Computing and Software for Big Science (2021) 5:20
https://doi.org/10.1007/541781-021-00065-z

ORIGINAL ARTICLE q

Check for
updates

A GPU-Based Kalman Filter for Track Fitting

Xiaocong Ai' @ - Georgiana Mania'?® . Heather M. Gray*>*® . Michael Kuhn®*® - Nicholas Styles'

Received: 15 April 2021 / Accepted: 13 September 2021 / Published online: 5 October 2021
© The Author(s) 2021

Abstract

Computing centres, including those used to process High-Energy Physics data and simulations, are increasingly providing
significant fractions of their computing resources through hardware architectures other than x86 CPUs, with GPUs being a
common alternative. GPUs can provide excellent computational performance at a good price point for tasks that can be suit-
ably parallelized. Charged particle (track) reconstruction is a computationally expensive component of HEP data reconstruc-
tion, and thus needs to use available resources in an efficient way. In this paper, an implementation of Kalman filter-based
track fitting using CUDA and running on GPUs is presented. This utilizes the ACTS (A Common Tracking Software) toolkit;
an open source and experiment-independent toolkit for track reconstruction. The implementation details and parallelization
approach are described, along with the specific challenges for such an implementation. Detailed performance benchmark-
ing results are discussed, which show encouraging performance gains over a CPU-based implementation for representative
configurations. Finally, a perspective on the challenges and future directions for these studies is outlined. These include more
complex and realistic scenarios which can be studied, and anticipated developments to software frameworks and standards
which may open up possibilities for greater flexibility and improved performance.

Keywords Particle tracking - Track fitting - Parallelization - GPU - CUDA - OpenMP

Introduction

The reconstruction of the trajectories of charged particles
for High-Energy Physics (HEP) experiments is a very com-
putationally demanding task, which is performed both when
selecting events in real time with the online trigger and dur-
ing the subsequent high-precision offline reconstruction of
events for physics analysis. The most commonly used tech-
niques are adaptive methods based on the Kalman filter [1,
2], which account for the trajectories of charged particles in
magnetic fields and the energy loss of charged particles in

P< Xiaocong Ai
xiaocong.ai @desy.de
Deutsches Elektronen-Synchrotron, Hamburg, Germany

Informatics Department, University of Hamburg, Hamburg,
Germany

Physics Department, University of California, Berkeley, CA,
USA

Physics Division, Lawrence Berkeley National Laboratory,
Berkeley, CA, USA

Faculty of Computer Science, Otto von Guericke University
Magdeburg, Magdeburg, Germany

the detector material. See Ref. [3] for a review. As the execu-
tion time of such algorithms explodes combinatorially with
the number of charged particles, the advent of the upgrade
to the Large Hadron Collider (LHC), the High-Luminosity
LHC (HL-LHC), portends an even greater challenge, with
events containing up to 10,000 tracks.

For many years, HEP has been relying on Moore’s
Law [4], the observation that the number of transistors on an
integrated circuit doubles approximately every two years. As
the circuits have begun to approach intrinsic limits in terms
of density and power, Moore’s Law has begun to slow, fur-
ther complicating potential performance improvements [5].
In addition, other computing architectures have become
increasingly powerful and hence popular, such as graphical
processing units (GPUs) and field programmable gate arrays
(FPGAS). Therefore there has been a shift towards achieving
speed improvements by adding additional cores, particularly
at high-performance computing centers. These many-core
systems require highly parallel code to be fully exploited,
requiring additional knowledge from software developers.
Moreover, much of the existing code for high-energy phys-
ics experiments is not well-suited to such architectures and

@ Springer

http://orcid.org/0000-0003-3856-2415
http://orcid.org/0000-0001-7536-5336
http://orcid.org/0000-0002-5293-4716
http://orcid.org/0000-0001-8167-8574
http://orcid.org/0000-0001-6976-9457
http://crossmark.crossref.org/dialog/?doi=10.1007/s41781-021-00065-z&domain=pdf

20 Page2of16

Computing and Software for Big Science (2021) 5:20

hence requires significant development and adaptation to be
able to exploit them.

Porting algorithms to GPUs typically requires special-
ized code redesign and optimization, but performance
gains through vectorization using Single Instruction Mul-
tiple Data (SIMD) instructions, and parallelization using
many-core CPU architectures often require less significant
changes to the code base. Several HEP experiments have
leveraged the power of many-core systems for real-time
online and/or offline track reconstruction [6—10]. These
studies have demonstrated good scalability of the through-
put of events per second with the number of CPU cores.
GPU-accelerated track reconstruction has also been stud-
ied. For example, both the ALICE [11] and LHCb [12]
experiments at the LHC have proposed a GPU-based
High-Level Trigger (HLT) to handle the much increased
data rate expected during Run 3 of LHC [13-15]. In par-
ticular, LHCb has implemented a fully GPU-based high-
throughput HLT framework, which processes a data rate
of up to 40 Tbit/s using approximately 500 GPUs [15].
In these studies, ALICE and LHCb used a simplified or
parameterized Kalman filter for track fitting for maximum
speed with some impact on track resolution compared to
offline track reconstruction using a full Kalman filter.
The level of resolution loss is either acceptable for the
online identification of interesting events for further offline
analysis [15] or is recovered through dedicated optimiza-
tion of the HLT tracking algorithms [13]. Initial studies
of porting a full Kalman filter to GPUs can be found in
Ref. [7]. Other track finding algorithms such as the Cellu-
lar Automaton and Hough Transforms have also been stud-
ied on GPUs [16, 17]. GPUs are also used for accelerating
other steps of online event processing at HEP experiments,
e.g. cluster finding [15, 18], vertex reconstruction [19]
and event selection [20] and Ref. [21] presents a recent
review of applications of GPUs for online event process-
ing in HEP. The trend is generally towards bringing the
full reconstruction chain to GPUs in order to minimize the
penalties from intermediate data transfer between host and
GPUs (see Ref. [15, 18]). Beyond HEP, GPU-accelerated
Kalman filtering has been explored for a range of applica-
tions [22, 23]. However, these use cases tend to focus on
much larger (up to three orders of magnitude) matrix sizes
than are typical in HEP applications, and so the direct
applicability is limited.

We present a proof-of-concept of a full Kalman filter
algorithm on GPUs utilizing A Common Tracking Soft-
ware (ACTS) [24-28], which provides a toolkit of algo-
rithms for track reconstruction within a generic, frame-
work- and experiment-independent software package.
Detailed studies of the physics and technical performance
are presented for two different GPU architectures and com-
pared to performance on CPUs. In particular, we identify

@ Springer

and discuss the key challenges in the implementation and
highlight future directions towards the development of an
even more performant full Kalman filter algorithm.

The Kalman Filter and ACTS

Track reconstruction is typically a multi-stage procedure,
wherein candidates can be rejected at each stage. This
approach allows high reconstruction efficiency and purity to
be achieved in the final output collection, while reducing the
overhead from processing unwanted candidates further than
necessary. It starts from measurements (deposited energy
in sensitive elements of the detector) and combines them in
various configurations (including appropriate calibrations
at various stages) to form plausible candidate trajectories.
Accurate estimations of the parameters which define the
mathematical form used to describe the trajectory are then
made.

After any required pre-processing of the raw measure-
ments, a typical first step is Seeding, in which small sets of
compatible measurements are grouped using simple crite-
ria and an initial trajectory estimate made. Seeds passing
requirements can then be used as the basis for Track Find-
ing, in which additional compatible measurements are added
to the trajectory through the detector. Once the full set of
measurements for the trajectory is obtained, a Track Fitting
step can be performed, to precisely estimate the parameters
and their covariance.

A commonly used approach and important tool in many
track reconstruction applications is the Kalman filter [1,
2]. Developed in the late 1950s, the initial application of
the Kalman filter procedure was in ballistics [29], where it
allowed telemetry data for the heading and acceleration of
the projectile to be combined with information on its loca-
tion. The generalized procedure, in which measurements are
combined with predictions based on an underlying model,
results in state estimates more precise than either measure-
ments or predictions alone, and has since been very widely
used in many fields.

Within track reconstruction, a typical Kalman filter step
would proceed as follows (see Fig. 1):

1. An initial estimate of the track state (i.e. helix param-
eters) at a given position is taken as the starting point.

2. This track state is propagated according to the track
model on to the next Measurement Surface (i.e. the ref-
erence plane of a sensitive detector), providing a predic-
tion of track state on this surface.

3. The prediction is combined with the measurement at this
surface, if present, either through a weighted average

Computing and Software for Big Science (2021) 5:20

Page3of16 20

' measurement m

Fig. 1 Illustration of the different steps of the Kalman filter using a
simplified detector model consisting of only two layers. (Left) The
track state at the (k — 1)th surface is indicated with the light green
ellipse, and a measurement on the kth surface is indicated in red.

Forward Filter Backwards Smoother

Fig. 2 Illustration of a forward filter and a backwards smoother on a
simplified four layer detector geometry. The red points indicate the
measurements and their uncertainties on each layer. The green points
indicate the predictions. The predictions from the forward filter (left)
are obtained when the filter is run from left to right. The predictions
from the backwards filter are obtained during a second pass of the fil-
ter when it is run from right to left

or the so-called Gain Matrix formalism forming a new
track state which is used to update the initial estimate.

4. This new estimate is then used for further Kalman steps,
up to the end of the trajectory.

The Kalman procedure has the property that the next state
estimate can be determined from the one preceding it. While
this is a useful property in many cases, as it requires no
‘history’ to be stored, it has the consequence that only the
final state contains the full information about all the steps
preceding it, and therefore the best possible precision. To
allow the prior track states to benefit from this informa-
tion (e.g. to allow a y? quality metric to be defined based
on measurement residuals), an additional stage is needed.
This Smoother stage can be performed using one of two
approaches: either using essentially the same procedure as
the forward Kalman filter but in reverse direction as illus-
trated in Fig. 2 or using the Rauch—Tung—Striebel (RTS)
smoother [30] formalism with the stored Jacobians between

measurement m

prediction k
(qkik-1)

(Center) A prediction is made for the track state on the kth surface
and the size of the prediction is indicated with the dark green ellipse.
(Right) The track state on the kth surface is updated by including the
measurement on the kth surface

states calculated during the forward Kalman filter steps. The
latter approach does not require a second propagation of the
track parameters and is therefore expected to have better
timing performance.

ACTS has its origins in the track reconstruction algo-
rithms used by the ATLAS experiment [31]. In addition to a
tracking toolkit, ACTS also includes a fast simulation pack-
age. The ACTS code is designed to be inherently thread-safe
to support parallel code execution and the data structures
are vectorised. The implementation has been designed to
be fully agnostic to detection technologies, detector design,
and software frameworks so that it can be used by a range
of experiments. The Eigen library [32] is used for algebra
operations. In addition, ACTS is designed to be an R&D
platform for the development of new algorithms and the
porting of existing algorithms to new hardware platforms.
See Ref.[27, 28] for further details.

While various representations of trajectories are possible,
in this paper we will focus on helical trajectories of charged
particles in a solenoidal magnetic field described using the
following parameters:

— Two parameters loc, and loc, describing the spatial coor-
dinates represented in the local frame of the measure-
ment plane. In the special case of describing the param-
eters at a perigee surface!, these become the transverse
and longitudinal impact parameters d; and z;, respectively.

— The polar and azimuthal angles of the particle momen-
tum vector direction, ¢ and 6, at that point.

— A curvature parameter, expressed as the ratio of charge
to momentum ;—:.

— The time ¢.

' A surface defined at the point of closest approach to a reference
point, for example the nominal interaction point in a particle collider.

@ Springer

20 Page4of16

Computing and Software for Big Science (2021) 5:20

Both the backwards-propagation and the RTS Kalman
smoothing approaches are available within ACTS. The latter
approach is used for the performance studies in this paper.

Parallelization and Offloading Techniques

There is a wide range of tools and frameworks available that
can improve the runtime performance of scientific code via
parallelization and offloading. Two of the most widely used
frameworks are Open Multi-Processing (OpenMP) [33] and
Compute Unified Device Architecture (CUDA) [34]. While
the former traditionally allows parallelization on CPU sys-
tems via multiple threads, the latter is used to offload parts
of the code to massively parallel Nvidia GPUs.

OpenMP

OpenMP is a compiler-based high-level approach for thread
parallelization on shared memory architectures. One of its
outstanding features is that it is very easy to use and does
not require knowledge of threading and operating system
internals [35]. It is available for C, C++ and Fortran, some
of the most-widely used programming languages for scien-
tific computing. OpenMP achieves its simplicity by being
integrated into the compiler, which facilitates the paralleliza-
tion of applications. Compiler support is widely available,
which allows it to be used on personal computers as well as
supercomputers. Applications are annotated with so-called
pragmas, and turned into parallel code by the compiler;
for instance, a simple #pragma omp parallel for
pragma instructs the compiler to parallelize the subsequent
for loop. OpenMP takes care of thread management and
scheduling as well as data decomposition, which allows
developers to focus on the problem they want to solve.

One of OpenMP’s drawbacks has been its focus on CPU-
based parallelism. However, it has recently been extended
with improved offloading functionality that allows the com-
piler to offload certain parts of an application to accelerators
such as GPUs and FPGAs. Consequently, OpenMP now can
target both CPUs and GPUs, which offers better portability
than vendor-specific approaches such as CUDA [36].

CUDA

CUDA is a parallel computing platform and application
programming interface introduced by Nvidia for their line
of GPUs [37]. It allows highly parallel GPUs to be used
for general-purpose computations such as those common in
high-energy physics. It is available for a range of program-
ming languages, including C, C++, and Fortran. Wrappers

@ Springer

are also available for additional programming languages,
such as Python, R, Julia and many others.

GPUs are very specialized processing units and feature
a high number of computing cores, which can be leveraged
for scientific computations. Programs are offloaded to the
GPUs in the form of so-called compute kernels, that is, sin-
gle functions and their associated data. A kernel executes
in parallel across a set of threads, which can use per-thread
registers. Moreover, threads are aggregated into so-called
warps that are executed concurrently. Several of these warps
can be grouped into a thread block, which has access to a fast
region of shared memory that all threads within the block
can access. Finally, thread blocks can be combined into grids
by the programmer. Thread blocks in a grid can only share
data via global memory. Details of the CUDA programming
model can be found in Ref. [38].

CUDA extends existing languages and requires dedicated
compilers (nvcc for C/C++ and nvfortran for Fortran).
While it allows for the optimal use of Nvidia GPUs, it is not
portable and cannot be used for GPUs produced by other
vendors. However, there have been attempts to provide
abstraction layers or conversion tools for other approaches to
be able to run CUDA code via OpenCL [39, 40]. There are
also a variety of libraries that automatically offload compute-
intensive operations to the GPUs. Examples include libraries
such as cuBLAS for linear algebra and cuFFT for fast-fourier
transforms [41].

Competing approaches including OpenACC [42] and
OpenCL are available but have not been as widely adopted
so far. For the parallel GPU implementation presented in
this paper, we have chosen CUDA because it is the de-facto
standard for GPU-accelerated code and is widely supported.
Our attempts to develop a GPU-accelerated solution using
OpenMP were not successful so far due to offloading sup-
port in OpenMP still being in an early stage of development.

GPU Implementation

In this section, implementation details of the Kalman filter
used to run track fitting on both CPUs and GPUs are pre-
sented. The code can be found in Ref. [43].

Parallelization Strategy

As discussed in Sect. 2, track fitting is the step in the track
reconstruction chain that precisely estimates the recon-
structed track parameters and the associated covariance
matrices. If track fitting is performed sequentially in a sin-
gle event, the execution time will increase almost linearly
with increasing track multiplicity. However, the depend-
ence of the track fitting execution time on the number of
tracks weakens if the track fitting can be parallelized. The

Computing and Software for Big Science (2021) 5:20

Page50f16 20

implementation of a track-level parallel strategy is straight-
forward, since the track fitting for each reconstructed track
is completely independent. In addition, the algorithm can be
parallelized within a track fit, i.e. intra-track parallelization.
Possible gains come from the matrix operations, e.g. the
transportation of the track parameters in a magnetic field
and the Kalman filter update and smoothing, which are
computationally expensive and have to be repeated for all
the propagation steps and measurements by a total of up to
O(10) times per track. However, in practice only very limited
intra-track parallelization for those matrix operations can be
achieved by using multiple threads, because the sizes of the
matrices in one operation are usually relatively small. For
example, the largest size matrix operated on in a single track
fit in ACTS is the covariance matrix of the track parameters
represented in the global coordinate system, which is of size
8x8.

This paper discusses both parallelization strategies for
track fitting on GPUs:

1 Track-level parallelization: Track fitting for different
tracks is executed in parallel using different CUDA
threads (or blocks if further intra-track parallelization
is used).

2 Intra-track parallelization: The matrix operations
involved in a single track fit are parallelized as much as
possible using multiple threads within a single CUDA
block. In this case, the block shared memory is used for
the objects relevant with one track fit.

The transportation of the track parameters and their asso-
ciated covariance matrices in a magnetic field requires a
numerical solution to the equation of particle motion. The
adaptive Runge-Kutta-Nystrom [44] method is used to
transport the track parameters in ACTS. When extrapolat-
ing the track parameters from one measurement point to the
next, the covariance of the track parameters is updated with
the transport Jacobian between the measurement points.
Because the track parameters are represented in the local
coordinate frame of the detector, the transform Jacobians
between local and global track parameters at the two meas-
urement points have to be applied. If the fitting is performed
using one CUDA block per track, the matrix multiplication
for the covariance transport can be parallelized using mul-
tiple threads.

CUDA Considerations and Limitations

Various CUDA programming requirements have conse-
quences for the problem-specific factors that shape the par-
allelization strategies, and thus have an impact on the final
implementation. The most challenging ones are detailed
next.

Polymorphism

Virtual functions cannot be called inside a CUDA kernel
unless the objects are constructed there. The Curiously
Recurring Template Pattern (CRTP) is a C++ design
pattern that emulates the behaviour of dynamic polymor-
phism through having a base class which is a template
specialization for the derived class itself.

The ACTS Kalman filter is designed to be independent
of the detector’s tracking geometry, which could contain
surfaces of different concrete types for different tracking
detectors. To realize this design pattern on accelerators,
the surfaces are implemented with CRTP, instantiated out-
side of the Kalman filter, and fed to the algorithm. CRTP
is successfully used to define the surfaces as shown in the
code sample in Listing 1.

template <typename Derived>
inline const typename Derived::SurfaceBoundsType
*Surface ::bounds() comnst {
return static_cast<const Derived *>(this)->bounds();

}

Listing 1 Function definition in Surface base class using
CRTP

Thread Memory Limitations

The amount of memory available for a thread, which
includes the stack frame size and the maximum number
of registers, is automatically configured by the CUDA
runtime environment based on device properties includ-
ing the total amount of shared memory and the cache sizes,
and also on the number of parallel threads per execution
block. Because the GPU’s performance gain is based on
the ability to run thousands of threads in parallel, this
limits considerably the amount of memory available per
thread compared to the CPU. This memory limitation is
a major concern for recursive functions, which have to be
reimplemented using an iterative approach.

Limited Support for Linear Algebra Libraries

In the Kalman smoothing, the track parameter covariance
matrix needs to be inverted to calculate the gain matrix.
While the Eigen-based matrix class has a member function
that returns the inverse matrix, this method is not sup-
ported in the GPU kernels. Also CUDA 10.0 discontinued
the support for invoking cuBLAS functions from within
the device kernels through cublas device routine [45].
Since at the moment neither of these two linear algebra

@ Springer

20 Page6of16

Computing and Software for Big Science (2021) 5:20

libraries provides a solution for our scenario, a customized
matrix inverter is implemented whose performance impact
is discussed in Sect. 5.

Precision and Rounding

Heterogeneous resources produce slightly different results
due to different approaches to floating-point arithmetic and
rounding. CPUs typically promote float operands to doubles
when possible, perform the operations in double precision
and then truncate the result to simple precision. Moreover,
the x86 floating-point units use extended double-precision
registers (80-bit), while CUDA limits the register sizes to
32-bit and 64-bit as described by the IEEE standard 754-
2008 [46, 47].

To mitigate these effects, the customized matrix inverter
is always configured to perform the algebra operations using
double precision. Floating-point precision for other algebra
operations is used for benchmarking the performance, and
the comparison between the results with float and double
precision is discussed in Sect. 5.3.

Data Structure and Transfer

Detector geometry information is a fundamental component
for track parameter propagation and the integration of mate-
rial effects during the track reconstruction. Because track
reconstruction with a realistic detector description as used
in full detector simulation requires significant computational
resources, a simplified detector geometry, the so-called
tracking geometry, is used during the track reconstruction
in ACTS for fast navigation and extrapolation of tracks. The
basic geometrical component of the tracking geometry in
ACTS is the surface. The surface object carries information
about its geometrical orientation, shape and boundary, the
material approximated from a full detector geometry, and a
unique hierarchical geometry identifier.

Magnetic fields are used for measuring the momentum
of charged particles at high-energy physics experiments.
When a charged particle passes through a magnetic field,
it bends with the degree of bending inversely proportional
to its momentum. In this paper, a constant magnetic field
represented as an Figen matrix of size 3x1 is used for the
performance studies presented. It should be noted that this
represents a significant simplification with respect to an
inhomogeneous magnetic field, as found in many experi-
ments, for which position-specific field information may
need to be stored and retrieved, i.e. more memory might be
required. The description of inhomogeneous or nonparamet-
ric magnetic fields however is also possible within ACTS.

The ACTS tracking Event Data Model (EDM) includes
classes to describe tracking objects such as measurements

@ Springer

Fig.3 Demonstration of a track state with a measurement (orange),
a predicted track parameter (green), a filtered track parameter (yel-
low) and a smoothed track parameter (blue) on a plane surface (gray).
The covariance matrix of the local coordinates for both the measure-
ment and the fitted track parameters is represented by an ellipse. The
momentum direction of the fitted track parameters is represented by
an arrow with its covariance matrix represented by a cone oriented in
the direction of the arrow

and track parameters, which are represented with surfaces.
The EDM for the track state is designed for the Kalman
filter. It consists of a measurement, a predicted track param-
eter, a filtered track parameter and a smoothed track param-
eter, all located on a surface. Figure 3 shows a track state on
a surface. During the construction of the detector geometry,
a unique geometrical identifier is assigned to each detector
surface. By storing the geometrical identifier in the track-
ing EDM, information about the geometry can be shared
between the measurements and track parameters, and
between the CPU and GPU.

The Kalman filter, detector geometry and magnetic
field are global data shared by different tracks during the
track reconstruction, and are, therefore, stored in the kernel
global memory. In addition, four sets of track-specific data
are required to execute the track fitting kernel on the GPU:

1. Input measurements of the trajectory.

2. Starting track parameters to steer the track parameters
propagation.

3. Track fitting configurations, e.g. a target surface to
extract the fitted track parameters.

4. Fitted results including the fitting status, a collection of
track states on the trajectory and the fitted track param-
eters on the target surface.

Track-specific data are allocated on the pinned memory on
the host, i.e. page-locked memory, and this memory is allo-
cated contiguously for each track. The number of detector
surfaces intersected by the particle varies with the kinemat-
ics of the particle and the detector layout, i.e. the data loads

Computing and Software for Big Science (2021) 5:20

Page7of 16 20

Table1 The size (in bytes) of track-specific memory for a single
track

Data type Size (B)
Input measurements 280
Seeding parameters 168
Fitting configurations 144
Fitting status 1

Fitted states 8480
Fitted track parameters 216
Total 9289

are different between tracks. Managing this load imbalance
would require dedicated memory management and task
scheduling strategies. In this paper, the detector surfaces are
therefore constructed to be boundless? to guarantee that the
same number of surfaces are traversed by the tracks. Each
surface object requires approximately 120 bytes of memory.
In addition to that, the size of memory allocated and trans-
ferred for different track-specific data for a detector with 10
plane surfaces is summarized in Table 1. Considering the
relatively large size of the track-specific data, and the fact
that they are accessed only once during the track fitting,
those data are also stored in the kernel global memory.

Performance Evaluation

The software performance is studied using a simple tele-
scope-like detector geometry with 10 planar surfaces per-
pendicular to the global x axis and placed equidistantly with
30 mm between two adjacent planes. Realistic HEP track
reconstruction applications typically involve a more com-
plicated detector geometry. A constant magnetic field of 2 T
along the global z axis is used. Samples containing a single
muon per event are used for the performance evaluation.
Muons are used for this study because they interact only
minimally with the detector material and thus high-quality
track fits are expected. The muons have a transverse momen-
tum uniformly distributed between 1 and 10 GeV with both
the azimuthal angle and polar angle fixed to zero.

The Fatras fast simulation engine [48] within the ACTS
toolkit is used to generate simulated hits of the single muons
on the detector surfaces. Figure 4 illustrates the simulated
hits on the detector surfaces for a sample of 10,000 single
muons. The dense tracking environment at the HL-LHC is
not expected to exceed 10,000 tracks per event.

2 Boundless surfaces always have an intersection with a track as long
as the track is not parallel to the surface.

Fig.4 The detector configuration used to study the performance.
It consists of 10 identical planar surfaces (gray planes) perpendicu-
lar to the x-axis. The trajectories of 10,000 simulated single muons
(blue lines) and the associated simulated hits on the detector surfaces
(orange dots) are indicated

As the pattern recognition algorithms required to find
track candidates from measurements are beyond the scope
of this paper, the known trajectories of the simulated par-
ticles are used for the fitting in place of track candidates
provided by a pattern recognition step. The measurements
corresponding to the track candidates are obtained by smear-
ing the positions of the simulated hits with Gaussian distri-
butions to model detector resolution effects. A resolution
of 50 um in both the x and y dimensions of the detector,
representative of the resolution of current pixel detectors
at the LHC, is used. The initial set of track parameters for
the track fit is based on the simulated particle vertex and
momentum, smeared by Gaussian noise.

Hardware and Software Environment

Computing nodes of two supercomputers are used for run-
ning the performance tests:

1. Cori Intel Xeon Haswell node, Cori Intel Xeon Phi
Knight’s Landing (KNL) node, and Cori GPU node at
the National Energy Research Scientific Computing
Center (NERSC) [49].

2. Intel Xeon Skylake (SL) node and ATLAS-GPUOI node
at the National Analysis Facility (NAF) at DESY.

Only GPUs from the Nvidia Tesla family are studied. All
nodes use the CentOS 7 operating system and all GPUs
are using CUDA version 10.2.89. Tables 2 and 3 show the
detailed hardware and software configurations of the systems
for CPUs and GPUs respectively.

These machines cover a wide range of architectures,
with Cori-Haswell-CPU representing a standard compute
node with two processors and a moderate amount of cores
(for a total of 64 threads), while Cori-KNL-CPU features a
higher core count due to the Xeon Phi’s particular architec-
ture (for a total of 272 threads). Moreover, NAF-P100-GPU
and NAF-V100-GPU allow two different GPU generations

@ Springer

20 Page8of16

Computing and Software for Big Science (2021) 5:20

Table 2 CPU configurations

Sys. Model name SXCXT Clock rate Mem. (GB)
(GHz)
1 Intel Xeon E5-2698 v3 (Cori-Haswell-CPU) 2x16x2 2.30 128
Intel Xeon Phi 7250 (Cori-KNL-CPU) 1x68%x4 1.40 96
2 Intel Xeon Gold 5115 (NAF-SL-CPU) 2x10x2 2.40 376

The Sys. column specifies whether the CPUs are used in the NERSC (1) or NAF (2) system. The SXCXT
column represents the number of sockets (S), cores per socket (C) and threads per core (T)

Table 3 GPU configurations

Sys. GPU FP32 cores FP64 cores Clock rate Mem. (GB)
(GHz)
GV100-SXM2 (Cori-V100-GPU) 5120 2560 1.53 16
2 GP100-PCIe (NAF-P100-GPU) 3584 1792 1.48 16
2 GV100-SXM2 (NAF-V100-GPU) 5120 2560 1.53 32

The Sys. column specifies whether the GPUs are used in the NERSC (1) or NAF (2) system. FP32 and
FP64 columns denote the numbers of floating point compute units for single and double precision arithme-

tic operations, respectively

to be compared, with NAF-P100-GPU being from the
older Pascal architecture and NAF-V100-GPU belonging
to the newer Volta architecture. The NAF-P100-GPU is
connected through a Peripheral Component Interconnect
Express (PCle) serial connector while the NAF-V100-GPU
uses the SXM2 connector, a multi-line serial connector that
provides both Nvidia NVLink and PCIe connectivity [50].
Cori-V100-GPU is identical to NAF-V100-GPU except for
the lower amount of main memory. Each of the GPUs con-
tains multiple Streaming Multiprocessors (SMs), which are
similar to CPUs. However, each GPU is equipped with a
large number of SMs, specifically, up to 60 SMs for the P100
and up to 84 SMs for the V100. Each SM contains many
CUDA Cores, which execute compute kernels in the form
of threads (64 single precision/32 double precision cores
per SM for both P100 and V100). Each warp consists of 32
threads, with each warp running on one SM and each SM
being able to execute up to 64 warps simultaneously. Due
to a large number of total cores, it is important to distribute
work across a sufficient number of warps. This allows the
dedicated warp schedulers to achieve maximum utilization
by keeping the cores busy with instructions. While on P100
all threads share a single program counter (and therefore
have to execute the same instruction at the same time),
V100 manages execution state per-thread, allowing more
independence.

Tracking Performance
The resolution of the Kalman filter-based track fit is vali-

dated by calculating the pulls of the track parameters as
follows:

@ Springer

_ Viic — Viruth
Vpul = =7 » €Y

o-V
where vg;, and o, are the value and uncertainty of the fitted
track parameter respectively, and v, is the corresponding
parameter for the simulated particle.

The pull distributions of the six fitted perigee track
parameters for a simulated sample of 10,000 single muons
obtained from Cori-V100-GPU are shown in Fig. 5. The pull
distributions have means compatible with zero and widths
compatible with one, which demonstrates that the track
parameters and their uncertainties are estimated correctly
by the track fit.

Computing Performance

The timing performance of the track fitting for differ-
ent number of tracks on various computing architectures
and configurations is measured. Ten tests are run for each
measurement. The mean time of the ten tests is taken as the
measurement result, and square root of the average of their
squared deviations from the mean is taken as the measure-
ment error.

The baseline tests are performed using only track-level
parallelization, i.e. without intra-track parallelization
using shared memory. CUDA supports user configuration
of the runtime properties of the GPU kernels, e.g. grid
size and block size, and the launching of multiple kernels
with multiple CUDA streams. Furthermore, the number
of registers per thread can be controlled via the CUDA __
launch _bounds__ qualifier when the kernel is defined.
Unless explicitly specified, the tests are performed using
one CUDA stream with 255 registers per thread as default

Computing and Software for Big Science (2021) 5:20

Page90of16 20

S e0of — Data S eoof — Data s S0F — Data
_§ E = Gaussian Fit _§ [= Gaussian Fit _§ 500: - Gaussian Fit
E 500 1=0.012£0.010 E 500F |1=-0.013+0.010 E t 1=-0.012+0.010
F 6=0.99+0.01 F 6 =1.00+0.01 6 =0.99 +0.01
400F 400F
300F 300F
200F 200F
100F 100f
ok okt
pull(¢)
S e0of - Data S 60of = Data S eoof - Data
@ E = Gaussian Fit é E = Gaussian Fit _§ [= Gaussian Fit
E 5001 11=0.003 £+ 0.010 E 5001 1=-0.012+0.010 E 500F 1 =-0.005 + 0.010
F 6=0.99+0.01 o 6 =0.98+0.01 F 6 =1.00+0.01
400F 400F
300F 300F
200F 200F
100F 100F
0 === 2 4
pull(6) pull(a/p) pull(t)

Fig.5 The distributions of the pull values of the fitted perigee track parameters, (d., 2, ¢, 0, %, 1), for a sample of 10,000 single muons obtained
from Cori-V100-GPU. The black dots are the pull values, and the blue lines are Gaussian fits to the distributions

configuration [50]. Moreover, we choose a grid size of
5120x1 to match the number of processing units on the
V100 GPU, and a block size of 8x8x1, which is also the
largest size of the matrix dealt with by the Kalman filter in
ACTS. Performance with intra-track parallelization and dif-
ferent CUDA configurations are also studied for comparison.

All the tests use single-precision arithmetic operations
with the exception of (a) the matrix inversion algorithm
required by the smoother as detailed in Sect. 4.2.3, and (b)
the explicit scenario which compares the different precisions
described in Sect. 5.3.4.

A singularity container with the executable and the
required dependencies used to produce the results presented
here is accessible in Ref. [43].

Performance of the Custom Matrix Inversion Algorithm

Because the Eigen-based matrix inversion algorithm used
by ACTS cannot be called inside CUDA kernels, a cus-
tom algorithm for matrix inversion implemented for this
purpose is used. Measurements are performed to compare
our custom implementation to the Eigen-based implemen-
tation on the CPUs of both systems. As shown in Fig. 6,
it adds additional time to the fitting when the number of
tracks exceeds 100. While the Eigen-based implementation

is significantly faster by a constant factor when using
only one thread, this effect is much less pronounced when
using as many threads. Improving the performance of the
custom matrix inversion operations on GPUs to match

-¥- [Cori-Haswell-CPU] CustomInverter
—&— [Cori-Haswell-CPU] Eigeninverter
10* 1 -%- [Cori-KNL-CPU] CustomInverter
—&— [Cori-KNL-CPU] Eigeninverter

Time[ms]
Multi-thread

Time[ms]
Single-thread

The number of tracks

Fig.6 The fitting time as a function of the number of tracks with dif-
ferent matrix inversion algorithms on Cori-Haswell-CPU (dashed
blue for custom matrix inversion, and solid blue for Eigen-based
matrix inversion) and Cori-KNL-CPU (dashed red for custom matrix
inversion, and solid red for Eigen-based matrix inversion). The top
panel shows the results with 60 and 250 threads on Cori-Haswell-
CPU and Cori-KNL-CPU, respectively, and the bottom panel shows
the results with a single thread

@ Springer

20 Page100f16

Computing and Software for Big Science (2021) 5:20

—&— gcc

-¥- nvcc

Time[ms]

T T T T T
10t 102 103 104 10°
The number of tracks

Fig. 7 The fitting time as a function of the number of tracks on NAF-
SL-CPU using 60 threads with Eigen-based matrix inversion obtained
with the gcc (solid blue) and nvcc (dashed red) compiled executa-
bles, respectively

specialized linear algebra libraries would be expected to
further improve the performance.

Performance of CUDA Code on CPU

The GPU-based track fitting program compiled with nvcc
can also run on CPUs (although the CUDA driver and
CUDA runtime need to be accessible to successfully allocate
page-locked memory on the host). In this case, the track-
level parallelization is achieved by using OpenMP threads
and the host-device model including memory and execu-
tion offloading is bypassed. The nvcc compiler uses the
host compiler (gcc in this case) to generate the executable.
This approach ensures comparable execution time when the
number of tracks is small but it induces a small performance
penalty (between 4 % and 18 %) compared with the standard
C++ implementation compiled with OpenMP support when
the number of tracks exceeds 1000, as shown in Fig. 7.

Nevertheless, it demonstrates the potential for single-
source code targeting heterogeneous hardware resources.
This is especially important for large and long-running
software projects that might be used on different hardware
architectures. However, this still requires the code to be
written using CUDA and implies the portability limitations
discussed in Sect. 3.2.

Performance Comparison Between GPU Architectures

Performance of the Kalman filter-based track fitting on the
P100 and V100 Nvidia Tesla cards, is compared. Figure 8
shows that fitting time on NAF-P100-GPU is more than a
factor of two longer than on Cori-V100-GPU, therefore the
following tests will focus on the V100 due to its superior
performance. These performance differences are expected to
a certain extent because the P100 and the V100 come from

@ Springer

10°
-%- [NAF-P100-GPU] *
—&— [Cori-V100-GPU] /

Time[ms]
=
o
2
L

101 4

T T T T T
10t 10?2 103 104 10°
The number of tracks

Fig. 8 The fitting time as a function of the number of tracks on NAF-
P100-GPU (dashed red) and Cori-V100-GPU (solid blue)

--®- [Cori-Haswell-CPU] CustomInverter ‘.’
-®- [Cori-Haswell-CPU] Eigeninverter ..‘"
1 =& [Cori-V100-GPU] CustomlInverter .

Time[ms]

T T T T
10t 10?2 103 104 10°
The number of tracks

Fig.9 The fitting time as a function of the number of tracks on Cori-
Haswell-CPU using 60 threads with Eigen-based matrix inversion
(dashed blue) and custom matrix inversion (dotted blue), and on Cori-
V100-GPU (solid red)

different hardware generations, with the V100 generally
featuring more cores, higher clock rates and an improved
interconnect.

Performance Comparison Between CPU and GPU

Figure 9 compares the fitting time on Cori-V100-GPU with
that on Cori-Haswell-CPU using different approaches to the
matrix inversion. As mentioned previously, only the custom
matrix inversion is possible with Cori-V100-GPU. When
considering the custom matrix inverter, Cori-V100-GPU
displays superior performance compared to Cori-Haswell-
CPU when the number of tracks exceeds 1000. However, the
Eigen-based implementation on CPUS still outperforms our
custom inverter on GPUs, demonstrating that it is important
to not only consider the potential benefits from porting the
actual code to GPUs but to also take supporting libraries
into account.

Computing and Software for Big Science (2021) 5:20

Page110f 16 20

—&— [Cori-Haswell-CPU] float operands

--@- [Cori-Haswell-CPU] double operands
10%{ _%- [Cori-v100-GPU] float operands .
--¥- [Cori-v100-GPU] double operands

Time[ms]
=
o
o
L

101 4

T T T T T
10t 10?2 103 104 10°
The number of tracks

Fig. 10 The fitting time as a function of the number of tracks using
float and double operands on Cori-Haswell-CPU (solid blue for
float, and dotted blue for double) and Cori-V100-GPU (dashed red for
float, and dotted blue for double). The tests are performed using the
custom matrix inversion and the ones executed on Cori-Haswell-CPU
are using 60 OpenMP threads

103 { —&— Without intra-track parallelization »*
-%- With intra-track parallelization e

Time[ms]
=
B4

101] w e

10! 102 103 104 10°
The number of tracks

Fig. 11 The fitting time as a function of the number of tracks with
linear grid of size 100,000x1 with (dashed red) or without (solid
blue) intra-track parallelization on Cori-V100-GPU

Our matrix inversion algorithm performs all the opera-
tions in double precision regardless of the operands’ types.
Figure 10 shows that there is little variation in performance
between the different operands’ types: when running the
code on Cori-Haswell-CPU, there is virtually no perfor-
mance difference for more than 1000 tracks, while double
operands are slightly slower on Cori-V100-GPU.

As a consequence of parallel execution, the fitting time
per track varies inversely with the number of tracks for all
the considered platforms. In particular, for an HL-LHC sce-
nario with up to 10,000 tracks, both the current prototype on
GPUs and the Eigen-based implementation on CPUs show a
fitting time per track in the order of microseconds.

> —&— 1 stream
o
7;":"_ -%- 4 streams
E" 102
oAl
EY
F
i
=
© 9014
—
x
o
o
<
‘0o
£3 107
g 1l
Fa
[
z
=
O 10* 4

T T T T T
10t 107 103 104 10°
The number of tracks

Fig. 12 The fitting time as a function of the number of tracks with
linear grids of sizes 5120x1 (top) and 100,000x1 (bottom), with one
(solid blue) or four (dashed red) streams per device on Cori-V100-
GPU

g 1101 ® 1stream
?g 1004 X 4 streams |
g
oI 904
Eg
EN i J
: $: ¥
5 701 X %
ol 110 i
o
S 100 - %
"o %
ES 901
“E’ 1l
= 0 80 A 4
F8 %) : $
T 70} X F %
o T T T T T T
8x8x1 16x16x1 32x32x1 64x1x1 256x1x1 1024x1x1

Bidimensional block size Unidimensional block size

Fig. 13 The fitting time for 10,000 tracks as a function of bidimen-
sional (left) or unidimensional (right) block sizes with linear grids of
sizes 51201 (top) and 100,000x1 (bottom), with one (blue) or four
(red) streams per device on Cori-V100-GPU

Performance with Different GPU Configurations

The impact of usage of intra-track parallelization with
shared memory, and variations in number of streams per
device, grid size and block size as well as the number of
fitted tracks are investigated and the most important results
are discussed next.

Figure 11 shows that performance gain could be achieved
by using intra-track parallelization with shared memory
when the number of tracks is below 1000. However, when
the number of tracks exceeds 1000, using intra-track paral-
lelization results in a performance penalty due to limitation
of the available shared memory and resident threads per SM.

Figure 12 shows that no significant performance gain is
obtained from using more streams per device.

Figure 13 shows the required wall clock time with differ-
ent grid and block sizes for 10,000 tracks. Note that when

@ Springer

20 Page120f16

Computing and Software for Big Science (2021) 5:20

® Block size = 8x8x1
120 { X Block size = 16x16x1

¥ Block size = 32x32x1
110 4 }

100 1

Time[ms]

90 -

L f 1 I

70 -

T T T
32 64 128 255
Maximum registers per thread

Fig. 14 The fitting time for 10,000 tracks using various number of
registers per thread and block sizes on Cori-V100-GPU node. The cir-
cle blue, cross red and triangle green represent block sizes of 8x8x1,
16x16x1 and 32x32x1, respectively. When there are 1024 threads per
block, a maximum of 64 registers per thread is allowed

there are 1024 threads per block, the CUDA __launch _
bounds__ must be specified with the maximum number
of threads per block no less than 1024 to avoid “too many
resources requested for launch” errors. This results in a max-
imum of 64 registers per thread at Cori-V100-GPU with
65,536 32-bit registers per SM. While the performance dif-
ferences between the two grid sizes are negligible, larger
block sizes increase the runtime by up to a factor of 1.5.
These results show that it is important to choose block sizes
that are appropriate for the underlying hardware, i.e. when
the overall workload is not large enough to saturate all the
SMs on the GPU, a relatively large block size could lead to
further imbalance of the workload distributed to the SMs
and hence compromise the performance.

The number of registers per thread can be reduced with
the goal of running more threads per block without exceed-
ing the hardware limits (i.e. the maximum number of blocks
per SM). Figure 14 shows how a variation in the number
of registers per thread affects the overall performance for
a track fitting workload of 10,000 tracks. The performance
varies little with the number of registers per thread. This is
because the number of resident threads on the SMs are not
increased by reducing the number of registers per thread
when the overall workload is small. Increasing the block size
can enforce at least the same amount of threads as the block
size resident on some SMs, but this could lead to unwanted
performance compromise due to inefficient GPU utilization.
See Sect. 6 for further discussion.

The different components of the fitting time are analysed
using Nsight Systems, one of Nvidia’s new performance
analysis tools [51]. Figure 15 shows the timeline of those
CUDA API activities required for GPU offloading, including
the memory allocation on GPU, kernel launching, device
synchronization and memory deallocation on the GPU,

@ Springer

cudaMalloc EEE Memcpy HtoD
cudaLaunchKernel Kernel execution
cudaDeviceSynchronize ~ EEE Memcpy DtoH
cudaFree
CUDA API |
Activities
CUDA Stream - - -
CUDA API |
Activities
CUDA Stream 0 I I
CUDA Stream 1 [| |
CUDA Stream 2 [| |
CUDA Stream 3 | |
T T T T T T T T
0 10 20 30 40 50 60 70 80

Time (ms)

Fig. 15 The timeline of CUDA activities for offloading track fitting
for 10,000 tracks to Cori-V100-GPU with one stream (top) and four
streams (bottom). The starting times of memory allocation on GPU
are taken as the O point of the timelines

—&— [NAF-V100-GPU]
-¥- [NAF-V100-GPU] x2 x

Time[ms]
-
o
o
L

101 4

T T T T T
10t 102 103 104 10°
The number of tracks

Fig. 16 The fitting time as a function of the number of tracks exe-
cuted in one stream per device with linear grid of size 5120x1 and
block size of 8x8x1, when using one NAF-V100-GPU (solid blue)
and two NAF-V100-GPU in parallel (dashed red)

and the timeline of memory transfer and kernel execution
in either one CUDA stream or multiple streams for 10,000
tracks. When using only a single stream, kernel execution
accounts for roughly 70% of the total runtime, and memory
transfer accounts for roughly 17% with significant impact on
the performance. The performance gain from overlapping
the data transfer and kernel execution with multiple streams
is limited by the memory transfer time. A dedicated CUDA
synchronization method might improve this.

Discussion

The timing performance studies in Sect. 5 use a single
GPU. Potential gains in the timing performance by utilizing
multiple GPUs and the GPU occupancy (which could have

Computing and Software for Big Science (2021) 5:20

Page 130f 16 20

100 4 N ® Block size = 8x8x1
. X Block size = 16x16x1
N Vv Block size = 32x32x1
— 80 1 AN ——~ Theoretical occupancy
o\o \\
= N
[
> N\
2 604 \\\
>
g
© v Vo~s
Q ~
S 4041 Sso
o ~
s S
.
20 Tl
X x X T
° °))
T T T T
32 64 128 255

Maximum registers per thread

Fig. 17 Warp occupancy levels using various number of registers per
thread and block sizes for fitting 10,000 tracks executed in one stream
with linear grid of size 5120x1 on Cori-V100-GPU. The black dashed
line is the theoretical warp occupancy, and the circle blue, cross red
and triangle green represent the achieved warp occupancy with block
sizes of 8x8x1, 16x16x1 and 32x32x1, respectively. When there
are 1024 threads per block, a maximum of 64 registers per thread is
allowed

an impact on the timing performance) are investigated in
addition.

While the performance of the GPU-based Kalman filter
was tested on one GPU, the implementation can also run
on multiple GPUs in parallel. The prototype uses a team of
threads on the host, each one fitting the trajectory of a subset
of tracks on a different GPU. Despite better problem size
scaling, the multi-device solution has a slightly larger over-
all execution time for smaller numbers of tracks, as shown
in Fig. 16. Communication via Message Passing Interface
(MPI) is required to fully exploit the parallelism by resolving
synchronization overhead between the GPUs.

In addition, the latest versions of the Nvidia HPC
Software Development Kit (SDK) provide new tools and
libraries designed to maximize performance by optimizing
memory transfers and scaling to multiple devices while tar-
geting heterogeneous resources [52]. Additionally, various
studies regarding vendor-agnostic offloading approaches
show promising results based on standard APIs and/or open-
source, non-proprietary solutions [53, 54]. These would be
very interesting to explore in future iterations.

The warp occupancy, defined as the ratio of active warps
on an SM to the maximum number of active warps sup-
ported by the SM (e.g. 64 warps per SM on the V100), is
analyzed using a different Nvidia performance tool: Nsight
Compute [51]. Figure 17 shows the dependency of the theo-
retical warp occupancy and the achieved warp occupancy
on the number of registers per thread and block size for a
track fitting workload of 10,000 tracks. The theoretical occu-
pancy is 100% when the number of registers per thread is
no larger than 32 and decreases when more registers are
required for one thread, hence fewer threads are active. Since

the maximum number of thread blocks per SM is 32 on the
V100, the block size is not a limiting factor to theoretical
occupancy as long as it is no less than 64.

The achieved occupancy is well below the theoretical one,
in particular when the block size is small. The reason is that
an average of only 119 tracks are distributed to each SM
of Cori-V100-GPU, providing a total workload of 10,000
tracks. Therefore, only 2 blocks are resident on the SM when
the block size is 8x8x1 (128 threads), and at most 1 resident
block when the block size is 16Xx16x1 (256 threads) or 32X
32x1 (1024 threads). These correspond to an occupancy of
6.25%, 12.5%, and 50%, respectively. In this case, reduc-
ing the number of registers per thread has no impact on the
warp occupancy. Event-level parallelization is an effective
approach to increase the workload, and hence improve the
SM warp occupancy. This can be achieved by an offloading
pattern with a fully contained chain of tracking modules that
run on GPU requiring minimum data transfer between CPU
and GPU [18]. The workload also needs to be accounted
for when analyzing the impact of SM warp occupancy on
the performance. For instance, better warp occupancy does
not necessarily correspond to better timing performance, as
shown in Fig. 14, for the particular track fitting workload of
10,000 tracks studied here. Further discrepancy between the
achieved occupancy and the theoretical one arises from the
imbalanced track fitting workload both within blocks and
across blocks due to different momentum hence propagation
paths between tracks. In this paper, the workload imbalances
were already controlled by using a homogeneous detector
geometry for all the tracks. For a realistic detector, the con-
cept of tracking regions as presented in Ref. [8, 9] can be
used for the parallelization of track reconstruction. In the
case of track finding, there is additional workload imbalance
from the selection of compatible measurements from a pool
of non-static number of measurements on a detector surface
and possibly splitting the track propagation into multiple
branches if there are more than one compatible measure-
ment found. One possible approach to suppress the workload
imbalance level would be to group the tracks based on their
kinematic properties so that one group of tracks will encoun-
ter the same segmented detector region, and assign different
groups of tracks to different grids or blocks. See Ref. [8, 9]
for further discussion.

Conclusion

The reconstruction of charged particle trajectories for
current and future high-energy physics experiments is a
significant computational challenge. New approaches are
needed to cope with the dramatically increased event com-
plexity and rates and with the movement away from x86
architectures. The Kalman filter algorithm is the mainstay

@ Springer

20 Page140f16

Computing and Software for Big Science (2021) 5:20

of current track reconstruction strategies. We presented a
proof-of-concept implementation of a full Kalman filter
track fitting algorithm using ACTS on two different Nvidia
GPU architectures using a simplified detector geometry
and a constant magnetic field. We have performed studies
of its physics and technical performance and compared
this to results using CPUs with a particular focus on the
limitations observed. Ideas for improvements for future
implementations were discussed.

As existing fast matrix inversion algorithms cannot
run on GPUs, we developed a custom prototype matrix
inversion algorithm, which does not match the CPU per-
formance of highly-optimized state-of-the-art algorithms.
When controlling for the matrix inversion algorithm,
worse performance for low track multiplicity is obtained
with the GPUs compared to the CPUs and the performance
is improved by a factor of up to 4.6 with respect to the
CPUs for events with more than 1000 tracks. Significant
performance differences are shown between the different
GPU architectures.

Parallelization within the track fit was implemented and
performance gain was observed with a relatively low track
multiplicity. The performance dependence on GPU con-
figurations was also studied. The performance was largely
independent of the grid size and did not change when using
multiple kernels. Memory transfer and other overhead can
account for up to 30% of the total run time for the track fit.

The typical HL-LHC track multiplicity of 10,000 tracks
per event is a relatively small workload for GPUs. For events
with 10,000 tracks, performance gain by up to a factor of
1.5 is achieved by using a smaller block size. The small
workload is also the main limiting factor in the achieved
occupancy on the GPU.

We have compared different methods for the Kalman fil-
ter implementation and studied the dependence on the GPU
configuration. We have identified limitations of the approach
and highlighted areas for future work directions.

Specifically, an evaluation of alternative approaches for
GPU offloading, especially those provided by vendor-agnos-
tic interfaces such as OpenMP, can be expected to result
in improved performance portability. Moreover, further
improvements to the GPU-based matrix inversion algorithm
can be expected to bring its performance closer to existing
CPU implementations.

Acknowledgements We would like to thank Dr. Attila Krasznahorkay
(CERN), Dr. Charles Leggett (Lawrence Berkeley National Labora-
tory) and Dr. Andreas Salzburger (CERN) for their careful reading
of the manuscript and their helpful comments and suggestions. This
work used the grid computational resources operated at Deutsches
Elektronen-Synchrotron (DESY), Hamburg, Germany and at the
National Energy Research Scientific Computing Center (NERSC), a
U.S. Department of Energy Office of Science User Facility located at
Lawrence Berkeley National Laboratory, operated under Contract No.
DE-AC02-05CH11231. We acknowledge the support by the National

@ Springer

Science Foundation (NSF) and Data Science in Hamburg - HELM-
HOLTZ Graduate School for the Structure of Matter (DASHH).

Funding Open Access funding enabled and organized by Projekt
DEAL. This work was funded by the NSF under Cooperative Agree-
ment OAC-1836650, and supported by DASHH with the Grant-No.
HIDSS-0002.

Availability of data and materials Not applicable. No associated data
except for code.

Code availability The code used for this research (including a Singular-
ity container for reproducibility) is available open source [43].

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Billoir P (1984) Track fitting with multiple scattering: a new
method. Nucl Instrum Meth A 225:352-366. https://doi.org/10.
1016/0167-5087(84)90274-6

2. Fruhwirth R (1987) Application of Kalman filtering to track and
vertex fitting. Nucl Instrum Meth A 262:444-450. https://doi.org/
10.1016/0168-9002(87)90887-4

3. Strandlie A, Frithwirth R (2010) Track and vertex reconstruction:
from classical to adaptive methods. Rev Mod Phys 82:1419-1458.
https://doi.org/10.1103/RevModPhys.82.1419

4. Moore GE (1965) Cramming more components onto integrated
circuits. Electronics 38:8. https://doi.org/10.1109/JPROC.1998.
658762

5. Shalf J (2020) The future of computing beyond Moore’s Law.
Philos Trans Roy Soc A 378:2166. https://doi.org/10.1098/rsta.
2019.0061

6. Cerati G et al (2014) Traditional tracking with Kalman filter on
parallel architectures. https://arxiv.org/abs/1409.8213

7. Cerati G et al (2017) Parallelized Kalman-filter-based reconstruc-
tion of particle tracks on many-core processors and GPUs. EPJ
Web Conf. 150, 00006 (2017). https://doi.org/10.1051/epjconf/
201715000006

8. Cerati G et al (2020) Reconstruction of charged particle tracks
in realistic detector geometry using a vectorized and parallelized
kalman filter algorithm. EPJ Web Conf 245:02013. https://doi.org/
10.1051/epjconf/202024502013

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0167-5087(84)90274-6
https://doi.org/10.1016/0167-5087(84)90274-6
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1016/0168-9002(87)90887-4
https://doi.org/10.1103/RevModPhys.82.1419
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1109/JPROC.1998.658762
https://doi.org/10.1098/rsta.2019.0061
https://doi.org/10.1098/rsta.2019.0061
https://arxiv.org/abs/1409.8213
https://doi.org/10.1051/epjconf/201715000006
https://doi.org/10.1051/epjconf/201715000006
https://doi.org/10.1051/epjconf/202024502013
https://doi.org/10.1051/epjconf/202024502013

Computing and Software for Big Science (2021) 5:20

Page 150f 16 20

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Lantz S et al (2020) Speeding up particle track reconstruction
using a parallel Kalman filter algorithm. J Instrum 15(09):P09030.
https://doi.org/10.1088/1748-0221/15/09/p09030

Kisel I (2018) for CBM Collaboration Event topology recon-
struction in the CBM experiment. J Phys Conf Ser 1070:012015.
https://doi.org/10.1088/1742-6596/1070/1/012015

ALICE Collaboration (2008) The ALICE experiment at the
CERN LHC. J Instrum 3(8):S08002. https://doi.org/10.1088/
1748-0221/3/08/508002

LHCb Collaboration (2008) The LHCb detector at the LHC. J
Instrum 3(8):S08005. https://doi.org/10.1088/1748-0221/3/08/
s08005

Rohr D, Gorbunov S, Schmidt MO, Shahoyan R (2018) Track
reconstruction in the ALICE TPC using GPUs for LHC Run 3.
https://arxiv.org/abs/1811.11481

Rohr D, Gorbunov S, Ole Marten S, Shahoyan R (2019) GPU-
based online track reconstruction for the ALICE TPC in run 3
with continuous read-out. EPJ Web Conf 214:01050. https://doi.
org/10.1051/epjconf/201921401050

Aaij R et al (2020) Allen: a high-level trigger on GPUs for
LHCb. Comput Softw Big Sci 4(1):7. https://doi.org/10.1007/
s41781-020-00039-7

. Funke D, Hauth T, Innocente V, Quast G, Sanders P, Schiefer-

decker D (2014) Parallel track reconstruction in CMS using the
cellular automaton approach. J Phys Conf Ser 513(5):052010.
https://doi.org/10.1088/1742-6596/513/5/052010

Rinaldi L, Belgiovine M, Sipio RD, Gabrielli A, Negrini M,
Semeria F, Sidoti A, Tupputi SA, Villa M (2015) GPGPU for
track finding in high energy physics. https://arxiv.org/abs/1507.
03074

Bocci A, Kortelainen M, Innocente V, Pantaleo F, Rovere M
(2020) Heterogeneous reconstruction of tracks and primary
vertices with the CMS pixel tracker. https://arxiv.org/abs/2008.
13461

vom Bruch D (2017) Online data reduction using track and vertex
reconstruction on GPUs for the Mu3e experiment. EPJ] Web Conf
150:00013. https://doi.org/10.1051/epjconf/201715000013

Sen P, Singhal V (2015) Event selection for MUCH of CBM
experiment using GPU computing. In: 2015 Annual IEEE India
conference (INDICON), pp 1-5. https://doi.org/10.1109/INDIC
ON.2015.7443569

vom Bruch D (2020) Real-time data processing with GPUs in high
energy physics. J Instrum 15(06):C06010. https://doi.org/10.1088/
1748-0221/15/06/c06010

Huang MY, Wei SC, Huang B, Chang YL (2011) Accelerating the
Kalman Filter on a GPU. In: 2011 IEEE 17th international confer-
ence on parallel and distributed systems, pp 1016-1020 (2011).
https://doi.org/10.1109/ICPADS.2011.153

Xu D, Xiao Z, Li D, Wu F (2016) Optimization of parallel algo-
rithm for Kalman filter on CPU-GPU heterogeneous system. In:
2016 12th international conference on natural computation, fuzzy
systems and knowledge discovery ICNC-FSKD), pp 2165-2172.
https://doi.org/10.1109/FSKD.2016.7603516

Gumpert C, Salzburger A, Kiehn M, Hrdinka J, Calace N (2017)
ACTS: from ATLAS software towards a common track recon-
struction software. Tech. Rep. ATL-SOFT-PROC-2017-030. 4,
CERN, Geneva (2017). https://doi.org/10.1088/1742-6596/898/4/
042011

Ai X (2019) Acts: a common tracking software. In: Meeting of the
division of particles and fields of the American Physical Society.
https://arxiv.org/abs/1910.03128

Gessinger P, Grasland H, Gray H, Kiehn M, Klimpel F, Langen-
berg R, Salzburger A, Schlag B, Zhang J, Ai X (2020) The Acts
project: track reconstruction software for HL-LHC and beyond.
EPJ Web Conf 245:10003. https://doi.org/10.1051/epjconf/20202
4510003

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Ai X (2020) Tracking with a common tracking software. https://
arxiv.org/abs/2007.01239

Ai X, Allaire C, Calace N, Czirkos A, Ene I, Elsing M, Farkas R,
Gagnon LG, Garg R, Gessinger P, Grasland H, Gray HM, Gump-
ert C, Hrdinka J, Huth B, Kiehn M, Klimpel F, Krasznahorkay A,
Langenberg R, Leggett C, Niermann J, Osborn JD, Salzburger A,
Schlag B, Tompkins L, Yamazaki T, Yeo B, Zhang J, Mania G,
Kolbinger B, Moyse E, Rousseau D (2021) A common tracking
software project. https://arxiv.org/abs/2106.13593

Kalman RE (1960) A new approach to linear filtering and predic-
tion problems. J Basic Eng 82(1):35-45. https://doi.org/10.1115/1.
3662552

Rauch HE, Tung F, Striebel CT (1965) Maximum likelihood esti-
mates of linear dynamic systems. AIAA J 3(8):1445-1450. https://
doi.org/10.2514/3.3166

ATLAS Collaboration (2008) The ATLAS Experiment at the
CERN large Hadron Collider. JINST 3 (S08003):437. https://
cds.cern.ch/record/1129811. Also published by CERN Geneva
in 2010

Guennebaud G, Jacob B et al (2010) Eigen v3. http://eigen.tuxfa
mily.org

Dagum L, Menon R (1998) OpenMP: an industry standard API for
shared-memory programming. IEEE Comput Sci Eng 5(1):46-55.
https://doi.org/10.1109/99.660313

CUDA Toolkit Documentation (2021) https://docs.nvidia.com/
cuda/index.html. Accessed 4 February 2021

Clark D (1998) OpenMP: a parallel standard for the masses. IEEE
Concurr 6(1):10-12. https://doi.org/10.1109/4434.656771

Daley CS, Ahmed H, Williams S, Wright NJ (2020) A case study
of porting HPGMG from CUDA to OpenMP target offload. In:
Milfeld K, de Supinski BR, Koesterke L, Klinkenberg J (eds)
OpenMP: portable multi-level parallelism on modern systems -
16th international workshop on OpenMP, IWOMP 2020, Austin,
TX, USA, September 22-24, 2020, Proceedings. Lecture notes in
computer science, vol 12295, pp 37-51. Springer. https://doi.org/
10.1007/978-3-030-58144-2_3

Nickolls J, Buck I, Garland M, Skadron K (2008) Scalable parallel
programming with CUDA. ACM Queue 6(2):40-53. https://doi.
org/10.1145/1365490.1365500

CUDA C++ Programming Guide. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html. Online. Accessed 4 Feb-
ruary 2021

Du P, Weber R, Luszczek P, Tomov S, Peterson GD, Dongarra JJ
(2012) From CUDA to OpenCL: towards a performance-portable
solution for multi-platform GPU programming. Parallel Comput
38(8):391-407. https://doi.org/10.1016/j.parco.2011.10.002
Babej M, Jadaskeldinen P (2020) HIPCL: tool for porting CUDA
applications to advanced OpenCL platforms through HIP. In:
Mclntosh-Smith S (ed) IWOCL ’20: international workshop on
OpenCL, ACM, Munich, Germany, April 27-29, 2020, pp 18:1-
18:3. https://doi.org/10.1145/3388333.3388641

Fatica M (2008) CUDA toolkit and libraries. In: 2008 IEEE hot
chips 20 symposium (HCS), pp 1-22. https://doi.org/10.1109/
HOTCHIPS.2008.7476520

Herdman JA, Gaudin WP, Perks O, Beckingsale DA, Mallinson
AC, Jarvis SA (2014) Achieving portability and performance
through OpenACC. In: Chandrasekaran S, Foertter FS, Hernan-
dez OR (eds) Proceedings of the first workshop on accelerator
programming using directives, WACCPD ’14, New Orleans, Loui-
siana, USA, November 16-21, pp 19-26. IEEE Computer Society.
https://doi.org/10.1109/WACCPD.2014.10

Ai X, Mania G, Gray HM, Kuhn M, Styles N (2021) gpuKalman-
Fitter: v2.0. https://doi.org/10.5281/zenodo.4693389

Myrheim J, Bugge L (1979) A fast Runge-Kutta method for fit-
ting tracks in a magnetic field. Nucl Instrum Meth 160(1), 43—48.
https://doi.org/10.1016/0029-554X(79)90163-0

@ Springer

https://doi.org/10.1088/1748-0221/15/09/p09030
https://doi.org/10.1088/1742-6596/1070/1/012015
https://doi.org/10.1088/1748-0221/3/08/s08002
https://doi.org/10.1088/1748-0221/3/08/s08002
https://doi.org/10.1088/1748-0221/3/08/s08005
https://doi.org/10.1088/1748-0221/3/08/s08005
https://arxiv.org/abs/1811.11481
https://doi.org/10.1051/epjconf/201921401050
https://doi.org/10.1051/epjconf/201921401050
https://doi.org/10.1007/s41781-020-00039-7
https://doi.org/10.1007/s41781-020-00039-7
https://doi.org/10.1088/1742-6596/513/5/052010
https://arxiv.org/abs/1507.03074
https://arxiv.org/abs/1507.03074
https://arxiv.org/abs/2008.13461
https://arxiv.org/abs/2008.13461
https://doi.org/10.1051/epjconf/201715000013
https://doi.org/10.1109/INDICON.2015.7443569
https://doi.org/10.1109/INDICON.2015.7443569
https://doi.org/10.1088/1748-0221/15/06/c06010
https://doi.org/10.1088/1748-0221/15/06/c06010
https://doi.org/10.1109/ICPADS.2011.153
https://doi.org/10.1109/FSKD.2016.7603516
https://doi.org/10.1088/1742-6596/898/4/042011
https://doi.org/10.1088/1742-6596/898/4/042011
https://arxiv.org/abs/1910.03128
https://doi.org/10.1051/epjconf/202024510003
https://doi.org/10.1051/epjconf/202024510003
https://arxiv.org/abs/2007.01239
https://arxiv.org/abs/2007.01239
https://arxiv.org/abs/2106.13593
https://doi.org/10.1115/1.3662552
https://doi.org/10.1115/1.3662552
https://doi.org/10.2514/3.3166
https://doi.org/10.2514/3.3166
https://cds.cern.ch/record/1129811
https://cds.cern.ch/record/1129811
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://doi.org/10.1109/99.660313
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://doi.org/10.1109/4434.656771
https://doi.org/10.1007/978-3-030-58144-2_3
https://doi.org/10.1007/978-3-030-58144-2_3
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1016/j.parco.2011.10.002
https://doi.org/10.1145/3388333.3388641
https://doi.org/10.1109/HOTCHIPS.2008.7476520
https://doi.org/10.1109/HOTCHIPS.2008.7476520
https://doi.org/10.1109/WACCPD.2014.10
https://doi.org/10.5281/zenodo.4693389
https://doi.org/10.1016/0029-554X%2879%2990163-0

20

Page 16 of 16

Computing and Software for Big Science (2021) 5:20

45.

46.

47.

48.

49.

50.

51.

NVIDIA CUDA Toolkit v10.0.130 Release notes. https://docs.
nvidia.com/cuda/archive/10.0/cuda-toolkit-release-notes/index.
html#deprecated-features. Online. Accessed 4 February 2021
IEEE 754-2008 - IEEE standard for floating-point arithmetic
(2008). https://standards.ieee.org/standard/754-2008.html
CUDA toolkit documentation - floating point and IEEE 754.
https://docs.nvidia.com/cuda/floating-point/index.html. Online.
Accessed 4 February 2021

Edmonds K, Fleischmann S, Lenz T, Magass C, Mechnich
J, Salzburger A (2008) The fast ATLAS Track Simulation
(FATRAS). Tech. Rep. ATL-SOFT-PUB-2008-001. ATL-COM-
SOFT-2008-002, CERN, Geneva. https://cds.cern.ch/record/
1091969

NERSC Cori System Specification. https://docs.nersc.gov/syste
ms/cori/#system-specification. Online. Accessed 4 February 2021
NVIDIA Tesla V100 GPU Architecture (2017). https://images.
nvidia.com/content/volta-architecture/pdf/volta-architecture-white
paper.pdf. Online. Accessed 4 February 2021

Knobloch M, Mohr B (2020) Tools for GPU computing debug-
ging and performance analysis of heterogenous HPC applications.
Supercomput Front Innov 7(1):91-111. https://doi.org/10.14529/
jsfi200105

@ Springer

52.

53.

54.

NVIDIA HPC Software Development Kit. https://developer.
nvidia.com/hpc-sdk. Online. Accessed 4 February 2021

Deakin T, Poenaru A, Lin T, McIntosh-Smith S (2020) Tracking
performance portability on the Yellow Brick Road to Exascale.
In: 2020 IEEE/acm international workshop on performance, port-
ability and productivity in HPC (P3HPC), pp 1-13. https://doi.org/
10.1109/P3HPC51967.2020.00006

Gayatri R, Yang C, Kurth T, Deslippe J (2018) A case study for
performance portability using OpenMP 4.5. In: Chandrasekaran
S, Juckeland G, Wienke S (eds) Accelerator programming using
directives—>5th international workshop, WACCPD 2018, Dallas,
TX, USA, November 11-17, 2018, Proceedings, Lecture notes in
computer science, vol 11381, pp 75-95. Springer. https://doi.org/
10.1007/978-3-030-12274-4_4

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://docs.nvidia.com/cuda/archive/10.0/cuda-toolkit-release-notes/index.html#deprecated-features
https://docs.nvidia.com/cuda/archive/10.0/cuda-toolkit-release-notes/index.html#deprecated-features
https://docs.nvidia.com/cuda/archive/10.0/cuda-toolkit-release-notes/index.html#deprecated-features
https://standards.ieee.org/standard/754-2008.html
https://docs.nvidia.com/cuda/floating-point/index.html
https://cds.cern.ch/record/1091969
https://cds.cern.ch/record/1091969
https://docs.nersc.gov/systems/cori/#system-specification
https://docs.nersc.gov/systems/cori/#system-specification
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://doi.org/10.14529/jsfi200105
https://doi.org/10.14529/jsfi200105
https://developer.nvidia.com/hpc-sdk
https://developer.nvidia.com/hpc-sdk
https://doi.org/10.1109/P3HPC51967.2020.00006
https://doi.org/10.1109/P3HPC51967.2020.00006
https://doi.org/10.1007/978-3-030-12274-4_4
https://doi.org/10.1007/978-3-030-12274-4_4

	A GPU-Based Kalman Filter for Track Fitting
	Abstract
	Introduction
	The Kalman Filter and ACTS
	Parallelization and Offloading Techniques
	OpenMP
	CUDA

	GPU Implementation
	Parallelization Strategy
	CUDA Considerations and Limitations
	Polymorphism
	Thread Memory Limitations
	Limited Support for Linear Algebra Libraries
	Precision and Rounding

	Data Structure and Transfer

	Performance Evaluation
	Hardware and Software Environment
	Tracking Performance
	Computing Performance
	Performance of the Custom Matrix Inversion Algorithm
	Performance of CUDA Code on CPU
	Performance Comparison Between GPU Architectures
	Performance Comparison Between CPU and GPU
	Performance with Different GPU Configurations

	Discussion
	Conclusion
	Acknowledgements
	References

