2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS) | 978-1-7281-8281-0/21/$31.00 ©2021 IEEE | DOI: 10.1109/ICECS53924.2021.9665617

Formal Verification Approach to Detect Always-On
Denial of Service Trojans in Pipelined Circuits

Kushal K. Ponugoti, Sudarshan K. Srinivasan, and Nimish Mathure
Department of Electrical & Computer Engineering
North Dakota State University (Fargo, ND, USA)
{kushalkumar.ponugoti, sudarshan.srinivasan, nimish.mathure} @ndsu.edu

Abstract—Always-On Denial of Service (DoS) Trojans with
power drain payload can be disastrous in systems where on-
chip power resources are limited. These Trojans are designed
so that they have no impact on system behavior and hence,
harder to detect. A formal verification method is presented to
detect sequential always-on DoS Trojans in pipelined circuits
and pipelined microprocessors. Since the method is proof-based,
it provides a 100% accurate classification of sequential Trojan
components. Another benefit of the approach is that it does not
require a reference model, which is one of the requirements of
many Trojan detection techniques (often a bottleneck to practical
application). The efficiency and scalability of the proposed
method have been evaluated on 36 benchmark circuits. The most
complex of these benchmarks has as many as 135,898 gates.
Detection times are very efficient with a 100% rate of detection,
i.e., all Trojan sequential elements were detected and all non-
trojan sequential elements were classified as such.

Index Terms—Formal Verification, Hardware Trojans, Denial
of Service, Always-On

I. INTRODUCTION

Maliciously and intentionally induced faults in digital sys-
tems are called hardware Trojans. Usage of third-party intel-
lectual properties and CAD tools, or compromised designers
could be sources of hardware Trojans. Circuits with Trojans
may leak private data over side-channels, change its intended
functionality, degrade system performance over time, or com-
pletely halt a working system. These malicious events can
be disastrous in security-critical applications such as defense
systems, medical devices, financial systems, etc. Detection of
hardware Trojans has therefore become a very critical problem
in this domain.

An overview of hardware Trojans, their taxonomy, and his-
torical progression has been extensively discussed in [1], [2].
The Denial of Service (DoS) class of Trojans causes systems
to become unresponsive by placing them in sleep mode [3],
prevent a microprocessor core from executing instructions, or
drain power continuously [4], [5]. Some Trojans are always
designed to be active (always-on), while some are activated
only when a rare circuit state occurs (trigger-based). The focus
of this work is the detection of Always-On DoS Trojans. Such
Trojans are harder to detect as they can be designed in a
way that they have no impact on the behavior of the digital
circuit/system. This class of Trojans can lead to premature
component aging and consume extra power. This behavior
can be disastrous in embedded systems such as pacemakers

978-1-7281-8281-0/21/$31.00 ©2021 IEEE

and other medical implants where on-chip power resources are
minimal and hence detecting them is a significant problem.

The main contribution of this work is a general formal
verification method that can detect always-on DoS Trojans in
pipelined circuits that satisfy the threat model described below.
The method applies to register-transfer-level (RTL)/netlist ver-
sions of the design but is not applicable for Trojans embedded
during fabrication. Formal verification methods are typically
not applicable post-silicon. Another benefit of the method is
that it does not require a reference or a golden model for
detection. The need for a reference model often becomes a
bottleneck to practical application.

The rest of the paper is organized as follows. The threat
model and the Trojan attack are described in Section II.
Section IIT discusses related work on detecting always-on
DoS Trojans. In Section IV, a formal verification methodology
to detect always-on DoS Trojans in pipelined combinational
circuits is presented. A formal verification methodology to
detect always-on DoS Trojans in pipelined microprocessor
circuits is proposed in Section V. Verification results are shown
in Section VI, and Section VII discusses future work and
concludes the manuscript.

II. THREAT MODEL AND ATTACK DESCRIPTION

Fig. 1 shows two examples of always-on DoS Trojans (T1 in
Fig. 1 (a) and T2 in Fig. 1 (b)) and Fig. 2 shows the embedding
of the second Trojan (T2) in a five-stage pipelined processor
circuit. Both Trojans shown in Fig 1. incorporate rotating
shift registers that continually drain power either statically or
dynamically. The Trojans hijack the “out” wire using a Mux
network. Logically, the "Out” wire is always connected to the

Dummy — 0
Out
GOoOd ——s] 1

L1

Dummy ——

Good ———

Good ————>

Dummy ——|

(reset to 111) (reset to 101)

(a) (b)

Fig. 1. (a) Trojan, T1, using a reset to 111 register (b) Trojan, T2, using a
reset to 101 and a reset to 010 register

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on September 06,2022 at 11:58:48 UTC from IEEE Xplore. Restrictions apply.



Instruction
-
Memory

Register | |
File

Data
Memory

Misprediction

—{ Decoder —| -
Logic

IF D EX DM wB

Fig. 2. Example of an always-on DoS Trojan circuit embedded in a 5-stage
microprocessor host circuit

”Good” wire, which is the correct output. The "Dummy” wire
is never propagated to ”Out.” The Mux network ensures that
the Trojan output is connected to the host without impacting
host functionality, ensuring the Trojan will evade isolation
during synthesis. The post-synthesis netlist of Trojan T1 is
shown in Fig. 3, demonstrating that the Trojan has not been
simplified during synthesis. We applied two synthesis tools,
Intel Quartus (version 20.1) and Synopsys Design Compiler
(version 2018), to both Trojans T1 and T2 and found that
both the tools do not simplify or detect the presence of these
Trojans. What is shown in Fig. 1 is only an example, and
there are numerous ways to design such Trojans in a more
complex, convoluted, and intricate manner to evade reduction
by synthesis. Also, such Trojans can be embedded in the host
circuit post-synthesis.

There are three properties that characterize the attack model
that the proposed method is designed to detect. First, in-
puts/outputs of the Trojan are connected to the host circuit and
therefore the Trojan cannot be detected by methods that rely
on the isolation of the Trojan module during synthesis (which
is a standard approach used for always-on Trojans). Second,
the Trojan has no impact on circuit functionality (intended or
unintended) and therefore cannot be detected by methods that
rely on circuit valuation for various scenarios. Third, the attack
is typically a power drain over time.

III. RELATED WORK

Detecting always-on DoS Trojans embedded during the
fabrication process has been extensively discussed in [6]—[8]
which is not in the scope of this work. Their methods are
applicable post-fabrication and do not apply to the RTL. Our
method focuses on detecting Trojans in the RTL, before fabri-
cation. It is much less expensive to detect Trojans embedded
in the RTL before fabrication.

tl : pegl 0 port map (d => regout2, clock => clk, reset => rst, g => regout0);
t2 : regl 1 port map (d => regout0, clock => clk, reset => rst, g => regoutl);
t3 : pegl 2 port map (d => regoutl, clock => clk, reset => rst, g => regout2);
t4 : mux2 port map( a => dummy, b => good, mux_sel => regout2, f => z);

Fig. 3. Figure shows the netlist generated by the synthesis tool, indicating
the presence of the shift register

Unused Circuit Identification (UCI) [9], FANCI [10] and
VeriTrust [11] are focused on detecting trigger-based Trojans,
where the idea is that they look for circuit components that
are rarely activated. However, always-on Trojans are always
activated without using a trigger, and therefore these methods
do not apply. Sturton et al. [12] and Zhang et al. [13] have
also shown that the aforementioned techniques can be circum-
vented. Also, it is unclear if they are applicable for detecting
Trojans in pipelined circuits. It should also be noted that
malicious designers or attackers always try to upgrade their
approaches to implanting these Trojans to circumvent existing
detection techniques. Hence, formal methods are becoming
more necessary than before as they can formally prove whether
a design is Trojan-free or not.

Trust-Hub [4], [5] has a wide suite of RTL hardware
Trojan benchmarks of which 3 are based on always-on DoS.
Kumar et al. [14] provided a solution to detect DoS Trojans
from Trust-Hub by exploiting the fact that the Trojan shift
register has unconnected output ports, which is detected by
the synthesis tool. However, as shown in Fig. 1, DoS Trojans
can be designed to circumvent such detection, by connecting
the Trojan register output to the host without impacting host
functionality. Fern et al. [15], proposed a formal verification
approach that can be used to detect always-on DoS Trojans,
however, this is not their intended target. The basic idea is
to constrain a flip-flop to 0 in symbolic state w and step the
circuit. In another copy of w, the same flip-flop is constrained
to 1 and the circuit is stepped again. If the outputs are equal
for both steps, it can be concluded that the flip-flop has no
impact on the circuit and is, therefore, a Trojan. Note that
this approach is insufficient for pipelined circuits such as
microprocessors, as only some flip-flops will impact the circuit
outputs when the circuit is stepped just once. The method
proposed in this paper extends the aforementioned approach
to apply to pipelined circuits and pipelined microprocessor
circuits.

IV. FORMAL DOS DETECTION FOR PIPELINED CIRCUITS

Consider a pipelined circuit with four stages as shown in
Fig. 4. If the Fern et al. [15] approach is applied, a flip-
flop located in the pipeline registers between c3 and c4 will
impact the circuit output when the circuit is stepped once.
However, flip-flops in pipeline registers of other stages will

Fig. 4. Figure shows a generic 4-stage pipelined circuit and depicts Property
1 for always-on DoS Trojan detection

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on September 06,2022 at 11:58:48 UTC from IEEE Xplore. Restrictions apply.



not impact the output after one step. Therefore, all the flip-
flops in pipeline registers between stages c1 and c2 and stages
c2 and c3 will be flagged as Trojans and the method will not
be able to differentiate Trojan flip-flops and non-trojan flip-
flops in these stages. If the same approach above is used but
with two steps of the circuit instead of one step, the impact of
the flip-flops between stages c¢3 and c4 will be on the outputs,
but not the impact from pipeline registers in other stages. The
proposed approach is to augment the circuit with an array with
n rows as a history variable, where n is the number of stages
in the pipeline. History variables do not impact the circuit
functionality and are used only for verification purposes. Rows
1, 2, .., n of the array will record the outputs of the circuit
after one, two, ..., n steps respectively. The array will thus
record the impact of the values of all the pipeline registers
on the outputs and this structure is used for always-on DoS
Trojan detection. The formal property that exploits this idea
is described below and is also depicted in Fig. 4.

Without loss of generality, consider a pipelined circuit with
p inputs %1, ..., ip; g outputs o1, ..., og; 7 flip-flops fi,
..., fr; and n stages. The flip-flops fi, ..., f. correspond
to the pipeline registers in the circuit. £() is the function that
corresponds to one step of the pipelined circuit. i.e., given the
current state and inputs, £() gives the next state and outputs:

(01,0 0q, [T,y [1Y = €y oo vy iy f1, -, [r), Where
fi,..., f} correspond to the next state of the flip-flops. « is
a register array with n g-bit registers «[0], ..., a[n-1].

Property 1 (DoS Detection For Pipelines) Flip-flop k is a DoS
Trojan if register arrays o and «; are equal for all i1, ...,
i, € [0,1] and for all fi, ..., f € [0,1], under the following
four constraints:

L. <a0[0}[0]a"-7040[0}[Q'1]af{)07"'7 r00>
:f(il,...,ip,fl,...,fkin,...,fr)
n—1 . .
2. ,/\1<Oéo[j][0]7---,Oéo[j][Q-lLffo,-~-7fﬂg>
j=
=€(0,...,0, f{71 L fh
3. (a[0][0], ..., aa[0][g-1], 2, - -, f1))
=&(i1, - yip, f1, - fo=1, o, fr)
n—1 . .
& A a0l onlart) Ry 7
j=

:g(oa"'aoaffl_lr"af'rjl_l)

In the property above, in constraint 1, flip-flop fj is forced
to 0 and the pipelined circuit is stepped. The outputs of the
circuit are recorded in ag[0]. Constraint 2 corresponds to n-1
flushing steps of the pipeline circuit. A flushing step is when
the pipeline is stepped forward with all the inputs set to 0. The
outputs of each of these flushing steps are recorded in «glj].
Constraints 3 and 4 are similar to constraints 1 and 2, with the
only difference being that fj is initially forced to 1 instead of
0 and the circuit outputs are stored in «;. In the end if, g
and o are equal, this implies that under all possible pipeline
circuit states and inputs, flip-flop fr has no impact on the
circuit outputs and functionality and can therefore be classified

as a DoS Trojan. The above property should be checked for
every flip-flop in the circuit.

V. FORMAL D0OS DETECTION FOR MICROPROCESSOR
CIRCUITS

Property 1 is insufficient for detection of DoS Trojans in
microprocessor pipelines, as these circuits have programmer
visible state components such as the program counter, register
file, memory, and other special registers and flags in addi-
tion to pipeline registers. Also, these circuits have feedback
and stalling behaviors that influence the pipeline operation.
Another property is provided for DoS Trojan detection in
microprocessor circuits. Note that the property can easily be
adapted for other circuits with similar characteristics.

Consider a processor circuit with three programmer visible
components including a program counter (p), register file (¢),
and and memory (p). Other flags and special registers if
present can be treated similar to the program counter. Also,
the processor has r flip-flops fi, ..., f, that correspond to
pipeline registers and any other state in the processor that is
not a programmer visible component. £() is the function that
corresponds to one step of the circuit: (p, ¢t, pt, fi, ..., fH)
=£&(p, ¢, 1y f1s -+ -» fr), where fi, ..., f} correspond to the
next state of the flip-flops and p', ¢!, and p' correspond to
the next state of the programmer visible components.

&fluskh 1s a flushing function of the processor and is a
variation of €. &1ysn Steps the processor without fetching any
new instructions and was first proposed by Burch and Dill [16]
in the context of safety verification of pipelined processors.
The flushing function is implemented by modifying &. The
program counter is stalled and bubbles are inserted into the
fetch stage. In-flight branch instructions are allowed to still up-
date the program counter. A sufficient number of applications
of the flush function will complete all in-flight instructions
in a processor state and empty the pipeline. The number of
flushing steps required to guarantee an empty pipeline starting
from any state of a processor (denoted as n for Property 2)
can be computed based on the design of the processor. The
results computed by the in-flight instructions will be updated
onto the programmer visible components.

Property 2 (DoS Detection For Microprocessor) Flip-flop k is
a DoS Trojan if pgj=p7 and (;'=CT" and pg=p7 for all values of
p, ¢, and p and for all fy, ..., f. € [0,1], under the following
four constraints:

L (03, GO, S, 1)
:g(paC7Maf17---afk:O>~--7f7‘)
2 NG Fly o 1)
j=
j—1 j—1 j—1 j—1 i—
:gflush(/)]o ) é aﬂg) P 170 7'~-af7'20 1)
3. (oY, GO 1] Dy )
:g(p7<7/lafla'"7fk=17"'af7‘)
4. _/\1<p'1,C{7u{7ffl,..., 7))
J:
)—1 j—1 j—1 j—1 i
:é.flﬂﬁh(pjl ) { »Ilg) 7ff1 a'”vfﬂl 1)

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on September 06,2022 at 11:58:48 UTC from IEEE Xplore. Restrictions apply.



Table 1. Verification Results for Pipelined Circuits (Property 1)

L D . Average Verification
Beg;;iﬁ;iks Gates # | Flip-Flops # Verification Time [secs] Time per Flip-Flop [secs]
Non-Trojan Trojan Non Trojan Trojan
Flip-Flops Flip-Flops Flip-Flops Flip-Flops
mul-4-p-T1 135 53 0.42 6.63 0.01 0.60
mul-8-p-T1 451 163 1.53 23.58 0.01 2.14
mul-16-p-T1 1,639 556 5.45 82.86 0.01 7.53
mul-20-p-T1 2,664 859 16.96 139.93 0.02 12.72
mul-24-p-T1 3,855 1,226 36.45 199.25 0.03 18.11
mul-28-p-T1 5,271 1,583 78.60 280.10 0.05 25.46
mul-32-p-T1 12,751 1,952 135.87 396.13 0.07 36.01
i85-c432-p-T1 223 152 1.41 7.48 0.01 0.68
i85-c1355-p-T1 609 155 1.44 20.03 0.01 1.82
i85-c1908-p-T1 943 201 3.84 41.83 0.02 3.80
i85-¢2670-p-T1 1,256 559 16.44 106.81 0.03 9.71
mul-4-p-T2 147 56 0.16 8.73 0.01 0.62
mul-8-p-T2 463 166 1.56 30.70 0.01 2.19
mul-16-p-T2 1,641 559 5.46 106.27 0.01 7.59
mul-20-p-T2 2,675 862 17.00 179.52 0.02 12.82
mul-24-p-T2 3,867 1,229 48.82 256.64 0.04 18.33
mul-28-p-T2 5,283 1,586 78.73 359.11 0.05 25.65
mul-32-p-T2 12,763 1,955 155.30 510.90 0.08 36.49
i85-c432-p-T2 235 155 1.43 10.25 0.01 0.73
i85-c1355-p-12 621 158 1.47 26.65 0.01 1.90
i85-c1908-p-T2 955 204 5.71 54.90 0.03 3.92
i85-c2670-p-T2 1,268 562 21.95 136.40 0.04 9.74

Table 2. Verification Results for Pipelined Processor Circuits (Property 2)

e . Average Verification
BE;(;TE;;(;L . Gates # | Flip-Flops # Non—P;(i;g;iIgrll(r)rrl)zr#Vmble Verification Time [secs] Time per Flip-Flop [secs]
Non-Trojan Trojan Non Trojan Trojan
Flip-Flops Flip-Flops Flip-Flops Flip-Flops
m-16-bit-T1 2,961 1,256 370 3.60 43.14 0.01 3.92
m-32-bit-T1 10,171 2,840 640 12.60 176.22 0.02 14.71
m-64-bit-T1 36,122 7,576 1,120 44.39 860.79 0.04 78.25
m-128-bit-T1 135,773 23,192 2,080 206.94 14,424 .21 0.10 1311.29
r-v-32-bit-T1 10,284 2,840 640 18.88 215.75 0.03 19.61
r-v-64-bit-T1 36,236 7,576 1,120 77.67 1,102.86 0.07 100.26
r-v-128-bit-T1 | 135,886 23,192 2,080 269.00 15,511.76 0.13 1410.16
m-16-bit-T2 2,973 1,259 373 3.63 57.03 0.01 4.07
m-32-bit-T2 10,183 2,843 643 18.94 213.40 0.03 15.24
m-64-bit-T2 36,134 7,579 1,123 55.49 1,186.08 0.05 84.72
m-128-bit-T2 135,785 23,195 2,083 248.28 19,892.61 0.12 1420.90
r-v-32-bit-T2 10,296 2,843 643 25.16 333.65 0.04 23.83
r-v-64-bit-T2 36,248 7,579 1,123 99.84 1,735.20 0.09 123.94
r-v-128-bit-T2 | 135,898 23,195 2,083 310.35 26,210.26 0.15 1872.16

In Property 2, fi is the flip-flop that is being checked to
see if it is a Trojan. Constraint 1 corresponds to a step of
the processor circuit with fi set to 0. Let wq correspond to
the initial state with fp=0 and let vy be the state obtained
by stepping the processor from wg. All other flip-flops and
state (program counter, register file, and memory) in wy are
unconstrained. Therefore, the property will be verified for all
possible values of the other flip-flops and state. Constraint
2 corresponds to applying n flushing steps to vg. Let vg
correspond to the resulting flushed state. Constraint 3 is similar
to constraint 1, except that fj set to 1 instead of 0. Let w;
correspond to the initial state with fp=1 and let v; be the
state obtained by stepping the processor from w;. Constraint
4 is similar to constraint 2 in that it corresponds to applying
n flushing steps to v;. Let v{ correspond to the resulting
flushed state. Property 2 checks if the programmer visible
components in vg and v{ are equal. Since in both wy and w1,
all other state elements were unconstrained, if Property 2 is
satisfied, this implies that fj has no impact on the programmer

visible components for any state of the processor and can
therefore be classified as a Trojan flip-flop. The flushing steps
of constraints 2 and 4 ensure that if f;, does impact circuit
functionality, the impact will be propagated to the programmer
visible components. The above property should be checked
for every flip-flop in the circuit that is not a programmer
visible component. Since programmer visible components are
essential to the circuit functionality, if they are infected, this
will distort circuit behavior and be flagged during testing and
verification for functional correctness.

VI. EXPERIMENTAL RESULTS

Table 1 and Table 2 show verification results for the
benchmarks by employing Properties 1 and 2, respectively.
The tables also give the complexity of the benchmark circuits
to be evaluated, in terms of the total gate and flip-flop count.
The properties were checked using version 4.3.2 of the Z3
SMT solver [17]. The verification experiments were performed

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on September 06,2022 at 11:58:48 UTC from IEEE Xplore. Restrictions apply.



on an Intel(R) Core(TM) i7 - 8700 CPU @ 3.2 GHz with
32GB of RAM and 64-bit operating system.

In Table 1, mul-n-p-t are pipelined multipliers, where n is
the width of the multiplier and -p indicates that the circuit is
pipelined. Four ISCAS-85 circuits [18] are also used which are
labelled i85-c-p-t, where c is the ISCAS-85 circuit name. The
original ISCAS-85 benchmarks are not pipelined. Pipelined
versions (-p) of these benchmarks were created for evaluating
the efficacy of Property 1. The benchmarks are also marked
with T1 or T2 indicating which Trojan was injected into
the circuit. All the multipliers and ISCAS-85 benchmarks
are pipelined into four stages each. The benchmarks with
Trojan T1 had 3 Trojan flip-flops while the benchmarks with
Trojan T2 had 6 Trojan flip-flops. Also, an additional 8 Trojan
flip-flops were randomly embedded in the pipelined registers.
These additional Trojan flip-flops were not connected with the
host circuit. Property 1 was checked on all the flip-flops in the
circuit. All the 11 Trojan flip-flops satisfied the property, i.e.,
they had no impact on the circuit functionality, whereas all
non-trojan flip-flops did not satisfy the property and instead
resulted in a counterexample. Hence, Property 1 provided a
100% rate of detection for Trojan flip-flops and correctly
classified all flip-flops as either Trojan or non-trojan. Table
1 also shows the verification times for checking Property 1 on
Trojan and non-trojan flip-flops separately and also shows the
average time/flip-flop for Trojan and non-trojan flip-flops. As
can be seen from the table, the time for detecting Trojan flip-
flops is much higher than the time required for checking non-
trojan flip-flops. The reason for this discrepancy is that non-
trojan flip-flops lead to a counterexample, whereas detection
of trojan-flops requires showing that Property 1 is satisfied for
all possible input values and flip-flop values. Overall, this is a
benefit for large circuits, as the number of Trojan flip-flops will
be minuscule (if any) compared to the number of non-trojan
flip-flops and should lead to efficient detection times.

In Table 2, two types of processor benchmarks were used
(MIPS, indicated by m, and RISC-V indicated by r — v).
Both types of processor benchmarks implemented a 5-stage
pipeline. The data path width of the pipelined processor
circuits was varied from 16 to 128. Apart from the 3 Trojan
flip-flops in T1 and 6 Trojan flip-flops in T2, an additional
16 Trojan flip-flops were embedded in the pipelined registers
in each of the processor benchmarks. As shown in Table 2,
property 2 was checked on all the non-programmer visible
flip-flops i.e. any flip-flop which is not a part of the program
counter, register file, instruction memory, and data memory.
Property 2 also correctly classified all the Trojan and non-
trojan flip-flops in the processor benchmarks and provided a
100% rate of detection for Trojan flip-flops. For Property 2
as well, the verification time required to identify Trojan flip-
flops was much higher than what was required for non-trojan
flip-flops.

VII. CONCLUSION

Two properties are proposed to detect DoS Trojans in
pipelined circuits. Property 1 can be used for any com-

binational circuit that is pipelined, i.e., the assumption is
that the original circuit has no state. Property 2 can be
used for pipelined circuits, where the original circuit has a
state. Microprocessors are examples of such circuits, where
the programmer visible components are state components
inherent to the circuit. Property 2 was specifically designed
for microprocessor circuits and can be extended to other
pipelined circuits with the inherent state by treating these state
components similar to how the program counter was treated
in Property 2. The key takeaway with both properties is that
the time required to identify non-trojan flip-flops is minuscule
compared to that required for the detection of Trojan flip-flops
and this is a big benefit because a majority of the flip-flops
will be non-trojan. Abstractions are typically used to improve
the efficiency of verification. For future work, abstraction
techniques will be explored to significantly increase the size
of circuits that can be verified.

VIII. ACKNOWLEDGMENT

This paper is based upon work supported by the National
Science Foundation under Grant No. CNS-2117190.

REFERENCES

[1] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design Test of Computers, vol. 27, no. 1,
pp. 10-25, 2010.

[2] M. Xue, C. Gu, W. Liu, S. Yu, and M. O’Neill, “Ten years of hardware
trojans: a survey from the attacker’s perspective,” IET Computers &
Digital Techniques, vol. 14, no. 6, pp. 231-246, 2020.

[3] R. Elnaggar, K. Chakrabarty, and M. B. Tahoori, “Hardware trojan
detection using changepoint-based anomaly detection techniques,” /[EEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27,
no. 12, pp. 2706-2719, 2019.

[4] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in 2013 IEEE 31st Inter-
national Conference on Computer Design (ICCD), 2013, pp. 471-474.

[5] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware trojans and maliciously affected circuits,”
Journal of Hardware and Systems Security, vol. 1, no. 1, pp. 85-102,
2017.

[6] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in International Conference on Cryp-
tographic Hardware and Embedded Systems. Springer, 2013, pp. 197—
214.

[7]1 Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, “Silicon demonstration
of hardware trojan design and detection in wireless cryptographic ics,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 25, no. 4, pp. 1506-1519, 2017.

[8] Y. Shiyanovskii, F. Wolff, A. Rajendran, C. Papachristou, D. Weyer, and
W. Clay, “Process reliability based trojans through nbti and hci effects,”
in 2010 NASA/ESA Conference on Adaptive Hardware and Systems,
2010, pp. 215-222.

[9] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith,
“Overcoming an untrusted computing base: Detecting and removing ma-
licious hardware automatically,” in 2010 IEEE Symposium on Security
and Privacy, 2010, pp. 159-172.

[10] A. Waksman, M. Suozzo, and S. Sethumadhavan, “Fanci: identifica-
tion of stealthy malicious logic using boolean functional analysis,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 697-708.

[11] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “Veritrust: Verification
for hardware trust,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 7, pp. 1148-1161, 2015.

[12] C. Sturton, M. Hicks, D. Wagner, and S. T. King, “Defeating uci:
Building stealthy and malicious hardware,” in 2011 IEEE Symposium
on Security and Privacy, 2011, pp. 64-77.

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on September 06,2022 at 11:58:48 UTC from IEEE Xplore. Restrictions apply.



[13] J. Zhang, F. Yuan, and Q. Xu, “Detrust: Defeating hardware trust
verification with stealthy implicitly-triggered hardware trojans,” in Pro-
ceedings of the 2014 ACM SIGSAC conference on computer and
communications security, 2014, pp. 153-166.

[14] K. S. Kumar, R. Chanamala, S. R. Sahoo, and K. K. Mahapatra, “An
improved aes hardware trojan benchmark to validate trojan detection
schemes in an asic design flow,” in 2015 19th International Symposium
on VLSI Design and Test, 2015, pp. 1-6.

[15] N. Fern, I. San, and K.-T. T. Cheng, “Detecting hardware trojans in
unspecified functionality through solving satisfiability problems,” in
2017 22nd Asia and South Pacific Design Automation Conference (ASP-
DAC), 2017, pp. 598-504.

[16] J. R. Burch and D. L. Dill, “Automatic verification of pipelined mi-
croprocessor control,” in International Conference on Computer Aided
Verification. ~ Springer, 1994, pp. 68-80.

[17] L. De Moura and N. Bjgrner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337-340.

[18] M. Hansen, H. Yalcin, and J. Hayes, “Unveiling the iscas-85 bench-
marks: a case study in reverse engineering,” IEEE Design Test of
Computers, vol. 16, no. 3, pp. 72-80, 1999.

Authorized licensed use limited to: NORTH DAKOTA STATE UNIV. Downloaded on September 06,2022 at 11:58:48 UTC from IEEE Xplore. Restrictions apply.



