
Vol.:(0123456789)1 3

Computing and Software for Big Science (2021) 5:20 
https://doi.org/10.1007/s41781-021-00065-z

ORIGINAL ARTICLE

A GPU‑Based Kalman Filter for Track Fitting

Xiaocong Ai1   · Georgiana Mania1,2   · Heather M. Gray3,4   · Michael Kuhn5   · Nicholas Styles1 

Received: 15 April 2021 / Accepted: 13 September 2021 / Published online: 5 October 2021 
© The Author(s) 2021

Abstract
Computing centres, including those used to process High-Energy Physics data and simulations, are increasingly providing 
significant fractions of their computing resources through hardware architectures other than x86 CPUs, with GPUs being a 
common alternative. GPUs can provide excellent computational performance at a good price point for tasks that can be suit-
ably parallelized. Charged particle (track) reconstruction is a computationally expensive component of HEP data reconstruc-
tion, and thus needs to use available resources in an efficient way. In this paper, an implementation of Kalman filter-based 
track fitting using CUDA and running on GPUs is presented. This utilizes the ACTS (A Common Tracking Software) toolkit; 
an open source and experiment-independent toolkit for track reconstruction. The implementation details and parallelization 
approach are described, along with the specific challenges for such an implementation. Detailed performance benchmark-
ing results are discussed, which show encouraging performance gains over a CPU-based implementation for representative 
configurations. Finally, a perspective on the challenges and future directions for these studies is outlined. These include more 
complex and realistic scenarios which can be studied, and anticipated developments to software frameworks and standards 
which may open up possibilities for greater flexibility and improved performance.

Keywords  Particle tracking · Track fitting · Parallelization · GPU · CUDA · OpenMP

Introduction

The reconstruction of the trajectories of charged particles 
for High-Energy Physics (HEP) experiments is a very com-
putationally demanding task, which is performed both when 
selecting events in real time with the online trigger and dur-
ing the subsequent high-precision offline reconstruction of 
events for physics analysis. The most commonly used tech-
niques are adaptive methods based on the Kalman filter [1, 
2], which account for the trajectories of charged particles in 
magnetic fields and the energy loss of charged particles in 

the detector material. See Ref. [3] for a review. As the execu-
tion time of such algorithms explodes combinatorially with 
the number of charged particles, the advent of the upgrade 
to the Large Hadron Collider (LHC), the High-Luminosity 
LHC (HL-LHC), portends an even greater challenge, with 
events containing up to 10,000 tracks.

For many years, HEP has been relying on Moore’s 
Law [4], the observation that the number of transistors on an 
integrated circuit doubles approximately every two years. As 
the circuits have begun to approach intrinsic limits in terms 
of density and power, Moore’s Law has begun to slow, fur-
ther complicating potential performance improvements [5]. 
In addition, other computing architectures have become 
increasingly powerful and hence popular, such as graphical 
processing units (GPUs) and field programmable gate arrays 
(FPGAs). Therefore there has been a shift towards achieving 
speed improvements by adding additional cores, particularly 
at high-performance computing centers. These many-core 
systems require highly parallel code to be fully exploited, 
requiring additional knowledge from software developers. 
Moreover, much of the existing code for high-energy phys-
ics experiments is not well-suited to such architectures and 

 *	 Xiaocong Ai 
	 xiaocong.ai@desy.de

1	 Deutsches Elektronen-Synchrotron, Hamburg, Germany
2	 Informatics Department, University of Hamburg, Hamburg, 

Germany
3	 Physics Department, University of California, Berkeley, CA, 

USA
4	 Physics Division, Lawrence Berkeley National Laboratory, 

Berkeley, CA, USA
5	 Faculty of Computer Science, Otto von Guericke University 

Magdeburg, Magdeburg, Germany

http://orcid.org/0000-0003-3856-2415
http://orcid.org/0000-0001-7536-5336
http://orcid.org/0000-0002-5293-4716
http://orcid.org/0000-0001-8167-8574
http://orcid.org/0000-0001-6976-9457
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-021-00065-z&domain=pdf


	 Computing and Software for Big Science (2021) 5:20

1 3

20  Page 2 of 16

hence requires significant development and adaptation to be 
able to exploit them.

Porting algorithms to GPUs typically requires special-
ized code redesign and optimization, but performance 
gains through vectorization using Single Instruction Mul-
tiple Data (SIMD) instructions, and parallelization using 
many-core CPU architectures often require less significant 
changes to the code base. Several HEP experiments have 
leveraged the power of many-core systems for real-time 
online and/or offline track reconstruction [6–10]. These 
studies have demonstrated good scalability of the through-
put of events per second with the number of CPU cores. 
GPU-accelerated track reconstruction has also been stud-
ied. For example, both the ALICE [11] and LHCb [12] 
experiments at the LHC have proposed a GPU-based 
High-Level Trigger (HLT) to handle the much increased 
data rate expected during Run 3 of LHC [13–15]. In par-
ticular, LHCb has implemented a fully GPU-based high-
throughput HLT framework, which processes a data rate 
of up to 40 Tbit/s using approximately 500 GPUs [15]. 
In these studies, ALICE and LHCb used a simplified or 
parameterized Kalman filter for track fitting for maximum 
speed with some impact on track resolution compared to 
offline track reconstruction using a full Kalman filter. 
The level of resolution loss is either acceptable for the 
online identification of interesting events for further offline 
analysis [15] or is recovered through dedicated optimiza-
tion of the HLT tracking algorithms [13]. Initial studies 
of porting a full Kalman filter to GPUs can be found in 
Ref. [7]. Other track finding algorithms such as the Cellu-
lar Automaton and Hough Transforms have also been stud-
ied on GPUs [16, 17]. GPUs are also used for accelerating 
other steps of online event processing at HEP experiments, 
e.g. cluster finding [15, 18], vertex reconstruction [19] 
and event selection [20] and Ref. [21] presents a recent 
review of applications of GPUs for online event process-
ing in HEP. The trend is generally towards bringing the 
full reconstruction chain to GPUs in order to minimize the 
penalties from intermediate data transfer between host and 
GPUs (see Ref. [15, 18]). Beyond HEP, GPU-accelerated 
Kalman filtering has been explored for a range of applica-
tions [22, 23]. However, these use cases tend to focus on 
much larger (up to three orders of magnitude) matrix sizes 
than are typical in HEP applications, and so the direct 
applicability is limited.

We present a proof-of-concept of a full Kalman filter 
algorithm on GPUs utilizing A Common Tracking Soft-
ware (ACTS) [24–28], which provides a toolkit of algo-
rithms for track reconstruction within a generic, frame-
work- and experiment-independent software package. 
Detailed studies of the physics and technical performance 
are presented for two different GPU architectures and com-
pared to performance on CPUs. In particular, we identify 

and discuss the key challenges in the implementation and 
highlight future directions towards the development of an 
even more performant full Kalman filter algorithm.

The Kalman Filter and ACTS

Track reconstruction is typically a multi-stage procedure, 
wherein candidates can be rejected at each stage. This 
approach allows high reconstruction efficiency and purity to 
be achieved in the final output collection, while reducing the 
overhead from processing unwanted candidates further than 
necessary. It starts from measurements (deposited energy 
in sensitive elements of the detector) and combines them in 
various configurations (including appropriate calibrations 
at various stages) to form plausible candidate trajectories. 
Accurate estimations of the parameters which define the 
mathematical form used to describe the trajectory are then 
made.

After any required pre-processing of the raw measure-
ments, a typical first step is Seeding, in which small sets of 
compatible measurements are grouped using simple crite-
ria and an initial trajectory estimate made. Seeds passing 
requirements can then be used as the basis for Track Find-
ing, in which additional compatible measurements are added 
to the trajectory through the detector. Once the full set of 
measurements for the trajectory is obtained, a Track Fitting 
step can be performed, to precisely estimate the parameters 
and their covariance.

A commonly used approach and important tool in many 
track reconstruction applications is the Kalman filter [1, 
2]. Developed in the late 1950s, the initial application of 
the Kalman filter procedure was in ballistics [29], where it 
allowed telemetry data for the heading and acceleration of 
the projectile to be combined with information on its loca-
tion. The generalized procedure, in which measurements are 
combined with predictions based on an underlying model, 
results in state estimates more precise than either measure-
ments or predictions alone, and has since been very widely 
used in many fields.

Within track reconstruction, a typical Kalman filter step 
would proceed as follows (see Fig. 1): 

1.	 An initial estimate of the track state (i.e. helix param-
eters) at a given position is taken as the starting point.

2.	 This track state is propagated according to the track 
model on to the next Measurement Surface (i.e. the ref-
erence plane of a sensitive detector), providing a predic-
tion of track state on this surface.

3.	 The prediction is combined with the measurement at this 
surface, if present, either through a weighted average 



Computing and Software for Big Science (2021) 5:20	

1 3

Page 3 of 16  20

or the so-called Gain Matrix formalism forming a new 
track state which is used to update the initial estimate.

4.	 This new estimate is then used for further Kalman steps, 
up to the end of the trajectory.

The Kalman procedure has the property that the next state 
estimate can be determined from the one preceding it. While 
this is a useful property in many cases, as it requires no 
‘history’ to be stored, it has the consequence that only the 
final state contains the full information about all the steps 
preceding it, and therefore the best possible precision. To 
allow the prior track states to benefit from this informa-
tion (e.g. to allow a �2 quality metric to be defined based 
on measurement residuals), an additional stage is needed. 
This Smoother stage can be performed using one of two 
approaches: either using essentially the same procedure as 
the forward Kalman filter but in reverse direction as illus-
trated in Fig. 2 or using the Rauch–Tung–Striebel (RTS) 
smoother [30] formalism with the stored Jacobians between 

states calculated during the forward Kalman filter steps. The 
latter approach does not require a second propagation of the 
track parameters and is therefore expected to have better 
timing performance.

ACTS has its origins in the track reconstruction algo-
rithms used by the ATLAS experiment [31]. In addition to a 
tracking toolkit, ACTS also includes a fast simulation pack-
age. The ACTS code is designed to be inherently thread-safe 
to support parallel code execution and the data structures 
are vectorised. The implementation has been designed to 
be fully agnostic to detection technologies, detector design, 
and software frameworks so that it can be used by a range 
of experiments. The Eigen library [32] is used for algebra 
operations. In addition, ACTS is designed to be an R&D 
platform for the development of new algorithms and the 
porting of existing algorithms to new hardware platforms. 
See Ref.[27, 28] for further details.

While various representations of trajectories are possible, 
in this paper we will focus on helical trajectories of charged 
particles in a solenoidal magnetic field described using the 
following parameters:

–	 Two parameters loc0 and loc1 describing the spatial coor-
dinates represented in the local frame of the measure-
ment plane. In the special case of describing the param-
eters at a perigee surface1, these become the transverse 
and longitudinal impact parameters d0 and z0 respectively.

–	 The polar and azimuthal angles of the particle momen-
tum vector direction, � and � , at that point.

–	 A curvature parameter, expressed as the ratio of charge 
to momentum q

p
.

–	 The time t.

detector k-1 detector k

measurement m

state k-1
(qk-1)

detector k-1 detector k

measurement m

state k-1
(qk-1)

prediction k
(qk|k-1)

detector k-1 detector k

state k-1

state k

Fig. 1   Illustration of the different steps of the Kalman filter using a 
simplified detector model consisting of only two layers. (Left) The 
track state at the (k − 1) th surface is indicated with the light green 
ellipse, and a measurement on the kth surface is indicated in red. 

(Center) A prediction is made for the track state on the kth surface 
and the size of the prediction is indicated with the dark green ellipse. 
(Right) The track state on the kth surface is updated by including the 
measurement on the kth surface

Forward Filter Backwards Smoother

Fig. 2   Illustration of a forward filter and a backwards smoother on a 
simplified four layer detector geometry. The red points indicate the 
measurements and their uncertainties on each layer. The green points 
indicate the predictions. The predictions from the forward filter (left) 
are obtained when the filter is run from left to right. The predictions 
from the backwards filter are obtained during a second pass of the fil-
ter when it is run from right to left

1  A surface defined at the point of closest approach to a reference 
point, for example the nominal interaction point in a particle collider.



	 Computing and Software for Big Science (2021) 5:20

1 3

20  Page 4 of 16

Both the backwards-propagation and the RTS Kalman 
smoothing approaches are available within ACTS. The latter 
approach is used for the performance studies in this paper.

Parallelization and Offloading Techniques

There is a wide range of tools and frameworks available that 
can improve the runtime performance of scientific code via 
parallelization and offloading. Two of the most widely used 
frameworks are Open Multi-Processing (OpenMP) [33] and 
Compute Unified Device Architecture (CUDA) [34]. While 
the former traditionally allows parallelization on CPU sys-
tems via multiple threads, the latter is used to offload parts 
of the code to massively parallel Nvidia GPUs.

OpenMP

OpenMP is a compiler-based high-level approach for thread 
parallelization on shared memory architectures. One of its 
outstanding features is that it is very easy to use and does 
not require knowledge of threading and operating system 
internals [35]. It is available for C, C++ and Fortran, some 
of the most-widely used programming languages for scien-
tific computing. OpenMP achieves its simplicity by being 
integrated into the compiler, which facilitates the paralleliza-
tion of applications. Compiler support is widely available, 
which allows it to be used on personal computers as well as 
supercomputers. Applications are annotated with so-called 
pragmas, and turned into parallel code by the compiler; 
for instance, a simple #pragma omp parallel for 
pragma instructs the compiler to parallelize the subsequent 
for loop. OpenMP takes care of thread management and 
scheduling as well as data decomposition, which allows 
developers to focus on the problem they want to solve.

One of OpenMP’s drawbacks has been its focus on CPU-
based parallelism. However, it has recently been extended 
with improved offloading functionality that allows the com-
piler to offload certain parts of an application to accelerators 
such as GPUs and FPGAs. Consequently, OpenMP now can 
target both CPUs and GPUs, which offers better portability 
than vendor-specific approaches such as CUDA [36].

CUDA

CUDA is a parallel computing platform and application 
programming interface introduced by Nvidia for their line 
of GPUs [37]. It allows highly parallel GPUs to be used 
for general-purpose computations such as those common in 
high-energy physics. It is available for a range of program-
ming languages, including C, C++, and Fortran. Wrappers 

are also available for additional programming languages, 
such as Python, R, Julia and many others.

GPUs are very specialized processing units and feature 
a high number of computing cores, which can be leveraged 
for scientific computations. Programs are offloaded to the 
GPUs in the form of so-called compute kernels, that is, sin-
gle functions and their associated data. A kernel executes 
in parallel across a set of threads, which can use per-thread 
registers. Moreover, threads are aggregated into so-called 
warps that are executed concurrently. Several of these warps 
can be grouped into a thread block, which has access to a fast 
region of shared memory that all threads within the block 
can access. Finally, thread blocks can be combined into grids 
by the programmer. Thread blocks in a grid can only share 
data via global memory. Details of the CUDA programming 
model can be found in Ref. [38].

CUDA extends existing languages and requires dedicated 
compilers (nvcc for C/C++ and nvfortran for Fortran). 
While it allows for the optimal use of Nvidia GPUs, it is not 
portable and cannot be used for GPUs produced by other 
vendors. However, there have been attempts to provide 
abstraction layers or conversion tools for other approaches to 
be able to run CUDA code via OpenCL [39, 40]. There are 
also a variety of libraries that automatically offload compute-
intensive operations to the GPUs. Examples include libraries 
such as cuBLAS for linear algebra and cuFFT for fast-fourier 
transforms [41].

Competing approaches including OpenACC [42] and 
OpenCL are available but have not been as widely adopted 
so far. For the parallel GPU implementation presented in 
this paper, we have chosen CUDA because it is the de-facto 
standard for GPU-accelerated code and is widely supported. 
Our attempts to develop a GPU-accelerated solution using 
OpenMP were not successful so far due to offloading sup-
port in OpenMP still being in an early stage of development.

GPU Implementation

In this section, implementation details of the Kalman filter 
used to run track fitting on both CPUs and GPUs are pre-
sented. The code can be found in Ref. [43].

Parallelization Strategy

As discussed in Sect. 2, track fitting is the step in the track 
reconstruction chain that precisely estimates the recon-
structed track parameters and the associated covariance 
matrices. If track fitting is performed sequentially in a sin-
gle event, the execution time will increase almost linearly 
with increasing track multiplicity. However, the depend-
ence of the track fitting execution time on the number of 
tracks weakens if the track fitting can be parallelized. The 



Computing and Software for Big Science (2021) 5:20	

1 3

Page 5 of 16  20

implementation of a track-level parallel strategy is straight-
forward, since the track fitting for each reconstructed track 
is completely independent. In addition, the algorithm can be 
parallelized within a track fit, i.e. intra-track parallelization. 
Possible gains come from the matrix operations, e.g. the 
transportation of the track parameters in a magnetic field 
and the Kalman filter update and smoothing, which are 
computationally expensive and have to be repeated for all 
the propagation steps and measurements by a total of up to 
O(10) times per track. However, in practice only very limited 
intra-track parallelization for those matrix operations can be 
achieved by using multiple threads, because the sizes of the 
matrices in one operation are usually relatively small. For 
example, the largest size matrix operated on in a single track 
fit in ACTS is the covariance matrix of the track parameters 
represented in the global coordinate system, which is of size 
8 ×8.

This paper discusses both parallelization strategies for 
track fitting on GPUs: 

1	 Track-level parallelization: Track fitting for different 
tracks is executed in parallel using different CUDA 
threads (or blocks if further intra-track parallelization 
is used).

2	 Intra-track parallelization: The matrix operations 
involved in a single track fit are parallelized as much as 
possible using multiple threads within a single CUDA 
block. In this case, the block shared memory is used for 
the objects relevant with one track fit.

The transportation of the track parameters and their asso-
ciated covariance matrices in a magnetic field requires a 
numerical solution to the equation of particle motion. The 
adaptive Runge-Kutta-Nyström  [44] method is used to 
transport the track parameters in ACTS. When extrapolat-
ing the track parameters from one measurement point to the 
next, the covariance of the track parameters is updated with 
the transport Jacobian between the measurement points. 
Because the track parameters are represented in the local 
coordinate frame of the detector, the transform Jacobians 
between local and global track parameters at the two meas-
urement points have to be applied. If the fitting is performed 
using one CUDA block per track, the matrix multiplication 
for the covariance transport can be parallelized using mul-
tiple threads.

CUDA Considerations and Limitations

Various CUDA programming requirements have conse-
quences for the problem-specific factors that shape the par-
allelization strategies, and thus have an impact on the final 
implementation. The most challenging ones are detailed 
next.

Polymorphism

Virtual functions cannot be called inside a CUDA kernel 
unless the objects are constructed there. The Curiously 
Recurring Template Pattern (CRTP) is a C++ design 
pattern that emulates the behaviour of dynamic polymor-
phism through having a base class which is a template 
specialization for the derived class itself.

The ACTS Kalman filter is designed to be independent 
of the detector’s tracking geometry, which could contain 
surfaces of different concrete types for different tracking 
detectors. To realize this design pattern on accelerators, 
the surfaces are implemented with CRTP, instantiated out-
side of the Kalman filter, and fed to the algorithm. CRTP 
is successfully used to define the surfaces as shown in the 
code sample in Listing 1. 

Thread Memory Limitations

The amount of memory available for a thread, which 
includes the stack frame size and the maximum number 
of registers, is automatically configured by the CUDA 
runtime environment based on device properties includ-
ing the total amount of shared memory and the cache sizes, 
and also on the number of parallel threads per execution 
block. Because the GPU’s performance gain is based on 
the ability to run thousands of threads in parallel, this 
limits considerably the amount of memory available per 
thread compared to the CPU. This memory limitation is 
a major concern for recursive functions, which have to be 
reimplemented using an iterative approach.

Limited Support for Linear Algebra Libraries

In the Kalman smoothing, the track parameter covariance 
matrix needs to be inverted to calculate the gain matrix. 
While the Eigen-based matrix class has a member function 
that returns the inverse matrix, this method is not sup-
ported in the GPU kernels. Also CUDA 10.0 discontinued 
the support for invoking cuBLAS functions from within 
the device kernels through cublas device routine  [45]. 
Since at the moment neither of these two linear algebra 



	 Computing and Software for Big Science (2021) 5:20

1 3

20  Page 6 of 16

libraries provides a solution for our scenario, a customized 
matrix inverter is implemented whose performance impact 
is discussed in Sect. 5.

Precision and Rounding

Heterogeneous resources produce slightly different results 
due to different approaches to floating-point arithmetic and 
rounding. CPUs typically promote float operands to doubles 
when possible, perform the operations in double precision 
and then truncate the result to simple precision. Moreover, 
the x86 floating-point units use extended double-precision 
registers (80-bit), while CUDA limits the register sizes to 
32-bit and 64-bit as described by the IEEE standard 754-
2008 [46, 47].

To mitigate these effects, the customized matrix inverter 
is always configured to perform the algebra operations using 
double precision. Floating-point precision for other algebra 
operations is used for benchmarking the performance, and 
the comparison between the results with float and double 
precision is discussed in Sect. 5.3.

Data Structure and Transfer

Detector geometry information is a fundamental component 
for track parameter propagation and the integration of mate-
rial effects during the track reconstruction. Because track 
reconstruction with a realistic detector description as used 
in full detector simulation requires significant computational 
resources, a simplified detector geometry, the so-called 
tracking geometry, is used during the track reconstruction 
in ACTS for fast navigation and extrapolation of tracks. The 
basic geometrical component of the tracking geometry in 
ACTS is the surface. The surface object carries information 
about its geometrical orientation, shape and boundary, the 
material approximated from a full detector geometry, and a 
unique hierarchical geometry identifier.

Magnetic fields are used for measuring the momentum 
of charged particles at high-energy physics experiments. 
When a charged particle passes through a magnetic field, 
it bends with the degree of bending inversely proportional 
to its momentum. In this paper, a constant magnetic field 
represented as an Eigen matrix of size 3 × 1 is used for the 
performance studies presented. It should be noted that this 
represents a significant simplification with respect to an 
inhomogeneous magnetic field, as found in many experi-
ments, for which position-specific field information may 
need to be stored and retrieved, i.e.  more memory might be 
required. The description of inhomogeneous or nonparamet-
ric magnetic fields however is also possible within ACTS.

The ACTS tracking Event Data Model (EDM) includes 
classes to describe tracking objects such as measurements 

and track parameters, which are represented with surfaces. 
The EDM for the track state is designed for the Kalman 
filter. It consists of a measurement, a predicted track param-
eter, a filtered track parameter and a smoothed track param-
eter, all located on a surface. Figure 3 shows a track state on 
a surface. During the construction of the detector geometry, 
a unique geometrical identifier is assigned to each detector 
surface. By storing the geometrical identifier in the track-
ing EDM, information about the geometry can be shared 
between the measurements and track parameters, and 
between the CPU and GPU.

The Kalman filter, detector geometry and magnetic 
field are global data shared by different tracks during the 
track reconstruction, and are, therefore, stored in the kernel 
global memory. In addition, four sets of track-specific data 
are required to execute the track fitting kernel on the GPU: 

1.	 Input measurements of the trajectory.
2.	 Starting track parameters to steer the track parameters 

propagation.
3.	 Track fitting configurations, e.g. a target surface to 

extract the fitted track parameters.
4.	 Fitted results including the fitting status, a collection of 

track states on the trajectory and the fitted track param-
eters on the target surface.

Track-specific data are allocated on the pinned memory on 
the host, i.e. page-locked memory, and this memory is allo-
cated contiguously for each track. The number of detector 
surfaces intersected by the particle varies with the kinemat-
ics of the particle and the detector layout, i.e. the data loads 

Fig. 3   Demonstration of a track state with a measurement (orange), 
a predicted track parameter (green), a filtered track parameter (yel-
low) and a smoothed track parameter (blue) on a plane surface (gray). 
The covariance matrix of the local coordinates for both the measure-
ment and the fitted track parameters is represented by an ellipse. The 
momentum direction of the fitted track parameters is represented by 
an arrow with its covariance matrix represented by a cone oriented in 
the direction of the arrow



Computing and Software for Big Science (2021) 5:20	

1 3

Page 7 of 16  20

are different between tracks. Managing this load imbalance 
would require dedicated memory management and task 
scheduling strategies. In this paper, the detector surfaces are 
therefore constructed to be boundless2 to guarantee that the 
same number of surfaces are traversed by the tracks. Each 
surface object requires approximately 120 bytes of memory. 
In addition to that, the size of memory allocated and trans-
ferred for different track-specific data for a detector with 10 
plane surfaces is summarized in Table 1. Considering the 
relatively large size of the track-specific data, and the fact 
that they are accessed only once during the track fitting, 
those data are also stored in the kernel global memory.

Performance Evaluation

The software performance is studied using a simple tele-
scope-like detector geometry with 10 planar surfaces per-
pendicular to the global x axis and placed equidistantly with 
30 mm between two adjacent planes. Realistic HEP track 
reconstruction applications typically involve a more com-
plicated detector geometry. A constant magnetic field of 2 T 
along the global z axis is used. Samples containing a single 
muon per event are used for the performance evaluation. 
Muons are used for this study because they interact only 
minimally with the detector material and thus high-quality 
track fits are expected. The muons have a transverse momen-
tum uniformly distributed between 1 and 10 GeV with both 
the azimuthal angle and polar angle fixed to zero.

The Fatras fast simulation engine [48] within the ACTS 
toolkit is used to generate simulated hits of the single muons 
on the detector surfaces. Figure 4 illustrates the simulated 
hits on the detector surfaces for a sample of 10,000 single 
muons. The dense tracking environment at the HL-LHC is 
not expected to exceed 10,000 tracks per event.

As the pattern recognition algorithms required to find 
track candidates from measurements are beyond the scope 
of this paper, the known trajectories of the simulated par-
ticles are used for the fitting in place of track candidates 
provided by a pattern recognition step. The measurements 
corresponding to the track candidates are obtained by smear-
ing the positions of the simulated hits with Gaussian distri-
butions to model detector resolution effects. A resolution 
of 50 � m in both the x and y dimensions of the detector, 
representative of the resolution of current pixel detectors 
at the LHC, is used. The initial set of track parameters for 
the track fit is based on the simulated particle vertex and 
momentum, smeared by Gaussian noise.

Hardware and Software Environment

Computing nodes of two supercomputers are used for run-
ning the performance tests: 

1.	 Cori Intel Xeon Haswell node, Cori Intel Xeon Phi 
Knight’s Landing (KNL) node, and Cori GPU node at 
the National Energy Research Scientific Computing 
Center (NERSC) [49].

2.	 Intel Xeon Skylake (SL) node and ATLAS-GPU01 node 
at the National Analysis Facility (NAF) at DESY.

Only GPUs from the Nvidia Tesla family are studied. All 
nodes use the CentOS 7 operating system and all GPUs 
are using CUDA version 10.2.89. Tables 2 and 3 show the 
detailed hardware and software configurations of the systems 
for CPUs and GPUs respectively.

These machines cover a wide range of architectures, 
with Cori-Haswell-CPU representing a standard compute 
node with two processors and a moderate amount of cores 
(for a total of 64 threads), while Cori-KNL-CPU features a 
higher core count due to the Xeon Phi’s particular architec-
ture (for a total of 272 threads). Moreover, NAF-P100-GPU 
and NAF-V100-GPU allow two different GPU generations 

Table 1   The size (in bytes) of track-specific memory for a single 
track

Data type Size (B)

Input measurements 280
Seeding parameters 168
Fitting configurations 144
Fitting status 1
Fitted states 8480
Fitted track parameters 216
Total 9289

Fig. 4   The detector configuration used to study the performance. 
It consists of 10 identical planar surfaces (gray planes) perpendicu-
lar to the x-axis. The trajectories of 10,000 simulated single muons 
(blue lines) and the associated simulated hits on the detector surfaces 
(orange dots) are indicated

2  Boundless surfaces always have an intersection with a track as long 
as the track is not parallel to the surface.



	 Computing and Software for Big Science (2021) 5:20

1 3

20  Page 8 of 16

to be compared, with NAF-P100-GPU being from the 
older Pascal architecture and NAF-V100-GPU belonging 
to the newer Volta architecture. The NAF-P100-GPU is 
connected through a Peripheral Component Interconnect 
Express (PCIe) serial connector while the NAF-V100-GPU 
uses the SXM2 connector, a multi-line serial connector that 
provides both Nvidia NVLink and PCIe connectivity [50]. 
Cori-V100-GPU is identical to NAF-V100-GPU except for 
the lower amount of main memory. Each of the GPUs con-
tains multiple Streaming Multiprocessors (SMs), which are 
similar to CPUs. However, each GPU is equipped with a 
large number of SMs, specifically, up to 60 SMs for the P100 
and up to 84 SMs for the V100. Each SM contains many 
CUDA Cores, which execute compute kernels in the form 
of threads (64 single precision/32 double precision cores 
per SM for both P100 and V100). Each warp consists of 32 
threads, with each warp running on one SM and each SM 
being able to execute up to 64 warps simultaneously. Due 
to a large number of total cores, it is important to distribute 
work across a sufficient number of warps. This allows the 
dedicated warp schedulers to achieve maximum utilization 
by keeping the cores busy with instructions. While on P100 
all threads share a single program counter (and therefore 
have to execute the same instruction at the same time), 
V100 manages execution state per-thread, allowing more 
independence.

Tracking Performance

The resolution of the Kalman filter-based track fit is vali-
dated by calculating the pulls of the track parameters as 
follows:

where vfit and �v are the value and uncertainty of the fitted 
track parameter respectively, and vtruth is the corresponding 
parameter for the simulated particle.

The pull distributions of the six fitted perigee track 
parameters for a simulated sample of 10,000 single muons 
obtained from Cori-V100-GPU are shown in Fig. 5. The pull 
distributions have means compatible with zero and widths 
compatible with one, which demonstrates that the track 
parameters and their uncertainties are estimated correctly 
by the track fit.

Computing Performance

The timing performance of the track fitting for differ-
ent number of tracks on various computing architectures 
and configurations is measured. Ten tests are run for each 
measurement. The mean time of the ten tests is taken as the 
measurement result, and square root of the average of their 
squared deviations from the mean is taken as the measure-
ment error.

The baseline tests are performed using only track-level 
parallelization, i.e.  without intra-track parallelization 
using shared memory. CUDA supports user configuration 
of the runtime properties of the GPU kernels, e.g. grid 
size and block size, and the launching of multiple kernels 
with multiple CUDA streams. Furthermore, the number 
of registers per thread can be controlled via the CUDA __
launch _bounds__ qualifier when the kernel is defined. 
Unless explicitly specified, the tests are performed using 
one CUDA stream with 255 registers per thread as default 

(1)vpull =
vfit − vtruth

�v
,

Table 2   CPU configurations

The Sys. column specifies whether the CPUs are used in the NERSC (1) or NAF (2) system. The S ×C× T 
column represents the number of sockets (S), cores per socket (C) and threads per core (T)

Sys. Model name S×C×T Clock rate 
(GHz)

Mem. (GB)

1 Intel Xeon E5-2698 v3 (Cori-Haswell-CPU) 2×16×2 2.30 128
1 Intel Xeon Phi 7250 (Cori-KNL-CPU) 1×68×4 1.40 96
2 Intel Xeon Gold 5115 (NAF-SL-CPU) 2×10×2 2.40 376

Table 3   GPU configurations

The Sys. column specifies whether the GPUs are used in the NERSC (1) or NAF (2) system. FP32 and 
FP64 columns denote the numbers of floating point compute units for single and double precision arithme-
tic operations, respectively

Sys. GPU FP32 cores FP64 cores Clock rate 
(GHz)

Mem. (GB)

1 GV100-SXM2 (Cori-V100-GPU) 5120 2560 1.53 16
2 GP100-PCIe (NAF-P100-GPU) 3584 1792 1.48 16
2 GV100-SXM2 (NAF-V100-GPU) 5120 2560 1.53 32



Computing and Software for Big Science (2021) 5:20	

1 3

Page 9 of 16  20

configuration  [50]. Moreover, we choose a grid size of 
5120× 1 to match the number of processing units on the 
V100 GPU, and a block size of 8 ×8× 1, which is also the 
largest size of the matrix dealt with by the Kalman filter in 
ACTS. Performance with intra-track parallelization and dif-
ferent CUDA configurations are also studied for comparison.

All the tests use single-precision arithmetic operations 
with the exception of (a) the matrix inversion algorithm 
required by the smoother as detailed in Sect. 4.2.3, and (b) 
the explicit scenario which compares the different precisions 
described in Sect. 5.3.4.

A singularity container with the executable and the 
required dependencies used to produce the results presented 
here is accessible in Ref. [43].

Performance of the Custom Matrix Inversion Algorithm

Because the Eigen-based matrix inversion algorithm used 
by ACTS cannot be called inside CUDA kernels, a cus-
tom algorithm for matrix inversion implemented for this 
purpose is used. Measurements are performed to compare 
our custom implementation to the Eigen-based implemen-
tation on the CPUs of both systems. As shown in Fig. 6, 
it adds additional time to the fitting when the number of 
tracks exceeds 100. While the Eigen-based implementation 

is significantly faster by a constant factor when using 
only one thread, this effect is much less pronounced when 
using as many threads. Improving the performance of the 
custom matrix inversion operations on GPUs to match 

4− 2− 0 2 4
)

0
pull(d

0

100

200

300

400

500

600
E

nt
rie

s/
 0

.1

 0.010± = 0.012 µ
 0.01± = 0.99 σ

Data

Gaussian Fit

4− 2− 0 2 4
)

0
pull(z

0

100

200

300

400

500

600

E
nt

rie
s/

 0
.1

 0.010± = -0.013 µ
 0.01± = 1.00 σ

Data

Gaussian Fit

4− 2− 0 2 4
)φpull(

0

100

200

300

400

500

600

E
nt

rie
s/

 0
.1

 0.010± = -0.012 µ
 0.01± = 0.99 σ

Data

Gaussian Fit

4− 2− 0 2 4
)θpull(

0

100

200

300

400

500

600

E
nt

rie
s/

 0
.1

 0.010± = 0.003 µ
 0.01± = 0.99 σ

Data

Gaussian Fit

4− 2− 0 2 4
pull(q/p)

0

100

200

300

400

500

600

E
nt

rie
s/

 0
.1

 0.010± = -0.012 µ
 0.01± = 0.98 σ

Data

Gaussian Fit

4− 2− 0 2 4
pull(t)

0

100

200

300

400

500

600

E
nt

rie
s/

 0
.1

 0.010± = -0.005 µ
 0.01± = 1.00 σ

Data

Gaussian Fit

Fig. 5   The distributions of the pull values of the fitted perigee track parameters, (d0, z0,�, �,
q

p
, t) , for a sample of 10,000 single muons obtained 

from Cori-V100-GPU. The black dots are the pull values, and the blue lines are Gaussian fits to the distributions

Fig. 6   The fitting time as a function of the number of tracks with dif-
ferent matrix inversion algorithms on Cori-Haswell-CPU (dashed 
blue for custom matrix inversion, and solid blue for Eigen-based 
matrix inversion) and Cori-KNL-CPU (dashed red for custom matrix 
inversion, and solid red for Eigen-based matrix inversion). The top 
panel shows the results with 60 and 250 threads on Cori-Haswell-
CPU and Cori-KNL-CPU, respectively, and the bottom panel shows 
the results with a single thread



	 Computing and Software for Big Science (2021) 5:20

1 3

20  Page 10 of 16

specialized linear algebra libraries would be expected to 
further improve the performance.

Performance of CUDA Code on CPU

The GPU-based track fitting program compiled with nvcc 
can also run on CPUs (although the CUDA driver and 
CUDA runtime need to be accessible to successfully allocate 
page-locked memory on the host). In this case, the track-
level parallelization is achieved by using OpenMP threads 
and the host-device model including memory and execu-
tion offloading is bypassed. The nvcc compiler uses the 
host compiler (gcc in this case) to generate the executable. 
This approach ensures comparable execution time when the 
number of tracks is small but it induces a small performance 
penalty (between 4 % and 18 %) compared with the standard 
C++ implementation compiled with OpenMP support when 
the number of tracks exceeds 1000, as shown in Fig. 7.

Nevertheless, it demonstrates the potential for single-
source code targeting heterogeneous hardware resources. 
This is especially important for large and long-running 
software projects that might be used on different hardware 
architectures. However, this still requires the code to be 
written using CUDA and implies the portability limitations 
discussed in Sect. 3.2.

Performance Comparison Between GPU Architectures

Performance of the Kalman filter-based track fitting on the 
P100 and V100 Nvidia Tesla cards, is compared. Figure 8 
shows that fitting time on NAF-P100-GPU is more than a 
factor of two longer than on Cori-V100-GPU, therefore the 
following tests will focus on the V100 due to its superior 
performance. These performance differences are expected to 
a certain extent because the P100 and the V100 come from 

different hardware generations, with the V100 generally 
featuring more cores, higher clock rates and an improved 
interconnect.

Performance Comparison Between CPU and GPU

Figure 9 compares the fitting time on Cori-V100-GPU with 
that on Cori-Haswell-CPU using different approaches to the 
matrix inversion. As mentioned previously, only the custom 
matrix inversion is possible with Cori-V100-GPU. When 
considering the custom matrix inverter, Cori-V100-GPU 
displays superior performance compared to Cori-Haswell-
CPU when the number of tracks exceeds 1000. However, the 
Eigen-based implementation on CPUs still outperforms our 
custom inverter on GPUs, demonstrating that it is important 
to not only consider the potential benefits from porting the 
actual code to GPUs but to also take supporting libraries 
into account.

Fig. 7   The fitting time as a function of the number of tracks on NAF-
SL-CPU using 60 threads with Eigen-based matrix inversion obtained 
with the gcc (solid blue) and nvcc (dashed red) compiled executa-
bles, respectively

Fig. 8   The fitting time as a function of the number of tracks on NAF-
P100-GPU (dashed red) and Cori-V100-GPU (solid blue)

Fig. 9   The fitting time as a function of the number of tracks on Cori-
Haswell-CPU using 60 threads with Eigen-based matrix inversion 
(dashed blue) and custom matrix inversion (dotted blue), and on Cori-
V100-GPU (solid red)



Computing and Software for Big Science (2021) 5:20	

1 3

Page 11 of 16  20

Our matrix inversion algorithm performs all the opera-
tions in double precision regardless of the operands’ types. 
Figure 10 shows that there is little variation in performance 
between the different operands’ types: when running the 
code on Cori-Haswell-CPU, there is virtually no perfor-
mance difference for more than 1000 tracks, while double 
operands are slightly slower on Cori-V100-GPU.

As a consequence of parallel execution, the fitting time 
per track varies inversely with the number of tracks for all 
the considered platforms. In particular, for an HL-LHC sce-
nario with up to 10,000 tracks, both the current prototype on 
GPUs and the Eigen-based implementation on CPUs show a 
fitting time per track in the order of microseconds.

Performance with Different GPU Configurations

The impact of usage of intra-track parallelization with 
shared memory, and variations in number of streams per 
device, grid size and block size as well as the number of 
fitted tracks are investigated and the most important results 
are discussed next.

Figure 11 shows that performance gain could be achieved 
by using intra-track parallelization with shared memory 
when the number of tracks is below 1000. However, when 
the number of tracks exceeds 1000, using intra-track paral-
lelization results in a performance penalty due to limitation 
of the available shared memory and resident threads per SM.

Figure 12 shows that no significant performance gain is 
obtained from using more streams per device.

Figure 13 shows the required wall clock time with differ-
ent grid and block sizes for 10,000 tracks. Note that when 

Fig. 10   The fitting time as a function of the number of tracks using 
float and double operands on Cori-Haswell-CPU (solid blue for 
float, and dotted blue for double) and Cori-V100-GPU (dashed red for 
float, and dotted blue for double). The tests are performed using the 
custom matrix inversion and the ones executed on Cori-Haswell-CPU 
are using 60 OpenMP threads

Fig. 11   The fitting time as a function of the number of tracks with 
linear grid of size 100,000× 1 with (dashed red) or without (solid 
blue) intra-track parallelization on Cori-V100-GPU

Fig. 12   The fitting time as a function of the number of tracks with 
linear grids of sizes 5120× 1 (top) and 100,000× 1 (bottom), with one 
(solid blue) or four (dashed red) streams per device on Cori-V100-
GPU

Fig. 13   The fitting time for 10,000 tracks as a function of bidimen-
sional (left) or unidimensional (right) block sizes with linear grids of 
sizes 5120× 1 (top) and 100,000× 1 (bottom), with one (blue) or four 
(red) streams per device on Cori-V100-GPU



	 Computing and Software for Big Science (2021) 5:20

1 3

20  Page 12 of 16

there are 1024 threads per block, the CUDA __launch _
bounds__ must be specified with the maximum number 
of threads per block no less than 1024 to avoid “too many 
resources requested for launch” errors. This results in a max-
imum of 64 registers per thread at Cori-V100-GPU with 
65,536 32-bit registers per SM. While the performance dif-
ferences between the two grid sizes are negligible, larger 
block sizes increase the runtime by up to a factor of 1.5. 
These results show that it is important to choose block sizes 
that are appropriate for the underlying hardware, i.e. when 
the overall workload is not large enough to saturate all the 
SMs on the GPU, a relatively large block size could lead to 
further imbalance of the workload distributed to the SMs 
and hence compromise the performance.

The number of registers per thread can be reduced with 
the goal of running more threads per block without exceed-
ing the hardware limits (i.e. the maximum number of blocks 
per SM). Figure 14 shows how a variation in the number 
of registers per thread affects the overall performance for 
a track fitting workload of 10,000 tracks. The performance 
varies little with the number of registers per thread. This is 
because the number of resident threads on the SMs are not 
increased by reducing the number of registers per thread 
when the overall workload is small. Increasing the block size 
can enforce at least the same amount of threads as the block 
size resident on some SMs, but this could lead to unwanted 
performance compromise due to inefficient GPU utilization. 
See Sect. 6 for further discussion.

The different components of the fitting time are analysed 
using Nsight Systems, one of Nvidia’s new performance 
analysis tools [51]. Figure 15 shows the timeline of those 
CUDA API activities required for GPU offloading, including 
the memory allocation on GPU, kernel launching, device 
synchronization and memory deallocation on the GPU, 

and the timeline of memory transfer and kernel execution 
in either one CUDA stream or multiple streams for 10,000 
tracks. When using only a single stream, kernel execution 
accounts for roughly 70% of the total runtime, and memory 
transfer accounts for roughly 17% with significant impact on 
the performance. The performance gain from overlapping 
the data transfer and kernel execution with multiple streams 
is limited by the memory transfer time. A dedicated CUDA 
synchronization method might improve this.

Discussion

The timing performance studies in Sect.  5 use a single 
GPU. Potential gains in the timing performance by utilizing 
multiple GPUs and the GPU occupancy (which could have 

Fig. 14   The fitting time for 10,000 tracks using various number of 
registers per thread and block sizes on Cori-V100-GPU node. The cir-
cle blue, cross red and triangle green represent block sizes of 8 ×8× 1, 
16×16× 1 and 32×32× 1, respectively. When there are 1024 threads per 
block, a maximum of 64 registers per thread is allowed

Fig. 15   The timeline of CUDA activities for offloading track fitting 
for 10,000 tracks to Cori-V100-GPU with one stream (top) and four 
streams (bottom). The starting times of memory allocation on GPU 
are taken as the 0 point of the timelines

Fig. 16   The fitting time as a function of the number of tracks exe-
cuted in one stream per device with linear grid of size 5120× 1 and 
block size of 8 ×8× 1, when using one NAF-V100-GPU (solid blue) 
and two NAF-V100-GPU in parallel (dashed red)



Computing and Software for Big Science (2021) 5:20	

1 3

Page 13 of 16  20

an impact on the timing performance) are investigated in 
addition.

While the performance of the GPU-based Kalman filter 
was tested on one GPU, the implementation can also run 
on multiple GPUs in parallel. The prototype uses a team of 
threads on the host, each one fitting the trajectory of a subset 
of tracks on a different GPU. Despite better problem size 
scaling, the multi-device solution has a slightly larger over-
all execution time for smaller numbers of tracks, as shown 
in Fig. 16. Communication via Message Passing Interface 
(MPI) is required to fully exploit the parallelism by resolving 
synchronization overhead between the GPUs.

In addition, the latest versions of the Nvidia HPC 
Software Development Kit (SDK) provide new tools and 
libraries designed to maximize performance by optimizing 
memory transfers and scaling to multiple devices while tar-
geting heterogeneous resources [52]. Additionally, various 
studies regarding vendor-agnostic offloading approaches 
show promising results based on standard APIs and/or open-
source, non-proprietary solutions [53, 54]. These would be 
very interesting to explore in future iterations.

The warp occupancy, defined as the ratio of active warps 
on an SM to the maximum number of active warps sup-
ported by the SM (e.g. 64 warps per SM on the V100), is 
analyzed using a different Nvidia performance tool: Nsight 
Compute [51]. Figure 17 shows the dependency of the theo-
retical warp occupancy and the achieved warp occupancy 
on the number of registers per thread and block size for a 
track fitting workload of 10,000 tracks. The theoretical occu-
pancy is 100% when the number of registers per thread is 
no larger than 32 and decreases when more registers are 
required for one thread, hence fewer threads are active. Since 

the maximum number of thread blocks per SM is 32 on the 
V100, the block size is not a limiting factor to theoretical 
occupancy as long as it is no less than 64.

The achieved occupancy is well below the theoretical one, 
in particular when the block size is small. The reason is that 
an average of only 119 tracks are distributed to each SM 
of Cori-V100-GPU, providing a total workload of 10,000 
tracks. Therefore, only 2 blocks are resident on the SM when 
the block size is 8 ×8× 1 (128 threads), and at most 1 resident 
block when the block size is 16×16× 1 (256 threads) or 32×
32× 1 (1024 threads). These correspond to an occupancy of 
6.25%, 12.5%, and 50%, respectively. In this case, reduc-
ing the number of registers per thread has no impact on the 
warp occupancy. Event-level parallelization is an effective 
approach to increase the workload, and hence improve the 
SM warp occupancy. This can be achieved by an offloading 
pattern with a fully contained chain of tracking modules that 
run on GPU requiring minimum data transfer between CPU 
and GPU [18]. The workload also needs to be accounted 
for when analyzing the impact of SM warp occupancy on 
the performance. For instance, better warp occupancy does 
not necessarily correspond to better timing performance, as 
shown in Fig. 14, for the particular track fitting workload of 
10,000 tracks studied here. Further discrepancy between the 
achieved occupancy and the theoretical one arises from the 
imbalanced track fitting workload both within blocks and 
across blocks due to different momentum hence propagation 
paths between tracks. In this paper, the workload imbalances 
were already controlled by using a homogeneous detector 
geometry for all the tracks. For a realistic detector, the con-
cept of tracking regions as presented in Ref. [8, 9] can be 
used for the parallelization of track reconstruction. In the 
case of track finding, there is additional workload imbalance 
from the selection of compatible measurements from a pool 
of non-static number of measurements on a detector surface 
and possibly splitting the track propagation into multiple 
branches if there are more than one compatible measure-
ment found. One possible approach to suppress the workload 
imbalance level would be to group the tracks based on their 
kinematic properties so that one group of tracks will encoun-
ter the same segmented detector region, and assign different 
groups of tracks to different grids or blocks. See Ref. [8, 9] 
for further discussion.

Conclusion

The reconstruction of charged particle trajectories for 
current and future high-energy physics experiments is a 
significant computational challenge. New approaches are 
needed to cope with the dramatically increased event com-
plexity and rates and with the movement away from x86 
architectures. The Kalman filter algorithm is the mainstay 

Fig. 17   Warp occupancy levels using various number of registers per 
thread and block sizes for fitting 10,000 tracks executed in one stream 
with linear grid of size 5120× 1 on Cori-V100-GPU. The black dashed 
line is the theoretical warp occupancy, and the circle blue, cross red 
and triangle green represent the achieved warp occupancy with block 
sizes of 8 ×8× 1, 16×16× 1 and 32×32× 1, respectively. When there 
are 1024 threads per block, a maximum of 64 registers per thread is 
allowed



	 Computing and Software for Big Science (2021) 5:20

1 3

20  Page 14 of 16

of current track reconstruction strategies. We presented a 
proof-of-concept implementation of a full Kalman filter 
track fitting algorithm using ACTS on two different Nvidia 
GPU architectures using a simplified detector geometry 
and a constant magnetic field. We have performed studies 
of its physics and technical performance and compared 
this to results using CPUs with a particular focus on the 
limitations observed. Ideas for improvements for future 
implementations were discussed.

As existing fast matrix inversion algorithms cannot 
run on GPUs, we developed a custom prototype matrix 
inversion algorithm, which does not match the CPU per-
formance of highly-optimized state-of-the-art algorithms. 
When controlling for the matrix inversion algorithm, 
worse performance for low track multiplicity is obtained 
with the GPUs compared to the CPUs and the performance 
is improved by a factor of up to 4.6 with respect to the 
CPUs for events with more than 1000 tracks. Significant 
performance differences are shown between the different 
GPU architectures.

Parallelization within the track fit was implemented and 
performance gain was observed with a relatively low track 
multiplicity. The performance dependence on GPU con-
figurations was also studied. The performance was largely 
independent of the grid size and did not change when using 
multiple kernels. Memory transfer and other overhead can 
account for up to 30% of the total run time for the track fit.

The typical HL-LHC track multiplicity of 10,000 tracks 
per event is a relatively small workload for GPUs. For events 
with 10,000 tracks, performance gain by up to a factor of 
1.5 is achieved by using a smaller block size. The small 
workload is also the main limiting factor in the achieved 
occupancy on the GPU.

We have compared different methods for the Kalman fil-
ter implementation and studied the dependence on the GPU 
configuration. We have identified limitations of the approach 
and highlighted areas for future work directions.

Specifically, an evaluation of alternative approaches for 
GPU offloading, especially those provided by vendor-agnos-
tic interfaces such as OpenMP, can be expected to result 
in improved performance portability. Moreover, further 
improvements to the GPU-based matrix inversion algorithm 
can be expected to bring its performance closer to existing 
CPU implementations.

Acknowledgements  We would like to thank Dr. Attila Krasznahorkay 
(CERN), Dr. Charles Leggett (Lawrence Berkeley National Labora-
tory) and Dr. Andreas Salzburger (CERN) for their careful reading 
of the manuscript and their helpful comments and suggestions. This 
work used the grid computational resources operated at Deutsches 
Elektronen-Synchrotron (DESY), Hamburg, Germany and at the 
National Energy Research Scientific Computing Center (NERSC), a 
U.S. Department of Energy Office of Science User Facility located at 
Lawrence Berkeley National Laboratory, operated under Contract No. 
DE-AC02-05CH11231. We acknowledge the support by the National 

Science Foundation (NSF) and Data Science in Hamburg - HELM-
HOLTZ Graduate School for the Structure of Matter (DASHH).

Funding  Open Access funding enabled and organized by Projekt 
DEAL. This work was funded by the NSF under Cooperative Agree-
ment OAC-1836650, and supported by DASHH with the Grant-No. 
HIDSS-0002.

Availability of data and materials  Not applicable. No associated data 
except for code.

Code availability  The code used for this research (including a Singular-
ity container for reproducibility) is available open source [43].

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Billoir P (1984) Track fitting with multiple scattering: a new 
method. Nucl Instrum Meth A 225:352–366. https://​doi.​org/​10.​
1016/​0167-​5087(84)​90274-6

	 2.	 Fruhwirth R (1987) Application of Kalman filtering to track and 
vertex fitting. Nucl Instrum Meth A 262:444–450. https://​doi.​org/​
10.​1016/​0168-​9002(87)​90887-4

	 3.	 Strandlie A, Frühwirth R (2010) Track and vertex reconstruction: 
from classical to adaptive methods. Rev Mod Phys 82:1419–1458. 
https://​doi.​org/​10.​1103/​RevMo​dPhys.​82.​1419

	 4.	 Moore GE (1965) Cramming more components onto integrated 
circuits. Electronics 38:8. https://​doi.​org/​10.​1109/​JPROC.​1998.​
658762

	 5.	 Shalf J (2020) The future of computing beyond Moore’s Law. 
Philos Trans Roy Soc A 378:2166. https://​doi.​org/​10.​1098/​rsta.​
2019.​0061

	 6.	 Cerati G et al (2014) Traditional tracking with Kalman filter on 
parallel architectures. https://​arxiv.​org/​abs/​1409.​8213

	 7.	 Cerati G et al (2017) Parallelized Kalman-filter-based reconstruc-
tion of particle tracks on many-core processors and GPUs. EPJ 
Web Conf. 150, 00006 (2017). https://​doi.​org/​10.​1051/​epjco​nf/​
20171​50000​06

	 8.	 Cerati G et al (2020) Reconstruction of charged particle tracks 
in realistic detector geometry using a vectorized and parallelized 
kalman filter algorithm. EPJ Web Conf 245:02013. https://​doi.​org/​
10.​1051/​epjco​nf/​20202​45020​13

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0167-5087(84)90274-6
https://doi.org/10.1016/0167-5087(84)90274-6
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1103/RevModPhys.82.1419
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1098/rsta.2019.0061
https://doi.org/10.1098/rsta.2019.0061
https://arxiv.org/abs/1409.8213
https://doi.org/10.1051/epjconf/201715000006
https://doi.org/10.1051/epjconf/201715000006
https://doi.org/10.1051/epjconf/202024502013
https://doi.org/10.1051/epjconf/202024502013


Computing and Software for Big Science (2021) 5:20	

1 3

Page 15 of 16  20

	 9.	 Lantz S et al (2020) Speeding up particle track reconstruction 
using a parallel Kalman filter algorithm. J Instrum 15(09):P09030. 
https://​doi.​org/​10.​1088/​1748-​0221/​15/​09/​p09030

	10.	 Kisel I (2018) for CBM Collaboration Event topology recon-
struction in the CBM experiment. J Phys Conf Ser 1070:012015. 
https://​doi.​org/​10.​1088/​1742-​6596/​1070/1/​012015

	11.	 ALICE Collaboration (2008) The ALICE experiment at the 
CERN LHC. J Instrum 3(8):S08002. https://​doi.​org/​10.​1088/​
1748-​0221/3/​08/​s08002

	12.	 LHCb Collaboration (2008) The LHCb detector at the LHC. J 
Instrum 3(8):S08005. https://​doi.​org/​10.​1088/​1748-​0221/3/​08/​
s08005

	13.	 Rohr D, Gorbunov S, Schmidt MO, Shahoyan R (2018) Track 
reconstruction in the ALICE TPC using GPUs for LHC Run 3. 
https://​arxiv.​org/​abs/​1811.​11481

	14.	 Rohr D, Gorbunov S, Ole Marten S, Shahoyan R (2019) GPU-
based online track reconstruction for the ALICE TPC in run 3 
with continuous read-out. EPJ Web Conf 214:01050. https://​doi.​
org/​10.​1051/​epjco​nf/​20192​14010​50

	15.	 Aaij R et  al (2020) Allen: a high-level trigger on GPUs for 
LHCb. Comput Softw Big Sci 4(1):7. https://​doi.​org/​10.​1007/​
s41781-​020-​00039-7

	16.	 Funke D, Hauth T, Innocente V, Quast G, Sanders P, Schiefer-
decker D (2014) Parallel track reconstruction in CMS using the 
cellular automaton approach. J Phys Conf Ser 513(5):052010. 
https://​doi.​org/​10.​1088/​1742-​6596/​513/5/​052010

	17.	 Rinaldi L, Belgiovine M, Sipio RD, Gabrielli A, Negrini M, 
Semeria F, Sidoti A, Tupputi SA, Villa M (2015) GPGPU for 
track finding in high energy physics. https://​arxiv.​org/​abs/​1507.​
03074

	18.	 Bocci A, Kortelainen M, Innocente V, Pantaleo F, Rovere M 
(2020) Heterogeneous reconstruction of tracks and primary 
vertices with the CMS pixel tracker. https://​arxiv.​org/​abs/​2008.​
13461

	19.	 vom Bruch D (2017) Online data reduction using track and vertex 
reconstruction on GPUs for the Mu3e experiment. EPJ Web Conf 
150:00013. https://​doi.​org/​10.​1051/​epjco​nf/​20171​50000​13

	20.	 Sen P, Singhal V (2015) Event selection for MUCH of CBM 
experiment using GPU computing. In: 2015 Annual IEEE India 
conference (INDICON), pp 1–5. https://​doi.​org/​10.​1109/​INDIC​
ON.​2015.​74435​69

	21.	 vom Bruch D (2020) Real-time data processing with GPUs in high 
energy physics. J Instrum 15(06):C06010. https://​doi.​org/​10.​1088/​
1748-​0221/​15/​06/​c06010

	22.	 Huang MY, Wei SC, Huang B, Chang YL (2011) Accelerating the 
Kalman Filter on a GPU. In: 2011 IEEE 17th international confer-
ence on parallel and distributed systems, pp 1016–1020 (2011). 
https://​doi.​org/​10.​1109/​ICPADS.​2011.​153

	23.	 Xu D, Xiao Z, Li D, Wu F (2016) Optimization of parallel algo-
rithm for Kalman filter on CPU-GPU heterogeneous system. In: 
2016 12th international conference on natural computation, fuzzy 
systems and knowledge discovery (ICNC-FSKD), pp 2165–2172. 
https://​doi.​org/​10.​1109/​FSKD.​2016.​76035​16

	24.	 Gumpert C, Salzburger A, Kiehn M, Hrdinka J, Calace N (2017) 
ACTS: from ATLAS software towards a common track recon-
struction software. Tech. Rep. ATL-SOFT-PROC-2017-030. 4, 
CERN, Geneva (2017). https://​doi.​org/​10.​1088/​1742-​6596/​898/4/​
042011

	25.	 Ai X (2019) Acts: a common tracking software. In: Meeting of the 
division of particles and fields of the American Physical Society. 
https://​arxiv.​org/​abs/​1910.​03128

	26.	 Gessinger P, Grasland H, Gray H, Kiehn M, Klimpel F, Langen-
berg R, Salzburger A, Schlag B, Zhang J, Ai X (2020) The Acts 
project: track reconstruction software for HL-LHC and beyond. 
EPJ Web Conf 245:10003. https://​doi.​org/​10.​1051/​epjco​nf/​20202​
45100​03

	27.	 Ai X (2020) Tracking with a common tracking software. https://​
arxiv.​org/​abs/​2007.​01239

	28.	 Ai X, Allaire C, Calace N, Czirkos A, Ene I, Elsing M, Farkas R, 
Gagnon LG, Garg R, Gessinger P, Grasland H, Gray HM, Gump-
ert C, Hrdinka J, Huth B, Kiehn M, Klimpel F, Krasznahorkay A, 
Langenberg R, Leggett C, Niermann J, Osborn JD, Salzburger A, 
Schlag B, Tompkins L, Yamazaki T, Yeo B, Zhang J, Mania G, 
Kolbinger B, Moyse E, Rousseau D (2021) A common tracking 
software project. https://​arxiv.​org/​abs/​2106.​13593

	29.	 Kalman RE (1960) A new approach to linear filtering and predic-
tion problems. J Basic Eng 82(1):35–45. https://​doi.​org/​10.​1115/1.​
36625​52

	30.	 Rauch HE, Tung F, Striebel CT (1965) Maximum likelihood esti-
mates of linear dynamic systems. AIAA J 3(8):1445–1450. https://​
doi.​org/​10.​2514/3.​3166

	31.	 ATLAS Collaboration (2008) The ATLAS Experiment at the 
CERN large Hadron Collider. JINST 3 (S08003):437. https://​
cds.​cern.​ch/​record/​11298​11. Also published by CERN Geneva 
in 2010

	32.	 Guennebaud G, Jacob B et al (2010) Eigen v3. http://​eigen.​tuxfa​
mily.​org

	33.	 Dagum L, Menon R (1998) OpenMP: an industry standard API for 
shared-memory programming. IEEE Comput Sci Eng 5(1):46–55. 
https://​doi.​org/​10.​1109/​99.​660313

	34.	 CUDA Toolkit Documentation (2021) https://​docs.​nvidia.​com/​
cuda/​index.​html. Accessed 4 February 2021

	35.	 Clark D (1998) OpenMP: a parallel standard for the masses. IEEE 
Concurr 6(1):10–12. https://​doi.​org/​10.​1109/​4434.​656771

	36.	 Daley CS, Ahmed H, Williams S, Wright NJ (2020) A case study 
of porting HPGMG from CUDA to OpenMP target offload. In: 
Milfeld K, de Supinski BR, Koesterke L, Klinkenberg J (eds) 
OpenMP: portable multi-level parallelism on modern systems - 
16th international workshop on OpenMP, IWOMP 2020, Austin, 
TX, USA, September 22–24, 2020, Proceedings. Lecture notes in 
computer science, vol 12295, pp 37–51. Springer. https://​doi.​org/​
10.​1007/​978-3-​030-​58144-2_3

	37.	 Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel 
programming with CUDA. ACM Queue 6(2):40–53. https://​doi.​
org/​10.​1145/​13654​90.​13655​00

	38.	 CUDA C++ Programming Guide. https://​docs.​nvidia.​com/​cuda/​
cuda-c-​progr​amming-​guide/​index.​html. Online. Accessed 4 Feb-
ruary 2021

	39.	 Du P, Weber R, Luszczek P, Tomov S, Peterson GD, Dongarra JJ 
(2012) From CUDA to OpenCL: towards a performance-portable 
solution for multi-platform GPU programming. Parallel Comput 
38(8):391–407. https://​doi.​org/​10.​1016/j.​parco.​2011.​10.​002

	40.	 Babej M, Jääskeläinen P (2020) HIPCL: tool for porting CUDA 
applications to advanced OpenCL platforms through HIP. In: 
McIntosh-Smith S (ed) IWOCL ’20: international workshop on 
OpenCL, ACM, Munich, Germany, April 27–29, 2020, pp 18:1–
18:3. https://​doi.​org/​10.​1145/​33883​33.​33886​41

	41.	 Fatica M (2008) CUDA toolkit and libraries. In: 2008 IEEE hot 
chips 20 symposium (HCS), pp 1–22. https://​doi.​org/​10.​1109/​
HOTCH​IPS.​2008.​74765​20

	42.	 Herdman JA, Gaudin WP, Perks O, Beckingsale DA, Mallinson 
AC, Jarvis SA (2014) Achieving portability and performance 
through OpenACC. In: Chandrasekaran S, Foertter FS, Hernan-
dez OR (eds) Proceedings of the first workshop on accelerator 
programming using directives, WACCPD ’14, New Orleans, Loui-
siana, USA, November 16–21, pp 19–26. IEEE Computer Society. 
https://​doi.​org/​10.​1109/​WACCPD.​2014.​10

	43.	 Ai X, Mania G, Gray HM, Kuhn M, Styles N (2021) gpuKalman-
Fitter: v2.0. https://​doi.​org/​10.​5281/​zenodo.​46933​89

	44.	 Myrheim J, Bugge L (1979) A fast Runge-Kutta method for fit-
ting tracks in a magnetic field. Nucl Instrum Meth 160(1), 43–48. 
https://​doi.​org/​10.​1016/​0029-​554X(79)​90163-0

https://doi.org/10.1088/1748-0221/15/09/p09030
https://doi.org/10.1088/1742-6596/1070/1/012015
https://doi.org/10.1088/1748-0221/3/08/s08002
https://doi.org/10.1088/1748-0221/3/08/s08002
https://doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.1088/1748-0221/3/08/s08005
https://arxiv.org/abs/1811.11481
https://doi.org/10.1051/epjconf/201921401050
https://doi.org/10.1051/epjconf/201921401050
https://doi.org/10.1007/s41781-020-00039-7
https://doi.org/10.1007/s41781-020-00039-7
https://doi.org/10.1088/1742-6596/513/5/052010
https://arxiv.org/abs/1507.03074
https://arxiv.org/abs/1507.03074
https://arxiv.org/abs/2008.13461
https://arxiv.org/abs/2008.13461
https://doi.org/10.1051/epjconf/201715000013
https://doi.org/10.1109/INDICON.2015.7443569
https://doi.org/10.1109/INDICON.2015.7443569
https://doi.org/10.1088/1748-0221/15/06/c06010
https://doi.org/10.1088/1748-0221/15/06/c06010
https://doi.org/10.1109/ICPADS.2011.153
https://doi.org/10.1109/FSKD.2016.7603516
https://doi.org/10.1088/1742-6596/898/4/042011
https://doi.org/10.1088/1742-6596/898/4/042011
https://arxiv.org/abs/1910.03128
https://doi.org/10.1051/epjconf/202024510003
https://doi.org/10.1051/epjconf/202024510003
https://arxiv.org/abs/2007.01239
https://arxiv.org/abs/2007.01239
https://arxiv.org/abs/2106.13593
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.2514/3.3166
https://doi.org/10.2514/3.3166
https://cds.cern.ch/record/1129811
https://cds.cern.ch/record/1129811
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.1109/99.660313
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://doi.org/10.1109/4434.656771
https://doi.org/10.1007/978-3-030-58144-2_3
https://doi.org/10.1007/978-3-030-58144-2_3
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1016/j.parco.2011.10.002
https://doi.org/10.1145/3388333.3388641
https://doi.org/10.1109/HOTCHIPS.2008.7476520
https://doi.org/10.1109/HOTCHIPS.2008.7476520
https://doi.org/10.1109/WACCPD.2014.10
https://doi.org/10.5281/zenodo.4693389
https://doi.org/10.1016/0029-554X%2879%2990163-0


	 Computing and Software for Big Science (2021) 5:20

1 3

20  Page 16 of 16

	45.	 NVIDIA CUDA Toolkit v10.0.130 Release notes. https://​docs.​
nvidia.​com/​cuda/​archi​ve/​10.0/​cuda-​toolk​it-​relea​se-​notes/​index.​
html#​depre​cated-​featu​res. Online. Accessed 4 February 2021

	46.	 IEEE 754-2008 - IEEE standard for floating-point arithmetic 
(2008). https://​stand​ards.​ieee.​org/​stand​ard/​754-​2008.​html

	47.	 CUDA toolkit documentation - floating point and IEEE 754. 
https://​docs.​nvidia.​com/​cuda/​float​ing-​point/​index.​html. Online. 
Accessed 4 February 2021

	48.	 Edmonds K, Fleischmann S, Lenz T, Magass C, Mechnich 
J, Salzburger A (2008) The fast ATLAS Track Simulation 
(FATRAS). Tech. Rep. ATL-SOFT-PUB-2008-001. ATL-COM-
SOFT-2008-002, CERN, Geneva. https://​cds.​cern.​ch/​record/​
10919​69

	49.	 NERSC Cori System Specification. https://​docs.​nersc.​gov/​syste​
ms/​cori/#​system-​speci​ficat​ion. Online. Accessed 4 February 2021

	50.	 NVIDIA Tesla V100 GPU Architecture (2017). https://​images.​
nvidia.​com/​conte​nt/​volta-​archi​tectu​re/​pdf/​volta-​archi​tectu​re-​white​
paper.​pdf. Online. Accessed 4 February 2021

	51.	 Knobloch M, Mohr B (2020) Tools for GPU computing debug-
ging and performance analysis of heterogenous HPC applications. 
Supercomput Front Innov 7(1):91–111. https://​doi.​org/​10.​14529/​
jsfi2​00105

	52.	 NVIDIA HPC Software Development Kit. https://​devel​oper.​
nvidia.​com/​hpc-​sdk. Online. Accessed 4 February 2021

	53.	 Deakin T, Poenaru A, Lin T, McIntosh-Smith S (2020) Tracking 
performance portability on the Yellow Brick Road to Exascale. 
In: 2020 IEEE/acm international workshop on performance, port-
ability and productivity in HPC (P3HPC), pp 1–13. https://​doi.​org/​
10.​1109/​P3HPC​51967.​2020.​00006

	54.	 Gayatri R, Yang C, Kurth T, Deslippe J (2018) A case study for 
performance portability using OpenMP 4.5. In: Chandrasekaran 
S, Juckeland G, Wienke S (eds) Accelerator programming using 
directives—5th international workshop, WACCPD 2018, Dallas, 
TX, USA, November 11–17, 2018, Proceedings, Lecture notes in 
computer science, vol 11381, pp 75–95. Springer. https://​doi.​org/​
10.​1007/​978-3-​030-​12274-4_4

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://docs.nvidia.com/cuda/archive/10.0/cuda-toolkit-release-notes/index.html#deprecated-features
https://docs.nvidia.com/cuda/archive/10.0/cuda-toolkit-release-notes/index.html#deprecated-features
https://docs.nvidia.com/cuda/archive/10.0/cuda-toolkit-release-notes/index.html#deprecated-features
https://standards.ieee.org/standard/754-2008.html
https://docs.nvidia.com/cuda/floating-point/index.html
https://cds.cern.ch/record/1091969
https://cds.cern.ch/record/1091969
https://docs.nersc.gov/systems/cori/#system-specification
https://docs.nersc.gov/systems/cori/#system-specification
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://doi.org/10.14529/jsfi200105
https://doi.org/10.14529/jsfi200105
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-sdk
https://doi.org/10.1109/P3HPC51967.2020.00006
https://doi.org/10.1109/P3HPC51967.2020.00006
https://doi.org/10.1007/978-3-030-12274-4_4
https://doi.org/10.1007/978-3-030-12274-4_4

	A GPU-Based Kalman Filter for Track Fitting
	Abstract
	Introduction
	The Kalman Filter and ACTS
	Parallelization and Offloading Techniques
	OpenMP
	CUDA

	GPU Implementation
	Parallelization Strategy
	CUDA Considerations and Limitations
	Polymorphism
	Thread Memory Limitations
	Limited Support for Linear Algebra Libraries
	Precision and Rounding

	Data Structure and Transfer

	Performance Evaluation
	Hardware and Software Environment
	Tracking Performance
	Computing Performance
	Performance of the Custom Matrix Inversion Algorithm
	Performance of CUDA Code on CPU
	Performance Comparison Between GPU Architectures
	Performance Comparison Between CPU and GPU
	Performance with Different GPU Configurations


	Discussion
	Conclusion
	Acknowledgements 
	References




