046 (2002), hep-ph/0112284
[19] D.E. Soper, M. Spannowsky, Phys. Rev. D 84, 074002 (2011), 1102.3480
[20] D.E. Soper, M. Spannowsky, Phys. Rev. D 87, 054012 (2013), 1211.3140
[21] D. Ferreira de Lima, P. Petrov, D. Soper, M. Spannowsky, Phys. Rev. D 95, 034001

(2017), 1607.06031
[22] S. Höche, S. Prestel, H. Schulz, Phys. Rev. D 100, 014024 (2019), 1905.05120
[23] C.S. Greenberg, S. Macaluso, N. Monath, J.A. Lee, P. Flaherty, K. Cranmer, A. McGregor,

A. McCallum (2020), 2002.11661
[24] K. Cranmer, S. Macaluso, D. Pappadopulo, Toy Generative Model for Jets Package

(2019), https://github.com/SebastianMacaluso/ToyJetsShower
[25] Cranmer, Kyle and Macaluso, Sebastian and Pappadopulo, Duccio, Greedy and

Beam Search clustering algorithms for jet physics (2019), https://github.com/
SebastianMacaluso/StandardHC

[26] Cranmer, Kyle and Macaluso, Sebastian and Pappadopulo, Duccio, Visual-
ize Binary Trees Package (2019), https://github.com/SebastianMacaluso/
VisualizeBinaryTrees

12

EPJ Web of Conferences 251, 03059 (2021) https://doi.org/10.1051/epjconf/202125103059
CHEP 2021



likelihood estimation on Ginkgo with a trellis. We are grateful for the support of the National
Science Foundation under the awards ACI-1450310, OAC-1836650, and OAC-1841471, the
Moore-Sloan data science environment at NYU, as well as the NYU IT High Performance
Computing resources, services, and staff expertise.

References

[1] T. Sjöstrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel,
C.O. Rasmussen, P.Z. Skands, Comput. Phys. Commun. 191, 159 (2015), 1410.3012

[2] J. Bellm et al., Eur. Phys. J. C 76, 196 (2016), 1512.01178
[3] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, J. Winter,

JHEP 02, 007 (2009), 0811.4622
[4] J. Brehmer, K. Cranmer, G. Louppe, J. Pavez, Phys. Rev. D 98, 052004 (2018),

1805.00020

[5] K. Cranmer, J. Brehmer, G. Louppe, The frontier of simulation-based
inference (National Academy of Sciences, 2020), ISSN 0027-8424,
https://www.pnas.org/content/early/2020/05/28/1912789117.full.pdf

[6] M. Cacciari, G.P. Salam, G. Soyez, JHEP 04, 063 (2008), 0802.1189
[7] S. Catani, Y.L. Dokshitzer, M.H. Seymour, B.R. Webber, Nucl. Phys. B 406, 187 (1993)
[8] Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, JHEP 08, 1 (1997), 9707323
[9] S.D. Ellis, D.E. Soper, Phys. Rev. D 48, 3160 (1993), 9305266

[10] A. Buckley, H. Hoeth, H. Lacker, H. Schulz, J.E. von Seggern, Eur. Phys. J. C 65, 331
(2010), 0907.2973

[11] J. Brehmer, K. Cranmer, G. Louppe, J. Pavez, Phys. Rev. Lett. 121, 111801 (2018),
1805.00013

[12] J. Brehmer, G. Louppe, J. Pavez, K. Cranmer (2018), 1805.12244
[13] A. Andreassen, B. Nachman, Phys. Rev. D 101, 091901 (2020), 1907.08209
[14] G. Louppe, J. Hermans, K. Cranmer (2017), 1707.07113
[15] A.G. Baydin et al., Etalumis: Bringing Probabilistic Programming to Scientific Simula-

tors at Scale (2019), 1907.03382
[16] A.G. Baydin et al. (2018), 1807.07706
[17] S. Catani, F. Krauss, R. Kuhn, B. Webber, JHEP 11, 063 (2001), hep-ph/0109231
[18] L. Lonnblad, JHEP 05, 046 (2002), hep-ph/0112284
[19] D.E. Soper, M. Spannowsky, Phys. Rev. D 84, 074002 (2011), 1102.3480
[20] D.E. Soper, M. Spannowsky, Phys. Rev. D 87, 054012 (2013), 1211.3140
[21] D. Ferreira de Lima, P. Petrov, D. Soper, M. Spannowsky, Phys. Rev. D 95, 034001

(2017), 1607.06031
[22] S. Höche, S. Prestel, H. Schulz, Phys. Rev. D 100, 014024 (2019), 1905.05120
[23] C.S. Greenberg, S. Macaluso, N. Monath, J.A. Lee, P. Flaherty, K. Cranmer, A. McGregor,

A. McCallum (2020), 2002.11661
[24] K. Cranmer, S. Macaluso, D. Pappadopulo, Toy Generative Model for Jets Package

(2019), https://github.com/SebastianMacaluso/ToyJetsShower
[25] Cranmer, Kyle and Macaluso, Sebastian and Pappadopulo, Duccio, Greedy and

Beam Search clustering algorithms for jet physics (2019), https://github.com/
SebastianMacaluso/StandardHC

[26] Cranmer, Kyle and Macaluso, Sebastian and Pappadopulo, Duccio, Visual-
ize Binary Trees Package (2019), https://github.com/SebastianMacaluso/
VisualizeBinaryTrees

[27] A. Kraskov, H. Stögbauer, R.G. Andrzejak, P. Grassberger, EPL (Europhysics Letters)
70, 278 (2005)

[28] P. Cimiano, S. Staab, Learning concept hierarchies from text with a guided agglomerative
clustering algorithm, in Proceedings of the ICML 2005 Workshop on Learning and
Extending Lexical Ontologies with Machine Learning Methods (2005)

[29] T. Sørlie, C.M. Perou, R. Tibshirani, T. Aas, S. Geisler, H. Johnsen, T. Hastie, M.B. Eisen,
M. Van De Rijn, S.S. Jeffrey et al., Proceedings of the National Academy of Sciences 98,
10869 (2001)

[30] D. Callan, A combinatorial survey of identities for the double factorial (2009),
0906.1317

[31] E. Dale, J. Moon, The permuted analogues of three Catalan sets (1993), 0378-3758
[32] J. Brehmer, S. Macaluso, D. Pappadopulo, K. Cranmer,Hierarchical clustering in particle

physics through reinforcement learning, in 34th Conference on Neural Information
Processing Systems (2020), 2011.08191

[33] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., nature 529, 484 (2016)

[34] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton et al., nature 550, 354 (2017)

[35] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel et al., arXiv:1712.01815 (2017)

[36] S. Carrazza, F.A. Dreyer, Phys. Rev. D100, 014014 (2019), 1903.09644
[37] A.D. Gordon, T.A. Henzinger, A.V. Nori, S.K. Rajamani, in Proceedings of the on Future

of Software Engineering (2014), pp. 167–181
[38] T.A. Le, A.G. Baydin, F. Wood, Inference compilation and universal probabilistic

programming, in Artificial Intelligence and Statistics (2017), pp. 1338–1348
[39] A.G. Baydin, L. Shao, W. Bhimji, L. Heinrich, S. Naderiparizi, A. Munk, J. Liu, B. Gram-

Hansen, G. Louppe, L. Meadows et al., Efficient probabilistic inference in the quest
for physics beyond the standard model, in Advances in neural information processing
systems (2019), pp. 5459–5472

[40] A.G. Baydin, L. Shao, W. Bhimji, L. Heinrich, L. Meadows, J. Liu, A. Munk, S. Naderi-
parizi, B. Gram-Hansen, G. Louppe et al., Etalumis: Bringing probabilistic programming
to scientific simulators at scale, in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (2019), pp. 1–24

13

EPJ Web of Conferences 251, 03059 (2021) https://doi.org/10.1051/epjconf/202125103059
CHEP 2021




