
Eur. Phys. J. C (2021) 81:876
https://doi.org/10.1140/epjc/s10052-021-09675-8

Regular Article - Experimental Physics

Performance of a geometric deep learning pipeline for HL-LHC
particle tracking

Xiangyang Ju1,a , Daniel Murnane1, Paolo Calafiura1, Nicholas Choma1, Sean Conlon1, Steven Farrell1,
Yaoyuan Xu1, Maria Spiropulu2, Jean-Roch Vlimant2, Adam Aurisano3, Jeremy Hewes3, Giuseppe Cerati4,
Lindsey Gray4, Thomas Klijnsma4, Jim Kowalkowski4, Markus Atkinson5, Mark Neubauer5, Gage DeZoort6,
Savannah Thais6, Aditi Chauhan7, Alex Schuy7, Shih-Chieh Hsu7, Alex Ballow8, Alina Lazar8

1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
2 California Institute of Technology, Pasadena, CA, USA
3 University of Cincinnati, Cincinnati, OH, USA
4 Fermi National Accelerator Laboratory, Batavia, IL, USA
5 University of Illinois at Urbana-Champaign, Urbana, IL, USA
6 Princeton University, Princeton, NJ, USA
7 University of Washington, Seattle, WA, USA
8 Youngstown State University, Youngstown, OH, USA

Received: 3 May 2021 / Accepted: 21 September 2021 / Published online: 6 October 2021
© The Author(s) 2021

Abstract The Exa.TrkX project has applied geometric
learning concepts such as metric learning and graph neu-
ral networks to HEP particle tracking. Exa.TrkX’s tracking
pipeline groups detector measurements to form track can-
didates and filters them. The pipeline, originally developed
using the TrackML dataset (a simulation of an LHC-inspired
tracking detector), has been demonstrated on other detec-
tors, including DUNE Liquid Argon TPC and CMS High-
Granularity Calorimeter. This paper documents new devel-
opments needed to study the physics and computing perfor-
mance of the Exa.TrkX pipeline on the full TrackML dataset,
a first step towards validating the pipeline using ATLAS and
CMS data. The pipeline achieves tracking efficiency and
purity similar to production tracking algorithms. Crucially
for future HEP applications, the pipeline benefits signifi-
cantly from GPU acceleration, and its computational require-
ments scale close to linearly with the number of particles in
the event.

1 Introduction

Charged particle tracking plays an essential role in High-
Energy Physics (HEP), including particle identification and
kinematics, vertex finding, lepton reconstruction, and flavor
jet tagging. At the core of particle tracking there is a pattern
recognition algorithm that must associate a list of 2D or 3D

a e-mail: xju@lbl.gov (corresponding author)

position measurements from a tracking detector (known as
hits or spacepoints in literature) to a list of particle track can-
didates (or tracks. A track is defined as a list of spacepoints
associated by the pattern recognition to a charged particle).

The number of particle track candidates varies signifi-
cantly from one experiment setup to another. For example,
in a High-Luminosity LHC (HL-LHC) [1] collision event,
due to the pile-up of multiple proton–proton collision per
bunch crossing, there are typically 5000 charged particles
and 100,000 spacepoints, about 50% of which are associated
to particles of interest.

A typical HEP offline tracking algorithm [3–5] has four
stages: spacepoint formation, track seeding, track following,
and track fitting. The spacepoint formation stage combines
the detector readout cell raw data in clusters from which the
spacepoint 3D coordinates, and their uncertainties, are deter-
mined. Track seeding combines spacepoints in doublet or
triplet seeds. Each seed provides an initial track direction,
origin, and possibly a curvature, with associated uncertain-
ties. The track following stage adds more spacepoints to the
seed by looking for matching spacepoints along the extrap-
olated trajectory. Finally a track fitting stage, which may be
combined with the track following, fits a trajectory through
the track spacepoints to assess the track quality and mea-
sure the particle’s physical and kinematic properties (charge,
momentum, origin, etc). To avoid biasing physics results,
each stage of the algorithm must have high efficiency, mean-
ing it must identify e.g. > 90% of the charged particles within
a fiducial region (e.g. pT > 1 GeV, |η| < 4) as track candi-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09675-8&domain=pdf
http://orcid.org/0000-0002-9745-1638
mailto:xju@lbl.gov

876 Page 2 of 14 Eur. Phys. J. C (2021) 81 :876

Fig. 1 A simulated HL-LHC collision event (top) as seen by the
TrackML tracking detector [2]. The detector schematic (bottom) shows
the top half of the detector projected on the r-z plane. The z-axis is along
the beam direction

dates. Track seeding and track filtering must also have high
purity, meaning that e.g. > 60% of the track seeds and track
candidates must correspond to charged particles. High purity
allows to keep the number of track candidates, and the asso-
ciated computational costs, under control.

Online tracking algorithms may use different pattern
recognition algorithms1 to create and filter track seeds and
candidates, but share the same high efficiency requirements.
Online application also have stringent computing require-
ments (e.g. latency O(10) µs for LHC triggers).

The computational cost of current tracking algorithms
grows worse than linearly with beam intensity and detector
occupancy, as demonstrated in Fig. 2. Given the order-of-
magnitude increase for beam intensity at HL-LHC, charged
particle pattern recognition algorithms might well limit the
discovery potential of HL-LHC experiments.

Over the last two decades, tracking computational chal-
lenges arising from the increased number of combina-
tions have been addressed by tightening fiducial regions
for charged particles, developing highly optimized track-
ing algorithms [4,5], and even optimizing the geometry of
tracking detectors. These optimizations brought order-of-
magnitude gains in tracking computational performance with
limited impact on physics. While these efforts continue [12],

1 Including Hough transforms [6,7] and cellular automata [8,9].

Fig. 2 Reconstruction wall time per event as a function of the average
number of interactions per bunch crossing 〈 μ 〉. Top: ATLAS Run 2
Inner Detector reconstruction with default configurations [10]. Bottom:
CMS time spent in tracking sequence for 2016 tracking, 2017 tracking
with conventional seeding, and 2017 tracking with Cellular Automaton
(CA) seeding [11]

it is unlikely that another order of magnitude can be gained
through incremental optimization without impacting physics
performance. Furthermore, given the computational com-
plexity and iterative nature of current track following and
filtering algorithms, it is challenging to run them efficiently
on data parallel architectures like GPUs.

The TrackML challenge [2] jump-started the application
of deep learning pattern recognition methods applied to HEP
tracking. The HEP.TrkX pilot project [13] proposed the use
of graph networks to filter track doublet and triplet seeds [14].
Building on that work, the Exa.TrkX project [15] has demon-
strated the applicability of Geometric Deep Learning (GDL)
methods [16] – specifically metric learning and Graph Neu-
ral Networks (GNN) – to particle tracking [17]. GDL is con-
cerned with learning representations of data that have com-

123

Eur. Phys. J. C (2021) 81 :876 Page 3 of 14 876

plex geometrical relationships and no natural ordering, like
detector spacepoints. GDL models are computationally reg-
ular, naturally parallel and therefore well-suited to run on
hardware accelerators.

This work describes new developments that enabled the
first study of the computing and physics performance of the
Exa.TrkX pipeline on the entire TrackML detector at HL-
LHC design luminosity, a step towards the validation of the
pipeline on ATLAS and CMS data.

2 Related work

Early on, the Hep.TrkX pilot project attempted to assign and
regress track parameters to single spacepoints using image
processing models. Subsequent attempts at estimating track
parameters using image processing and recurrent networks
showed promising results [18] in a simplified environment. A
similar realization of the method is reported in [19] where a
model processing image from successive pixel detector lay-
ers is used to produce tracklets, seeds to classical pattern
recognition. The method yields superior seeding efficiency
for tracks within jets in dense environments. The concept of
using LSTM [20] to supplement the Kalman Filter method
for track following developed by HEP.TrkX [14,18,21] was
later found in one of the promising solutions of the accu-
racy phase [22] of the TrackML challenge. The task of par-
ticle tracking was addressed with a hit-to-track assignment
method using gated recurrent unit [23] (GRU), producing
promising result in sparse environments [21]. This approach
was constrained computationally due to the use of recurrent
models.

Reference [24] applies the track finding approach devel-
oped in Ref. [25] to the whole detector by exploiting a
new data-driven graph construction method and large model
support in Tensorflow [26]. Reference [27] applies a simi-
lar GNN model to the task of particle-flow reconstruction.
The model has a classification objective, followed by a par-
tial regression of generator-level particle candidate kine-
matics. The method performs at least as well as a classi-
cal particle-flow algorithm in HL-LHC-like collision condi-
tions. As part of the Exa.TrkX project, graph networks are
used for LArTPC track reconstruction [28]. Reference [29]
explores the opportunity to implement Exa.TrkX-inspired
graph networks on FPGAs. Starting from the input stage
of the Exa.TrkX pipeline, Ref. [30] studies the impact of
cluster shape information on track seeding performance. In
Ref. [31], metric learning is used to improve the purity in
spacepoints buckets formed using similarity hashing. With
the advent of quantum computer of increasing size came the
development of quantum machine learning techniques, also
applied in particle physics [32]. In particular, inspired by the
use of GNN for charged particle tracking of the Exa.TrkX

team, quantum graph networks have been tested on the same
problem [33].

3 Methodology

3.1 Input data

This study is based on the TrackML dataset that uses a Mon-
tecarlo simulation of top quark pair production from proton–
proton collisions at the HL-LHC. To simulate the effect of
event pileup and produce realistic detector occupancy, a Pois-
son random number (with μ = 200) of QCD “minimum
bias” events are overlaid on top of the t t̄ collisions.

The TrackML detector is a set of concentric cylindrical
layers of pixelated sensors (the barrel) complemented by a
set of circular disks (the endcaps) to ensure nearly 4π cov-
erage in solid angle, as pictured in Fig. 1. Figure 3 shows
the spatial distribution of the spacepoints of a typical event.
One notable feature of this dataset is the inclusion of “noise”
spacepoints, added as a proxy for various low-momentum
particle interactions and detector effects which would other-
wise require more expensive and detailed simulations.

3.2 The Geometric Deep Learning Pipeline

This paper updates the methodology previously presented
in Ref. [17] to a fully-learned pipeline, where both graph
construction and graph classification are trained. This section
describes the pipeline (represented schematically in Fig. 4)
used to obtain the results in Sect. 4. Details of the latest model
design, parameter choices, and technical optimizations are
discussed in Sect. 5.

The pipeline currently used to reconstruct tracks from a
pointcloud of spacepoints requires six discrete stages of pro-
cessing and inference. These broadly consist of a prepro-
cessing stage, three stages required to construct a spacepoint
graph, and two stages required to classify the graph edges
and partition them into track candidates. Each stage is trained
independently (due to memory constraints) on the output of
the previous stage’s inference.

First, the dataset is processed into a format suitable for
model training. This includes calculating directional infor-
mation and summary statistics from the charge deposited in
each spacepoint, i.e. the cell features in Fig. 4. These values
are appended to the cylindrical coordinates of each space-
point to form an input feature vector to the pipeline. To apply
a graph neural network to this set of data, it is necessary to
arrange them into a graph. One can apply various geometric
heuristics to define which spacepoints are likely to be con-
nected by an edge (i.e. belong to the same track), but a useful
technique is to train a model on the geometry of connected
tracks. Thus, our second stage is to train an Embedding Net-

123

876 Page 4 of 14 Eur. Phys. J. C (2021) 81 :876

Fig. 3 A typical event distribution of spacepoints projected on the x-z plane, parallel to the beam direction (left), and the x-y plane, orthogonal to
the beam direction (right)

Fig. 4 Stages of the TrackML track formation inference pipeline. Light red boxes are trainable stages

work – a multi-layer perceptron (MLP) which embeds each
spacepoint into an N-dimensional latent space. The graph is
constructed by connecting neighboring spacepoints within a
radius rembedding, in the latent space. We train this embed-
ding with a pairwise hinge loss, to encourage spacepoints
that belong to the same track to be close in the embedded
space, according to the Euclidean metric. This allows for a
highly efficient edge construction, since we do not rely on any
heuristics of the detector geometry that may lead to missed
edges.

The edge selection at this stage is close to 100% effi-
cient but O(1)% pure, with a graph size of O(105) nodes

and O(107) edges (the purity-efficiency trade-off can be
tuned with the choice of rembedding). Before running training
or inference on the memory-intensive GNN, we filter these
edges down with another MLP. The input to this third stage
is the concatenated features on either side of each edge. That
is, the Filter Network is a binary classifier applied to the set
of edges. Constraining edge efficiency to remain high (above
96%) leads to much sparser graphs, of O(106) edges.

The fourth stage of the pipeline is the training and infer-
ence of the graph neural network. The results presented in
this work are predominantly obtained from the Interaction
Network architecture, first proposed in Ref. [34]. This vari-

123

Eur. Phys. J. C (2021) 81 :876 Page 5 of 14 876

etal of GNN includes hidden features on both nodes and
edges, which are propagated around the graph (called “mes-
sage passing”) with consecutive concatenations along edges
and aggregations of messages at receiving nodes. In the final
layer of the network, a binary classification is obtained for
each edge as true or fake, and trained on a cross-entropy loss.

The final stage of the TrackML pipeline involves task-
specific post-processing. If our goal is track formation, we
can place a threshold on the edge scores produced by the
GNN and partition the graph into connected components. If
our goal is track seeding, we can directly sample the classified
edges for high likelihood combinations of connected triplets,
or convert the entire graph to a triplet graph and train this
on a second GNN to classify the triplets. A triplet graph is
formed by taking all edges in the original (doublet) graph and
assigning them as nodes in the new triplet graph. The nodes
in this triplet graph are connected if they share a hit in the
doublet graph. Applying a GNN to this structure produces
highly pure sets of seeds as shown in Ref. [17].

Many of these techniques are common to other appli-
cations being explored in the Exa.TrkX collaboration. The
pattern of nearest-neighbor graph-building and GNN edge
classification has shown its potential for neutrino experi-
ments [28] and CMS High Granularity Calorimeter [25].
Indeed, these applications build on the TrackML pipeline
and extend it, for example by adding the particle type as an
edge feature.

4 Results

4.1 Tracking performance of the TrackML pipeline

4.1.1 Tracking efficiency and purity

The performance of a tracking pipeline is mainly charac-
terized by tracking efficiency and purity. For efficiency cal-
culations, only charged particles that satisfy |η| < 4.0 and
pT > 100 MeV are considered. These selected particles,
Nparticles(selected), are hereafter referred to as particles.

The overall tracking efficiency, known as physics effi-
ciency εphys (Eq. 1), is defined as the fraction of particles that
are matched to at least one reconstructed track. A particle is
considered to be matched to a reconstructed track when (1)
the majority of spacepoints in the reconstructed track belong
to the same true track, and (2) the majority of spacepoints in
the matched true particle track are found in the reconstructed
track.2

To measure the efficiency of the tracking pipeline itself,
we also define the technical efficiency εtech (Eq. 2) as the

2 This nomenclature and the associated definitions broadly follow [2,
35].

fraction of reconstructable particles matching at least one
reconstructed track. Reconstructable particles have a trajec-
tory that leaves at least five spacepoints in the detector. Track-
ing purity (Eq. 3) is defined as the fraction of reconstructed
tracks that match a selected particle.3

εphys = Nparticles(selected, matched)

Nparticles(selected)
(1)

εtech = Nparticles(selected, reconstructable, matched)

Nparticles(selected, reconstructable)
(2)

Purity = Ntracks(selected,matched)

Ntracks(selected)
(3)

Averaged over 50 testing events from the TrackML
dataset, the physics efficiency for particles with pT >

500 MeV is 88.7 ± 0.3% and the technical efficiency is
97.6 ± 0.3%. Without any fiducial pT cut, the physics effi-
ciency becomes 67.2 ± 0.1% and the technical efficiency
91.3 ± 0.2%. The tracking purity is 58.3 ± 0.6%. Using the
TrackML challenge scoring system and all tracks in the event,
we obtained a score of 0.877±0.005.4 The errors quoted are
statistical only.

Figure 5 shows the pT distribution of particles as well
as the tracking efficiency as a function of particle pT. The
physics efficiency for particles with pT of [100, 300] MeV
is 43%, therefore, is not displayed in the plot. The physics
efficiency for particles with pT > 700 MeV is above 88%.
The technical efficiency is 82% for particles with pT of [100,
300] MeV, and increases to above 97% for particles with
pT > 700 MeV. Figure 5 also shows the η distribution of
particles with pT > 500 MeV as well as the tracking effi-
ciency as a function of the particle η. The physics efficiency is
higher in the barrel region of the detector (volumes 8, 13, 17
in Fig. 1), while the technical efficiency is almost flat across
the η range. In Fig. 5 the pT and η of the matched truth
particle were used, rather than the pT and η of the recon-
structed track. We leave a study of track quality and detector
resolution effects for future work.

4.1.2 Systematic studies

Before using a tracking algorithm in production, it is neces-
sary to measure its sensitivity to systematic effects, includ-
ing pile-up, noise and digitization errors, and uncertainties in
the measurement of detector properties (alignment, rotation,
magnetic field map, etc.).

3 HEP tracking literature often quotes fake rate = 1 − purity.
4 We obtained a score of 0.914 ± 0.006 by training the pipeline with
a dataset that includes noise hits, that we otherwise removed from our
training dataset to facilitate the noise impact studies of section 4.1.2.

123

876 Page 6 of 14 Eur. Phys. J. C (2021) 81 :876

Fig. 5 Top row: selected, reconstructable, and matched particles (left)
and tracking efficiency (right) as a function of pT for particles with
|η| < 4. Bottom row: selected, reconstructable, and matched particles

(left) and tracking efficiency (right) as a function of η for pT > 0.5 GeV.
The definition of “selected”, “reconstructable”, and “matched” can be
found in Sect. 4.1.1

Measuring precisely the impact of pile-up collisions on
tracking performance is beyond the scope of this work, but
we can estimate pile-up’s impact on tracking performance by
plotting efficiency and purity as a function of the number of
spacepoints in the detector. Figure 6 shows that the effect of
the increased detector occupancy is a smooth performance
degradation O(%). In future work, we will study the origin
of this degradation to achieve the stable performance of tra-
ditional algorithms [36].

The impact of noise spacepoints can be estimated using the
TrackML dataset by studying the inference performance of
the tracking pipeline, trained without any noise spacepoints,
as a function of the fraction of noise spacepoints (up to a

maximum of 20% of the total). Table 1 shows the technical
tracking efficiency and purity for different noise levels. The
efficiency decreases by � 1.6% and the purity by � 5.4%
when 20% of noise spacepoints are presented. The loss of effi-
ciency happens primarily for particles with pT < 500 MeV
(Fig. 7).

Detector misalignment effects are approximated by shift-
ing by up to 1 mm the x-axis of all spacepoints in the inner-
most TrackML barrel detector layer or the four innermost
layers (volume 8 in Fig. 1). In both cases, the impact on
the tracking efficiency is less than 0.1%. However, studying
in depth misalignments, and other detector effects, requires
access to experiment detailed detector simulation data. We

123

Eur. Phys. J. C (2021) 81 :876 Page 7 of 14 876

Fig. 6 Mean and standard deviation of the technical efficiency (top)
and purity (bottom) as a function of the total number of spacepoints in
an event

Table 1 Technical efficiency and purity for different noise fractions
(N noise

spp /Nspp) ∗ 100%

Noise εtech Purity

0 91.5 59.3

4% 91.5 59.3

8% 91.1 58.0

12% 90.9 56.8

16% 92.2 54.8

20% 89.9 53.9

Fig. 7 Relative technical efficiency as a function of pT. Each curve
shows the ratio of eff(noise = N%)/eff(noise = 0)

leave these studies as future work to be performed in collab-
oration with each experiment.

4.2 Distributed training performance

Our training sample consists of 7500 pileup events from
the TrackML dataset. It takes about 1.5 days to train
the Exa.TrkX pipeline on a Nvidia A100 GPU for a set
of hyper-parameters. It is therefore desirable to use dis-
tributed training to parallelize model training and hyper-
parameter optimization (HPO). This study relied on data
parallel training [37] implemented using Horovod [38]
and Tensorflow’s tf.distributed framework [39]. Horovod
supports distributed training across multiple nodes, while
tf.distributed allows to use the same code across CPUs,
TPUs, and GPUs.

For this study, the TrackML pipeline is trained on up to 64
Nvidia V100 GPUs across eight NERSC Cori-GPU comput-
ing nodes. Using the Horovod framework (Fig. 8), training
time is reduced from 22 min, with 1 GPU, to 0.5 min with
64 GPUs.5 The strong scaling efficiency6 is about 90% with
2 GPUs and 75% with 8 GPUs. This deviation from ideal
scaling is due to the model setup time and data movement
costs.

5 All measurements in this section were taken training on spacepoints
from the barrel region of the TrackML detector. For comparison, training
with spacepoints from the whole detector takes �70 minutes per epoch
on one Nvidia A100 GPU.
6 Defined as t1/(N × tN) ∗ 100% where tN is the time to train on a
fixed total number of events across N GPUs.

123

876 Page 8 of 14 Eur. Phys. J. C (2021) 81 :876

Fig. 8 Time per training epoch (left) and Strong scaling efficiency (right) for GNN’s distributed training. The top row refers to the Horovod
implementation, the bottom row to the tf.distributed one. The first bin in the bottom left diagram refers to the serial case, in which the input
graph is not padded

Figure 8 also shows the scaling behaviour of the
tf.distributed implementation. Since this implementation
requires all input data to be of the same size, we have to pad all
input graphs to a fixed size. This essentially doubles the time
needed to train one epoch, that increases from 22 minutes for
dynamic input graph sizes to 41 min for constant graph sizes.
Leaving aside this fixed overhead, tf.distributed appears
to scale better than Horovod, achieving � 85% strong scaling
efficiency with 8 GPUs.

4.3 Inference performance on CPU and GPU

It is crucial to characterize the computational cost of the end-
to-end learned tracking algorithm. We rely on the Pytorch
andTensorFlow libraries to optimize our inference pipeline
on CPU and GPU. The execution time for the inference
pipeline has been measured on two hardware platforms:
Nvidia V100 GPUs with 16 GB on-board memory, and Intel
Xeon 6148s (Skylake) CPUs with 40 cores and 192 GB mem-
ory per node. The inputs to the filtering step do not fit into the

123

Eur. Phys. J. C (2021) 81 :876 Page 9 of 14 876

Table 2 Average inference time for synchronous execution of the
TrackML pipeline benchmarked on CPUs and GPUs. For these step-by-
step measurements, we force the pipeline to execute serially by calling

torch.cuda.synchronize after each step. The total inference
time comprises all the steps including ones not listed in the table

Wall time [s] on Xeon 6148s single core Wall time [s] on Nvidia V100 synchronous

Data loading 0.0049 ± 0.0153 0.0023 ± 0.0003

Embedding 3.02 ± 0.39 0.024 ± 0.003

Build edge 66 ± 13 0.76 ± 0.10

Filtering 99 ± 19 1.57 ± 0.34

GNN 27 ± 2 0.45 ± 0.06

Labeling 3.23 ± 0.34 0.08 ± 0.01

Total (sync) 202 ± 35 3.3 ± 0.5

GPU memory. Therefore, edge filtering for one event is exe-
cuted in mini-batches with a fixed batch size of 800k edges.
Typically, the inputs to the filtering from one event are split
into seven batches, leading to additional computational cost
for moving data from host to GPU. The peak GPU memory
consumption is about 15.7 GB as obtained from the Nvidia
profiling tool.

Averaging over 500 events, it takes 2.2 ± 0.3 wall-clock
seconds per event (as measured by measured by the python
module time) to run the inference pipeline on the GPU and
202 ± 35 seconds to run it on a single CPU core. This total
execution time includes every step of the calculation, and in
particular the time needed to move data from host to GPU.
Table 2 breaks down the wall-clock time for the most signif-
icant steps of the pipeline. The results show how the graph
creation and filtering steps are the biggest targets for fur-
ther optimization in order to surpass traditional algorithms
in terms of inference time [40].

In addition, Fig. 9 shows how the total inference time
depends almost linearly on the number of spacepoints in the
event for both CPUs and GPUs. The step-like dispersion in
the GPU case is due to the splitting of the inputs to the filtering
step into mini-baches. A step-like jump indicates one more
mini-batch is added.

Many optimizations were introduced to the pipeline in
order to achieve these GPU timings, which before optimiza-
tion took over 20 seconds per event. These improvements
include porting all data processing to the GPU-accelerated
CuPy library [41], writing custom sparse operations for
graph processing (e.g. doublet-to-triplet conversion [42],
graph intersection methods), using FAISS [43] for large-k
NN graph construction, and performing track labelling with
CuGraph’s connected component algorithm on GPU [44]7.
These improvements are specific to the inference stage; train-
ing optimizations will be discussed in the following section,
and ongoing developments in Sect. 6. No CPU-specific opti-
mization was performed in this work.

7 On CPU, track labeling uses the DBSCAN algorithm [45].

5 Discussion

The performance given above is the result of experimenta-
tion across various feature sets, architectures, model config-
urations and hyperparameters. It has also been necessary to
overcome a variety of training hurdles in terms of memory
and computational availability. We describe here training and
inference details that should allow a reader to reproduce these
results on the provided codebase.

5.1 Feature set

The input dataset includes both spatial coordinates and highly
granular pixel cluster shape information. Graph construc-
tion (the second pipeline step in Fig. 4, that includes learned
embedded space model and edge filter model) appears to ben-
efit significantly from the cluster shape information, approx-
imately doubling the purity for a held fixed high efficiency.
The summary cluster shape statistics include the number
of channels and the total charge deposited, as well as local
and global representations of the cluster as a high-level fea-
ture vector. Details about the calculation of this feature vec-
tor as well as a thorough exploration of the effect of clus-
ter shape information on seeding performance are provided
in Ref. [30]. Cluster shape information does not appear to
improve the performance of the GNN, and in fact seems to
degrade it. This suggests that the width of the GNN hid-
den layers is not great enough to capture the functional rela-
tionship of cluster information between nodes. Scaling to
a width that properly explores this question would require
more memory than available on the Nvidia A100 GPUs used
for this study.

Depending on the final goal of the pipeline, further fea-
tures can be included in the loss calculation in order to bias
the model towards desired regions. For example, if our aim
is to maximize the TrackML score (described in Ref. [2])
– a weighting function si that places more importance on a
spacepoint i from a longer and higher pT track, and in the first
and last sets of detector layers – we can weight-up true edges

123

876 Page 10 of 14 Eur. Phys. J. C (2021) 81 :876

Fig. 9 Total inference time as a function of number of spacepoints in
each event for CPUs (top) and GPUs (bottom)

by this function, normalized to have a mean of weight = 1.
To measure the performance of models trained to this goal,
we introduce a weighted purity measure. Weighted purity
is defined as a function the TrackML weights wi j and the
truth yi j ∈ {0, 1} of each edge connecting spacepoint i and
spacepoint j ,

Purityweighted =
∑

i j w j i yi j
∑

i j wi j
,

wi j =
{

1
2 (si + s j), if yi j = 1

1, if yi j = 0

We see significant improvements in this metric when
validating on the weighted model: the Embedding Net-
work improves from a weighted purity of 1.7% ± 0.2% to
2.0% ± 0.3%, while the Filter Network improves from a
weighted purity of 8.4%±0.6% to 11.7%±1.0%. Given this
weighting, the model learns to prioritize higher pT and longer
tracks, while disregarding less informative tracks. Using this
bias, we can achieve the same TrackML score with a con-
structed graph size reduced by approximately 25%. Using
this technique to improve the TrackML score is an ongoing
work.

5.2 Graph construction

Having chosen a feature set, to train the learned embedding
space we use a training paradigm commonly referred to as a
Siamese Network [46], where a particular spacepoint – called
the source – is run through an MLP, here 6 layers each with
512 hidden channels, hyperbolic tan activations, and layer
normalization. The final layer of the MLP takes the features
to an 8-dimensional latent space. A different, comparison
spacepoint – called the target – is also run through this same
Embedding Network, and the L2 norm distance d in the latent
space between the source and target enters a comparative
hinge loss

Lhinge =
{
d p, if yi j = 1

max(0, 1 − d p), if yi j = 0
(4)

where p is a hyperparameter that we choose to be 2.
If the source i and target j spacepoints share an edge in

the event’s truth graph,8 we designate them as neighbours
with yi j = 1, otherwise they are designated yi j = 0. In this
way, the hinge loss draws together truth graph neighbors and
repels non-neighbors.

Training performance of the Embedding Network is
highly dependent on choice of source-target example pairs. In
early epochs, it is enough to choose random pairs. However,
at some point, many random pairs will contribute no gradi-
ent to the loss, as they will be separated by a distance greater
than the margin. At that point, it is useful to implement hard
negative mining [47]. We run a GPU-optimised k-nearest-
neighbor (KNN) algorithm9 to mine examples around each

8 One can also designate yi j = 1 for source and target in the same track,
rather than immediate neighbors in the track. This does lead to similar
performance in later stages of the pipeline, but the more lax concept of
truth leads to graphs around three times more dense than the strict track
neighbor definition.
9 We use two high-performance libraries, FAISS [43] and
Pytorch3D [48], depending on number of nearest neighbors k.

123

Eur. Phys. J. C (2021) 81 :876 Page 11 of 14 876

source vector, within the hinge margin d = 1. The compu-
tational overhead of the KNN step is significantly offset by
the examples mined which all contribute to the loss.

A similar technique is used in the Filter Network, where
the vast majority of the edges produced from the graph con-
struction in the embedded space are easy to classify as fake.
This is already a highly imbalanced dataset, with around
98.5% of edges fake. Again, within several epochs, the Filter
Network is able to classify many of these as fake, so we bal-
ance each batch with all true edges, the same number of hard
negatives (i.e. negatives the filter is unsure of) and the same
number of easy negatives (to maintain performance on these
edges). The Filter Network is a MLP that takes the 24-feature
concatenated edge features and feeds forward through 3 lay-
ers of 1024 hidden channels, to a binary cross-entropy loss
function.

5.3 GNN edge classification

In choosing the best GNN architecture, memory usage
remains a significant constraint. The Interaction Network
(IN) [34] presented in these results does appear to marginally
attain the best performance against Attention Graph Neural
Networks (AGNN) [14,49] – the other class of GNN con-
sidered for the pipeline. However, both of these networks
require gradients to be retained in memory for every graph
edge. Indeed, this anisotropic treatment of edges (i.e. a node
is able to receive the messages of each of its neighbors in
a non-uniform way) is what allows these two architectures
to be so expressive. Depending on hardware availability, we
have found two solutions to the memory constraint. Access
to next-generation Nvidia A100 GPUs allowed an IN to be
trained with 8 steps of message passing, aggregating edge
features at each node, and each node and concatenated edge
features passing through two-layer MLPs of [128, 64] hidden
features and ReLU activations [50]. Choice of aggregation
function should be permutation invariant. In this work, we
take it to be a summation.

For lower-memory GPUs, such as the Nvidia V100, we
attained similar performance training the AGNN architec-
ture, with [64, 64, 64]-channel MLPs applied to each edge
and node. Adding residuals [51] across the 8 message passing
steps greatly improved performance in this case. To fit full-
event training on a single V100, it was necessary to employ
various techniques, such as mixed precision training and gra-
dient checkpointing. The latter stores only the input of each
layer, not the gradients. On the backward pass, gradients
are re-calculated on the fly, allowing for a 4× reduction
in memory usage for an 8-iteration GNN. Another technique
explored is to split the events piecemeal and train on each

Fastest performance is obtained with FAISS for k > 35, Pytorch3D for
k <= 35.

piece as a standalone batch. There is a noticeable impact on
performance due to messages being interrupted at the graph
edges. In future work, we will present ongoing efforts to par-
allelise these graph pieces across multiple GPUs, retaining
the high performance that full-event training allows.

5.4 Physics-inspired data augmentation

Preliminary work on using coordinate transforms to augment
the training data has been explored with varying degrees of
success. In this study, focused on track seeding, only the
innermost detector layers (volumes 7–9 in Fig. 1) were used.

One promising approach is to make a copy of each graph in
the training set that has been reflected across the phi-axis [52].
The phi reflection creates the charge conjugate graph and
helps to balance any asymmetry between positive and neg-
atively charged particles within the training set. Using the
phi-reflected graphs boosts efficiency by � 2% and purity
by � 1% in the barrel. This performance boost comes at the
cost of doubling the training time. In future work, we will
investigate the opportunity of integrating charge conjugation
symmetry into the network itself.

A second promising trick is to use a Hough Transform [6,
7] on the graph to create edge features. Using the Hough
parameters as edge features boosts efficiency by � 2% and
purity by � 1%. A further efficiency boost of � 3% (and
� 2% to purity) comes from using the Hough accumulator
to extract an edge weight. This edge weight effectively pools
information from every node, and therefore comes at a large
computational cost (filling the accumulator in Hough space).
On the other hand, the Hough parameters can be computed
quickly from the two nodes that define the edge.

6 Conclusions and future work

This works shows how a tracking pipeline based on geo-
metric deep learning can achieve state-of-the-art computing
performance that scales linearly with the number of space-
points, showing great promise for the next generation of HEP
experiments. The inference pipeline has been optimized on
GPU systems, on the assumption that the next generation of
HEP experiments will have widespread access to accelerators
either locally in heterogeneous systems [27,53] or remotely
[54,55].

Within the simplifying assumptions of the TrackML
dataset, we have shown how the Exa.TrkX pipeline could
meet the tracking performance requirements of current col-
lider experiments. Preliminary studies suggest that this per-
formance should be robust against systematic effects like
detector noise, misalignment, and pile-up.

Much remains to be done to validate these promising
results. To this end, the Exa.TrkX project is collaborating

123

876 Page 12 of 14 Eur. Phys. J. C (2021) 81 :876

with physicists from ATLAS [56], CMS [57], DUNE [58],
ICARUS [59], and MuonE [60].

The goal is to adapt the Exa.TrkX pipeline to each exper-
iment’s needs and simulated datasets, measure its perfor-
mance and robustness against systematic effects according
to the experiment metrics. For example, it is crucial for HL-
LHC experiments to study the performance of tracking algo-
rithms in dense environments, like high-pT jets. Given the
interest in long-lived particle observation at the HL-LHC,
it will also be important to study the performance of the
Exa.TrkX pipeline for tracks coming from a displaced ver-
tex.10

On the computational side, there are several optimiza-
tion opportunities to explore systematically, including mixed
precision training, multi-GPU training and inference with
graph data parallelisation (that is, one event spread across
multiple GPUs) [61]; locality sensitive hashing to speed-
up KNN/graph construction stage [62], model quantization,
operator fusion and other improvements with TensorRT [63],
clustering of final node embeddings rather than hard con-
nected components method with GravNet-style architec-
tures [64].

The distributed training results presented in this work are
promising but still preliminary. To fully exploit the capabili-
ties of upcoming HPC systems and to further reduce training
time while potentially pushing further on model size, it will
be beneficial to perform further studies on large scale training
of GNNs for track reconstruction. Given the size of the input
graphs, this problem may be amenable to training techniques
which parallelise the processing of input graphs across mul-
tiple GPUs in training.

Finally, it will be interesting to measure the computing
performance of (parts of) the Exa.TrkX pipeline on domain-
specific accelerators like Google TPU [65] and Graph-
Core IPU [66], comparing power consumption, latency and
throughput with “traditional” GPUs.

7 Software availability

A growing number of groups are studying the application of
graph networks to HEP reconstruction (see [67] for a recent
review). Some of these works [24,27–31,33] have strong
connections with the Exa.TrkX project. To promote collabo-
ration and reproducibility, the Exa.TrkX software is available
from the HEP Software Foundation’s Trigger and Recon-
struction GitHub.11 A pipeline of re-usable modules is imple-
mented within the Pytorch Lightning system, which allows

10 It may be worth noticing that in LArTPC applications [28] all tracks
come from a displaced vertex.
11 https://hsf-reco-and-software-triggers.github.io/
Tracking-ML-Exa.TrkX.

for uncluttered and simple model definitions. As each stage of
the pipeline is dependent, logging utilities are integrated that
allow a specific combination of stages and hyperparameters
to be trackable and reproducible. Extensive documentation is
provided to help track reconstruction groups start exploring
geometric learning. The roadmap for this repository includes
adding performance metrics to the codebase; a taxonomy of
model features; and short tutorials in each of the available
applications.

Acknowledgements This research was supported in part by: − the
U.S. Department of Energy’s Office of Science, Office of High
Energy Physics, under Contracts No. DE-AC02-05CH11231 (Com-
pHEP Exa.TrkX) and No. DE-AC02-07CH11359 (FNAL LDRD
2019.017); − the Exascale Computing Project (17-SC-20-SC), a joint
project of DOE’s Office of Science and the National Nuclear Security
Administration; the National Science Foundation under Cooperative
Agreement OAC-1836650. This research used resources of the National
Energy Research Scientific Computing Center (NERSC), a U.S. Depart-
ment of Energy Office of Science User Facility located at Lawrence
Berkeley National Laboratory, operated under Contract No. DE-AC02-
05CH11231. We are grateful to Google Co. for providing early access to
Nvidia A100 instances in the context of the US ATLAS/Google Cloud
Platform collaboration. Finally, we thank Marcin Wolter (IFJ PAN),
Ben Nachman, Alex Sim and Kesheng Wu (LBNL) for the useful dis-
cussions.

Data Availability Statement This manuscript has associated data in a
data repository. [Authors’ comment: https://competitions.codalab.org/
competitions/20112.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. I.B. Alonso, O. Brüning, P. Fessia, M. Lamont, L. Rossi, L. Tavian,
M. Zerlauth, High luminosity large hadron collider HL-LHC tech-
nical design report. CERN Yellow Rep. 10 (2020). https://doi.org/
10.23731/CYRM-2020-0010. https://e-publishing.cern.ch/index.
php/CYRM/issue/view/127

2. S. Amrouche et al., The tracking machine learning challenge: accu-
racy phase. arXiv:1904.06778 [hep-ex]

3. A. Strandlie, R. Frühwirth, Track and vertex reconstruction: from
classical to adaptive methods. Rev. Mod. Phys. 82, 1419–1458
(2010). https://doi.org/10.1103/RevModPhys.82.1419

4. ATLAS Collaboration, Performance of the ATLAS track recon-
struction algorithms in dense environments in LHC run 2.

123

https://hsf-reco-and-software-triggers.github.io/Tracking-ML-Exa.TrkX
https://hsf-reco-and-software-triggers.github.io/Tracking-ML-Exa.TrkX
https://competitions.codalab.org/competitions/20112
https://competitions.codalab.org/competitions/20112
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.23731/CYRM-2020-0010
https://doi.org/10.23731/CYRM-2020-0010
https://e-publishing.cern.ch/index.php/CYRM/issue/view/127
https://e-publishing.cern.ch/index.php/CYRM/issue/view/127
http://arxiv.org/abs/1904.06778
https://doi.org/10.1103/RevModPhys.82.1419

Eur. Phys. J. C (2021) 81 :876 Page 13 of 14 876

Eur. Phys. J. C 77(10), 673 (2017). https://doi.org/10.1140/epjc/
s10052-017-5225-7. arXiv:1704.07983

5. CMS Collaboration, S. Chatrchyan et al., Description and per-
formance of track and primary-vertex reconstruction with the
CMS tracker. JINST 9(10), P10009 (2014). https://doi.org/10.
1088/1748-0221/9/10/P10009. arXiv:1405.6569 [physics.ins-det]

6. R.. O. Duda, P.. E. Hart, Use of the Hough transformation to detect
lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972).
https://doi.org/10.1145/361237.361242

7. J. Gradin, M. Mårtensson, R. Brenner, Comparison of two
hardware-based hit filtering methods for trackers in high-pileup
environments. JINST 13(04), P04019 (2018). https://doi.org/10.
1088/1748-0221/13/04/P04019. arXiv:1709.01034 [physics.ins-
det]

8. D. Funke, T. Hauth, V. Innocente, G. Quast, P. Sanders, D. Schiefer-
decker, Parallel track reconstruction in CMS using the cellular
automaton approach. J. Phys. Conf. Ser. 513, 052010 (2014).
https://doi.org/10.1088/1742-6596/513/5/052010

9. D. Rohr, S. Gorbunov, M.O. Schmidt, R. Shahoyan, GPU-based
online track reconstruction for the ALICE TPC in run 3 with contin-
uous read-out. EPJ Web Conf. 214, 01050 (2019). https://doi.org/
10.1051/epjconf/201921401050. arXiv:1905.05515 [physics.ins-
det]

10. ATLAS Collaboration, Computing and Software Public
Results (2017). https://twiki.cern.ch/twiki/bin/view/AtlasPublic/
ComputingandSoftwarePublicResults

11. CMS Collaboration, CMS Tracking POG Performance Plots For
2017 with PhaseI pixel detector. (2017). https://twiki.cern.ch/
twiki/bin/view/CMSPublic/TrackingPOGPerformance2017MC

12. ATLAS Collaboration, Fast Track Reconstruction for HL-LHC.
Tech. Rep. ATL-PHYS-PUB-2019-041, CERN, Geneva (2019).
https://cds.cern.ch/record/2693670

13. HEP.TrkX, HEP advanced tracking algorithms with cross-cutting
applications (2016). https://heptrkx.github.io/

14. S. Farrell et al., Novel deep learning methods for track reconstruc-
tion, in 4th International Workshop Connecting The Dots 2018
(CTD2018) Seattle, Washington, USA, March 20–22, 2018 (2018).
arXiv:1810.06111 [hep-ex]

15. Exa.TrkX, HEP advanced tracking algorithms at the exascale
(2019). https://exatrkx.github.io/

16. M.M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst,
Geometric deep learning: going beyond Euclidean data. IEEE Sig-
nal Process Mag 34(4), 8–42 (2017). https://doi.org/10.1109/MSP.
2017.2693418

17. N. Choma et al., Track seeding and labelling with embedded-space
graph neural networks. 6 (2020). arXiv:2007.00149 [physics.ins-
det]

18. S. Farrell et al., The HEP.TrkX Project: deep neural networks for
HL-LHC online and offline tracking, in Proceedings, Connect-
ing The Dots/Intelligent Tracker (CTD/WIT 2017): Orsay, France,
March 6-9, 2017, vol. 150. (2017), p. 00003. https://doi.org/10.
1051/epjconf/201715000003

19. CMS Collaboration, V. Bertacchi, DeepCore: convolutional neural
network for high pT jet tracking. arXiv:1910.08058 [physics.ins-
det]

20. S. Hochreiter, J. Schmidhuber, Long short-term memory. Neu-
ral Comput.9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.
1997.9.8.1735

21. A. Tsaris, D. Anderson, J. Bendavid, P. Calafiura, G. Cerati,
J. Esseiva, S. Farrell, L. Gray, K. Kapoor, J. Kowalkowski, M.
Mudigonda, P.P. Spentzouris, M. Spiropoulou, J.-R. Vlimant, S.
Zheng, D. Zurawski, The HEP.TrkX project: Deep learning for
particle tracking. J. Phys. Conf. Ser. 1085, 042023 (2018). https://
doi.org/10.1088/1742-6596/1085/4/042023

22. S. Amrouche et al., The tracking machine learning challenge: accu-
racy phase. arXiv:1904.06778 [hep-ex]

23. K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representa-
tions using rnn encoder-decoder for statistical machine translation
(2014)

24. C. Biscarat, S. Caillou, C. Rougier, J. Stark, J. Zahreddine, Towards
a realistic track reconstruction algorithm based on graph neural
networks for the hl-lhc. arXiv:2103.00916 [physics.ins-det]

25. X. Ju et al., Graph neural networks for particle reconstruc-
tion in high energy physics detectors, in 33rd Annual Confer-
ence on Neural Information Processing Systems vol. 3 (2020).
arXiv:2003.11603 [physics.ins-det]

26. T.D. Le, H. Imai, Y. Negishi, K. Kawachiya, Tflms: Large
model support in tensorflow by graph rewriting. arXiv:1807.02037
[cs.LG]

27. J. Pata, J. Duarte, J.-R. Vlimant, M. Pierini, M. Spiropulu, MLPF:
efficient machine-learned particle-flow reconstruction using graph
neural networks. arXiv:2101.08578 [physics.data-an]

28. J. Hewes, A. Aurisano, G. Cerati, J. Kowalkowski, C. Lee, W. keng
Liao, A. Day, A. Agrawal, M. Spiropulu, J.-R. Vlimant, L. Gray,
T. Klijnsma, P. Calafiura, S. Conlon, S. Farrell, X. Ju, D. Murnane,
Graph neural network for object reconstruction in liquid argon time
projection chambers (2021)

29. A. Heintz et al., Accelerated charged particle tracking with graph
neural networks on FPGAs, in 34th Conference on Neural Infor-
mation Processing Systems, vol. 11 (2020). arXiv:2012.01563
[physics.ins-det]

30. P.J. Fox, S. Huang, J. Isaacson, X. Ju, B. Nachman, Beyond 4d
tracking: using cluster shapes for track seeding. arXiv:2012.04533
[physics.ins-det]

31. S. Amrouche, M. Kiehn, T. Golling, A. Salzburger, Hashing and
metric learning for charged particle tracking. arXiv:2101.06428
[hep-ex]

32. W. Guan, G. Perdue, A. Pesah, M. Schuld, K. Terashi, S. Vallecorsa,
J.-R. Vlimant, Quantum machine learning in high energy physics.
arXiv:2005.08582 [quant-ph]

33. C. Tüysüz, K. Novotny, C. Rieger, F. Carminati, B. Demirköz,
D. Dobos, F. Fracas, K. Potamianos, S. Vallecorsa, J.-R. Vlimant,
Performance of particle tracking using a quantum graph neural
network. arXiv:2012.01379 [quant-ph]

34. P.W. Battaglia, R. Pascanu, M. Lai, D.J. Rezende, K. Kavukcuoglu,
Interaction networks for learning about objects, relations and
physics. CoRR, abs/1612.00222 (2016). arXiv:1612.00222

35. ATLAS Collaboration, Technical Design Report for the ATLAS
Inner Tracker Pixel Detector. Tech. Rep. CERN-LHCC-2017-
021. ATLAS-TDR-030, CERN, Geneva (2017). https://cds.cern.
ch/record/2285585

36. A. Collaboration, Technical Design Report for the ATLAS Inner
Tracker Pixel Detector, Tech. Rep. ATLAS-TDR-030, CERN,
Geneva (2017)

37. T. Ben-Nun, T. Hoefler, Demystifying parallel and distributed
deep learning: an in-depth concurrency analysis. arXiv:1802.09941
[cs.LG]

38. A. Sergeev, M.D. Balso, Horovod: fast and easy distributed deep
learning in TensorFlow. arXiv:1802.05799 [cs.LG]

39. M. Abadi et al., TensorFlow: large-scale machine learning on het-
erogeneous distributed systems. arXiv:1603.04467 [cs.DC]

40. ATLAS Collaboration, Expected tracking performance of the
ATLAS inner tracker at the HL-LHC, Tech. Rep. ATL-PHYS-
PUB-2019-014, CERN, Geneva (2019). https://cds.cern.ch/record/
2669540

41. R. Okuta, Y. Unno, D. Nishino, S. Hido, C. Cupy, A numpy-
compatible library for nvidia gpu calculations, in 31st Conference
on Neural Information Processing Systems (NIPS 2017) (2017).
http://learningsys.org/nips17/assets/papers/paper_16.pdf

123

https://doi.org/10.1140/epjc/s10052-017-5225-7
https://doi.org/10.1140/epjc/s10052-017-5225-7
http://arxiv.org/abs/1704.07983
https://doi.org/10.1088/1748-0221/9/10/P10009
https://doi.org/10.1088/1748-0221/9/10/P10009
http://arxiv.org/abs/1405.6569
https://doi.org/10.1145/361237.361242
https://doi.org/10.1088/1748-0221/13/04/P04019
https://doi.org/10.1088/1748-0221/13/04/P04019
http://arxiv.org/abs/1709.01034
https://doi.org/10.1088/1742-6596/513/5/052010
https://doi.org/10.1051/epjconf/201921401050
https://doi.org/10.1051/epjconf/201921401050
http://arxiv.org/abs/1905.05515
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://twiki.cern.ch/twiki/bin/view/CMSPublic/TrackingPOGPerformance2017MC
https://twiki.cern.ch/twiki/bin/view/CMSPublic/TrackingPOGPerformance2017MC
https://cds.cern.ch/record/2693670
https://heptrkx.github.io/
http://arxiv.org/abs/1810.06111
https://exatrkx.github.io/
https://doi.org/10.1109/MSP.2017.2693418
https://doi.org/10.1109/MSP.2017.2693418
http://arxiv.org/abs/2007.00149
https://doi.org/10.1051/epjconf/201715000003
https://doi.org/10.1051/epjconf/201715000003
http://arxiv.org/abs/1910.08058
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1088/1742-6596/1085/4/042023
https://doi.org/10.1088/1742-6596/1085/4/042023
http://arxiv.org/abs/1904.06778
http://arxiv.org/abs/2103.00916
http://arxiv.org/abs/2003.11603
http://arxiv.org/abs/1807.02037
http://arxiv.org/abs/2101.08578
http://arxiv.org/abs/2012.01563
http://arxiv.org/abs/2012.04533
http://arxiv.org/abs/2101.06428
http://arxiv.org/abs/2005.08582
http://arxiv.org/abs/2012.01379
http://arxiv.org/abs/1612.00222
https://cds.cern.ch/record/2285585
https://cds.cern.ch/record/2285585
http://arxiv.org/abs/1802.09941
http://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1603.04467
https://cds.cern.ch/record/2669540
https://cds.cern.ch/record/2669540
http://learningsys.org/nips17/assets/papers/paper_16.pdf

876 Page 14 of 14 Eur. Phys. J. C (2021) 81 :876

42. M. Fey, J.E. Lenssen, Fast graph representation learning with
PyTorch Geometric, in ICLR Workshop on Representation Learn-
ing on Graphs and Manifolds (2019)

43. J. Johnson, M. Douze, H. Jégou, Billion-scale similarity search
with GPUs. arXiv:1702.08734

44. CuGraph, (2020) https://github.com/rapidsai/cugraph. Accessed
01 Mar 2021

45. M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm
for discovering clusters in large spatial databases with noise, inKdd
(AAAI Press, 1996), pp. 226–231

46. D. Chicco, Siamese Neural Networks: An Overview (Springer,
New York, 2021), pp. 73–94. https://doi.org/10.1007/
978-1-0716-0826-5_3

47. B. Harwood, B.G.V. Kumar, G. Carneiro, I. Reid, T. Drummond,
Smart mining for deep metric learning, in ICCV2017: International
Conference on Computer Vision, vol. 10. (2017), p. 2840–2848.
https://doi.org/10.1109/ICCV.2017.307

48. N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. John-
son, G. Gkioxari, Accelerating 3D Deep Learning with PyTorch3D.
arXiv:2007.08501

49. P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Ben-
gio, Graph attention networks (2017)

50. X. Glorot, A. Bordes, Y. Bengio, Deep sparse rectifier neural
networks, in Proceedings of the Fourteenth International Con-
ference on Artificial Intelligence and Statistics, ed. by G. Gor-
don, D. Dunson, M. Dudík, vol. 15 of Proceedings of Machine
Learning Research. JMLR Workshop and Conference Proceed-
ings, Fort Lauderdale, FL, USA, 11–13. (2011), p. 315–323. http://
proceedings.mlr.press/v15/glorot11a.html

51. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image
recognition (2015)

52. L. Perez, J. Wang, The effectiveness of data augmentation in image
classification using deep learning. CoRR abs/1712.04621 (2017).
arXiv:1712.04621

53. F. Fahim, B. Hawks, C. Herwig, J. Hirschauer, S. Jindariani,
N. Tran, L.P. Carloni, G.D. Guglielmo, P. Harris, J. Krupa,
D. Rankin, M.B. Valentin, J. Hester, Y. Luo, J. Mamish,
S. Orgrenci-Memik, T. Aarrestad, H. Javed, V. Loncar, M. Pierini,
A.A. Pol, S. Summers, J. Duarte, S. Hauck, S.-C. Hsu, J. Ngadiuba,
M. Liu, D. Hoang, E. Kreinar, Z. Wu, hls4ml: an open-source code-
sign workflow to empower scientific low-power machine learning
devices (2021)

54. J. Krupa, K. Lin, M. Acosta Flechas, J. Dinsmore, J. Duarte, P.
Harris, S. Hauck, B. Holzman, S..-C. Hsu, T. Klijnsma et al., Gpu
coprocessors as a service for deep learning inference in high energy
physics. Mach. Learn. Sci. Technol. 2(3), 035005 (2021). https://
doi.org/10.1088/2632-2153/abec21

55. V. Kuznetsov, L. Giommi, D. Bonacorsi, Mlaas4hep: machine
learning as a service for hep (2020)

56. ATLAS Collaboration, ATLAS Collaboration, The ATLAS Exper-
iment at the CERN Large Hadron Collider, JINST, 3, S08003
(2008). https://doi.org/10.1088/1748-0221/3/08/S08003

57. CMS Collaboration, S. Chatrchyan et al., The CMS experiment at
the CERN LHC. JINST 3, S08004 (2008). https://doi.org/10.1088/
1748-0221/3/08/S08004

58. Deep underground neutrino experiment. http://www.dunescience.
org/

59. ICARUS Collaboration, L. Bagby et al., Overhaul and Instal-
lation of the ICARUS-T600 Liquid Argon TPC Electron-
ics for the FNAL Short Baseline Neutrino Program. JINST
16(01), P01037 (2021). https://doi.org/10.1088/1748-0221/16/01/
P01037. arXiv:2010.02042 [physics.ins-det]

60. G. Abbiendi et al., Measuring the leading hadronic contribu-
tion to the muon g-2 via μe scattering. Eur. Phys. J. C 77(3),
139 (2017). https://doi.org/10.1140/epjc/s10052-017-4633-z.
arXiv:1609.08987 [hep-ex]

61. S. Scardapane, I. Spinelli, P.D. Lorenzo, Distributed training
of graph convolutional networks. IEEE Trans. Signal Inf. Pro-
cess. Netw. 7, 87–100 (2021). https://doi.org/10.1109/tsipn.2020.
3046237

62. P. Indyk, R. Motwani, Approximate nearest neighbors: towards
removing the curse of dimensionality, in Proceedings of the Thirti-
eth Annual ACM Symposium on Theory of Computing, STOC ’98
(Association for Computing Machinery, New York, 1998), p. 604–
613. https://doi.org/10.1145/276698.276876

63. NVIDIA TensorRT, (2020) https://docs.nvidia.com/deeplearning/
tensorrt/index.html. Accessed 2021-03-01

64. S.R. Qasim, J. Kieseler, Y. Iiyama, M. Pierini, Learning
representations of irregular particle-detector geometry with
distance-weighted graph networks. Eur. Phys. J. C 79(7),
608 (2019). https://doi.org/10.1140/epjc/s10052-019-7113-9.
arXiv:1902.07987 [physics.data-an]

65. N.P. Jouppi et al., In-datacenter performance analysis of
a tensor processing unit. SIGARCH Comput. Archit. News
45(2), 1–12 (2017). https://doi.org/10.1145/3140659.3080246.
arXiv:1704.04760 [cs.AR]

66. Z. Jia, B. Tillman, M. Maggioni, D.P. Scarpazza, Dissect-
ing the graphcore ipu architecture via microbenchmarking.
arXiv:1912.03413 [cs.DC]

67. J. Duarte, J.-R. Vlimant, Graph neural networks for particle track-
ing and reconstruction. arXiv:2012.01249 [hep-ph]

123

http://arxiv.org/abs/1702.08734
https://github.com/rapidsai/cugraph
https://doi.org/10.1007/978-1-0716-0826-5_3
https://doi.org/10.1007/978-1-0716-0826-5_3
https://doi.org/10.1109/ICCV.2017.307
http://arxiv.org/abs/2007.08501
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
http://arxiv.org/abs/1712.04621
https://doi.org/10.1088/2632-2153/abec21
https://doi.org/10.1088/2632-2153/abec21
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08004
http://www.dunescience.org/
http://www.dunescience.org/
https://doi.org/10.1088/1748-0221/16/01/P01037
https://doi.org/10.1088/1748-0221/16/01/P01037
http://arxiv.org/abs/2010.02042
https://doi.org/10.1140/epjc/s10052-017-4633-z
http://arxiv.org/abs/1609.08987
https://doi.org/10.1109/tsipn.2020.3046237
https://doi.org/10.1109/tsipn.2020.3046237
https://doi.org/10.1145/276698.276876
https://docs.nvidia.com/deeplearning/tensorrt/index.html
https://docs.nvidia.com/deeplearning/tensorrt/index.html
https://doi.org/10.1140/epjc/s10052-019-7113-9
http://arxiv.org/abs/1902.07987
https://doi.org/10.1145/3140659.3080246
http://arxiv.org/abs/1704.04760
http://arxiv.org/abs/1912.03413
http://arxiv.org/abs/2012.01249

	Performance of a geometric deep learning pipeline for HL-LHC particle tracking
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Input data
	3.2 The Geometric Deep Learning Pipeline

	4 Results
	4.1 Tracking performance of the TrackML pipeline
	4.1.1 Tracking efficiency and purity
	4.1.2 Systematic studies

	4.2 Distributed training performance
	4.3 Inference performance on CPU and GPU

	5 Discussion
	5.1 Feature set
	5.2 Graph construction
	5.3 GNN edge classification
	5.4 Physics-inspired data augmentation

	6 Conclusions and future work
	7 Software availability
	Acknowledgements
	References

