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Abstract. File formats for generic data structures, such as ROOT, Avro, and
Parquet, pose a problem for deserialization: it must be fast, but its code depends
on the type of the data structure, not known at compile-time. Just-in-time com-
pilation can satisfy both constraints, but we propose a more portable solution:
specialized virtual machines. AwkwardForth is a Forth-driven virtual machine
for deserializing data into Awkward Arrays. As a language, it is not intended for
humans to write, but it loosens the coupling between Uproot and Awkward Ar-
ray. AwkwardForth programs for deserializing record-oriented formats (ROOT
and Avro) are about as fast as C++ ROOT and 10–80× faster than fastavro.
Columnar formats (simple TTrees, RNTuple, and Parquet) only require special-
ization to interpret metadata and are therefore faster with precompiled code.

1 Motivation

Despite being written in Python, Uproot [1] can read simple data types from ROOT TTrees [2]
as fast as any precompiled code because the values are already contiguous in a raw view of the
file. No computations are required to get a ROOT TBasket of numerical data from disk into
memory, as an array, except to swap endianness if little-endian arrays are desired. Python’s
NumPy [3] library casts data from raw bytes as a metadata-only operation, and performs
operations that scale as O(n), where n is the length of the array, in precompiled code.

For more complex data types, however, the cost of computing in Python increases.
Variable-length (“jagged”) arrays are relatively quick, since ROOT’s TTree format separates
the numerical content of these arrays from the integers that define the starting positions of
each entry’s array. This is nearly the format required by Awkward Array [4], and only
needs minor arithmetic transformations. Objects with fixed-size headers and consisting of
fixed-size fields, such as std::vector<TLorentzVector>, can be extracted using NumPy
tricks, though these tricks require more intermediate arrays, further slowing the transfor-
mation. Finally, general objects with nested, variable-length data, the simplest of which is
std::vector<std::vector<float>>, require custom code to parse each data type. In
Python, such code is hundreds of times slower than the equivalent C++.

Previously, we quantified this slow-down [5] using ROOT TTrees containing float,
std::vector<float>, and vectors of vectors up to three levels deep, reading them with
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the then-current Python codebase and with custom C++ code, which represents what is pos-
sible now that Awkward Array is implemented in C++. The read performance of float data
is identical for Python and C++, the C++ is several times faster for std::vector<float>,
and the gap widens to factors of hundreds for the doubly-nested and triply-nested cases.
Leveraging Awkward Array’s C++ layer to accelerate Uproot is a worthwhile goal.

However, unless we limit our attention to special cases like nested vectors of numbers, this
deserialization code is not known at compile-time. The byte-for-byte layout of a complex data
type is expressed as data, in the TStreamerInfo of a ROOT file, and is therefore discovered
at runtime. Moreover, the specifics of ROOT deserialization should not be spread between
two packages, Uproot and Awkward Array: Uproot should focus entirely on ROOT I/O as
Awkward Array focuses on array manipulation. The problem is to satisfy three constraints:

1. Deserialization code must not be hundreds of times slower than compiled code.

2. This code must be generated at runtime from TStreamerInfo.

3. All “knowledge” of ROOT I/O must be in Uproot, not Awkward Array.

The first two constraints could be satisfied by just-in-time (JIT) compilation. This is, in
fact, what ROOT’s Cling compiler [6] does. The third constraint could be satisfied by adding
a C++ layer to Uproot. Both of these solutions, however, would significantly complicate the
distribution of the Uproot or Awkward Array packages, and portability is a high priority.

This paper describes a different solution to the constraints listed above, which does not
affect the portability of Uproot or Awkward Array. We introduce AwkwardForth, a domain-
specific language (DSL) for deserializing arbitrary data into Awkward Arrays that is runtime-
interpreted but nearly as fast as compiled code. Unlike DSLs intended for humans to read
and write, this DSL is “internal,” only used to communicate between software packages.
Uproot’s task becomes one of expressing ROOT I/O logic in AwkwardForth and Awkward
Array executes it, returning filled arrays.

2 AwkwardForth

AwkwardForth is a member of the Forth family of languages, which includes Postscript [7],
another internal DSL. AwkwardForth adheres to a subset of the ANSI Forth Standard [8] and
has extensions for interpreting arbitrary input buffers and filling columns for Awkward Array.

Like all Forths, AwkwardForth is primarily concerned with stack manipulation. The run-
time environment features a stack of integers and programs define “words” that manipulate
the stack (as well as input and output buffers, in the case of AwkwardForth). Each word con-
sumes and produces an arbitrary number of arguments and return values through this stack,
and hence Forth words are more general than functions in a typical programming language.
Whereas functional programming languages eliminate or minimize side-effects, Forth acts
exclusively through side-effects. As such, it is more like an extensible assembly language.

The popularity of Forth peaked in the early 1980’s because its interactive interpreter could
fit within the tight resource constraints of early personal computers [9]. This same interactive
minimalism makes it an ideal candidate for running fast programs that must be generated
at runtime, such as deserializing ROOT files. On a 2.2 GHz CPU core, AwkwardForth takes
about 5 ns to evaluate each word, compared to about 900 ns for Python to evaluate a bytecode.

Though motivated by the problem of ROOT deserialization, AwkwardForth is intended
for the general problem of deserializing non-columnar data formats into columnar Awkward
Arrays. Many file formats, such as ProtoBuf [10], Thrift [11], Avro [12], FlatBuffers [13], and
JSON [14], describe data structures in a record-oriented layout, with all fields of one record
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the then-current Python codebase and with custom C++ code, which represents what is pos-
sible now that Awkward Array is implemented in C++. The read performance of float data
is identical for Python and C++, the C++ is several times faster for std::vector<float>,
and the gap widens to factors of hundreds for the doubly-nested and triply-nested cases.
Leveraging Awkward Array’s C++ layer to accelerate Uproot is a worthwhile goal.

However, unless we limit our attention to special cases like nested vectors of numbers, this
deserialization code is not known at compile-time. The byte-for-byte layout of a complex data
type is expressed as data, in the TStreamerInfo of a ROOT file, and is therefore discovered
at runtime. Moreover, the specifics of ROOT deserialization should not be spread between
two packages, Uproot and Awkward Array: Uproot should focus entirely on ROOT I/O as
Awkward Array focuses on array manipulation. The problem is to satisfy three constraints:

1. Deserialization code must not be hundreds of times slower than compiled code.

2. This code must be generated at runtime from TStreamerInfo.

3. All “knowledge” of ROOT I/O must be in Uproot, not Awkward Array.

The first two constraints could be satisfied by just-in-time (JIT) compilation. This is, in
fact, what ROOT’s Cling compiler [6] does. The third constraint could be satisfied by adding
a C++ layer to Uproot. Both of these solutions, however, would significantly complicate the
distribution of the Uproot or Awkward Array packages, and portability is a high priority.

This paper describes a different solution to the constraints listed above, which does not
affect the portability of Uproot or Awkward Array. We introduce AwkwardForth, a domain-
specific language (DSL) for deserializing arbitrary data into Awkward Arrays that is runtime-
interpreted but nearly as fast as compiled code. Unlike DSLs intended for humans to read
and write, this DSL is “internal,” only used to communicate between software packages.
Uproot’s task becomes one of expressing ROOT I/O logic in AwkwardForth and Awkward
Array executes it, returning filled arrays.

2 AwkwardForth

AwkwardForth is a member of the Forth family of languages, which includes Postscript [7],
another internal DSL. AwkwardForth adheres to a subset of the ANSI Forth Standard [8] and
has extensions for interpreting arbitrary input buffers and filling columns for Awkward Array.

Like all Forths, AwkwardForth is primarily concerned with stack manipulation. The run-
time environment features a stack of integers and programs define “words” that manipulate
the stack (as well as input and output buffers, in the case of AwkwardForth). Each word con-
sumes and produces an arbitrary number of arguments and return values through this stack,
and hence Forth words are more general than functions in a typical programming language.
Whereas functional programming languages eliminate or minimize side-effects, Forth acts
exclusively through side-effects. As such, it is more like an extensible assembly language.

The popularity of Forth peaked in the early 1980’s because its interactive interpreter could
fit within the tight resource constraints of early personal computers [9]. This same interactive
minimalism makes it an ideal candidate for running fast programs that must be generated
at runtime, such as deserializing ROOT files. On a 2.2 GHz CPU core, AwkwardForth takes
about 5 ns to evaluate each word, compared to about 900 ns for Python to evaluate a bytecode.

Though motivated by the problem of ROOT deserialization, AwkwardForth is intended
for the general problem of deserializing non-columnar data formats into columnar Awkward
Arrays. Many file formats, such as ProtoBuf [10], Thrift [11], Avro [12], FlatBuffers [13], and
JSON [14], describe data structures in a record-oriented layout, with all fields of one record

contiguous with each other, while columnar formats like simple TTrees, RNTuple [15], Par-
quet [16], Arrow [17], and Awkward Array place all values of one field contiguous with each
other before moving on to the next field. Conversions between columnar formats can be very
fast, sometimes casting, rather than copying, the columns. Record-oriented formats, on the
other hand, must be fully parsed. In this paper, we examine AwkwardForth’s deserialization
performance for ROOT TTrees (columnar and record-oriented), Avro, and Parquet.

Awkward Array has a tool for converting arbitrary record-oriented data into Awkward Ar-
rays: ArrayBuilder constructs arrays in an append-only order, driven by commands such
as begin/end_record, switch to field, append integer, and begin/end_list. A con-
sequence of this generality is that ArrayBuilder discovers the array’s data type at runtime,
adding output buffers as the observed type gets more complex. While this is great for JSON,
type discovery is unnecessarily slow for formats whose type is known in advance, though per-
haps not as early as compile-time. (Uproot currently uses ArrayBuilder in Python.) In this
paper, we also present the design of a TypedArrayBuilder, which generates AwkwardForth
programs from data types, but is still driven by ArrayBuilder-like commands.

3 AwkwardForth virtual machine

AwkwardForth is implemented in C++ as a virtual machine with byte-compiled instructions.
It is not interactive, unlike most Forths, since it is intended to be programmed algorithmically.
Even the TypedArrayBuilder use-case works by “wiring” its fixed suite of commands to
algorithmically generated Forth subroutines. Some TypedArrayBuilder commands must
change the state of its finite-state machine: for instance, when filling an array of doubly
nested lists of integers like [[1, 2], [3]], [], [[4], [5]], the first begin_list ([) puts
it into a state that expects another begin_list ([) or end_list (]); the second puts it into a
state that expects integer or end_list (]). And yet, each of these commands must return
control-flow to its caller and remember its state for the next call. TypedArrayBuilder’s
AwkwardForth machine must be able to stop and resume with its state intact (unlike most
Forths). AwkwardForth, therefore, has built-in words to control its own execution (pause
and halt), and the execution may be resumed from outside the machine.

When an AwkwardForth machine is first constructed, it compiles its source code (text)
into bytecode instructions (variable-length sequences of 32-bit integers—a jagged array), so
that they can be interpreted more quickly. This is the same sense in which Python code
is “compiled.” Built-in words translate to 1–3 integer codes, the second and third being
arguments that modify the first. User-defined words are separate sequences of instructions,
called a “dictionary” in Forth. Control-flow structures, such as if and loop, are implemented
as unnamed user-defined words so that their bodies are fixed-width “calls” into the dictionary,
simplifying the logic of instruction pointer manipulation.

All errors are caught in the compilation phase except for 10 possible runtime errors: “user
halt,” “recursion depth exceeded,” “stack underflow,” “stack overflow,” “division by zero,”
“read beyond,” “seek beyond,” “skip beyond,” “rewind beyond,” and “varint too big.” The
last 5 of these are specific to parsing input buffers.

All runtime execution is implemented in a single “noexcept” C++ function for speed.
An arbitrary number of named input buffers and named output buffers are associated with

each AwkwardForth program. Inputs must be supplied at the beginning of a run; outputs are
also created at this time. Input buffers, which are the data to be parsed, are viewed as untyped
raw bytes, interpreted by the words of the program itself. Output buffers, which are columns
to use in a new Awkward Array, have specific numerical types and can only be filled with that
type. Inputs have a fixed size and are seekable; outputs grow in an append-only way.

3

EPJ Web of Conferences 251, 03002 (2021) https://doi.org/10.1051/epjconf/202125103002
CHEP 2021



4 AwkwardForth language

Like all Forth languages, AwkwardForth has an extremely simple syntax: whitespace delimits
tokens and tokens are interpreted in reverse Polish order: “3 4 +” means the sum of 3 and 4
(the first two words put numbers on the stack and the third pops them and pushes their sum).

AwkwardForth has 57 standard built-in words and 61 extensions for input and output
buffers, though 50 of the 61 are different ways of interpreting the bytes of an input buffer.
Two special words control the state of the virtual machine: pause and halt, and three do not
generate runtime code at all: they declare variables, inputs, and outputs.

variable variable_name ( Standard Forth )
input input_name ( AwkwardForth extension )
output output_name output_type ( AwkwardForth extension )

As in Standard Forth, user-defined words are bracketed between : and ; and the main
code is anything outside these definitions. Control structures are pairs of words like if-then
and do-loop, or triples like if-else-then and begin-while-repeat.

: fibonacci ( pops n -- pushes nth-fibonacci-number )
dup
1 > if

1- dup 1- fibonacci
swap fibonacci
+

then
;

( pushes [0 1 1 2 3 5 8 13 21 34 55 89 144 233 377] onto the stack )
15 0 do

i fibonacci
loop

The 50 special words for parsing are all arrows with a type code, an optional ! for big-
endian and an optional # to pull a number off the stack to determine how many times to repeat
it. Thus, “input_name i-> output_name” reads 4 bytes from the input as an integer and
writes it to the output, “input_name !d-> output_name” reads 8 bytes as a big-endian,
double-precision float, and “100 input_name #I-> output_name” reads 100 unsigned 4-
byte integers. In any case, the destination may be the stack: “input_name i-> stack”.

The type codes are taken from Python’s struct module, which AwkwardForth most
closely resembles in purpose (but vastly exceeds in expressiveness). Two special codes,
varint-> and zigzag->, read variable-length unsigned integers and zig-zag encoded signed
integers, which are used in many file formats, including Avro and Parquet. Also, Parquet
needs a command to read n-bit unsigned integers, hence 2bit->, 3bit->, etc. for any n.

Outputs are similar, but less varied because they have preassigned types. They may be
filled directly from an input (bypassing the stack for efficiency and to preserve the types of
floating point numbers) or filled from the stack: “output_name <- stack”. A shortcut for
appending the last output plus a value from the stack is “output_name +<- stack”.

More built-in words can be added to handle problems posed by input formats. Since each
built-in word has a fixed 5 ns cost, specialized words result in faster AwkwardForth code.

5 AwkwardForth programs for ROOT, Avro, and Parquet

To read a TBasket of std::vector<std::vector<float>> from ROOT, we use the fol-
lowing AwkwardForth program:
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input data ( ROOT TBaskets have a data buffer )
input byte_offsets ( and a buffer of byte offsets )

output offsets0 int32 ( output Awkward Array offsets )
output offsets1 int32 ( ... )
output offsets2 int32 ( ... )
output content float32 ( and content )

0 offsets0 <- stack ( offsets start at zero )
0 offsets1 <- stack
0 offsets2 <- stack

begin
byte_offsets i-> stack ( get a position from the byte offsets )
6 + data seek ( seek to it plus a 6-byte header )
data !i-> stack ( get the std::vector size )
dup offsets0 +<- stack ( add it to the offsets )
0 do ( and use it as the loop counter )

data !i-> stack ( same for the inner std::vector )
dup offsets1 +<- stack
0 do

data !i-> stack ( and the innermost std::vector )
dup offsets2 +<- stack
data #!f-> content ( finally, the floating point values )

loop
loop

again ( ends with a "seek beyond" exception )

To read data with the same structure from Avro, we use the program below. It is applied to
each data block of an Avro container file, with the AwkwardForth machine stack initialized
with the number of entries in the block.

input data ( an Avro data block is a single buffer )

output offsets0 int32 ( output Awkward Array offsets )
output offsets1 int32 ( ... )
output offsets2 int32 ( ... )
output content float32 ( and content )

0 offsets0 <- stack ( offsets start at zero )
0 offsets1 <- stack
0 offsets2 <- stack

0 do ( upper limit on the stack at startup )
data zigzag-> stack
dup offsets0 +<- stack ( add it to the offsets )
0 do ( and use it as the loop counter )

data zigzag-> stack
dup offsets1 +<- stack
0 do

data zigzag-> stack
dup offsets2 +<- stack
data #f-> content ( finally, the floating point values )
data b-> stack drop ( ends with a zero-byte )

loop

4 AwkwardForth language

Like all Forth languages, AwkwardForth has an extremely simple syntax: whitespace delimits
tokens and tokens are interpreted in reverse Polish order: “3 4 +” means the sum of 3 and 4
(the first two words put numbers on the stack and the third pops them and pushes their sum).

AwkwardForth has 57 standard built-in words and 61 extensions for input and output
buffers, though 50 of the 61 are different ways of interpreting the bytes of an input buffer.
Two special words control the state of the virtual machine: pause and halt, and three do not
generate runtime code at all: they declare variables, inputs, and outputs.

variable variable_name ( Standard Forth )
input input_name ( AwkwardForth extension )
output output_name output_type ( AwkwardForth extension )

As in Standard Forth, user-defined words are bracketed between : and ; and the main
code is anything outside these definitions. Control structures are pairs of words like if-then
and do-loop, or triples like if-else-then and begin-while-repeat.

: fibonacci ( pops n -- pushes nth-fibonacci-number )
dup
1 > if

1- dup 1- fibonacci
swap fibonacci
+

then
;

( pushes [0 1 1 2 3 5 8 13 21 34 55 89 144 233 377] onto the stack )
15 0 do

i fibonacci
loop

The 50 special words for parsing are all arrows with a type code, an optional ! for big-
endian and an optional # to pull a number off the stack to determine how many times to repeat
it. Thus, “input_name i-> output_name” reads 4 bytes from the input as an integer and
writes it to the output, “input_name !d-> output_name” reads 8 bytes as a big-endian,
double-precision float, and “100 input_name #I-> output_name” reads 100 unsigned 4-
byte integers. In any case, the destination may be the stack: “input_name i-> stack”.

The type codes are taken from Python’s struct module, which AwkwardForth most
closely resembles in purpose (but vastly exceeds in expressiveness). Two special codes,
varint-> and zigzag->, read variable-length unsigned integers and zig-zag encoded signed
integers, which are used in many file formats, including Avro and Parquet. Also, Parquet
needs a command to read n-bit unsigned integers, hence 2bit->, 3bit->, etc. for any n.

Outputs are similar, but less varied because they have preassigned types. They may be
filled directly from an input (bypassing the stack for efficiency and to preserve the types of
floating point numbers) or filled from the stack: “output_name <- stack”. A shortcut for
appending the last output plus a value from the stack is “output_name +<- stack”.

More built-in words can be added to handle problems posed by input formats. Since each
built-in word has a fixed 5 ns cost, specialized words result in faster AwkwardForth code.

5 AwkwardForth programs for ROOT, Avro, and Parquet

To read a TBasket of std::vector<std::vector<float>> from ROOT, we use the fol-
lowing AwkwardForth program:
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data b-> stack drop ( lists also end with a zero-byte )
loop
data b-> stack drop ( lists also end with a zero-byte )

loop

Parquet is a columnar file format, so the floating-point content comes in a form that’s ready
to use in Awkward Array, without even copying the uncompressed buffer. However, the
nested list structure is in a highly packed form: repetition levels indicating the depth of each
floating-point item, which are further run-length encoded or bit-packed in small groups.

We unpack them using two AwkwardForth programs: the first produces the repetition
levels as unsigned 1-byte integers and the second converts them into three levels of offsets.

input data
output replevels uint8 ( output 1-byte integers )

data I-> stack ( get the number of bytes to read )
begin

data varint-> stack ( read a variable-length integer )
dup 1 and ( its lowest bit selects encoding type )

0= if ( zero means run-length encoding... )
data B-> replevels ( write the value to duplicate )
1 rshift 1- ( determine how many times )
replevels dup ( duplicate it )

else ( non-zero means bit-packed... )
1 rshift 8 * ( determine how many to read )
data #2bit-> replevels ( read all the 2-bit integers )

then

dup data pos 4 - ( continue until end of input buffer )
until

This last program interprets the repetition levels as offsets. It uses variables to count the
number of items at each level of list depth since all three need to be increased concurrently
and using swap or rot to manage them on the stack would be unnecessarily complex. The
Standard Forth words @, !, and +! read, write, and increment an off-stack variable. Variables
have the same integer type as the stack and are initially zero.

input replevels
output offsets0 int32 output offsets1 int32 output offsets2 int32
variable count0 variable count1 variable count2

begin
replevels b-> stack ( get one repetition level )

dup 3 = if ( 3 means deepest level of structure )
1 count2 +!

then
dup 2 = if ( 2 means a new innermost list )

1 count1 +!
count2 @ offsets2 +<- stack 1 count2 !

then
dup 1 = if ( 1 means a new inner list )

1 count0 +!
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count1 @ offsets1 +<- stack 1 count1 !
count2 @ offsets2 +<- stack 1 count2 !

then
0 = if ( 0 means a new outer list )

count0 @ offsets0 +<- stack 1 count0 !
count1 @ offsets1 +<- stack 1 count1 !
count2 @ offsets2 +<- stack 1 count2 !

then

replevels end ( continue to the end of input )
until

count0 @ offsets0 +<- stack ( add the last counts for all three )
count1 @ offsets1 +<- stack
count2 @ offsets2 +<- stack

Programs such as these would not be written (and commented!) by hand, but generated
by Uproot, other file-readers that produce Awkward Arrays, or TypedArrayBuilder.

6 Example of an AwkwardForth program for TypedArrayBuilder

TypedArrayBuilder was implemented using AwkwardForth. It takes an input type and
generates a machine that fills that type, pausing before each input command. Commands
are represented by enumeration constants, and the program flow depends on the sequence of
commands it receives. The example program below accepts a triply nested list of float.

input data ( a single value: argument to append )
output offsets0 int32 ( output Awkward Array offsets )
output offsets1 int32 ( ... )
output offsets2 int32 ( ... )
output content float32 ( and content )

0 offsets0 <- stack ( offsets start at zero )
0 offsets1 <- stack
0 offsets2 <- stack

: node3
{float32-command} = if

0 data seek ( calling code puts the next value at )
data d-> content ( the beginning of the input buffer )

else
halt ( only the "float32" command is allowed )

then
;
{node2} {node1} {node0} ( see below )

0 begin
pause node0 ( pause for input, run forever )

again

The words in curly brackets are strings to be replaced, such as the following for {nodeN}:

: {node_name}
{begin_list-command} <> if ( "begin_list" is required here )

halt
then

data b-> stack drop ( lists also end with a zero-byte )
loop
data b-> stack drop ( lists also end with a zero-byte )

loop

Parquet is a columnar file format, so the floating-point content comes in a form that’s ready
to use in Awkward Array, without even copying the uncompressed buffer. However, the
nested list structure is in a highly packed form: repetition levels indicating the depth of each
floating-point item, which are further run-length encoded or bit-packed in small groups.

We unpack them using two AwkwardForth programs: the first produces the repetition
levels as unsigned 1-byte integers and the second converts them into three levels of offsets.

input data
output replevels uint8 ( output 1-byte integers )

data I-> stack ( get the number of bytes to read )
begin

data varint-> stack ( read a variable-length integer )
dup 1 and ( its lowest bit selects encoding type )

0= if ( zero means run-length encoding... )
data B-> replevels ( write the value to duplicate )
1 rshift 1- ( determine how many times )
replevels dup ( duplicate it )

else ( non-zero means bit-packed... )
1 rshift 8 * ( determine how many to read )
data #2bit-> replevels ( read all the 2-bit integers )

then

dup data pos 4 - ( continue until end of input buffer )
until

This last program interprets the repetition levels as offsets. It uses variables to count the
number of items at each level of list depth since all three need to be increased concurrently
and using swap or rot to manage them on the stack would be unnecessarily complex. The
Standard Forth words @, !, and +! read, write, and increment an off-stack variable. Variables
have the same integer type as the stack and are initially zero.

input replevels
output offsets0 int32 output offsets1 int32 output offsets2 int32
variable count0 variable count1 variable count2

begin
replevels b-> stack ( get one repetition level )

dup 3 = if ( 3 means deepest level of structure )
1 count2 +!

then
dup 2 = if ( 2 means a new innermost list )

1 count1 +!
count2 @ offsets2 +<- stack 1 count2 !

then
dup 1 = if ( 1 means a new inner list )

1 count0 +!
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0 begin
pause dup {end_list-command} = if

drop
{offsets_name} +<- stack ( update offsets for this array node )
exit ( exit this subroutine’s infinite loop )

else
{next_node_name} ( another list node like this or node3 )
1+

then
again

;

The {*-command} substitutions are the enumeration constants. The virtual machine waits at
a pause word until TypedArrayBuilder puts a command number on the stack (and a value
in the input buffer for the float32 command), then resumes program flow, letting Awkward-
Forth format the output or halt if the command is not allowed. Thus, TypedArrayBuilder
itself can be statically compiled but “wired” to different actions at runtime.

7 Performance
Figure 1 presents single-threaded deserialization rates of uncompressed ROOT, Avro, and
Parquet files from a warmed filesystem cache on an Intel i7-8750H (2.2 GHz) processor.
There are four test files for each format: 4-byte float, variable-length lists of float, doubly
nested lists of lists of float, and triply nested lists of lists of lists of float. For ROOT
files, variable-length lists are std::vector, but in Avro they are called “arrays” (despite
being variable-length), and in Parquet, they are called “repeated groups.” All four types of
files contain exactly 1 073 741 824 float values and are all approximately 4 GiB (large, but
well within the 15.5 GiB of physical RAM). The lengths of the lists at each level of depth
are Poisson-distributed with a mean of 8.0 items per list. ROOT’s TBasket size, Avro’s data
block size, and Parquet’s row-group and page sizes were all fixed at 64 MiB.

The ROOT files were read in three ways: (1) using C++ ROOT, loading data with
TBranch::GetEntry) and copying it into offsets0, offsets1, offsets2, and content
buffers for Awkward Array, (2) using Uproot 4.0.1’s Python code, and (3) using Awkward-
Forth (with Uproot to find the TBaskets within the file).

As an additional comparison, the same data were converted into ROOT’s future RNTuple
format, which is truly columnar. As expected (reproducing our previous results [5]), float
data are fastest to read, being essentially a memory-copy from TBaskets or RNTuple pages
into the content buffer. (ROOT’s TBranch::GetEntry is not as fast as direct memory
access, which could be enabled by switching to ROOT’s BulkIO feature, but we did not
attempt that in this study.) RNTuple maintains this speed for all levels of nestedness for the
same reason, while Uproot’s NumPy tricks slow down reading of std::vector<float>
and Uproot’s pure Python is orders of magnitude slower for any deeper nesting. However,
AwkwardForth keeps pace with ROOT’s TBranch::GetEntry at all levels of nestedness.

We next compared AwkwardForth with fastavro, the leading Python package for reading
Avro files. fastavro is a Python extension library, using the C Avro implementation for speed.
However, fastavro is compiled without knowledge of the schemas of the Avro files, which
limits this advantage. AwkwardForth, on the other hand, has specialized Forth code for each
data type and it’s fast enough to read Avro 10–80× faster than fastavro.

Finally, we compared AwkwardForth with pyarrow, a Python extension library for the
C++Arrow and Parquet projects. In this case, pyarrow outperforms AwkwardForth by factors
of 1.5–8×. The AwkwardForth programs for Parquet in Section 5 show why: there’s nothing
about them that specializes to the data type except for the #2bit-> repetition level reader
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1+
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;
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in the input buffer for the float32 command), then resumes program flow, letting Awkward-
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are Poisson-distributed with a mean of 8.0 items per list. ROOT’s TBasket size, Avro’s data
block size, and Parquet’s row-group and page sizes were all fixed at 64 MiB.
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Forth (with Uproot to find the TBaskets within the file).

As an additional comparison, the same data were converted into ROOT’s future RNTuple
format, which is truly columnar. As expected (reproducing our previous results [5]), float
data are fastest to read, being essentially a memory-copy from TBaskets or RNTuple pages
into the content buffer. (ROOT’s TBranch::GetEntry is not as fast as direct memory
access, which could be enabled by switching to ROOT’s BulkIO feature, but we did not
attempt that in this study.) RNTuple maintains this speed for all levels of nestedness for the
same reason, while Uproot’s NumPy tricks slow down reading of std::vector<float>
and Uproot’s pure Python is orders of magnitude slower for any deeper nesting. However,
AwkwardForth keeps pace with ROOT’s TBranch::GetEntry at all levels of nestedness.

We next compared AwkwardForth with fastavro, the leading Python package for reading
Avro files. fastavro is a Python extension library, using the C Avro implementation for speed.
However, fastavro is compiled without knowledge of the schemas of the Avro files, which
limits this advantage. AwkwardForth, on the other hand, has specialized Forth code for each
data type and it’s fast enough to read Avro 10–80× faster than fastavro.

Finally, we compared AwkwardForth with pyarrow, a Python extension library for the
C++Arrow and Parquet projects. In this case, pyarrow outperforms AwkwardForth by factors
of 1.5–8×. The AwkwardForth programs for Parquet in Section 5 show why: there’s nothing
about them that specializes to the data type except for the #2bit-> repetition level reader
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Figure 2. Scaling of deserialization by the number of threads. AwkwardForth (when called from
Python) releases the Python GIL, which otherwise prevents any gains from parallel processing.

and the number of count variables and offset buffers. Any data type can be efficiently read
with the same, unspecialized C++ code. This is true in general of columnar data formats,
including RNTuple, so we have no plans of applying AwkwardForth to read columnar data.

For compressed data (not shown in Figure 1), all rates are suppressed by a constant for
each algorithm. LZ4 is about 10% slower than the memory copy, but ZLIB is 10× slower
than the memory copy, so AwkwardForth is not the bottleneck for ZLIB-compressed data.

We also studied the scaling of AwkwardForth with threads. The AwkwardForth virtual
machine is stateful, but lightweight: many can be launched at once, one for each thread.
Figure 2 shows deserialization rate of the ROOT files on an AWS c5.18xlarge instance,
which has 72 cores. Linear scaling falls off at about 20 threads, or 4–5 GiB per second, which
may be a limitation of memory bus supplying data from RAM. Python, by comparison, does
not scale at all because of its Global Interpreter Lock (GIL) [18].

All scripts used to produce Figures 1 and 2 are available on GitHub [19].

8 Conclusions

AwkwardForth is a “lightweight” solution to the problem of generating fast deserialization
code whose form is only known at runtime. In all, it consists of 3388 lines of C++ code in
Awkward Array (version 1.1.0), with no dependencies. Unlike user-facing DSLs, its syntax
is not subject to usability constraints, only ease of algorithmic generation and speed. As
shown in Section 7, it keeps pace with ROOT’s own TTree deserialization, exceeds fastavro
for Avro, and is slower than but within an order of magnitude of pyarrow for Parquet.

Most importantly, AwkwardForth vastly improves upon the Python code in Uproot, speed-
ing up std::vector<std::vector<float>> deserialization by factors of hundreds, and it
makes parallel TBasket deserialization worthwhile. To integrate AwkwardForth into Uproot,
every function that generates deserialization code in Python must be supplanted by a function
to generate AwkwardForth. This can be a gradual transition, as missing Forth-generators can
fall back to Python. We expect the majority of data types to be completed by the end of 2021.
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may be a limitation of memory bus supplying data from RAM. Python, by comparison, does
not scale at all because of its Global Interpreter Lock (GIL) [18].

All scripts used to produce Figures 1 and 2 are available on GitHub [19].

8 Conclusions

AwkwardForth is a “lightweight” solution to the problem of generating fast deserialization
code whose form is only known at runtime. In all, it consists of 3388 lines of C++ code in
Awkward Array (version 1.1.0), with no dependencies. Unlike user-facing DSLs, its syntax
is not subject to usability constraints, only ease of algorithmic generation and speed. As
shown in Section 7, it keeps pace with ROOT’s own TTree deserialization, exceeds fastavro
for Avro, and is slower than but within an order of magnitude of pyarrow for Parquet.

Most importantly, AwkwardForth vastly improves upon the Python code in Uproot, speed-
ing up std::vector<std::vector<float>> deserialization by factors of hundreds, and it
makes parallel TBasket deserialization worthwhile. To integrate AwkwardForth into Uproot,
every function that generates deserialization code in Python must be supplanted by a function
to generate AwkwardForth. This can be a gradual transition, as missing Forth-generators can
fall back to Python. We expect the majority of data types to be completed by the end of 2021.
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