EPJ Web of Conferences 251, 03061 (2021) https://doi.org/10.1051/epjcont/202125103061
CHEP 2021

hep_tables: Heterogeneous Array Programming for HEP"

Gordon Watts!-**

'University of Washington, Seattle

Abstract. Array operations are one of the most concise ways of expressing
common filtering and simple aggregation operations that are the hallmark of a
particle physics analysis: selection, filtering, basic vector operations, and filling
histograms. The High Luminosity run of the Large Hadron Collider (HL-LHC),
scheduled to start in 2026, will require physicists to regularly skim datasets that
are over a PB in size, and repeatedly run over datasets that are 100’s of TB’s
— too big to fit in memory. Declarative programming techniques are a way of
separating the intent of the physicist from the mechanics of finding the data and
using distributed computing to process and make histograms. This paper de-
scribes a library that implements a declarative distributed framework based on
array programming. This prototype library provides a framework for different
sub-systems to cooperate in producing plots via plug-in’s. This prototype has
a ServiceX data-delivery sub-system and an awkward array sub-system coop-
erating to generate requested data or plots. The ServiceX system runs against
ATLAS xA0D data and flat ROOT TTree’s and awkward on the columnar data
produced by ServiceX.

1 Introduction

A particle physicist uses a number of heterogeneous systems to make a plot [1]. A typical
workflow might start with reconstructed data - data that contains physics objects - located in
an experiment’s production storage system. The output of the experiment’s production system
is often located on the GRID, a loosely federated collection of CPU and disk facilities. The
physicist must submit a job to run on the GRID to access that data. This job extracts the
data, applies corrections, and writes out the data in a simplified format, mostly likely ROOT
TTree’s. The physicist then downloads the data locally, and uses local tools to run over that
data to extract plots. Time scales can be long: while the jobs on the GRID will normally run
quickly, GRID site down times, data delivery glitches, etc., often mean there is a long trail
when the user runs on 100’s of files. For many analyses this phase takes more than a week.
Once the data is stored locally, it can take approximately a day to produce a plot. However,
if the physicist decides that they need a new quantity from the original production data, the
complete cycle must be repeated. For this reason, physicists tend to extract a large amount of
data, making the local data sets 10’s to 100’s of TB.

A second aspect makes this harder than, perhaps, it needs to be: the physicist must know
multiple programming languages and tools: C++ and Python for the GRID jobs, along with
command line tools and scripts to submit and babysit the jobs. For making the plots one has

*This work was supported by the National Science Foundation under Cooperative Agreement OAC-1836650.
**e-mail: gwatts @uw.edu

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

EPJ Web of Conferences 251, 03061 (2021) https://doi.org/10.1051/epjcont/202125103061
CHEP 2021

to use either C++ and ROOT or Python and the SciKit-HEP set of libraries. Further, one has
to have more than a passing familiarity with the complexity of distributed computing systems,
along with how well the weakest GRID site is working so that it can be avoided.

The field of database design and management offers two concepts that apply for HEP
data analysis: data query languages and data independence [2]. SQL, a common database
query language, is declarative: it only specifies the relationships between data fields. Data
independence is the idea that how the data is stored should not impact how one queries the
data: the same SQL can be used to query many different databases with different storage
schema.

The Python ecosystem has developed a compelling tool-set that uses array-processing
semantics to quickly and intuitively analyze data that can be loaded as in-memory arrays.
In particle physics, the awkward array library [3] is the most popular of these libraries, and
it borrows and extends semantics from the famous rectangular numpy [4] array processing
library to work with non-uniform multi-dimensional arrays (e.g. JaggedArray’s). This project
explores using an array-like interface to take over not only the last step in the plot production
process, but also the part that uses the GRID. As an example, the following code will make a
plot of electron pr starting from a set of GRID files that are the output of the ATLAS Monte
Carlo production:

from func_adl import EventDataset
from hep_tables import xaod_table, make_local

S

dataset = EventDataset('localds://mc15_13TeV:mc15_13TeV.361106.
— PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee.merge.DAOD_STDM3.

- e3601_s2576_s2132_r6630_r6264_p2363_tid05630052_00"')

df = xaod_table(dataset)

5

6

7 eles = df.Electrons("Electrons')

s good_eles = eles[(eles.pt > 50000.0) & (abs(eles.eta) < 1.5)]
9

10 np_pts = make_local(good_eles.pt/1000.0)
12 plt.hist(np_pts.flatten(), range=(0, 100), bins=50)

13 plt.xlabel('Electron p_T [GeV]')
14 plt.ylabel('PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee')

Listing 1: A complete hep_tables code snippet that extracts the electron pr from an ATLAS
xA0D Monte Carlo sample, brings it to the local machine, and uses matplotlib to plot it as a
histogram.

Line 4 declares the GRID dataset to be used, lines 7-8 define a good electron as being
central and py > 50000 MeV (the units in an ATLAS xaoD file). Line 10 triggers the rendering
of the data, which involves calling out to the ServiceX [5] backend to fetch the data. It is
returned as an awkward array, which is plotted in lines 12-14. An interesting subtlety, which
is not much further discussed in this paper, can be found in line 12: note the call to np_pts. |
flatten(). The awkward data returned this hep_tables query is jagged - an array of arrays.
The first array has an entry per event, and the inner array is of all electron p7’s in the event.
hep_tables does its best to allow you to work on a per-event basis, though most operations are
done on large blocks of events at once via array programming. Both a query language and
data independence are present here: the array-programming interface is the query language,
and as the plug-in’s translate the query into the proper instructions, the query language is
independent of the way the data is stored.

EPJ Web of Conferences 251, 03061 (2021) https://doi.org/10.1051/epjcont/202125103061
CHEP 2021

2 Library Structure

This library provides a user-interface that looks much like numpy or awkward. Instead of imme-
diately executing the operations, however, it records them. When the physicist requests the
actual plot or other result, that triggers the library to resolve the query into a set of actions via
plug-ins. Each plug-in uses a sub-system to execute the requested actions. The end-result is
a number, or a column of data (rendering of plots is planned).

The library is built in two layers. The first layer is responsible for recording the actions in
the code. The second layer is responsible for executing them. The most popular libraries, like
numpy and awkward, do both these operations at execution time: an expression like x[0] + y[0]
is executed as it is evaluated. Two advantages are gained by splitting this operation into
recording and execution. First, the operations can be fused - so the addition and the array
slicing can take place at the same time. This avoids the creation of temporaries. This is
done by analyzing the recording and looking for operations that can be fused. Second, the
recording can easily be efficiently shipped to a remote system where it is executed and only
the results transmitted back. Or the execution could be split across multiple systems, without
the physicist having to track what is going on.

2.1 The Interface

There are standards for array programming in the Python eco-system. Two in particular. For
rectangular arrays, numpy is the standard, and for jagged arrays, awkward is the standard. A
huge amount of effort has gone into both interfaces and it would be counter productive to
alter them. It might be worth extending them: there are certain types of queries that are
difficult to encode, for example, object-matching using these interfaces.

numpy

The original array programming interface. Python has standardized some of the low-level
interface work in a PEP [6] (Python language extension). Defines basic operators, slicing,
and accumulation functions. Designed specifically for rectangular data.

numpy operations, of course, are expected to be performed on numpy arrays. In the case of
a project like hep_tables, one really wants to record the operations for execution later. numpy
provides an interface, __ which is designed for this [7]. As a result, a call to
numpy . abs(a) is turned into a call to a. __array_function__. The object a can then record the
fact that numpy . abs was called on it.

array_function

——

awkward

HEP data is not rectangular, of course, and awkward was written to extend numpy to support
more complex arrays, called Jaggedarray’s. Besides defining slicing across non-uniform ar-
ray runs, it also defines operations that work across array axes, for example, counting the
number of jets in an event to yield a number-of-jets-per-event column. awkward also provides
other conveniences like behaviors, which allow an end user to imbue an array with additional
behaviors (a 4-vector can be given Lorentz-like semantics).

Improving On These Interfaces

While almost any operation desired is possible with these interfaces, there are places where
it is quite difficult to encode them - or that they are not at all straight forward. Consider the
following code snippet that matches a Monte Carlo particle to a jet using n — ¢ matching:

EPJ Web of Conferences 251, 03061 (2021) https://doi.org/10.1051/epjcont/202125103061
CHEP 2021

result = []
for e in electron:
min_value = 0.1
particle = None
for t in truth:
if dr(e,t) < min_value:
min_value = dr(e,t)
particle = t
result.append(particle)

= WY S S SR R

A particle physicist will look at this and know almost immediately what is being done: find
the closest MC particle to the electron. Array programming, however, is not nearly as straight
forward one must operate between two arrays and the operation contains a reduction (from
the list of truth particles to a single truth particle).

2.2 Dataframe Expressions

There is no Python library that will tape-record a set of array operations. There are many
libraries that implement numpy semantics and are drop-in replacements [8—10]. However,
their re-implementation of the numpy semantics is tightly tied to their implementation.

dataframe_expressions is built to be a standalone library that simply records the operations
made to DataFrame. The library supplies an abstract DataFrame type; and then records all oper-
ations done to it. It makes as few assumptions about the underlying data model as possible.
Operations occur on the DataFrame type, and include:

e The basic unary and binary math operations (e.g. —a, a + b, a/b, etc.)

¢ A number of Python built-in functions (e.g. abs(a))

o Array leaf references and functions (e.g. a.jets and a. jets.count())

e numpy type array references (e.g. numpy.sin(a))

e Filtering, or array slicing (e.g. a.jets[a.jets.pt > 30] Or a.jets[abs(a.jets.eta)<2.4)

The recording is done with a combination of a linked-tree structure and a Python abstract
syntax trees (AST). The Python AST is rich - the complete Python language can be expressed
in it (by design). Each dataframe_expressions DataFrame object holds a link to a Python AST.
If a and b are DataFrame objects, then a+b becomes a new DataFrame object, which contains
an AST. The AST is the binary + operator, with reference to the a and b DataFrame’s. All
expressions are encoded in this way, building a tree of operations.

To use the dataframe_expressions DataFrame, a library creates the base DataFrame. Usually
this means defining the source data (a file, etc.). The user then manipulates the DataFrame’s,
finishing with some sort of a call to render the results of the expression, like the make_local
call in the first listing above. At that point, the library takes the DataFrame that represents the
final result and can unwind the user’s intent, executing it as required.

One advantage of separating the recording of user intent and the rendering of the expres-
sion is dataframe_expressions DataFrame can provide some short cuts. These short cuts then
do not need to be directly handled by the back-end library. Filter functions are one example:

def good_jet(j):
return (j.pt > 35) & (abs(j.eta) < 2.5) & j.isGood

good_jets = a[good_jet]

EPJ Web of Conferences 251, 03061 (2021) https://doi.org/10.1051/epjcont/202125103061
CHEP 2021

Functions like this are helpful when one needs to define a good_jet in multiple places. Behind
the scenes, dataframe_expressions just calls the lambda with a DataFrame that represents the
jet, and records the operations performed on it.

Python lambda functions are also supported. For example, a.jets.pt/1000.0 and a. jets. |
map(lambda j: j.pt/1000.0) resolve to identical array expressions (given the interpretation
library applies map as you’d expect here). Python lambda functions can be used in most places
in the code, but their power comes from lambda capture - where a variable declared in the
outer lambda is captured by an inner lambda. For example, calculating the AR between a jet
and electrons: a.jets.map(lambda j: a.electrons.map(lambda e: j.DeltaR(e))). This creates a
2D 1aggedarray for each event. The first axis is the jet, and the second axis is the AR between
that row’s jet and each electron in the event. It is now possible to find the electron closest to
each jet using sorting, or arg-sorting, or indexing.

It is also possible to add new expressions anywhere in the data model. If an analysis
group wants to define good_jet’s for everyone, in a separate imported Python module file it
would be possible to write:

def define_shortcuts(df):
df['good_jets'] = df.jets[good_jet]

define_shortcuts(a)
good_pts = make_local(a.good_jets.pt)

This provides some level of composability - as you can easily chain complex expressions,
and still conveniently define them inside a function without having to return lots of different
values. For example, one could define a new property of a jet, which was the closest Monte
Carlo parton, using 17 — ¢ matching.

One particular place this proves useful is defining a macro at one level in the tree, but
using it at another. For example:

1 a.jets['ptgev'] = a.jets.pt / 1000.0
2
3 jetpt_in_gev = a.jets[a.jets.ptgev > 30].ptgev

Note that the ptgev is defined before the filter. But used after the filter. It is intuitive that
this should work, of course, but technically it turned out to be non-trivial. Any value, like
pt, can also be referred to as a string lookup - which helps a great deal in simplifying au-
tomated histogram and plot generation: a.jets['pt'] does exactly what you’d expect it to
do. dataframe_expressions translates both this lookup and a. jets.pt into the same AST so the
backend library does not need to handle complex features like this.

2.3 HEP Tables

While dataframe_expressions provides the user interface for the package, hep_tables is the
implementation. Its job is to take a DataFrame and to render it with the data producing a
histogram or other final product.

All dataframe_expressions start with an initial DataFrame object. hep_tables defines a single
root DataFrame which currently refers to an ATLAS xaoD dataset (xaod_table). These datasets
are registered on the GRID; despite being stored around the world, the dataset names can be
thought of a unified namespace. Lines 4-5 in Listing 1 do this. The fact that this is restricted
to func_adl’s EventDataset is an artifact of the current implementation (see Section 4). The
xaod_table is directly derived from a dataframe_expressions DataFrame.

EPJ Web of Conferences 251, 03061 (2021) https://doi.org/10.1051/epjcont/202125103061
CHEP 2021

df

Sx

.Electrons(“Electrons”)
S

o
x| Sx|

‘ 50000

[filter] 1000.0
AN Ak

Sx|
AK

Figure 1. The DataFrame tree recorded by the calculation of the good electron pr. The text in each
node’s lower right indicates which backend plug-in will handle that node’s calculation.

Until the make_local function call in line 10, everything is handled by the
dataframe_expressions package: no actual execution is scheduled. The make_local triggers
the execution. The hep_tables package uses utilities in the dataframe_expressions package to
build the full AST that summarizes the calculation. It then uses a plug-in system to create a
plan for execution.

Currently a ServiceX and an awkward plug-in exist. Each plug-in can look at a single
level in the AST and decide if it can execute it (given it can execute all parents). hep_tables
starts at the deepest parts of the tree and finds a backend that can execute each node of the
AST. It does its best to use the executor that could handle all the parents. When the executor
switches, hep_tables creates a Python async task to perform the execution via the selected
plug-in. The plug-in’s are expected to render awkward arrays, and the different plug-in’s use
these to move data between them.

Figure 1 shows the AST that is produced by the dataframe_expressions starting from the
xaod_table defined by the hep_tables package (see Listing 1). Each operation or element is
a new DataFrame. hep_tables has walked the tree, labeling each node with a plug-in. When
hep_tables gets to the bottom of the tree (the filter and division), it will submit to ServiceX
a request to render the data from the & and .pt nodes, using the awkward backend to combine
them.

ServiceX
The ServiceX plug-in works by translating the AST tree to func_adl, and submitting the
query via the ServiceX web APIL The result is returned as awkward arrays.

Translation to func_adl for an expression tree like above requires some finesse. The tree
contains multiple references to the electron branch, and those that are separated by a distance,
the .pt and the [filter] nodes, require an extra carry-along in the func_adl expression.

6

EPJ Web of Conferences 251, 03061 (2021) https://doi.org/10.1051/epjcont/202125103061
CHEP 2021

awkward

The awkward plug-in is an immediate translator: it executes each AST node, one at a time. It
does not try to take advantage of operation fusing. In that sense, this is a direct translation of
awkward operations (which also made it very easy to write).

3 Capabilities and an Example

The capabilities of hep_tables are, to first order, defined by the backend plug-in’s. This section
notes a few capabilities that are implemented:

e map: The map function is implemented (see Section 2.2). It takes whatever is to the left as
a collection and loops over it. The exact operation depends on what is to the left and the
lambda function, of course.

e Backend-Functions: There are often utility functions declared in the backend. hep_tables
needs to know about the existence of these, so they must be declared up front. The Deltar
function is an example of this. Any function can be declared, and there is the possibility of
shipping arbitrary C++ down to run on the xAop/ServiceX backend as well, though that is
not currently implemented.

e First and Count and similar functions: a.First() will return the first element of an array,
and a.Count) returns number of items in an array. Both of these turn an array into a scalar.
Various other aggregation functions are also supported.

e Types are tracked through the expression, though heuristics are used at the start. For ex-
ample, collections like Electrons are hard-coded into an xA0D data model. But once the
collection is accessed, its type is tracked. The leaves, like .pt, are assumed to be a double.

The following more complex example demonstrates some of these capabilities, and some
of the short-comings of the current design. This example looks at reconstructed electrons
from an xAoD file, and plots the matching Monte Carlo electron. The match is defined as an
electron that is within AR < 0.1.

from hep_tables import xaod_table, make_local, curry
from dataframe_expressions import user_func, define_alias
from func_adl import EventDataset

import matplotlib.pyplot as plt

import numpy as np

@user_func
def DeltaR(pl_eta: float, pl_phi: float, p2_eta: float, p2_phi: float) ->

L R T - Y N T

- float:
9 # Calculate DeltaR between two eta/phi combinations. Implemented in the
— backend.
10 assert False, 'This should never be called'

12 dataset = EventDataset('localds://mc15_13TeV:mc15_13TeV.361106.
— PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee.merge.DAOD_STDM3.
— e3601_s2576_s2132_r6630_r6264_p2363_tid05630052_00")

13 df = xaod_table(dataset)

15 mc_part = df.TruthParticles('TruthParticles')
16 mc_ele = mc_part[(mc_part.pdgId == 11) | (mc_part.pdgld == -11)]

18 eles = df.Electrons('Electrons')

20 def good_e(e):

EPJ Web of Conferences 251, 03061 (2021) https://doi.org/10.1051/epjcont/202125103061
CHEP 2021

200000

175000

150000

-
o
o
=3
=3
=3

100000 -

75000 A

50000 1

25000

PowhegPythiaBEvtGen AZNLOCTEQ6L1 Zee

T T T T T T T T T
=20 =15 =10 =5 o 5 10 15 20
Resolution (truth-reco) [GeV]

Figure 2. The difference in energy between the reconstructed electron and the MC electron in Monte

Carlo
21 'Good electron particle'
22 return (e.ptgev > 20) & (abs(e.eta) < 1.4)

24 good_eles = eles[good_e]
25 good_mc_ele = mc_ele[good_e]

27 def associate_particles(source, pick_from):

28 def dr(pl, p2):

29 'short hand for calculating DR between two particles.'

30 return DeltaR(pl.eta(), pl.phi(), p2.eta(), p2.phi(Q))

31

3 def very_near(picks, p):

33 'Return all particles in picks that are DR less than 0.1 from p'
34 return picks[lambda ps: dr(ps, p) < 0.1]

35

36 source[f'all'] = lambda source_p: very_near(pick_from, source_p)
37

38 source[f'has_match'] = lambda e: e.all.Count() > 0

39 with_assoc = source[source.has_match]

40 with_assoc['mc'] = lambda e: e.all.First()

41

42 return with_assoc

44 matched = associate_particles(good_eles, good_mc_ele)

46 pt_matched_mc = make_local(matched.mc.ptgev)
47 pt_matched_reco = make_local (matched.ptgev)

49 plt.hist((pt_matched_mc-pt_matched_reco).flatten(), bins=100, range=(-20, 20),
— histtype="step')

so0 plt.ylabel('PowhegPythia8EvtGen_AZNLOCTEQ6L1_Zee')

51 plt.xlabel("Resolution (truth-reco) [GeV]™)

The result of the plot in line 49 is shown in Figure 2. Some of the code is familiar from
Listing 1. Lines 7-10 declare a backend function. In this particular case, that will be executed
on ServiceX. It is used in the function dr defined at line 28. Lines 24 and 25 define good MC
and Data electrons that we’ll use in comparison. The function associate_particles defined at
line 27 associates the source (electrons) to the pick_from (MC electrons). This is done using
the very_near function defined at line 32 that returns a list of MC electrons that are within

EPJ Web of Conferences 251, 03061 (2021) https://doi.org/10.1051/epjcont/202125103061
CHEP 2021

AR < 0.1. Note the lambda capture grabs the electron in the form of the variable p that is
passed in. Not all electrons have a match, hence the has_match being defined at line 38, and
using it to protect the matched particle definition in line 40. Note that lines 38-40 extend the
data model so data electrons now have the bool has_match and an Monte Carlo particle mc.
These can be referred to, as they are in line 46, for easy difference plotting.

As a quick last observation - note the mix between per-event and array programming
here. The signature of Deltar is clearly per-electron, but where it is called in line 30 is array
programming. The system, with the logic of ServiceX and awkward, allows this shift to occur
naturally. It isn’t perfect - the abstraction does leak - for example if Deltar can’t be called at
the ServiceX level.

4 Status

A prototype exists in GitHub and is working [11]. This prototype was used to develop the
concepts in the code. It dispatches code to run against ServiceX and awkward as mentioned
earlier. There are, as described, clear short-comings with the code. At the time of writing,
a new version is being created to fix a number of the architectural mistakes that were made
during prototyping.

e The ServiceX backend is being upgraded to handle the full range of supported func_adl
queries to reduce the amount of data that needs to be shipped from ServiceX to an analysis
cluster. For example, the ServiceX sub-system could run all nodes found in Figure 1, but
due to limitations in the hep_tables plug-in, it cannot.

e A backend that supports the coffea library is being created. This includes the ability to
run processors in multiple places and support for the coffea data model (called nanoaod).
One of the biggest benefits here will be the ability to run on clusters. This will replace the
awkward plug-in, as awkward is used by coffea.

e A full type system is being implemented. If known, this means the system will not have to
infer types, and reduce mistakes. It will also mean errors are flagged earlier (e.g. accessing
data that doesn’t exist).

e As the user’s intent is known at the start, it is possible to cache the users query. Thus the
second time the same query is run it should take very little time - just a lookup. This is
currently implemented by the ServiceX backend. We are investigating adding this more
generically to the system.

e Histogram definition and filling is being implemented as something understood by
dataframe_expressions. This will allow histograms (or other similar objects) to be filled
in parallel and then combined.

The approach hep_tables takes, like many in Python, does have some issues. Some are a
function of this implementation and some are a function of Python’s programming model.

e Assumptions are made about which level an array operation occurs. For example, does
a.jets.Count() count the number of jets in each event (returning an array), or count the
number of events (returning a scalar)?

e While lambda capture enables many important patterns, and makes it more clear what is
going on, its readability is not the most straight forward. This is a generic problem with
Python: it is not yet possible to analyze the source code of a Python pragmatically in a
robust way. See the double-loop example in Section 2.1 for an example of code that is hard
to translate.

EPJ Web of Conferences 251, 03061 (2021) https://doi.org/10.1051/epjcont/202125103061
CHEP 2021

e Itisn’t obvious how functions over sequences should work when more than one sequence is
involved. With a single sequence it is straight forward - for example abs(a.jets.pt) should
return an array of the absolute value of jet pt’s. But what about the tuple (abs(a.jets.pt),
abs(a.jets.pt))? Should that return a single array, with two entries in each? Or should it
return a 2D array: it isn’t obvious what the physicists intent for the implied loops are here.

e Many common libraries, like seaborn, are used for plotting. This is temptingly close to be-
ing able to use these libraries. However, these libraries usually require the data in-memory,
and that can be quite expensive for a large analysis dataset.

e Loop algorithms are not well suited to this style of declarative programming. For example,
track finding - where you don’t have a definite number of steps.

e Control logic is not captured - if a decision has to be made on the result of a query, the query
must be rendered first. As one thinks forward to adopting differentiable programming, as
the 1ax package [12], this problem will have to be better understood.

5 Conclusions

This paper has described the dataframe_expressions and hep_tables package. The former
records the user’s intent by tracking common and extended array operations. The latter ren-
ders the actions across multiple backends. This project was started as a prototype to under-
stand if something like this was possible, without having to re-write the complete eco-system.
As both numpy and awkward use a dispatch mechanism, this turns out to be possible.

The packages have been used for some simple analysis examples, and are currently un-
dergoing a re-write to make them robust enough to be used for a more sophisticated analysis.

References

[1] R.W.L. Jones, D. Barberis, J. Phys. Conf. Ser. 219, 072037 (2010)
[2] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases: The Logical Level, 1st edn.
(Addison-Wesley Longman Publishing Co., Inc., USA, 1995), ISBN 0201537710
[3] J. Pivarsk, J. Nandi, D. Lange, P. Elmer, EPJ Web Conf. 214, 06026 (2019)
[4] C.R. Harris et al., Nature 585, 357 (2020), 2006.10256
[5] B. Galewsky, R. Gardner, L. Gray, M. Neubauer, J. Pivarski, M. Proffitt, I. Vukotic,
G. Watts, M. Weinberg, EPJ Web Conf. 245, 04043 (2020)
[6] T. Oliphant, C. Banks, Homebrew, https://www.python.org/dev/peps/pep-3118/ (2020),
accessed: 2020-02-28
[71 The numpy array interface, https://numpy.org/devdocs/reference/arrays.interface.html
(2020), accessed: 2020-02-28
[8] Dask Development Team, Dask: Library for dynamic task scheduling (2016)
[9] Ray - a simple, universal API for building distributed applications (2020), accessed:
2020-02-28
[10] Vaex - Out-of-Core DataFrames for Python (2020), accessed: 2020-02-28
[11] The hep_tables GitHub repository, https://github.com/gordonwatts/hep_tables
(2021), accessed: 2021-06-08
[12] S.S. Schoenholz, E.D. Cubuk, JAX M.D. A Framework for Differentiable
Physics, in Advances in Neural Information Processing Systems (Curran As-
sociates, Inc., 2020), Vol. 33, https://papers.nips.cc/paper/2020/file/
83d3d4b6c9579515e1679aca8cbc8033-Paper.pdf

10

