
Formal Verification Approach to Detect Always-On

Denial of Service Trojans in Pipelined Circuits

Kushal K. Ponugoti, Sudarshan K. Srinivasan, and Nimish Mathure

Department of Electrical & Computer Engineering

North Dakota State University (Fargo, ND, USA)

{kushalkumar.ponugoti, sudarshan.srinivasan, nimish.mathure}@ndsu.edu

Abstract—Always-On Denial of Service (DoS) Trojans with
power drain payload can be disastrous in systems where on-
chip power resources are limited. These Trojans are designed
so that they have no impact on system behavior and hence,
harder to detect. A formal verification method is presented to
detect sequential always-on DoS Trojans in pipelined circuits
and pipelined microprocessors. Since the method is proof-based,
it provides a 100% accurate classification of sequential Trojan
components. Another benefit of the approach is that it does not
require a reference model, which is one of the requirements of
many Trojan detection techniques (often a bottleneck to practical
application). The efficiency and scalability of the proposed
method have been evaluated on 36 benchmark circuits. The most
complex of these benchmarks has as many as 135,898 gates.
Detection times are very efficient with a 100% rate of detection,
i.e., all Trojan sequential elements were detected and all non-
trojan sequential elements were classified as such.

Index Terms—Formal Verification, Hardware Trojans, Denial
of Service, Always-On

I. INTRODUCTION

Maliciously and intentionally induced faults in digital sys-

tems are called hardware Trojans. Usage of third-party intel-

lectual properties and CAD tools, or compromised designers

could be sources of hardware Trojans. Circuits with Trojans

may leak private data over side-channels, change its intended

functionality, degrade system performance over time, or com-

pletely halt a working system. These malicious events can

be disastrous in security-critical applications such as defense

systems, medical devices, financial systems, etc. Detection of

hardware Trojans has therefore become a very critical problem

in this domain.

An overview of hardware Trojans, their taxonomy, and his-

torical progression has been extensively discussed in [1], [2].

The Denial of Service (DoS) class of Trojans causes systems

to become unresponsive by placing them in sleep mode [3],

prevent a microprocessor core from executing instructions, or

drain power continuously [4], [5]. Some Trojans are always

designed to be active (always-on), while some are activated

only when a rare circuit state occurs (trigger-based). The focus

of this work is the detection of Always-On DoS Trojans. Such

Trojans are harder to detect as they can be designed in a

way that they have no impact on the behavior of the digital

circuit/system. This class of Trojans can lead to premature

component aging and consume extra power. This behavior

can be disastrous in embedded systems such as pacemakers

and other medical implants where on-chip power resources are

minimal and hence detecting them is a significant problem.

The main contribution of this work is a general formal

verification method that can detect always-on DoS Trojans in

pipelined circuits that satisfy the threat model described below.

The method applies to register-transfer-level (RTL)/netlist ver-

sions of the design but is not applicable for Trojans embedded

during fabrication. Formal verification methods are typically

not applicable post-silicon. Another benefit of the method is

that it does not require a reference or a golden model for

detection. The need for a reference model often becomes a

bottleneck to practical application.

The rest of the paper is organized as follows. The threat

model and the Trojan attack are described in Section II.

Section III discusses related work on detecting always-on

DoS Trojans. In Section IV, a formal verification methodology

to detect always-on DoS Trojans in pipelined combinational

circuits is presented. A formal verification methodology to

detect always-on DoS Trojans in pipelined microprocessor

circuits is proposed in Section V. Verification results are shown

in Section VI, and Section VII discusses future work and

concludes the manuscript.

II. THREAT MODEL AND ATTACK DESCRIPTION

Fig. 1 shows two examples of always-on DoS Trojans (T1 in

Fig. 1 (a) and T2 in Fig. 1 (b)) and Fig. 2 shows the embedding

of the second Trojan (T2) in a five-stage pipelined processor

circuit. Both Trojans shown in Fig 1. incorporate rotating

shift registers that continually drain power either statically or

dynamically. The Trojans hijack the ”out” wire using a Mux

network. Logically, the ”Out” wire is always connected to the

Fig. 1. (a) Trojan, T1, using a reset to 111 register (b) Trojan, T2, using a
reset to 101 and a reset to 010 register

978-1-7281-8281-0/21/$31.00 ©2021 IEEE

20
21

 2
8t

h
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
le

ct
ro

ni
cs

, C
irc

ui
ts

, a
nd

 S
ys

te
m

s (
IC

EC
S)

 |
 9

78
-1

-7
28

1-
82

81
-0

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

OI
: 1

0.
11

09
/IC

EC
S5

39
24

.2
02

1.
96

65
61

7

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on September 06,2022 at 11:58:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Example of an always-on DoS Trojan circuit embedded in a 5-stage
microprocessor host circuit

”Good” wire, which is the correct output. The ”Dummy” wire

is never propagated to ”Out.” The Mux network ensures that

the Trojan output is connected to the host without impacting

host functionality, ensuring the Trojan will evade isolation

during synthesis. The post-synthesis netlist of Trojan T1 is

shown in Fig. 3, demonstrating that the Trojan has not been

simplified during synthesis. We applied two synthesis tools,

Intel Quartus (version 20.1) and Synopsys Design Compiler

(version 2018), to both Trojans T1 and T2 and found that

both the tools do not simplify or detect the presence of these

Trojans. What is shown in Fig. 1 is only an example, and

there are numerous ways to design such Trojans in a more

complex, convoluted, and intricate manner to evade reduction

by synthesis. Also, such Trojans can be embedded in the host

circuit post-synthesis.

There are three properties that characterize the attack model

that the proposed method is designed to detect. First, in-

puts/outputs of the Trojan are connected to the host circuit and

therefore the Trojan cannot be detected by methods that rely

on the isolation of the Trojan module during synthesis (which

is a standard approach used for always-on Trojans). Second,

the Trojan has no impact on circuit functionality (intended or

unintended) and therefore cannot be detected by methods that

rely on circuit valuation for various scenarios. Third, the attack

is typically a power drain over time.

III. RELATED WORK

Detecting always-on DoS Trojans embedded during the

fabrication process has been extensively discussed in [6]–[8]

which is not in the scope of this work. Their methods are

applicable post-fabrication and do not apply to the RTL. Our

method focuses on detecting Trojans in the RTL, before fabri-

cation. It is much less expensive to detect Trojans embedded

in the RTL before fabrication.

Fig. 3. Figure shows the netlist generated by the synthesis tool, indicating
the presence of the shift register

Unused Circuit Identification (UCI) [9], FANCI [10] and

VeriTrust [11] are focused on detecting trigger-based Trojans,

where the idea is that they look for circuit components that

are rarely activated. However, always-on Trojans are always

activated without using a trigger, and therefore these methods

do not apply. Sturton et al. [12] and Zhang et al. [13] have

also shown that the aforementioned techniques can be circum-

vented. Also, it is unclear if they are applicable for detecting

Trojans in pipelined circuits. It should also be noted that

malicious designers or attackers always try to upgrade their

approaches to implanting these Trojans to circumvent existing

detection techniques. Hence, formal methods are becoming

more necessary than before as they can formally prove whether

a design is Trojan-free or not.

Trust-Hub [4], [5] has a wide suite of RTL hardware

Trojan benchmarks of which 3 are based on always-on DoS.

Kumar et al. [14] provided a solution to detect DoS Trojans

from Trust-Hub by exploiting the fact that the Trojan shift

register has unconnected output ports, which is detected by

the synthesis tool. However, as shown in Fig. 1, DoS Trojans

can be designed to circumvent such detection, by connecting

the Trojan register output to the host without impacting host

functionality. Fern et al. [15], proposed a formal verification

approach that can be used to detect always-on DoS Trojans,

however, this is not their intended target. The basic idea is

to constrain a flip-flop to 0 in symbolic state w and step the

circuit. In another copy of w, the same flip-flop is constrained

to 1 and the circuit is stepped again. If the outputs are equal

for both steps, it can be concluded that the flip-flop has no

impact on the circuit and is, therefore, a Trojan. Note that

this approach is insufficient for pipelined circuits such as

microprocessors, as only some flip-flops will impact the circuit

outputs when the circuit is stepped just once. The method

proposed in this paper extends the aforementioned approach

to apply to pipelined circuits and pipelined microprocessor

circuits.

IV. FORMAL DOS DETECTION FOR PIPELINED CIRCUITS

Consider a pipelined circuit with four stages as shown in

Fig. 4. If the Fern et al. [15] approach is applied, a flip-

flop located in the pipeline registers between c3 and c4 will

impact the circuit output when the circuit is stepped once.

However, flip-flops in pipeline registers of other stages will

Fig. 4. Figure shows a generic 4-stage pipelined circuit and depicts Property
1 for always-on DoS Trojan detection

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on September 06,2022 at 11:58:48 UTC from IEEE Xplore. Restrictions apply.

not impact the output after one step. Therefore, all the flip-

flops in pipeline registers between stages c1 and c2 and stages

c2 and c3 will be flagged as Trojans and the method will not

be able to differentiate Trojan flip-flops and non-trojan flip-

flops in these stages. If the same approach above is used but

with two steps of the circuit instead of one step, the impact of

the flip-flops between stages c3 and c4 will be on the outputs,

but not the impact from pipeline registers in other stages. The

proposed approach is to augment the circuit with an array with

n rows as a history variable, where n is the number of stages

in the pipeline. History variables do not impact the circuit

functionality and are used only for verification purposes. Rows

1, 2, .., n of the array will record the outputs of the circuit

after one, two, ..., n steps respectively. The array will thus

record the impact of the values of all the pipeline registers

on the outputs and this structure is used for always-on DoS

Trojan detection. The formal property that exploits this idea

is described below and is also depicted in Fig. 4.

Without loss of generality, consider a pipelined circuit with

p inputs i1, . . . , ip; q outputs o1, . . . , oq; r flip-flops f1,

. . . , fr; and n stages. The flip-flops f1, . . . , fr correspond

to the pipeline registers in the circuit. ξ() is the function that

corresponds to one step of the pipelined circuit. i.e., given the

current state and inputs, ξ() gives the next state and outputs:

〈o1, . . . , oq, f
1

1
, . . . , f1

r 〉 = ξ(i1, . . . , ip, f1, . . . , fr), where

f1

1
, . . . , f1

r correspond to the next state of the flip-flops. α is

a register array with n q-bit registers α[0], . . . , α[n-1].

Property 1 (DoS Detection For Pipelines) Flip-flop k is a DoS

Trojan if register arrays α0 and α1 are equal for all i1, . . . ,

ip ∈ [0,1] and for all f1, . . . , fr ∈ [0,1], under the following

four constraints:

1. 〈α0[0][0], . . . , α0[0][q-1], f0

10
, . . . , f0

r0
〉

= ξ(i1, . . . , ip, f1, . . . , fkin, . . . , fr)

2.
n−1∧

j=1

〈α0[j][0], . . . , α0[j][q-1], f j
10
, . . . , f j

r0
〉

= ξ(0, . . . , 0, f j−1

10
, . . . , f j−1

r0
)

3. 〈α1[0][0], . . . , α1[0][q-1], f0

11
, . . . , f0

r1
〉

= ξ(i1, . . . , ip, f1, . . . , fk=1, . . . , fr)

4.
n−1∧

j=1

〈α1[j][0], . . . , α1[j][q-1], f j
11
, . . . , f j

r1
〉

= ξ(0, . . . , 0, f j−1

11
, . . . , f j−1

r1
)

In the property above, in constraint 1, flip-flop fk is forced

to 0 and the pipelined circuit is stepped. The outputs of the

circuit are recorded in α0[0]. Constraint 2 corresponds to n-1

flushing steps of the pipeline circuit. A flushing step is when

the pipeline is stepped forward with all the inputs set to 0. The

outputs of each of these flushing steps are recorded in α0[j].
Constraints 3 and 4 are similar to constraints 1 and 2, with the

only difference being that fk is initially forced to 1 instead of

0 and the circuit outputs are stored in α1. In the end if, α0

and α1 are equal, this implies that under all possible pipeline

circuit states and inputs, flip-flop fk has no impact on the

circuit outputs and functionality and can therefore be classified

as a DoS Trojan. The above property should be checked for

every flip-flop in the circuit.

V. FORMAL DOS DETECTION FOR MICROPROCESSOR

CIRCUITS

Property 1 is insufficient for detection of DoS Trojans in

microprocessor pipelines, as these circuits have programmer

visible state components such as the program counter, register

file, memory, and other special registers and flags in addi-

tion to pipeline registers. Also, these circuits have feedback

and stalling behaviors that influence the pipeline operation.

Another property is provided for DoS Trojan detection in

microprocessor circuits. Note that the property can easily be

adapted for other circuits with similar characteristics.

Consider a processor circuit with three programmer visible

components including a program counter (ρ), register file (ζ),

and and memory (µ). Other flags and special registers if

present can be treated similar to the program counter. Also,

the processor has r flip-flops f1, . . . , fr, that correspond to

pipeline registers and any other state in the processor that is

not a programmer visible component. ξ() is the function that

corresponds to one step of the circuit: 〈ρ1, ζ1, µ1, f1

1
, . . . , f1

r 〉
= ξ(ρ, ζ, µ, f1, . . . , fr), where f1

1
, . . . , f1

r correspond to the

next state of the flip-flops and ρ1, ζ1, and µ1 correspond to

the next state of the programmer visible components.

ξflush is a flushing function of the processor and is a

variation of ξ. ξflush steps the processor without fetching any

new instructions and was first proposed by Burch and Dill [16]

in the context of safety verification of pipelined processors.

The flushing function is implemented by modifying ξ. The

program counter is stalled and bubbles are inserted into the

fetch stage. In-flight branch instructions are allowed to still up-

date the program counter. A sufficient number of applications

of the flush function will complete all in-flight instructions

in a processor state and empty the pipeline. The number of

flushing steps required to guarantee an empty pipeline starting

from any state of a processor (denoted as n for Property 2)

can be computed based on the design of the processor. The

results computed by the in-flight instructions will be updated

onto the programmer visible components.

Property 2 (DoS Detection For Microprocessor) Flip-flop k is

a DoS Trojan if ρn
0

=ρn
1

and ζn
0

=ζn
1

and µn
0

=µn
1

for all values of

ρ, ζ, and µ and for all f1, . . . , fr ∈ [0,1], under the following

four constraints:

1. 〈ρ0
0
, ζ0

0
, µ0

0
, f0

10
, . . . , f0

r0
〉

= ξ(ρ, ζ, µ, f1, . . . , fk=0, . . . , fr)

2.
n∧

j=1

〈ρj
0
, ζ

j
0
, µ

j
0
, f

j
10
, . . . , f j

r0
〉

= ξflush(ρ
j−1

0
, ζ

j−1

0
, µ

j−1

0
, f

j−1

10
, . . . , f j−1

r0
)

3. 〈ρ0
1
, ζ0

1
, µ0

1
, f0

11
, . . . , f0

r1
〉

= ξ(ρ, ζ, µ, f1, . . . , fk=1, . . . , fr)

4.
n∧

j=1

〈ρj
1
, ζ

j
1
, µ

j
1
, f

j
11
, . . . , f j

r1
〉

= ξflush(ρ
j−1

1
, ζ

j−1

1
, µ

j−1

0
, f

j−1

11
, . . . , f j−1

r1
)

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on September 06,2022 at 11:58:48 UTC from IEEE Xplore. Restrictions apply.

Table 1. Verification Results for Pipelined Circuits (Property 1)

Circuit
Benchmarks

Gates # Flip-Flops #
Verification Time [secs]

Average Verification
Time per Flip-Flop [secs]

Non-Trojan
Flip-Flops

Trojan
Flip-Flops

Non Trojan
Flip-Flops

Trojan
Flip-Flops

mul-4-p-T1 135 53 0.42 6.63 0.01 0.60
mul-8-p-T1 451 163 1.53 23.58 0.01 2.14
mul-16-p-T1 1,639 556 5.45 82.86 0.01 7.53
mul-20-p-T1 2,664 859 16.96 139.93 0.02 12.72
mul-24-p-T1 3,855 1,226 36.45 199.25 0.03 18.11
mul-28-p-T1 5,271 1,583 78.60 280.10 0.05 25.46
mul-32-p-T1 12,751 1,952 135.87 396.13 0.07 36.01
i85-c432-p-T1 223 152 1.41 7.48 0.01 0.68
i85-c1355-p-T1 609 155 1.44 20.03 0.01 1.82
i85-c1908-p-T1 943 201 3.84 41.83 0.02 3.80
i85-c2670-p-T1 1,256 559 16.44 106.81 0.03 9.71

mul-4-p-T2 147 56 0.16 8.73 0.01 0.62
mul-8-p-T2 463 166 1.56 30.70 0.01 2.19
mul-16-p-T2 1,641 559 5.46 106.27 0.01 7.59
mul-20-p-T2 2,675 862 17.00 179.52 0.02 12.82
mul-24-p-T2 3,867 1,229 48.82 256.64 0.04 18.33
mul-28-p-T2 5,283 1,586 78.73 359.11 0.05 25.65
mul-32-p-T2 12,763 1,955 155.30 510.90 0.08 36.49
i85-c432-p-T2 235 155 1.43 10.25 0.01 0.73
i85-c1355-p-T2 621 158 1.47 26.65 0.01 1.90
i85-c1908-p-T2 955 204 5.71 54.90 0.03 3.92
i85-c2670-p-T2 1,268 562 21.95 136.40 0.04 9.74

Table 2. Verification Results for Pipelined Processor Circuits (Property 2)

Processor
Benchmarks

Gates # Flip-Flops #
Non-Programmer Visible

Flip-Flops #
Verification Time [secs]

Average Verification
Time per Flip-Flop [secs]

Non-Trojan
Flip-Flops

Trojan
Flip-Flops

Non Trojan
Flip-Flops

Trojan
Flip-Flops

m-16-bit-T1 2,961 1,256 370 3.60 43.14 0.01 3.92
m-32-bit-T1 10,171 2,840 640 12.60 176.22 0.02 14.71
m-64-bit-T1 36,122 7,576 1,120 44.39 860.79 0.04 78.25
m-128-bit-T1 135,773 23,192 2,080 206.94 14,424.21 0.10 1311.29
r-v-32-bit-T1 10,284 2,840 640 18.88 215.75 0.03 19.61
r-v-64-bit-T1 36,236 7,576 1,120 77.67 1,102.86 0.07 100.26
r-v-128-bit-T1 135,886 23,192 2,080 269.00 15,511.76 0.13 1410.16

m-16-bit-T2 2,973 1,259 373 3.63 57.03 0.01 4.07
m-32-bit-T2 10,183 2,843 643 18.94 213.40 0.03 15.24
m-64-bit-T2 36,134 7,579 1,123 55.49 1,186.08 0.05 84.72
m-128-bit-T2 135,785 23,195 2,083 248.28 19,892.61 0.12 1420.90
r-v-32-bit-T2 10,296 2,843 643 25.16 333.65 0.04 23.83
r-v-64-bit-T2 36,248 7,579 1,123 99.84 1,735.20 0.09 123.94
r-v-128-bit-T2 135,898 23,195 2,083 310.35 26,210.26 0.15 1872.16

In Property 2, fk is the flip-flop that is being checked to

see if it is a Trojan. Constraint 1 corresponds to a step of

the processor circuit with fk set to 0. Let w0 correspond to

the initial state with fk=0 and let v0 be the state obtained

by stepping the processor from w0. All other flip-flops and

state (program counter, register file, and memory) in w0 are

unconstrained. Therefore, the property will be verified for all

possible values of the other flip-flops and state. Constraint

2 corresponds to applying n flushing steps to v0. Let v
f
0

correspond to the resulting flushed state. Constraint 3 is similar

to constraint 1, except that fk set to 1 instead of 0. Let w1

correspond to the initial state with fk=1 and let v1 be the

state obtained by stepping the processor from w1. Constraint

4 is similar to constraint 2 in that it corresponds to applying

n flushing steps to v1. Let v
f
1

correspond to the resulting

flushed state. Property 2 checks if the programmer visible

components in v
f
0

and v
f
1

are equal. Since in both w0 and w1,

all other state elements were unconstrained, if Property 2 is

satisfied, this implies that fk has no impact on the programmer

visible components for any state of the processor and can

therefore be classified as a Trojan flip-flop. The flushing steps

of constraints 2 and 4 ensure that if fk does impact circuit

functionality, the impact will be propagated to the programmer

visible components. The above property should be checked

for every flip-flop in the circuit that is not a programmer

visible component. Since programmer visible components are

essential to the circuit functionality, if they are infected, this

will distort circuit behavior and be flagged during testing and

verification for functional correctness.

VI. EXPERIMENTAL RESULTS

Table 1 and Table 2 show verification results for the

benchmarks by employing Properties 1 and 2, respectively.

The tables also give the complexity of the benchmark circuits

to be evaluated, in terms of the total gate and flip-flop count.

The properties were checked using version 4.3.2 of the Z3

SMT solver [17]. The verification experiments were performed

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on September 06,2022 at 11:58:48 UTC from IEEE Xplore. Restrictions apply.

on an Intel(R) Core(TM) i7 - 8700 CPU @ 3.2 GHz with

32GB of RAM and 64-bit operating system.

In Table 1, mul-n-p-t are pipelined multipliers, where n is

the width of the multiplier and -p indicates that the circuit is

pipelined. Four ISCAS-85 circuits [18] are also used which are

labelled i85-c-p-t, where c is the ISCAS-85 circuit name. The

original ISCAS-85 benchmarks are not pipelined. Pipelined

versions (-p) of these benchmarks were created for evaluating

the efficacy of Property 1. The benchmarks are also marked

with T1 or T2 indicating which Trojan was injected into

the circuit. All the multipliers and ISCAS-85 benchmarks

are pipelined into four stages each. The benchmarks with

Trojan T1 had 3 Trojan flip-flops while the benchmarks with

Trojan T2 had 6 Trojan flip-flops. Also, an additional 8 Trojan

flip-flops were randomly embedded in the pipelined registers.

These additional Trojan flip-flops were not connected with the

host circuit. Property 1 was checked on all the flip-flops in the

circuit. All the 11 Trojan flip-flops satisfied the property, i.e.,

they had no impact on the circuit functionality, whereas all

non-trojan flip-flops did not satisfy the property and instead

resulted in a counterexample. Hence, Property 1 provided a

100% rate of detection for Trojan flip-flops and correctly

classified all flip-flops as either Trojan or non-trojan. Table

1 also shows the verification times for checking Property 1 on

Trojan and non-trojan flip-flops separately and also shows the

average time/flip-flop for Trojan and non-trojan flip-flops. As

can be seen from the table, the time for detecting Trojan flip-

flops is much higher than the time required for checking non-

trojan flip-flops. The reason for this discrepancy is that non-

trojan flip-flops lead to a counterexample, whereas detection

of trojan-flops requires showing that Property 1 is satisfied for

all possible input values and flip-flop values. Overall, this is a

benefit for large circuits, as the number of Trojan flip-flops will

be minuscule (if any) compared to the number of non-trojan

flip-flops and should lead to efficient detection times.

In Table 2, two types of processor benchmarks were used

(MIPS, indicated by m, and RISC-V indicated by r − v).

Both types of processor benchmarks implemented a 5-stage

pipeline. The data path width of the pipelined processor

circuits was varied from 16 to 128. Apart from the 3 Trojan

flip-flops in T1 and 6 Trojan flip-flops in T2, an additional

16 Trojan flip-flops were embedded in the pipelined registers

in each of the processor benchmarks. As shown in Table 2,

property 2 was checked on all the non-programmer visible

flip-flops i.e. any flip-flop which is not a part of the program

counter, register file, instruction memory, and data memory.

Property 2 also correctly classified all the Trojan and non-

trojan flip-flops in the processor benchmarks and provided a

100% rate of detection for Trojan flip-flops. For Property 2

as well, the verification time required to identify Trojan flip-

flops was much higher than what was required for non-trojan

flip-flops.

VII. CONCLUSION

Two properties are proposed to detect DoS Trojans in

pipelined circuits. Property 1 can be used for any com-

binational circuit that is pipelined, i.e., the assumption is

that the original circuit has no state. Property 2 can be

used for pipelined circuits, where the original circuit has a

state. Microprocessors are examples of such circuits, where

the programmer visible components are state components

inherent to the circuit. Property 2 was specifically designed

for microprocessor circuits and can be extended to other

pipelined circuits with the inherent state by treating these state

components similar to how the program counter was treated

in Property 2. The key takeaway with both properties is that

the time required to identify non-trojan flip-flops is minuscule

compared to that required for the detection of Trojan flip-flops

and this is a big benefit because a majority of the flip-flops

will be non-trojan. Abstractions are typically used to improve

the efficiency of verification. For future work, abstraction

techniques will be explored to significantly increase the size

of circuits that can be verified.

VIII. ACKNOWLEDGMENT

This paper is based upon work supported by the National

Science Foundation under Grant No. CNS-2117190.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design Test of Computers, vol. 27, no. 1,
pp. 10–25, 2010.

[2] M. Xue, C. Gu, W. Liu, S. Yu, and M. O’Neill, “Ten years of hardware
trojans: a survey from the attacker’s perspective,” IET Computers &

Digital Techniques, vol. 14, no. 6, pp. 231–246, 2020.

[3] R. Elnaggar, K. Chakrabarty, and M. B. Tahoori, “Hardware trojan
detection using changepoint-based anomaly detection techniques,” IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27,
no. 12, pp. 2706–2719, 2019.

[4] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in 2013 IEEE 31st Inter-

national Conference on Computer Design (ICCD), 2013, pp. 471–474.

[5] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware trojans and maliciously affected circuits,”
Journal of Hardware and Systems Security, vol. 1, no. 1, pp. 85–102,
2017.

[6] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in International Conference on Cryp-

tographic Hardware and Embedded Systems. Springer, 2013, pp. 197–
214.

[7] Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, “Silicon demonstration
of hardware trojan design and detection in wireless cryptographic ics,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 25, no. 4, pp. 1506–1519, 2017.

[8] Y. Shiyanovskii, F. Wolff, A. Rajendran, C. Papachristou, D. Weyer, and
W. Clay, “Process reliability based trojans through nbti and hci effects,”
in 2010 NASA/ESA Conference on Adaptive Hardware and Systems,
2010, pp. 215–222.

[9] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith,
“Overcoming an untrusted computing base: Detecting and removing ma-
licious hardware automatically,” in 2010 IEEE Symposium on Security

and Privacy, 2010, pp. 159–172.

[10] A. Waksman, M. Suozzo, and S. Sethumadhavan, “Fanci: identifica-
tion of stealthy malicious logic using boolean functional analysis,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &

communications security, 2013, pp. 697–708.

[11] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “Veritrust: Verification
for hardware trust,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 34, no. 7, pp. 1148–1161, 2015.

[12] C. Sturton, M. Hicks, D. Wagner, and S. T. King, “Defeating uci:
Building stealthy and malicious hardware,” in 2011 IEEE Symposium

on Security and Privacy, 2011, pp. 64–77.

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on September 06,2022 at 11:58:48 UTC from IEEE Xplore. Restrictions apply.

[13] J. Zhang, F. Yuan, and Q. Xu, “Detrust: Defeating hardware trust
verification with stealthy implicitly-triggered hardware trojans,” in Pro-

ceedings of the 2014 ACM SIGSAC conference on computer and

communications security, 2014, pp. 153–166.
[14] K. S. Kumar, R. Chanamala, S. R. Sahoo, and K. K. Mahapatra, “An

improved aes hardware trojan benchmark to validate trojan detection
schemes in an asic design flow,” in 2015 19th International Symposium

on VLSI Design and Test, 2015, pp. 1–6.
[15] N. Fern, I. San, and K.-T. T. Cheng, “Detecting hardware trojans in

unspecified functionality through solving satisfiability problems,” in
2017 22nd Asia and South Pacific Design Automation Conference (ASP-

DAC), 2017, pp. 598–504.
[16] J. R. Burch and D. L. Dill, “Automatic verification of pipelined mi-

croprocessor control,” in International Conference on Computer Aided

Verification. Springer, 1994, pp. 68–80.
[17] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Inter-

national conference on Tools and Algorithms for the Construction and

Analysis of Systems. Springer, 2008, pp. 337–340.
[18] M. Hansen, H. Yalcin, and J. Hayes, “Unveiling the iscas-85 bench-

marks: a case study in reverse engineering,” IEEE Design Test of

Computers, vol. 16, no. 3, pp. 72–80, 1999.

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on September 06,2022 at 11:58:48 UTC from IEEE Xplore. Restrictions apply.

