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Abstract—We consider the task of communicating a generic
bivariate function of two classical correlated sources over a
Classical-Quantum Multiple Access Channel (CQ-MAC). The
two sources are observed at the encoders of the CQ-MAC, and
the decoder aims at reconstructing a bivariate function from the
received quantum state. We first propose a coding scheme based
on asymptotically good algebraic structured codes, in particular,
nested coset codes, and provide a set of sufficient conditions for
the reconstruction of the function of the sources over a CQ-
MAC. The proposed technique enables the decoder to recover
the desired function without recovering the sources themselves.
We further improve this by employing a coding scheme based
on a classical superposition of algebraic structured codes and
unstructured codes. This coding scheme allows exploiting the
symmetric structure common amongst the sources and also
leverage the asymmetries. We derive a new set of sufficient
conditions that strictly enlarges the largest known set of sources
whose function can be reconstructed over any given CQ-MAC,
and identify examples demonstrating the same. We provide
these conditions in terms of single-letter quantum information-
theoretic quantities.

I. INTRODUCTION

Early research in quantum state discrimination led to the
investigation of the information carrying capacity of quantum
states. Suppose Alice - a sender - can prepare any one of the
states in the collection {ρx ∈ D(HZ) : x ∈ X}, and Bob -
the receiver - has to rely on a measurement to infer the label
x of the state, then what is the largest sub-collection C ⊆ X
of states that Bob can distinguish perfectly? Here HZ is the
Hilbert state of the quantum system, and D(HZ) denotes the
set of density operators acting on HZ . Studying this ques-
tion in a Shannon-theoretic sense, Schumacher, Westmoreland
[1] and Holevo [2] characterized the exponential growth of
this sub-collection, thereby characterizing the capacity of a
classical-quantum (CQ) point-to-point (P2P) channel. In the
following years, generalizations of this question with multiple
senders and/or receivers have been studied with an aim of
characterizing the corresponding information carrying capacity
of quantum states in network scenarios [3].

In this work, we consider the problem of computing func-
tions of information sources over a CQ multiple access channel
(MAC). Let (ρx1x2 ∈ D(HZ) : (x1, x2) ∈ X1 × X2) model
a CQ-MAC. Sender j - the party having access to the choice
of label xj ∈ Xj - observes a classical information stream
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Fig. 1. A schematic of the problem of computing a function f of classical
correlated sources with joint distribution WS1S2 over a CQ-MAC N .

Sjt ∈ Sj : t ≥ 1. The pairs (S1t, S2t) : t ≥ 1 are
independent and identically distributed (IID) with a single-
letter joint distribution WS1S2

. The receiver, who is provided
with the prepared quantum state, intends to reconstruct a
specific function f(S1, S2) of the information observed by
the senders. The question of interest is under what conditions,
specified in terms of the CQ-MAC, the source WS1S2 and the
function f , can the receiver reconstruct the desired function
losslessly?

The conventional approach to characterizing sufficient con-
ditions for this problem relies on enabling the receiver recon-
struct the pair of classical source sequences. Since the receiver
is only interested in recovering the bivariate function f , and
not the pair, this approach can be strictly sub-optimal. Can
we exploit this and design a more efficient communication
strategy, thereby weakening the set of sufficient conditions?
In this work, we present one such communication strategy
for a general CQ-MAC that is more efficient than the conven-
tional approach. This strategy is based on asymptotically good
random nested coset codes. We analyze its performance and
derive new sufficient conditions for a general problem instance
and identify examples for which the derived conditions are
strictly weaker.

Our findings here are built on the ideas developed in the
classical setting. Focusing on a source coding formulation,
i.e. a noiseless MAC, Körner and Marton [4] devised a
coding technique that enabled the receiver recover the sum
of the sources without recovering either source. In [5], the
linearity of the Körner-Marton (KM) source coding map was
further exploited to enable the receiver recover the sum of
the sources using only the sum of the KM indices, not even
requiring the pair. Leveraging this observation and focusing
on the subclass of additive MACs, specific MAC channel
coding techniques are devised in [5] that enabled the receiver
recover the sum of two channel coding message indices. The
authors in [6] addressed this CQ-MAC problem where the
sources are computed directly without the need for the explicit
reconstruction of the individual sources, while restricting their
attention to uniform input distributions.

The techniques of [4]–[6] are instances of a broader frame-
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work of coding strategies based on using random linear
codes. Decoding functions of sources or channel inputs ef-
ficiently require codes endowed with algebraic closure prop-
erties. To emphasize, the conventional approach of deriving
inner bounds/achievable rate region by analyzing expected
performance of IID random codes is incapable of yielding
performance limits - capacity or rate-distortion regions as the
case may be in network communication scenarios. To improve
upon this, it is necessary to analyze the expected performance
of random codes endowed with algebraic closure properties.
In a series of works [7], an information-theoretic study of the
latter codes has been carried out yielding new inner bounds
for multiple network communication scenarios.

A careful observation of the above idea reveals that two
MAC channel codes employed by the encoders do not ‘blow
up’ when added, is crucial to the efficiency of the above
scheme. A linear code being algebraically closed enables
this. However, the codewords of a random linear code are
uniformly distributed and cannot achieve the capacity of an
arbitrary classical P2P channel, let alone a CQ-P2P channel.
We are therefore forced to enlarge a linear code to identify
sufficiently many codewords of the desired empirical single-
letter distribution. We are thus led to a nested coset code
(NCC) [8].

In this work, we embark on developing these ideas in the
CQ setup. After having provided the problem statement in
Sec. II, we focus on a simplified CQ-MAC and illustrate the
core idea of our coding scheme. This relies on developing a
nested coset code (NCC) based communication scheme for a
CQ-P2P channel and analyzing its performance (Sec. III-A).
Leveraging this building block, we construct and analyze the
asymptotic performance of an NCC-based coding scheme for
computing sum over a general CQ-MAC (Sec. III-B), and
provide sufficient conditions based on single-letter quantum
information quantities (see Theorem 2). We also extend the
results to the case of a generic QQ-MAC (see Theorem 3 in
Sec. III-C).

As our next main contribution, we generalize the above
ideas for computing arbitrary functions over a general CQ-
MAC. It has been demonstrated in the classical multi-terminal
setting, the coding techniques relying on the algebraic structure
may show gains for only a certain class of problems and in
certain rate regimes [9]. Therefore, a unified technique that
captures the gains of both the traditional unstructured coding
techniques and the techniques based on algebraic structured
codes is needed to approach the performance limits for the
multi-terminal problems. Alhswede-Han [9] obtained the best
known inner bound for the problem of classical lossless
distributed compression by combining the Slepian-Wolf [10]
coding scheme with the coding scheme of Körner-Marton [4]
based on algebraic structured codes.

Motivated by this, we provide a unified approach for the
problem of computing a bivariate function of two sources
over CQ-MAC, capitalizing on the gains of the algebraic
structured techniques developed in [11], while making the
most of the standard approach based on unstructured codes
developed for this problem [3]. We propose an approach where
each transmitter intends to send two pieces of information

about its corresponding source to the receiver. The first piece
of information from both the sources needs to be recon-
structed individually at the receiver. Then, conditioned on this
reconstruction, we let the receiver reconstruct the necessary
function f of the second piece. At ith transmitter, the two
pieces are constructed on auxiliary variables Ui and Vi, and
then fused to form the channel input Xi. We construct a
4−input CQ-MAC to model this transmission. This poses a
challenge concerning the number of messages being decoded.
The decoder aims at decoding the triple (U1, U2, V1 ⊕q V2),
where ⊕q represents addition with respect to a prime finite
field Fq . For this, the decoder needs a CQ simultaneous
decoding technique. The ideas of joint typicality using tilting,
smoothing, and augmentation introduced by Sen [12], [13]
solved the problem of simultaneous decoding of individual
messages on CQ-MAC, however, it is based on unstructured
coding techniques. We develop a unified coding framework
that combines unstructured and structured coding techniques
while using this jointly typicality approach that enables the
decoder to reconstruct (U1, U2, V1 ⊕q V2) simultaneously.

In light of this, the main contribution of the current
work is in providing a new set of sufficient conditions (see
Theorems 4 and 5 in Sec. III-D), while strictly subsuming
the current known conditions, for the reconstruction of an
arbitrary function of sources over a generic CQ-MAC. We
provide these conditions in terms of single-letter quantum
information quantities. Furthermore, we identify examples (see
Section III-E) where the gains provided by this framework
are demonstrated. We also discuss the potential applications
of computation over a CQ-MAC in Section III-F. This work
opens up the opportunity to investigate a generic approach
encompassing both the conventional and algebraic structured
techniques for other multi-terminal problems in the classical-
quantum regime [14]–[16].

II. PRELIMINARIES AND PROBLEM STATEMENT

We supplement the notation in [17] with the following. For
a positive integer n, [n] =∆ {1, · · · , n}. For a Hilbert space
H, the spaces L(H),P(H) and D(H) denote the collection of
linear, positive and density operators acting on H, respectively.
The von Neumann entropy of a density operator ρ ∈ D(H)
is denoted by S(ρ). Given any ensemble {pi, ρi}i∈[1,m], the
Holevo information [18] is denoted as χ

(
{pi; ρi}

)
. A POVM

acting on H is a collection λ =∆ {λx}x∈X of positive operators
that form a resolution of the identity:

∑
x∈X λx = I , where X

is a finite set. We employ an underline notation to aggregate
objects of similar type. For example, s denotes (s1, s2), xn

denotes (xn
1 , x

n
2 ), S denotes the Cartesian product S1×S2. Let

Fq denote a prime finite field of size q and ⊕ the corresponding
addition operation.

Consider a (generic) CQ-MAC N2 specified through (i)
finite sets Xj : j ∈ [2], (ii) Hilbert space HZ , and (iii) a
collection of density operator (ρx1,x2

∈ D(HZ) : (x1, x2) ∈
X1 × X2). This CQ-MAC is employed to enable the receiver
reconstruct a bivariate function of the classical information
streams observed by the senders. Let S1,S2 be finite sets and
(S1, S2) ∈ S1×S2 distributed with PMF WS1S2 , which mod-
els the pair of information sources observed at the encoders.
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Specifically, sender j observes the sequence Sjt ∈ Sj : t ≥ 1,
and the sequence (S1t, S2t) : t ≥ 1 are IID with single-
letter PMF WS1S2 . The receiver aims to recover the sequence
f(S1t, S2t) : t ≥ 1 losslessly, where f : S1 × S2 → R is a
specified function.

Definition 1. A CQ-MAC code cf = (n, e1, e2,λ) of block-
length n for recovering f consists of two encoding maps ej :
Sn
j → Xn

j : j ∈ [2], and a POVM λ = {λrn ∈ P(HZ) : r
n ∈

Rn}. The average error probability of cf for N2 is

ξ(cf ,N2) = 1−
∑

sn:f(sn)=rn

Wn
S1S2

(sn1 , s
n
2 ) Tr

(
λrnρ

⊗n
c,sn

)
,

where ρ⊗n
c,sn = ⊗n

i=1ρx1i(sn1 )x2i(sn2 )
, where ej(s

n
j ) =

(xj1(s
n
j ), xj2(s

n
j ), · · · , xjn(s

n
j )) for j ∈ [2].

Definition 2. A function f of the sources WS1S2 is
said to be reconstructible over a CQ-MAC N2 if for all
ϵ > 0, ∃ a sequence c

(n)
f = (n, e

(n)
1 , e

(n)
2 ,λ) such that

limn→∞ ξ(c
(n)
f ,N2) = 0. Restricting f to a sum, we say that

the sum of sources WS1S2
over field Fq is reconstructible over

a CQ-MAC if S1 = S2 = Fq and the function f(S1, S2) =
S1 ⊕ S2 is reconstructible over the CQ-MAC.

We review the performance limit achievable using unstruc-
tured code ensembles in the following.

Proposition 1. A function f of the sources WS1S2
is recon-

structible over a CQ-MAC N2 if

H(S1, S2) < max
pX1

pX2

I(X1X2;Z)σ, (1)

where the mutual information is defined for the following
classical-quantum state

σ =∆
∑
x1x2

pX1(x1)pX2(x2)ρx1x2 ⊗ |x1⟩⟨x1| ⊗ |x2⟩⟨x2| .

Proof. The technique involves using the Slepian-Wolf [10]
source coding to compress the source to H(S1, S2) bits, and
followed by the Winter’s channel coding over the CQ-MAC
N2 [3].

The objective of our work is to characterize improved
sufficient conditions under which a generic bivariate function
of the sources is reconstructible over a CQ-MAC N2 by
developing a structured coding framework for this problem.

III. MAIN RESULTS

A. Nested Coset Codes Achieve Capacity of CQ-P2P

We begin by formalizing the notion of a CQ-P2P codes
for communicating uniform messages. In the results presented
below, we characterize the asymptotic performance of NCCs
and demonstrate that it achieves the capacity of a CQ-P2P
channel.

Definition 3. A CQ-P2P code cm = (n, I, e,λ) for a CQ-
P2P N : (ρx ∈ D(HZ) : x ∈ X ) consists of (i) an index set
I, (ii) an encoding map e : I → Xn, and (iii) a decoding
POVM λ = {λm ∈ P(H⊗n

Z ) : m ∈ I}. For m ∈ I, we
let ρ⊗n

c,m =∆ ⊗n
i=1ρxi

where e(m) = (x1(m), · · · , xn(m)). The

rate of the code is 1
n log |I|, and the average probability of

error is

ξ̄(c,N ) = 1− |I|−1
∑
m∈I

Tr
(
λmρ⊗n

c,m

)
.

Definition 4. An (n, k, l, gI , gO/I , b
n, ẽ) NCC built over a

finite field Fq comprises of (i) generator matrices gI ∈ Fk×n
q ,

gO/I ∈ Fl×n
q (ii) a bias vector bn, and (iii) an encoding

map ẽ : Fl
q → Fk

q . We let vn(a,m) = agI ⊕ mgO/I ⊕
bn for (a,m) ∈ Fk

q × Fl
q denote elements in the coset of the

range space of the generator matrix [gTI gTO/I ]
T .

Remark 1. Note that in an NCC, the denser (outer) code
is generated by the matrix [gTI gTO/I ]

T , whereas the sparser
(inner) code is generated by the matrix gI . Both codes are
shifted by a common bias vector. Although this is a packing
problem (over the denser code), we additionally perform cov-
ering over the sparser code. This additional layer of covering
is needed because we generate all codewords not from an
arbitrary non-uniform distribution, but from a random coset
code that induces a uniform single-letter distribution on the
alphabet Fq .

Definition 5. A CQ-P2P code (n, I, e,λ) is said to be based
on NCC if there exists an (n, k, gI , gO/I , b

n, ẽ) NCC such that
I = Fl

q , and e(m) = gn(vn(ẽ(m),m)), for some mapping
g : Fq → X .

Theorem 1. Given a CQ-P2P N : (ρx ∈ D(HZ) : x ∈ X ), a
PMF pV X on Fq × X , and an ϵ > 0, there exists a CQ-P2P
code c = (n,Fl

q, e,λ) based on NCC such that

(i) ξ̄(c,N ) ≤ ϵ, (ii)
k

n
log2 q > log2 q −H(V ) and

(k + l)

n
log2 q < log2 q −H(V ) + I(V ;Z)σ,

for all sufficiently large n, where the classical-quantum state
σ is given as

σ =∆
∑
v∈Fq

∑
x∈X

pV X(v, x) |v⟩⟨v| ⊗ ρx.

Thus the rate of the code satisfies: l
n log q < I(V ;Z)σ .

Proof. The proof is provided in Section V.

Remark 2. We interpret the above result as follows. To
achieve the capacity, we need an NCC where the rate of the
sparser (covering) code is approximately equal to log2 q −
H(V ) (from above), which is the relative entropy between the
uniform distribution and pV . The rate of the denser (packing)
code is approximately equal to log2 q−H(V )+I(V ;Z)σ (from
below), which is the capacity with the additional covering cost.

B. Decoding the Sum over CQ-MAC N2

As a pedagogical step, our next result is regarding the setup
where a centralized receiver of an arbitrary CQ-MAC N2

intends to reconstruct the sum f(S1, S2) = S1 ⊕ S2 of the
sources, where S =∆ S1 = S2 = Fq . Toward this, we begin
with the following definition.
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Definition 6. Let Fq be a finite field and (ρx1x2
∈ D(HZ) :

(x1, x2) ∈ X1 × X2) be a CQ-MAC N2. A CQ-MAC code
cm⊕ = (n,Fl

q, e1, e2,λ) of block-length n for recovering
Fq−sum of messages consists of two encoders maps ej : Fl

q →
Xn

j : j ∈ [2], and a POVM λ = {λm ∈ P(H⊗n
Z ) : m ∈ Fl

q}.

An Fq−message-sum rate R > 0 is achievable if
given any sequence l(n) ∈ N, for n ∈ N, such that
lim supn→∞

l(n) log q
n < R, any sequence p

(n)
M1M2

of PMFs
on Fl(n)

q × Fl(n)
q , there exists a CQ-MAC code c

(n)
m⊕ =

(n,Fl(n)
q , e

(n)
1 , e

(n)
2 ,λ) of block-length n for recovering

Fq−sum of messages such that

lim
n→∞

ξ(c
(n)
m⊕,N2) =

∆

lim
n→∞

1−
∑

(m1,m2)∈Fl
q×Fl

q

p
(n)
M1M2

(m1,m2) Tr
(
λm1⊕m2

ρ⊗n
c,m

)
= 0,

where ρ⊗n
c,m =∆ ⊗n

i=1ρx1i(m1)x2i(m2) and ej(mj) =
(xj1(mj), xj2(mj), · · · , xjn(mj)) for j ∈ [2]. The closure
of the set of all achievable Fq−message-sum rates is the
message-sum capacity of N2.

We now provide a lower bound on the message-sum ca-
pacity of a CQ-MAC. Following this, we leverage the above
argument in Theorem 2 to characterize sufficient conditions
for reconstructing sum of sources over an arbitrary CQ-MAC.

Definition 7. Given a CQ-MAC N2 and a prime q, let
P(N2, q) be defined as collection of PMFspV1V2X1X2

:
V = Fq,

pV1V2X1X2
is a PMF on V × X1 × V × X2,

(V1, X1) is independent of (V2, X2)

 .

Let,

R(N2, q) =
∆

sup
pV1X1V2X2

∈P(N2,q)

[I(V ;Z)σ −max{I(V1;V ), I(V2;V )}] ,

where V = V1 ⊕ V2, and the classical-quantum state σ is
given as

σ =∆
∑
v∈Fq

∑
v1∈Fq

v2∈Fq

∑
x1∈X1,
x2∈X2

pV1X1
(v1, x1)pV2X2

(v2, x2)

× 1{v1⊕v2=v}ρx1x2
⊗ |v⟩⟨v| .

Using the above definitions, we provide the following propo-
sition.

Proposition 2. Fq−message-sum rate R(N2, q) is achievable
over any CQ-MAC N2.

Proof. The proof is provided in Section VI-A.

We now state the main contribution of this subsection.

Theorem 2. The sum of a pair of sources distributed with
PMF WS1S2 can be reconstructed on a CQ-MAC N2 if
H(S1 ⊕ S2) < R(N2, q).

Proof. The proof is provided in Section VI-B.

Remark 3. R(N2, q) is the maximum achievable rate of the
messages whose sum can be computed reliably at the receiver
of the CQ-MAC. H(S1 ⊕ S2) is the rate needed to compress
the sources distributively such that their sum can be computed
reliably. The term given by max{I(V1;V ), I(V2;V )} can
be interpreted as the overall informational cost of having
non-uniform input distributions pV1

and pV2
. If V1 and V2

are uniform, then V becomes independent of V1 and V2

individually, and thus this term becomes zero.

Remark 4. For the special case where the density operators
{ρx1,x2} commute, we see that the quantum mutual infor-
mation (which equals the Holevo information in the present
CQ case) reduces to a classical mutual information as given
below: I(V ;Z)σ = I(V ;Z), where I(V ;Z) is computed with
the following classical PMF

pV1X1
pV2X2

λZ|X1X2
,

and λZ|X1X2
(·|x1, x2) are the eigenvalues of ρx1,x2

. In this
case, the asymptotic sufficient condition of the above theorem
reduces to that of the classical case as given in [8].

C. Decoding the sum of classical sources over a Quantum-to-
Quantum (QQ) MAC M2

Our next result is regarding a QQ-MAC setup for trans-
mitting classical messages that is composed of a completely-
positive trace preserving (CPTP) map M2. Consider a
(generic) QQ-MAC specified through (i) Hilbert spaces HX1

,
HX2

, and HZ and (ii) a CPTP map M2 : D(HX1
) ⊗

D(HX2) → D(HZ). In this setting, the centralized receiver
of an arbitrary QQ-MAC M2 intends to reconstruct the sum
f(S1, S2) = S1⊕S2 of the classical correlated sources, where
S =∆ S1 = S2 = Fq . Toward this, we begin with the following
definition.

Fig. 2. A schematic of the problem of computing the sum of classical
correlated sources with joint distribution WS1S2 over a QQ-MAC M2.

Definition 8. Let Fq be a finite field and M2 : D(HX1) ⊗
D(HX2

) → D(HZ) be a CPTP map. A QQ-MAC code
cm⊕ = (n,Fl

q, e1, e2,λ) of block-length n for recovering
Fq−sum of messages consists of two encoder maps ej :
Fl
q → D(H⊗n

Xj
) : j ∈ [2], and a POVM λ = {λm ∈

P(H⊗n
Z ) : m ∈ Fl

q}. An Fq−message-sum rate R > 0
is achievable if given any sequence l(n) ∈ N, for n ∈ N,
such that lim supn→∞

l(n) log q
n < R, any sequence p

(n)
M1M2

of PMFs on Fl(n)
q × Fl(n)

q , there exists a QQ-MAC code
c
(n)
m⊕ = (n,Fl(n)

q , e
(n)
1 , e

(n)
2 ,λ) of block-length n for recov-

ering Fq−sum of messages such that

lim
n→∞

ξ(c
(n)
m⊕,M2) =

∆ lim
n→∞

1−
∑

(m1,m2)∈Fl
q×Fl

q

p
(n)
M1M2

(m1,m2)
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× Tr
(
λm1⊕m2

M⊗n
2 (ρm1

⊗ρm2
)
)
= 0,

where ρmj
= ej(mj) : j ∈ [2]. The closure of the set

of all achievable Fq−message-sum rates is the message-sum
capacity of M2.

We now provide a lower bound on the message-sum ca-
pacity of a QQ-MAC. Following this, we leverage the above
argument in Theorem 3 to characterize sufficient conditions
for reconstructing sum of sources over an arbitrary QQ-MAC.

Definition 9. Given a QQ-MAC M2 and a prime q, let,

RQ(M2, q) =∆ sup
NX1

2 ,NX2
2

R(M2(NX1
2 ⊗NX2

2 ), q),

where the supremum is over all CQ-P2P channels NXi
2 =

(ρXi
xi

∈ D(HXi
) : xi ∈ Xi) for i ∈ [2], Xi are finite sets,

M2(NX1
2 ⊗ NX2

2 ) denotes the induced CQ-MAC obtained
by concatenating CQ-P2Ps (NX1

2 ,NX2
2 ) and QQ-MAC M2,

and R(M2(·), ·) follows from Definition 7. Note that the input
alphabets of the induced CQ-MAC are X1 and X2.

Using the above definitions, we provide the following
proposition.

Proposition 3. Fq−message-sum rate RQ(M2, q) is achiev-
able over any QQ-MAC M2.

Proof. The proof follows the same arguments as those given
in the proof of Proposition 2.

We now state the main contribution of this subsection.

Theorem 3. The sum of a pair of sources distributed with
PMF WS1S2

can be reconstructed on a QQ-MAC M2 if
H(S1 ⊕ S2) < RQ(M2, q).

Proof. The proof follows the same arguments as those given
in the proof of Theorem 2.

D. Decoding arbitrary functions over CQ-MAC

To address this problem, as a building block, we consider
the problem of 4-to-3 decoding over a 4-user CQ-MAC, where
the receiver aims to compute the sum of messages of user
1 and 2, and the individual messages of users 3 and 4. We
obtain a characterization of asymptotic performance limits for
this problem. Based on the result we obtain for this problem,
and using the result of Ahlswede and Han [9], we derive
sufficient conditions for reconstructing arbitrary function of
sources over a 2 user CQ-MAC. The former problem may
also be of independent interest.

Consider a (generic) 4-user CQ-MAC N4, which is specified
through (i) finite (input) sets Vj : j ∈ [2] and Uj : j ∈ [2], (ii)
a (output) Hilbert space HZ , and (iii) a collection of density
operators (ρv1v2u1u2

∈ D(HZ) : (v1, v2, u1, u2) ∈ V1 × V2 ×
U1 × U2).

Definition 10. A code c = (n,Fq, eVj
: j ∈ [2], eUj

: j ∈
[2],λ) of block-length n, for 4-to-3 decoding over CQ-MAC
N4 consists of four encoding maps eVj : Fl

q → Vn
j : j ∈ [2],

eUj
: [qlj ] → Un

j : j ∈ [2], and a POVM λ = {λm⊕,m3,m4
∈

P(HZ) : (m⊕,m3,m4) ∈ Fl
q × [ql1 ] × [ql2 ]}, where m⊕ =∆

m1 ⊕m2, l, l1 and l2 are positive integers, and q is a prime
number.

Definition 11. Given a CQ-MAC N4, and a prime q, a
rate triple (R,R1, R2) > 0 is said to be achievable for 4-
to-3 decoding over the CQ-MAC if given any sequence of
triples (l(n), l1(n), l2(n)), such that lim supn→∞

l(n)
n log q <

R, lim supn→∞
li(n)
n log q < Ri : i ∈ [2], and any sequence

p
(n)
M1M2M3M4

of PMFs on Fl
q × Fl

q × [ql1 ]× [ql2 ], there exists
a code c(n) = (n,Fq, eVj : j ∈ [2], eUj : j ∈ [2],λ) for 4-to-3
decoding over CQ-MAC N4 of block-length n such that

lim sup
n→∞

ξ̄(c(n),N4) =
∆

lim sup
n→∞

1−
∑
m

pM (m) Tr
(
λm⊕,m3,m4

ρ⊗n
m

)
= 0,

where ρ⊗n
m =∆ ρvn

1 (m1)vn
2 (m2)un

1 (m3)un
2 (m4) =

⊗n
i=1ρv1i(m1)v2i(m2)u1i(m3)u2i(m4) (assuming n-independent

uses of N4). The union of the set of all achievable rate triples
(R,R1, R2) is the capacity region of the 4-to-3 decoding
over CQ-MAC N4 and prime number q.

Definition 12. Given a CQ-MAC N4 and a prime q, let
P(N4, q) be defined as collection of PMF {pV U : pV U =
pV1

pV2
pU1

pU2
is a PMF on V × U}. For pV U ∈ P(N4, q),

let R(pV U ,N4, q) be the set of rate triples (R,R1, R2) such
that the following inequalities holds:

R ≤ I(V ;Z|U1, U2)σ − Imax(V1, V2, V )σ,

R1 ≤ I(U1;Z|V,U2)σ,

R2 ≤ I(U2;Z|V,U1)σ,

R+R1 ≤ I(V,U1;Z|U2)σ − Imax(V1, V2, V )σ,

R+R2 ≤ I(V,U2;Z|U1)σ − Imax(V1, V2, V )σ,

R1 +R2 ≤ I(U1, U2;Z|V )σ

R+R1 +R2 ≤ I(V,U1, U2;Z)σ − Imax(V1, V2, V )σ,

where Imax(V1, V2, V )σ = max{I(V1;V ), I(V2;V )}, V =
V1⊕V2, and the mutual information quantities are taken with
respect to the classical-quantum state

σ =∆
∑
v,u,v

pV U (v, u)1{v=v1⊕v2}|v⟩⟨v|V⊗|v1⟩⟨v1|V1
⊗|v2⟩⟨v2|V2

⊗ |u1⟩⟨u1|U1
⊗ |u2⟩⟨u2|U2

⊗ ρvu.

Let

R(N4, q) =
∆ c.c.

⋃
pV U∈P(N4,q)

R(pV U ,N4, q),

where c.c stands for convex closure.

Theorem 4. The rate triples (R,R1, R2) ∈ R(N4, q) are
achievable for 4-to-3 decoding over a CQ-MAC N4 and prime
q.

Proof. The proof is provided in Section VII-A.

Remark 5. As in Theorem 2, if the density operators asso-
ciated with the channel commute, then the quantum mutual
information quantities reduce to the classical counterparts.
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Here we provide our main result characterizing the suffi-
cient conditions on the sources, for any reconstruction of the
bivariate function f at the decoder of the given CQ-MAC N2.
Before we proceed, we provide the following definition for
embedding a function into a finite field.

Definition 13. A function f : S → R of sources WS1S2

is said to be embeddable in a finite field Fq if there exists
(i) a pair of functions hj : Sj → Fq for j ∈ [2], and
(ii) a function g : Fq → R, such that WS1S2

(f(S1, S2) =
g(h1(S1)⊕ h2(S2))) = 1.

Remark 6. Note that for any given function f , the set of prime
q for which f is embeddable with respect to Fq is always non-
empty. To see this, take q > |S1||S2|, and let h1 be any one-
to-one mapping from |S1| to {0, 1, ..., |S1|− 1}, and let h2 be
any one-to-one from |S2| to {0, |S1|, 2|S1|, ..., |S1|(|S2|−1)}.
Then, h1(·) ⊕ h2(·) is a one-to-one map from |S1| × |S2| to
Fq (see [7, Def. 3.7]). For example, the nonlinear logical OR
(∨) function of binary sources with S1 = S2 = {0, 1} can be
embedded in F3, by noting that S1∨S2 = g(h1(S1)⊕3h2(S2)),
where g is given by g : 0 7→ 0, 1 7→ 1, and 2 7→ 1, and his
are identity maps.

Definition 14. Given the source (S1,S2,WS1S2 , f), consider
a prime q such that f is embeddable (according to Definition
13) in Fq . Let P be the set of PMFs pQW1W2|S1S2

defined on
Q×W1 ×W2 such that (a) Q and (S1, S2) are independent,
(b) W1 − S1Q − S2Q − W2 forms a Markov chain, and (c)
Q,W1,W2 are finite sets. For pQW1W2|S1S2

∈ P , let us define,

RS(pQW1W2|S1S2
, q) =∆

{
(R,R1, R2) : R ≥ H(S|W1W2Q),

R1 ≥ I(S1;W1|QW2),

R2 ≥ I(S2;W2|QW1),

R1 +R2 ≥ I(S1S2;W1W2|Q)
}
,

where S = h1(S1)⊕ h2(S2). Define

Rs(WS1S2
, f, q) =∆ c.c.

⋃
p∈P

RS(p, q).

Definition 15. Given a CQ-MAC N2, and prime q, let P
be the set of PMFs pX1|U1V1

and pX2|U2V2
with the input

alphabets (U1,V1) and (U2,V2), and output alphabets X1 and
X2, respectively. Define,

RC(pX1|U1V1
, pX2|U2V2

, q) = R(N4, q),

where the corresponding 4-user CQ-MAC N4 is characterized
as:

ρvu =
∑
x1x2

pX1|U1V1
(x1|u1v1)pX2|U2V2

(x2|u2v2)ρx1x2
.

Define,

Rc(N2, q) =
∆ c.c

⋃{
pXj |UjVj

: j∈[2]
}
∈P

RC(pXj |UjVj
: j ∈ [2], q).

Theorem 5. If Rs(WS1S2
, f, q) ⊂ Rc(N2, q) for some prime

q, then the bivariate function f of the sources WS1S2
is

reconstructible over the CQ-MAC N2.

Proof. The proof is provided in Section VII-B.
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Fig. 3. (Left) A depiction of the set of all pairs (p, η) achievable using the
technique of coset codes (Theorem 2) for Example 1. (Right) A depiction
of the set of all pairs (p, η) achievable using the technique of coset codes
(Theorem 2) for Example 2. The functions in both examples 1 and 2 are not
reconstructible using unstructured codes (Proposition 1) for any pair (p, η).

E. Examples

In the following examples, for ease of exposition, we ex-
press the quantum mutual information in terms of the Holevo
information [17], [18].

Example 1. Let X1 = X2 = S1 = S2 = X = {0, 1}, HZ =
C2, and ρx1x2 = (1− η)σx + ησx̄, where x =∆ x1 ⊕2 x2 and
σ0, σ1 ∈ D(HZ) be arbitrary. Let ρ(η) =∆ (1 − η)σ0 + ησ1.
Consider correlated symmetric individually uniform sources
with WS1|S2

(1|0) = WS1|S2
(0|1) = p for p ∈ (0, 1). Let

f(S1, S2) = S1⊕2S2. Consider the sufficient conditions given
by the unstructured coding scheme as provided in Proposition
1.

H(S1, S2) < max
pX1X2

χ({pX1X2(x1, x2), ρx1,x2}),

with X1 and X2 being independent. Since,
χ({pX1X2(x1, x2), ρx1x2}) = χ({pX(x), ρx}) ≤ 1, ∀ η ∈
[0, 1], where X =∆ X1⊕2X2, and ρx =∆ ρx1x2 for any (x1, x2)
that satisfies x = x1 ⊕ x2, and H(S1, S2) = 1 + hb(p) ≥ 1,
the function f is never reconstructible using the unstructured
codes. Now consider the sufficient condition obtained using
the coset codes (Theorem 2), i.e. H(S1 ⊕ S2) < R(N2, q),
which can be simplified as

hb(p) <max
θ

[
hb(θ)− hb(2θ(1− θ)) + S(ρ(2θ(1− θ) ∗ η))

− [θ2 + (1− θ)2]S(ρ(η))− 2θ(1− θ)S(ρ(1− η))
]
.

Figure 3 (left) depicts all pairs (p, η) that satisfy the above
inequality for the following choice of σ0, σ1:

σ0 =∆
(

0.9545 0.0455i
−0.0455i 0.0455

)
, σ1 =∆

(
0.0455 0.0455i
−0.0455i 0.9545

)
(2)

Note that the above σ0 and σ1 do not commute.

Example 2. Let X1 = X2 = S1 = S2 = X = {0, 1},
HZ = C2, and ρx1x2

= (1 − η)σ(x1∨x2) + ησ(x̄1∧x̄2), where
σ0, σ1 ∈ D(HZ) be arbitrary. Let ρ(η) ≜ (1 − η)σ0 + ησ1.
Consider correlated symmetric individually uniform sources
with WS1|S2

(1|0) = WS1|S2
(0|1) = p for p ∈ (0, 1).

Let f(S1, S2) = S1 ∨ S2. Consider the sufficient condi-
tions given by the unstructured coding scheme: H(S1, S2) <
maxpX1X2

χ({pX1,X2(x1, x2), ρx1x2}), with X1 and X2 being
independent, This again implies that the f is not recon-
structible using the unstructured codes. We embed f in the
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ternary field. In other words, the encoders and decoder work
toward reconstructing S1⊕3S2. The sufficient condition given
by the algebraic coding scheme turns out to be

H(S1 ⊕3 S2) <

max
pX1

pX2

[
min{H(X1), H(X2)} −H(X) + χ({pX(x), ρx})

]
,

where X =∆ X1 ⊕3 X2 and ρx =∆∑
x1x2

pX1X2|X(x1, x2|x)ρx1x2
. This can be further simplified

as

(1− p) + hb(p) < max
θ1,θ2

[
min{hb(θ1), hb(θ2)}

− hb(θ1 + θ2−θ1θ2)

− (θ1 + θ2−θ1θ2)hb(θ1θ2/(θ1 + θ2−θ1θ2))

+ S(ρ((θ1 + θ2−θ1θ2) ∗ η))
− (1− θ1)(1− θ2)S(ρ(η))− [θ1 + θ2 − θ1θ2]S(ρ(1− η))

]
.

It can be shown that there exists p, η, σ0 and σ1 such that
the above condition is satisfied. For instance, Figure 3 (right)
depicts all the achievable pairs (p, η) for the σ0 and σ1 chosen
as in Example 1.

Finally, we provide the following example to compare the
sufficient conditions obtained in Theorem 2 and Theorem 5.

0 0.11 0.2 0.3 0.4 0.5

0

0.037

0.1

0.15

0.2

0.25

0.3

Fig. 4. The variation of the right hand side of (3), and its intersection with
H(S1⊕S2). This implies that the inequality in (3) is not satisfied for all η >
0.11, and hence the function f cannot be reconstructed using the approach
of Theorem 2.

Example 3. Let X1 = X2 = S1 = S2 = X = {0, 1}, HZ =
C2, and ρx1,x2 = (1 − η)σx + ησx̄, where x = x1 ⊕2 x2

and σ0, σ1 ∈ D(HZ) be as defined in (2). Furthermore, to
induce asymmetry in the rate region, we constrain one of the
inputs with a cost constraint: E(X1) ≤ c. We choose c = 0.1
for the illustration. Let S1 and S2 be two highly asymmetric
correlated sources (as considered in [9, Example 4]) with the
following distribution:

WS1,S2
(0, 0) = 0.003920,WS1,S2

(0, 1) = 0.976080,

WS1,S2
(1, 0) = 0.019920,WS1,S2

(1, 1) = 0.000080,

and P (S1 = 0) = 0.98, P (S2 = 0) = 0.023840. Let
f(S1, S2) = S1 ⊕2 S2. Using Theorem 2 and the fact that

H(S1 ⊕ S2) = 0.0376223, we obtain the sufficient conditions
for the function f to be reconstructible as

0.0376223 < max
pX1

pX2

min{H(X1), H(X2)}

−H(X) + χ({pX(x), ρx}), (3)

where X =∆ X1 ⊕2 X2 and ρx =∆ ρx1x2 for any (x1, x2) such
that x = x1 ⊕ x2. Figure 4 depicts the behaviour of the
right hand side of the above inequality for different values
of η. In particular, the inequality fails for η > 0.11, and
as a result the function f cannot be reconstructed using the
approach of Theorem 2 for all η ∈ (0.11, 0.5). Now, we
consider the sufficient conditions obtained from Theorem 5.
Figure 5, found at the top of the following page, shows the
regions Rs(WS1S2

, f, 2) and Rc(N2, 2) for different values
of η, which demonstrates a clear overlap between Rs and Rc

for η = 0.12 and η = 0.2, which implies that the function
remains reconstructible for these η values.

F. Applications

The problem of reconstructing functions of sources over
a classical MAC, i.e. computation over a MAC, finds exten-
sive applications in several network problems [19]. Examples
include coding for many-to-one interference channels [7],
compute-and-forward (CAF) strategy for wireless networks
[20], network coding for cooperative wireless networks [21],
sensor network estimation [22], interference management for
cellular uplink channel [23], and wireless network coding [24].
As for the CQ setup, recent works have explored the compute-
and-forward (CAF) relaying technique in quantum one-hop
relay network and symmetric private information retrieval
(SPIR) over a quantum internet network [6]. In this subsection,
we discuss some additional applications of computation over
a CQ-MAC.

1) Many-to-one classical-to-quantum interference network
(CQIC): Interference is often seen as an impediment in
a communication network, and decoding messages at the
receivers in a multi-user interference channel setting is
a challenging problem. However, computing sum over a
CQ-MAC can be used to manage interference. Consider
a 3-to-1 CQIC with three inputs X1, X2 and X3 and with
quantum outputs characterized using density operators
ρY1

X1⊕X2⊕X3
, ρY2

X2
, and ρY3

X3
. As illustrated in Figure 6,

users 2 and 3 enjoy interference-free CQ-P2P channels.
However, receiver 1 suffers interference from users 2
and 3, and it needs to decode the message X1. A
naive approach is to treat the pair (X2, X3) as noise
and decode X1. But this is highly sub-optimal because
X2, X3 encode information corresponding to messages
of users 2 and 3, respectively, and is not just a noise. A
better strategy is to decode the message pair (X2, X3) and
then use the successive cancellation technique to decode
X1. It can be noted that the interference is in the form
of the sum X2 ⊕ X3. Hence, an even better strategy is
to decode only this sum and then apply the successive
cancellation technique. This can be improved even further
by simultaneous decoding of the sum X2 ⊕X3 and the
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Fig. 5. A depiction of the intersection of Rs (in red) and Rc (in blue) for η = 0.12 and η = 0.2, using the technique provided in Theorem 5.

intended message X1 [16]. This demonstrates the need
of simultaneous decoding technique as discussed in the
previous sections.

Fig. 6. 3-to-1 classical-to-quantum interference channel (CQIC).

2) Network coding for a cooperative quantum network:
Computing sum of messages provides a feasible solution
to decrease the number of message transmissions needed
within a cooperative quantum network. Consider three
satellites that are connected via a free-space quantum
optical network and satellite S wants to communicate
messages m1 and m2 to satellites S1 and S2, as shown
in Figure 7. In the noncooperative setup, the satellite
needs to transmit a total of four messages to S1 and
S2. Next, in the cooperative decode-and-forward (DAF)
setup, satellites S1 and S2 can communicate with a
relay, however, they cannot directly communicate among
themselves. In this case, the missing messages are relayed
to S1 and S2 as shown. In the cooperative compute-and-
forward (CAF) setup, the relay now decodes the sum
(m1 ⊕ m2), instead of the individual messages m1 and
m2. It then broadcasts the sum of the messages which
are received by satellites S1 and S2 simultaneously. In
the contrast to the previous scenarios, the computation
at the relay reduces the total number of transmissions
required compared to the other setups. In addition, as the
relay is only interested in decoding the sum, it can now
receive the information at a larger rate.

IV. THE CENTRAL IDEA

Here we provide an informal review of the central ideas
involved in obtaining the main results of this work. The formal
proofs are provided in the subsequent sections. Let us consider

Fig. 7. Compute-and-Forward (CAF) strategy for cooperative free-space
quantum optical network.

the specific problem of reconstructing the sum of sources each
taking values in S1 = S2 = Fq . We begin by reviewing the
KM coding scheme for the case of a noiseless classical MAC.
It was shown in [4], the existence of linear code with a parity
check matrix H ∈ Fl×n

q , and a decoder map d : Fl
q → Fn

q

such that for any ϵ > 0 and sufficiently large n, we have∑
sn∈Sn

Wn
S(s

n)1{d(Hsn1 ⊕Hsn2 )̸=sn1 ⊕sn2 } ≤ ϵ,

provided that l
n log2 q > H(S1 ⊕ S2). This implies that a

receiver equipped with the decoding map d can recover the
sum if it possesses the sum M l

1 ⊕M l
2 of the Körner-Marton

indices: M l
j = HSl

j : j ∈ [2].
We are therefore led to a construction of an efficient CQ-

MAC coding scheme that enables the receiver only reconstruct
the sum of the two message indices. Indeed, if the two senders
send the KM indices to such a CQ-MAC channel encoder,
and the receiver employs the above source decoder d on the
decoded sum of the KM indices, then it can recover the sum
of sources. To illustrate the design of the desired CQ-MAC
channel code, let us consider a CQ-MAC (ρx1x2

∈ D(HZ) :
(x1, x2) ∈ X1×X2) wherein X1 = X2 = Fq and the collection
ρx : x ∈ X satisfies ρx1x2

= ρx̂1x̂2
whenever x1 ⊕ x2 =

x̂1 ⊕ x̂2. Consider a CQ-P2P (X = Fq, σu : u ∈ X ) where
σu = ρx1x2 for any (x1, x2) satisfying x1 ⊕ x2 = u. Suppose
we are able to communicate over this CQ-P2P via a linear
CQ-P2P code C ⊆ Xn. Specifically, suppose there exists a
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generator matrix G ∈ Fl×n
q and a POVM λ =∆ {λml : ml ∈

Fl
q} such that for any ϵ > 0 and sufficiently large n, we have

1− q−l
∑
ml

Tr
(
λmlσ⊗n

mlG

)
≤ ϵ,

where σ⊗
mlG

= σx1
⊗· · ·⊗σxn

where mlG = xn. We can then
use this linear CQ-P2P code as our desired CQ-MAC channel
code. Indeed, observe that, suppose both senders employ this
same linear CQ-P2P code, then sender j maps its KM index
ml

j = Hsnj to the channel codeword as xn
j = ml

jG. Observe
that the structure of the CQ-MAC implies ρ⊗n

xn
1 ,x

n
2
= σ⊗n

xn
1 ⊕xn

2
=

σ⊗
(ml

1⊕ml
2)G

. If the receiver employs the POVM {λml : ml ∈
Fl
q} designed for the CQ-P2P, it ends up decoding the sum of

the KM indices ml
1 ⊕ml

2, and consequently, recover the sum
of the sources.

A careful analysis of the above idea reveals that two
MAC channel codes employed by the encoders do not ‘blow
up’ when added, is crucial to the efficiency of the above
scheme. A linear code being algebraically closed enables
this. However, the codewords of a random linear code are
uniformly distributed and cannot achieve the capacity of an
arbitrary classical P2P channel, let alone a CQ-P2P channel.
We are therefore forced to enlarge a linear code to identify
sufficiently many codewords of the desired empirical single-
letter distribution. We are thus led to a nested coset code
(NCC) [8]. A NCC comprises of cosets of a coarse linear
code within a fine code. Within each coset, we can identify
a codeword of the desired empirical distribution. We choose
as many cosets as the number of messages. Analogous to our
illustration above where we chose a linear code that achieves
the capacity of the CQ-P2P (X = Fq, σu : u ∈ X ), our
first step (Sec. V) is to design a NCC with its POVM that can
achieve capacity of an arbitrary CQ-P2P. Our second step is to
endow both senders with this same NCC and analyze decoding
the sum of the messages. This gets us to our next challenge -
How do we analyze decoding their message sum, for a general
CQ-MAC ρx : x ∈ X for which x1 ⊕ x2 = x̂1 ⊕ x̂2 does not
necessarily imply ρx1x2 = ρx̂1x̂2 . In Sec. III-B, we address
this challenge, leverage our findings in Sec. V and generalize
the idea for any arbitrary CQ-MAC, and presents a proof of
the second set of results (Theorem 2).

The next question we ask is, how can we reconstruct
arbitrary functions of the sources? We use the concept of
embedding of bivariate functions in finite fields to address
this (see Definition 13). Recall that in KM coding, each source
encoder produces bits at the rate given by H(S1 ⊕ S2). This
approach works fairly well when the sources are symmet-
ric and uniform. As the source distribution becomes more
asymmetric and non-uniform, this approach may become less
efficient. For example, if H(S2) < H(S1 ⊕ S2), then the
second encoder may as well send S2 losslessly at the rate
H(S2) (while the first encoder still sends HSn

1 ) and let the
decoder compute HSn

2 , and proceed as before. To address
such asymmetry, in the source coding setting, Ahlswede and
Han proposed a two-layered coding scheme, where in the
first layer, the encoders produce a coarse quantized version
of their respective sources, say W1 and W2, respectively. The

pair is produced such that it is intended to be reconstructed
individually, i.e., as a pair (W1,W2) at the joint receiver.
This is based on the unstructured random coding approach,
more akin to the conventional Berger-Tung [25] source coding
(lossy Slepian-Wolf coding). Then in the second layer, the
KM encoding of the sources is performed, and the resulting
information is sent conditioned on the fact that the receiver
has access to the coarse version of the sources (W1,W2).
In essence, this is a (classical) superposition of Berger-Tung
source coding and KM source coding, which leads to a smooth
transition between KM coding based on structured codes and
Slepian-Wolf coding based on unstructured codes. We use this
approach on the source coding side. How do we interface
this scheme with the two-user CQ-MAC? Encoder i receives
two messages (Mi1,Mi2) at rates Ri and R, respectively.
These four messages need to be encoded distributively such
that the joint receiver may be able to reconstruct the triple
(M11,M21,M12 ⊕ M22). This necessitates using a classical
superposition of both unstructured coding as well as structured
coding schemes for the CQ-MAC. Noting that the receiver
wishes to decode three independent messages simultaneously,
we therefore require a CQ simultaneous decoding technique.
In Sec. VII, we adapt the technique of tilting, smoothing, and
augmentation introduced by Sen [12], [13] to the setting of
a superposition of unstructured and structured code (NCC)
ensembles to enable this, and provide a proof of Theorem
4. This yields a new set of sufficient conditions, that strictly
enlarges the one achievable using solely structured codes
(Theorem 2), and thus allows us to obtain a proof of the third
main result of our work (Theorem 5).

V. PROOF OF THEOREM 1

As discussed in Sec. IV we shall build and analyze a NCC
comprising of cosets of a linear code wherein each coset
contains a codeword of the desired empirical distribution for
communication over a CQ-P2P N .

Proof. In order to achieve a rate R = I(V ;Z)σ , the standard
approach is to pick 2nR codewords uniformly and indepen-
dently from Tn

δ (pV ), for some δ > 0 sufficiently small.
However, the resulting code is not algebraically closed. On the
other hand, if we pick a random generator matrix G ∈ Fl×n

q ,
with l = nR

log2 q , whose entries from Fq are IID uniform, then
its range space - the resulting collection of 2nR codewords
- are uniformly distributed and pairwise independent but not
pV −typical.

To satisfy the dual requirements of algebraically closure and
pV −typicality, we observe the following. If a collection of
qk codewords are uniformly distributed in Fn

q and pairwise
independent, as we found the range space of G to be, then
the expected number of codewords that are pV −typical is
qk

qn |T
n
δ (pV )| = exp{n log2 q

(
k
n −

[
1− H(V )

log2 q

])
}. This indi-

cates that if we pick a generator matrix GI ∈ Fk×n
q with

entries uniformly distributed and IID, such that k
n > 1−H(V )

log2 q ,
then its range space will contain codewords that are pV -typical.
The latter codewords can be used for communication.
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Each coset of GI ∈ Fk×n
q where k

n > 1 − H(V )
log2 q will play

an analogous role as a single codeword in a conventional IID
random code. Just as we pick 2nR of the latter, we consider
2nR cosets of GI within a larger linear code with generator
matrix G = [GT

I GT
O/I ]

T ∈ F(k+l)×n
q with l = nR

log2 q .
The messages index the 2nR cosets of GI . A predetermined
element in each coset that is pV −typical is the assigned
codeword for the message and chosen for communication.1 A
formal proof we provide below has two parts - error probability
analysis for a generic fixed code followed by an upper bound
on the latter via code randomization.

Upper bound on error probability for a generic fixed code :
Define the following

ρv =∆
∑
x∈X

pX|V (x|v)ρx,

and let V = Fq. Consider a generic NCC
(n, k, l, gI , gO/I , b

n, ẽ) with its range space vn(a,m) =
agI ⊕qmgO/I ⊕q b

n : (a,m) ∈ Vk×V l. We shall use this and
define a CQ-P2P code (n, I = V l, e, λI) that is an NCC CQ-
P2P. Towards that end, let θ(m) =∆

∑
a∈Vk 1{vn(a,m)∈Tn

δ (pV )}
and

s(m) =∆
{
{a ∈ Vk : vn(a,m) ∈ Tn

δ (pV )} if θ(m) ≥ 1

{0k} if θ(m) = 0,

for each m ∈ V l. For m ∈ V l, a predetermined element
am = ẽ(m) ∈ s(m) is chosen. On receiving message m ∈ V l,
the encoder prepares the quantum state ρ⊗n

m =∆ ρ⊗n
vn(am,m) =∆

⊗n
i=1ρvi(am,m), and is communicated. The encoding map ẽ is

therefore determined via the collection (am∈s(m) :m ∈Fl
q).

Towards specifying the decoding POVM let ρv =∑
y∈Y pY |V (y|v)

∣∣ey|v〉 〈ey|v∣∣ be a spectral decomposition for
v ∈ V . We let pV Y =∆ pV pY |V . For any vn ∈ Vn, let πvn be
the conditional typical projector as in [17, Defn. 15.2.4] with
respect to the ensemble {ρv : v ∈ V} and distribution pV .
Similarly, let πρ be the (unconditional) typical projector of the
state ρ =∆

∑
v∈V pV (v)ρv as defined in [17, Defn. 15.1.3]. For

(a,m) ∈ Vk×V l, we let πa,m =∆ πvn(a,m)1{vn(a,m)∈Tn
δ (pV )}.

We let λ =∆ {
∑

a∈Vk λa,m : m ∈ I = Fl
q, λ−1}, where

λa,m=∆
(∑
â∈Vk

∑
m̂∈Vl

γâ,m̂

)−1/2

γa,m

(∑
ã∈Vk

∑
m̃∈Vl

γã,m̃

)−1/2

, (4)

λ−1 =∆ I −
∑

m∈Vl

∑
a∈Vk λa,m and γa,m =∆ πρπa,mπρ.

Since 0 ≤ γa,m ≤ I , we have 0 ≤ λa,m ≤ I . The latter
lower bound implies λ ⊆ P(H). The same lower bound
coupled with the definition of the generalized inverse implies
I ≥

∑
a∈Vk

∑
m∈Vl λa,m ≥ 0. We thus have 0 ≤ λ−1 ≤ I .

It can now be verified that λ is a POVM. In essence, the
elements of this POVM is identical to the standard POVMs
except the POVM elements corresponding to a coset have been
added together. Indeed, since each coset corresponds to one
message, there is no need to disambiguate within the coset.

1The reader is encouraged to relate to the bounds stated in theorem
statement and induced bounds on the rate of communication l

n
log2 q.

We have thus associated an NCC (n, k, l, gI , gO/I , b
n, ẽ)

and a collection (am ∈ s(m) : m ∈ V l) with a CQ-P2P code.
The error probability of this code is

q−l
∑
m∈I

tr((I −
∑
a∈Vk

λa,m)ρ⊗n
m ) ≤

q−l
∑
m∈I

tr((I − λam,m)ρ⊗n
m ). (5)

Denoting event E = {θ(m) > 1}, its complement E c and the
associated indicator functions 1E ,1E c respectively, a generic
term in the RHS of the above sum satisfies

tr((I − λam,m)ρ⊗n
m )1E c + tr((I − λam,m)ρ⊗n

m )1E

≤ 1E c +

3∑
i=1

T2i,

where

T21 =∆ 2Tr
(
(I − γam,m)ρ⊗n

m

)
1E ,

T22 =∆ 4
∑

â̸=am

Tr
(
γâ,mρ⊗n

m

)
1E ,

T23 =∆ 4
∑
m̂ ̸=m

∑
ã

Tr
(
γã,m̂ρ⊗n

m

)
1E ,

where we have used Hayashi-Nagaoka inequality [26].
Distribution of the Random Code : The objects gI ∈
Vk×n, gO/I ∈ V l×n, bn ∈ Vn and the collection (am ∈ s(m) :
m ∈ V l) specify an NCC CQ-P2P code unambiguously. A
distribution for a random code is therefore specified through a
distribution of these objects. We let upper case letters denote
the associated random objects, and obtain

P
(

GI = gI , GO/I = gO/I

Bn = bn, Am = am : m ∈ S(m)

)
= q−(k+l+1)n

×
∏

m∈Vl

1

Θ(m)
,

and analyze the expectation of E and the terms T2i; i ∈ [1, 3]
in regards to the above random code. We begin by EP [E ] =
P(
∑

a∈Vk 1{V n(a,m)∈Tn
δ (pV )} < 1). For this, we provide the

following proposition.

Proposition 4. For any ϵ ∈ (0, 1), and for all sufficiently
small δ > 0 and sufficiently large n, we have EP [E ] ≤ ϵ, if
k
n ≥ log q −H(V ) + ϵ.

Proof. The proof follows from [7, Proof of Thm. 2.5] with
the identification of S = ϕ.

We now consider T21. For each a,m, denote the events

V =∆ {V n(a,m) = vn}, A =∆ {Am = a}.

We have

EP [T21] = 1−
∑
m

∑
a

∑
vn∈Tδ(pV )

pM (m) Tr
(
πvnπρρ

⊗n
vn πρ

)
×EP [1A1V ] ≤ δ1,

where the last inequality follows from the pinching argu-
ment, also provided in Lemma 1 (see Appendix B), with the
identification A = B = V , pA = pV , B = A, and the
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density operators correspondingly. With this choice, we obtain
for any ϵ ∈ (0, 1), EP{T21} ≤ ϵ, for all sufficiently large
n and sufficiently small δ. Next, we provide the following
proposition to bound the terms corresponding to T22 and T23

in an expected sense.

Proposition 5. For any ϵ ∈ (0, 1), and for all sufficiently small
δ > 0 and sufficiently large n, we have EP [T22 + T23] ≤ ϵ if
the following inequalities hold:

2k

n
log q ≤ 2 log q + I(V ;Z)σ − 2H(V )− ϵ

(2k + l)

n
log q ≤ 2 log q + I(V ;Z)σ − 2H(V )− ϵ.

Proof. The proof is provided in Appendix A-A

We have therefore obtained three bounds k
n > 1 − H(pV )

log2 q ,
2k
n < 2+ I(V ;Z)σ−2H(pV )

log2 q , 2k+l
n < 2+ I(V ;Z)σ−2H(pV )

log2 q . A rate

of I(V ;Z)σ−ϵ is achievable by choosing k
n = 1− H(pV )

log2 q + ϵ
2 ,

l
n =

I(V ;Z)σ−ϵ log2
√
q

log2 q thus completing the proof.

VI. DECODING SUM OVER CQ-MAC

Throughout this section, the source alphabets S =∆ S1 =
S2 = Fq , and the receiver intends to reconstruct the sum
f(S1, S2) = S1 ⊕q S2 of the sources.

A. Proof of Proposition 2

Let pV1V2X1X2 ∈ P(N2, q) with associated collection
(ρv1v2 : (v1, v2) ∈ V × V) of density operators where

ρv1v2 =∆
∑
x1,x2

pX1|V1
(x1|v1)pX2|V2

(x2|v2)ρx1x2
and

ρv =∆
∑
v1,v2

pV1V2|V (v1, v2|v)ρv1v2 .

We now describe the coding scheme in terms of a specific
code. It is instructive to revisit Sec. IV, wherein we specified
the import of both encoders employing cosets of the the
same linear code. In order to choose codewords of a desired
empirical distribution pVj , we employ NCCs (as was done for
the same reason in Sec. V). Following the same notation as
in proof of Theorem 1, we now specify the random coding
scheme.

Let GI ∈ Fk×n
q , GO/I ∈ Fl×n

q , Bj ∈ Fn
q : j ∈ [2]

be mutually independent and uniformly distributed on their
respective range spaces. Let V n

j (a,mj) =
∆ aGI ⊕mjGO/I ⊕

Bn
j : (a,mj) ∈ Fk+l

q for j ∈ [2] and V n(a,m) =∆ aGI ⊕
mGO/I ⊕Bn

1 ⊕Bn
2 : (a,m) ∈ Fk+l

q . For j ∈ [2], let

Sj(mj) =
∆



{a ∈ Vk : V n
j (a,mj) ∈ Tn

δ (pVj
)},

if
∑
a∈Vk

1{V n
j (a,mj)∈Tn

δ (pVj
)} ≥ 1

{0k} otherwise,
i.e.

∑
a∈Vk

1{V n
j (a,mj)∈Tn

δ (pVj
)} = 0,

for each mj ∈ V l. For mj ∈ V l, a predetermined element
Aj,mj

∈ Sj(mj) is chosen. We let Θj(mj) =∆ |Sj(mj)|.

For mj ∈ V l, a predetermined Xn
j (mj) ∈ Xn

j is chosen.
As we shall see later, the choice of Xn

j (mj) is based on
V n
j (Aj,mj ,mj). We are thus led to the encoding rule.

Encoding Rule: On receiving message (m1,m2) ∈ V l ×
V l, the quantum state ρm1m2 =∆ ρXn

1 (m1)Xn
2 (m2) =∆

⊗n
t=1ρX1t(m1)X2t(m2) is (distributively) prepared.

Distribution of the Random Code: The distribution of the ran-
dom code is completely specified through the distribution P(·)
of GI , GO/I , B

n
1 , B

n
2 , (A1,m1

: m1 ∈ Fl
q), (A2,m2

: m2 ∈ Fl
q)

and (Xn
j (mj) : mj ∈ V l). We let

P


(A1,m1 = a1,m1 : m1 ∈ V l),
(A2,m2 = a2,m2 : m2 ∈ V l),

Bn
j = bnj : j ∈ [2],

GI = gI , GO/I = gO/I ,
(X1(m1) = xn

1 (m1) : m1 ∈ V l),
(X2(m2) = xn

2 (m2) : m2 ∈ V l)

 =
1

qkn+ln+2n

×
[∏
m1

1{a1,m1
∈s1(m1)}

Θ(m1)
pnX1|V1

(xn
1 (m1)|vn1 (a1,m1

,m1))

]

×
[∏
m2

1{a2,m2
∈s2(m2)}

Θ(m2)
pnX2|V2

(xn
2 (m2)|vn2 (a2,m2

,m2)

]
.

(6)

Towards specifying a decoding POVM, we state the associated
density operators modeling the quantum systems, their spectral
decompositions and projectors. Let

ρ =∆
∑
y∈Y

sY (y) |hy⟩ ⟨hy| ,

ρx1x2 =∆
∑
y∈Y

pY |X1X2
(y|x1, x2)

∣∣ey|x1x2

〉 〈
ey|x1x2

∣∣ : x ∈ X ,

ρv1v2
=∆
∑
y∈Y

qY |V1V2
(y|v1, v2)

∣∣fy|v1v2〉〈fy|v1v2 ∣∣ : v ∈ V,

ρv =∆
∑
y∈Y

rY |V (y|v)
∣∣gy|v〉 〈gy|v∣∣ : v ∈ V.

Decoding POVM: Unlike a generic CQ-MAC decoder [3],
which aims at decoding both the classical messages from
the quantum state received, the decoder here is designed to
decode only the sum of messages transmitted. For this, the de-
coder employs the nested coset code (n, k, l, GI , GO/I , B

n),
where Bn = Bn

1 ⊕ Bn
2 . We define V n(a,m) =∆ aGI +

mGO/I+Bn to represent a generic codeword. We let Πa,m =∆

πV n(a,m)1{V n(a,m)∈T
(n)
δ (pV )}, where pV is as defined in the

theorem statement. The decoder is provided with a sub-POVM
Λ =∆ {Λm =∆

∑
a∈Fk

q
Λa,m : m ∈ Fl

q} where

Λa,m =∆
( ∑

â∈Fk
q

∑
m̂∈Fl

q

Γâ,m̂

)−1/2

Γa,m

( ∑
â∈Fk

q

∑
m̂∈Fl

q

Γâ,m̂

)−1/2

,

Λ−1 =∆ I−
∑

a∈Fk
q

∑
m∈Fl

q
Λa,m and Γa,m =∆ πρΠ(a,m)πρ. We

note that

πρ =∆
∑

yn∈Tn
δ (sY )

n⊗
t=1

|hyt
⟩ ⟨hyt

| and
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πvn =∆
∑

yn:(vn,yn)∈Tn
δ (pV rY |V )

n⊗
t=1

∣∣gyt|vt
〉 〈

gyt|vt
∣∣ ,

denote the typical and conditional typical projectors (as stated
in Definition 15.2.4 [17]) with respect to ρ =∆

∑
v∈Fq

pV (v)ρv
and (ρv : v ∈ V), respectively.

Error Analysis: We derive upper bounds on EP{ξ(cm⊕)}. Our
derivation will be similar to those adopted in proof of Thm. 1.
Let us define event

E =∆
{ V n

1 (A1.m1
,m1), X

n
1 (m1),

V n
2 (A2.m2

,m2), X
n
2 (m2),

V n
1 (A1.m1 ,m1)⊕ V n

2 (A2.m2 ,m2)


∈ T8δ(pV1X1V2X2V )

}
. (7)

We have

EP

{ ∑
m1,m2

pM1M2
(m1,m2) Tr([I − Λm1⊕m2

])ρ⊗n
m1m2

}
≤

EP

{ ∑
m1,m2

pM1M2
(m1,m2)Tr([I − Λm1⊕m2

])ρ⊗n
m1m2

1E c

}
︸ ︷︷ ︸

T1

+ EP

{ ∑
m1,m2

pM1M2
(m1,m2)Tr([I − Λm1⊕m2

])ρ⊗n
m1m2

1E

}
︸ ︷︷ ︸

T2

.

(8)

In regards to T1, the sub-POVM nature of ΛI and the fact
that ρ⊗n

m1,m2
is a density operator enables us conclude T1 ≤

EP{1E c}. Furthermore, observe that Xj(mj) is distributed
with PMF pnXj |Vj

conditionally on V n
j (Aj,mj ,mj

) (See (6)).
In addition, pV1X1V2X2

= pV1X1
pV2X2

implies that standard
conditional typicality arguments yields

EP{1E c} ≤ EP

{∑
m1

pM1
(m1)1{Θ1(m1)=0} +∑

m2

pM2(m2)1{Θ1(m2)=0}

}
+ exp{−nϵ}, (9)

for all sufficiently large n, and for all sufficiently small δ. In
the above inequality, the second term on the RHS is an upper
bound on the probability of the event (Xn

1 (m1), X
n
2 (m2)) /∈

Tn
δ (pV1X1V2X2V |vn1 , vn2 , vn1 ⊕ vn2 ) conditioned on

(V n
1 (A1.m1

,m1), V
n
2 (A2.m2

,m2), V
n
1 (A1.m1

,m1) ⊕
V n
2 (A2.m2

,m2)) = (vn1 , v
n
2 , v

n
1 ⊕ vn2 ) ∈ Tn

δ (pV1V2V ), and the
first term provides an upper bound on the complement of
the latter event. An upper bound on T1 therefore reduces to
deriving an upper bound on the first term on the RHS of (9).
This task - deriving an upper bound on the first term on the
RHS of (9) - being a classical analysis, has been detailed in
several earlier works, in particular [7, Proof of Thm. 2.5].
Following this, we have

EP

{∑
mj

pMj
(mj)1{Θj(mj)=0}

}
≤

exp

{
− n

(
k log q

n
− [log q −H(Vj)]

)}
, (10)

thereby ensuring T1 ≤ 2 exp{−nδ}, if

k log q

n
≥ max {log q −H(V1), log q −H(V2)}+ ϵ

= log q −min{H(V1), H(V2)}+ ϵ, (11)

for sufficiently large n and sufficiently small δ. We now
analyze T2. Applying the Hayashi-Nagaoka inequality, we
have

T2 ≤ EP [T21 + T22 + T23], (12)

where

T21 =∆ 2
∑
m1

∑
m2

pM (m) Tr
(
[I − ΓA⊕

m,m⊕ ]ρ
⊗n
m1m2

]
)
1E ,

T22 =∆ 4
∑
m1

∑
m2

∑
â ̸=A⊕

m

pM (m) Tr
(
Γâ,m⊕ρ⊗n

m1m2

)
1E ,

T23 =∆ 4
∑
m1

∑
m2

∑
â ̸=A⊕

m

∑
m̸̂=m⊕

pM (m) Tr
(
Γâ,m̂ρ⊗n

m1m2

)
1E ,

(13)

and A⊕
m =∆ A1,m1

⊕A2,m2
∈ Vk,m⊕ =∆ m1 ⊕m2 ∈ V l. Note

that (12) follows from an argument analogous to the one in
(5). We now analyze T21, T22 and T23. We begin with T21.
For each m1 and m2, denote the events

J =∆
{(

V n
1 (A1.m1

,m1), X
n
1 (m1), V

n
2 (A2.m2

,m2), X
n
2 (m2)

)
= (vn1 , x

n
1 , v2, x2) ∈ Tδ(pV1X1V2X2)

}
,

V =∆ {V n
j (aj ,mj) = vnj : j ∈ [2]},

V̂ =∆ {V n(a⊕,m1 ⊕m2) = vn⊕},A =∆ {Aj,mj
= aj : j ∈ [2]},

abbreviating vn⊕ = vn1 ⊕ vn2 , a⊕ = a1 ⊕ a2. We have

EP [T21] = 1−
∑
m

∑
a1,a2

∑
(vn,x)∈
Tδ(pV X)

pM (m) Tr
(
πvnπρρ

⊗n
xn
1 x

n
2
πρ

)
×EP

[
1J1A1V1V̂

]
≤ ϵ

for all sufficiently large n and sufficiently small δ, where
the last inequality follows from the pinching argument, also
provided in Lemma 1 (see Appendix B). Set A = V = Fq ,
B = X , pAB = pV1⊕V2,X and the density operators corre-
spondingly. The proposition below bounds the terms T22 and
T23 as follows.

Proposition 6. For any ϵ ∈ (0, 1), and for all sufficiently small
δ > 0 and sufficiently large n, we have EP [T22 + T23] ≤ ϵ if
the following inequalities hold:

3k

n
log q ≤ 3 log q +I(V ;Z)σ−H(V1, V2)−H(V )− ϵ,

(3k + l)

n
log q ≤ 3 log q +I(V ;Z)σ−H(V1, V2)−H(V )− ϵ.

Proof. The proof is provided in Appendix A-B.

This completes the proof of the proposition.
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B. Proof of Theorem 2

We provide a brief outline of a proof. As stated in Sec. IV,
we propose a ‘separation based approach’ with two modules
- source and channel. The source coding module employs a
(distributed) Körner Marton (KM) source code. Specifically,
[4] guarantees the existence of a parity check matrix h ∈
Fl×n
q = Sl×n and a decoder map d : Fl

q → Sn such that∑
sn∈Sn Wn

S(s
n)1{d(hsn1 ⊕qhsn2 )̸=sn1 ⊕qsn2 } ≤ ϵ, for any ϵ > 0,

and sufficiently large n, so long as l log2 q
n ≥ H(S1⊕q S2)+ ϵ.

Both encoders of this KM source coding module employ
one such parity check matrix h ∈ Fl×n

q . The decoder of
the KM source code employs the corresponding decoder map
d. KM source encoder j outputs M l

j = h(Sn
j ). If the KM

source decoder is provided M l
1⊕q M

l
2, then it can reconstruct

Sn
1 ⊕q Sn

2 with reliability at least 1 − ϵ. The task of the
CQ-MAC channel coding module is to make M l

1 ⊕q M l
2

available to the KM source decoder. Specifically, this channel
coding module must communicate M l

1 ⊕q M l
2 ∈ Fl

q within
n channel uses. From the result of Proposition 6, we have
a CQ-MAC receiver that can decode the sum of messages
M l

1 ⊕q M l
2 ∈ Fl

q having an arbitrary distribution pM1M2
,

given the rate constraints provided hold. Concatenating the
two source and channel coding schemes yields the desired
result.

VII. DECODING ARBITRARY FUNCTIONS OVER CQ-MAC

A. Proof of Theorem 4

Let pV1V2U1U2
∈ P(N4, q) be a PMF on V1×V2×U1×U2

where V1 = V2 = Fq . We begin by describing the coding
scheme in terms of a specific class of codes. In order to
choose codewords of a desired empirical distribution pVj

, we
again employ Nested Coset Codes (NCCs). Both the encoders
eVj

: j ∈ [2] employ cosets of the same linear code. We then
consider a 4-to-3 decoding over a ‘perturbed’ variant of CQ-
MAC (as introduced by [13]), which we denote as N ′

4. Note
that in the current problem, the decoder wishes to decode three
messages simultaneously, and hence we use the framework
of CQ joint typicality developed using the ideas of tilting,
smoothing and augmentation [13]. This allows us to perform
intersection of non-commuting POVM elements to construct a
set of POVMs for N ′

4. Finally, towards bounding the average
error probability for N4, we use an argument, similar to [13,
Equation 5], which shows that the outputs of the channel N ′

4

and N4 are indistinguishable in trace norm. Thus, the POVMs
constructed for N ′

4 can be used for N4 with an additional
boundable error term.

We now define a 4-to-3 decoding over ‘perturbed’ CQ-MAC
N ′

4 that consists of the following: (i) finite (augmented input)
sets (Vj×WVj

), (Uj×WUj
) : j ∈ [2], (ii) an (extended output)

Hilbert space

H′
Z = H̄Z

⊕
(H̄Z ⊗WV1

)
⊕

(H̄Z ⊗WV2
)⊕

(H̄Z ⊗WU1
)
⊕

(H̄Z ⊗WU2
),

where H̄Z = (HZ ⊗ C2), and WVj
and WUj

denote both a
finite alphabet as well as a Hilbert space with dimension given

by |W| =∆ |WVj | = |WUj |, and
⊕

denotes external direct sum
of Hilbert spaces, and (iii) a collection of density operators

{ρ′vuw ∈ D(H′
Z) : (v, u, wV , wU ) ∈ V × U ×WV ×WU},

where w = (wV1 , wV2 , wU1 , wU2), wV =
(wV1

, wV2
), and WV = WV1

×WV2
. Similarly wU and WU

are defined. Note that the states in the Hilbert spaces WVj
and

WUj
are used as quantum registers to store classical values.

Define ρ′vuw =∆ T VU
w;τ (ρ̃vu), where ρ̃vu =∆ ρvu ⊗ |0⟩⟨0|C2

, and
T VU
w;τ is a tilting map [13, Section 4] from H̄Z to H′

Z defined
as:

T VU
w;τ (|z⟩) =

∆
(|z⟩

⊕2
i=1 τ |z, wVi

⟩
⊕2

j=1 τ
∣∣z, wUj

〉
√
1 + 4τ2

,

and τ will be chosen appropriately in the sequel.
Encoding: Consider two NCCs (n, k, l, gI , gO/I , b

n
j , ej) hav-

ing the same parameters except with different bias vectors bjs
and encoding maps ejs. For each j ∈ [2] and mj ∈ Fl

q , let

Aj(mj) =
∆

{
{amj

: vnj (amj
,mj) ∈ Tn

δ (pVj
)} if θ(mj) ≥ 1

{0k} otherwise,

where θ(mj) =∆
∑

a∈Fk
q
1{vn

j (a,mj)∈Tn
δ (pV )}. For mj ∈

Fl
q : j ∈ [2], a pre-determined element amj

∈ Aj(mj) is
chosen and let vnj (amj ,mj) =

∆ amjgI ⊕ mjgO/I ⊕ bnj for
(amj

,mj) ∈ Fk+l
q for j ∈ [2]. Moreover, for each j ∈ [2] and

mj+2 ∈ [qlj ], construct a codeword un
j (mj+2) ∈ Un

j . Simi-
larly, for each j ∈ [2], mj ∈ Fl

q and mj+2 ∈ [qlj ], construct
the codewords wn

Vj
(mj) ∈ Wn

Vj
and wn

Uj
(mj+2) ∈ Wn

Uj
.

For later convenience, we define an additional identical map
wn

V (m) = wn
V1
(m) for all m ∈ Fl

q . On receiving the message
m ∈ Fl

q × Fl
q × [ql1 ]× [ql2 ], the quantum state ρ′ ⊗n

m =∆

ρ′vn
1 (am1

,m1)wn
V1

(m1)vn
2 (am2

,m2)wn
V2

(m2)(un
1 ,w

n
U1

)(m3)(un
2 ,w

n
U2

)(m4)

is (distributively) prepared. Towards specifying a decoding
POVM’s, we define the following associated density operators.

ρ =∆
∑
vn,un

pnV (v
n)pnU (u

n)ρvnun ,

ρvn =∆
∑
vn,un

pnV |V (v
n|vn)pnU (un)ρvnun ,

ρun
i
=∆
∑
vnun

j

pnUj
(un

j )ρvnun : i ̸= j, i, j ∈ [2],

ρvnun
i
=∆
∑
vn,un

j

pnV |V (v
n|vn)pnUj

(un
j )ρvnun : i ̸= j, i, j ∈ [2],

ρvnun =∆
∑
vn

pnV |V (v
n|vn)ρvnun ,

where pnV |V (v
n|vn) =∆ pnV (v

n)/pnV (v
n)1{vn

1 ⊕vn
2 =vn}.

Decoding: The decoder is designed to decode the sum of the
messages m⊕ along with the individual messages m3 and
m4 transmitted over the ‘perturbed’ 4-to-3 CQ-MAC N ′

4. To
decode m3 and m4, we use the codebook used by the encoder,
but to decode m⊕, we use the NCC (n, k, l, gI , gO/I , b

n, e),
with all the parameters same as the NCCs used in the encod-
ing, except that bn = bn1 ⊕ bn2 , and e to be specified later.
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Define vn(a,m) =∆ agI +mgO/I + bn, representing a generic
codeword in a generic coset.

POVM construction: We start by defining the sub-POVMs
for channel N , subsequently we will construct the sub-
POVMs for the ‘perturbed’ CQ-MAC N ′

4 using the process
of tilting [13]. Let πρ be the typical projector for the state
ρ. Furthermore, for j ∈ [2] and for all jointly typical vectors
(vn, un) ∈ T

(n)
δ (pV U ), let πvn , πun

j
, πvnun

j
, πun and πvnun be

the conditional typical projector [17, Def. 15.2.4] with respect
to the states ρvn , ρun

i
, ρvnun

i
, ρun and ρvnun , respectively.

Now, we define the following sub-POVMs in the Hilbert
space H⊗n

Z :

ΠV
vnun=

∆ πρπvnπvnunπvnπρ,Π
Uj

vnun=∆ πρπun
j
πvnunπun

j
πρ,

Π
VUj

vnun=∆ πρπvnun
j
πvnunπvnun

j
πρ,Π

U
vnun=∆ πρπunπvnunπunπρ,

Π
VU
vnun =∆ πρπvnunπρ : i ̸= j, i, j ∈ [2]. (14)

The following are well-known results regarding typical
projectors and (vn, un) ∈ T

(n)
8δ (pV U ).

Proposition 7. For all ϵ > 0, and δ ∈ (0, 1) sufficiently small
and n sufficiently large, and i, j ∈ [2] with i ̸= j the following
inequality holds for the sub-POVMs defined in (14).

Tr
(
ΠΦ

vnun ρvnun

)
≥ 1− ϵ,

for all Φ∈{V,Uj,VUj,U,VU},

Tr
(
Π

VU
vnunρ

)
≤ 2−n(I(V,U1,U2;Z)σ−ϵ),∑

un

pnU (u
n) Tr

(
ΠV

vnunρvn

)
≤ 2−n(I(U1,U2;Z|V )σ−ϵ),

∑
vn

pnV (v
n) Tr

(
Π

U
vnunρun

)
≤ 2−n(I(V ;Z|U1,U2)σ−ϵ),∑

un
i

pnUi
(un

i ) Tr
(
Π

VUj

vnunρvnun
j

)
≤ 2−n(I(Ui;Z|Uj ,V )σ−ϵ),

∑
vnun

i

pnV (v
n)pnUi

(un
i ) Tr

(
Π

Uj

vnunρun
j

)
≤ 2−n(I(V,Ui;Z|Uj)σ−ϵ).

where the mutual information quantities are taken with respect
to the classical-quantum state σ same as in Definition 12.

After constructing the sub-POVMs, we now construct the
projectors. It is worth to observe that by the Gelfand-
Naimark theorem [18], there exists orthogonal projectors
Π̄V

vnun , Π̄
Uj

vnun , Π̄
VUj

vnun , Π̄
U
vnun and Π̄

VU
vnun in H̄⊗n

Z that gives
the same measurements statistics on the states

(
σ ⊗

|0⟩⟨0|C2n) ∈ D(H̄⊗n
Z ) that sub-POVMs defined in (14) give

on the states σ ∈ D(H⊗n
Z ). To summarize upto this point,

we have constructed the projectors in H̄⊗n
Z for the channel

N4 using the sub-POVMs defined in (14), and we are now
equipped to construct the sub-POVMs for N ′

4. Let us define
Ω̄V

vnun as the orthogonal complement of the support of Π̄V
vnun .

Analogously, we define Ω̄
Uj

vnun , Ω̄
VUj

vnun , Ω̄
U
vnun , and Ω̄

VU
vnun .

Then we define the corresponding tilted subspace in H′
Z
⊗n as:

ΩV
vnunwn

V wn
U
=∆ T V

wn
V ;τ (Ω̄

V
vnun) , for all wn

V ∈ Wn
V1

. Likewise,

define Ω
Uj

vnunwn
V wn

U
,Ω

VUj

vnunwn
V wn

U
and Ω

U
vnunwn

V wn
U

. Also, let us
define a new subspace Ω̂vnunwn

V wn
U

, which is analogous to the

‘union’ of ‘complement’ of orthogonal projectors correspond-
ing to the sub-POVMs defined in (14):

Ω̂vnunwn
V wn

U
=∆ Ω̄

VU
vnun

⊕
ΩV

vnunwn
V wn

U

⊕
j∈[2]

Ω
Uj

vnunwn
V wn

U⊕
j∈[2]

Ω
VUj

vnunwn
V wn

U

⊕
Ω

U
vnunwn

V wn
U
. (15)

Consider a collection of orthogonal projectors Π̂′
vnunwn

V wn
U

in H′
Z
⊗n projecting onto Ω̂vnunwn

V wn
U

, and the orthogonal
projector Π̃′ also in H′

Z
⊗n projecting onto H̄⊗n

Z .
Subsequently, define the sub-POVMs in H′

Z
⊗n for channel

N ′
4 as follows:

γvnunwn
V wn

U
=∆
(
I− Π̂′

vnunwn
V wn

U

)
Π̃′
(
I− Π̂′

vnunwn
V wn

U

)
.

(16)

The decoder now uses the sub-POVMs γvnunwn
V wn

U
as

defined above to construct a square root measurement [17],
[18] to decode the messages. We define following operators,

λ(a,m),m3,m4
=∆
(∑

â,m̂

∑
m̂3,m̂4

γ(â,m̂),m̂3,m̂4

)−1/2

γ(a,m),m3,m4(∑
â,m̂

∑
m̂3,m̂4

γ(â,m̂),m̂3,m̂4

)−1/2

,

(17)

where γ(a,m),m3,m4
is an abbreviation for

γvn(a,m)un
1 (m3)un

2 (m4)wn
V (m)wn

U1
(m3)wn

U2
(m4), and we let

the perturbation wV used by the decoder is identical to that
of either user 1 or user 2, and without loss of generality
wV = wV1 , as mentioned earlier (in the discussion on
encoding).

Distribution of Random Code: The dis-
tribution of the random code is completely
specified through the distribution P(·) of
GI , GO/I , B

n
j , Amj

, ,Wn
Vj
(mj), U

n
j (mj+2),W

n
Uj
(mj+2) : j ∈

[2]. We let

P


GI = gI , GO/I = gO/I , B

n
j = bnj , Amj

= amj
,

Un
j (mj+2) = un

j (mj+2),
Wn

Vj
(mj)= wn

vj (mj),W
n
Uj
(mj+2)= wn

uj
(mj+2)

: j ∈ [2] , m ∈ Fl
q × Fl

q × [ql1 ]× [ql2 ]


=
∏
j∈[2]

1{amj
∈Aj(mj)}

θ(mj)|WVj
||WUj

|
pnUj

(un
j (mj+2))

1

qkn+ln+2n
. (18)

Also define A⊕ =∆ Am1 ⊕Am2 .
Error Analysis: We derive an upper bound on ξ̄(c(n),N ′

4), by
averaging over the above ensemble. Using the encoding and
decoding rule stated above, the average probability of error of
the code is given as,

ξ̄(c(n),N ′
4) =

∑
m

pM (m)Tr

{(
I−
∑
a

λ(a,m⊕),m3,m4

)
ρ′ ⊗n
m

}
≤
∑
m

pM (m)Tr
{(
I− λ(a⊕,m⊕),m3,m4

)
ρ′ ⊗n
m

}
,
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where a⊕ =∆ am1
⊕am2

, and ρ′ ⊗n
m is as defined above (in the

discussion on encoding). Now consider the event,

E =∆
{(

V n
1 (Am1 ,m1), V

n
2 (Am2 ,m2),

Un
1 (m3), U

n
2 (m4), V

n(A⊕,m⊕)

)
∈ T

(n)
8δ (pV UV )

}
,

where we recall that V n(A⊕,m⊕) = A⊕GI ⊕ m⊕GO/I ⊕
Bn = V n

1 (Am1
,m1)⊕ V n

2 (Am2
,m2). Then,

EP

{
ξ̄(c(n),N ′

4)
}
= EP

{
ξ̄(c(n),N ′

4)1E c + ξ̄(c(n),N ′
4)1E

}
≤ EP {1E c}︸ ︷︷ ︸

T1

+EP

{
ξ̄(c(n),N ′

4)1E

}
︸ ︷︷ ︸

T2

.

As observed in the earlier section, for all ϵ > 0, and for all
sufficiently large n and sufficiently small δ > 0, we have
T1 ≤ ϵ, if

k

n
log q ≥ log q −min{H(V1), H(V2)}+ δ.

To bound the error probability corresponding to T2, we apply
the Hayashi-Nagaoka inequality and obtain

T2 ≤ EP

[
2 T20 + 4

×
{
T2V +

∑
j∈[2]

T2Uj +
∑
j∈[2]

T2V Uj + T2U + T2V U

}
︸ ︷︷ ︸

T21

]
,

where,

T20 =∆ 1−
∑
m

pM (m) Tr
(
Γ(A⊕,m⊕),m3,m4

ρ′ ⊗n
m

)
1E ,

T2U1
=∆
∑
m

∑
m̂3 ̸=m3

pM (m) Tr
(
Γ(A⊕,m⊕),m̂3,m4

ρ′ ⊗n
m

)
1E ,

T2V =∆
∑
m

∑
â

∑
m̂ ̸=m⊕

pM (m) Tr
(
Γ(â,m̂),m3,m4

ρ′ ⊗n
m

)
1E ,

T2V U1
=∆
∑
m

∑
â

∑
m̂ ̸=m⊕

m̂3 ̸=m3

pM (m) Tr
(
Γ(â,m̂),m̂3,m4

ρ′ ⊗n
m

)
1E ,

T2U =∆
∑
m

∑
m̂3 ̸=m3
m̂4 ̸=m4

pM (m) Tr
(
Γ(A⊕,m⊕),m̂3,m̂4

ρ′ ⊗n
m

)
1E ,

T2V U =∆
∑
m

∑
â

∑
m̂ ̸=m⊕

m̂3 ̸=m3
m̂4 ̸=m4

pM (m) Tr
(
Γ(â,m̂),m̂3,m̂4

ρ′ ⊗n
m

)
1E ,

Γ(A⊕,m⊕),m̂3,m̂4
is a randomized version of γ(a⊕,m⊕),m̂3,m̂4

.
Similary we can define T2U2

and T2V U2
. Below, we provide

the following propositions that summarize all the rate con-
straints obtained from bounding these error terms.

Proposition 8. For any ϵ ∈ (0, 1), and for all sufficiently small
δ, τ > 0 and sufficiently large n, we have EP [T20] ≤ ϵ.

Proof. The proof is provided in Appendix A-C.

Proposition 9. For any ϵ ∈ (0, 1), and for all sufficiently small
δ, τ > 0 and sufficiently large n, we have EP [T21] ≤ ϵ if the
following inequalities hold:

2k+lj
n

log q ≤ 2 log q+I(Uj ;Z|V,Ui)σ−H(V1,V2)− ϵ,

2k+l1+l2
n

log q ≤ 2 log q+I(U1,U2;Z|V )σ−H(V1,V2)−ϵ,

3k+l

n
log q ≤ 3 log q+I(V ;Z|U1, U2)σ−HV1,V2

− ϵ,

3k+l+lj
n

log q ≤ 3 log q+I(V,Uj ;Z|Ui)σ−HV1,V2
− ϵ,

3k+l+l1+l2
n

log q ≤ 3 log q+I(V,U1, U2;Z)σ−HV1,V2
− ϵ,

where i, j ∈ [2], i ̸= j,HV1,V2 = H(V1, V2) + H(V ), and
the mutual information quantities are taken with respect to
the classical-quantum state σ same as in Definition 12.

Proof. The proof is provided in Appendix A-D.

Now, we need to bound average error probability for N4.
For any ϵ ∈ (0, 1), if we let τ = ϵ1/4, and use the following
argument,

∥∥∥ρ′vnunwn − ρ̃vnun

∥∥∥
1
≤ 4τ (similar to the provided

in [13, Equation 5]) and the trace inequality Tr{∆ρ} ≤
Tr{∆σ} + 1

2∥ρ− σ∥1, where 0 ≤ ∆, ρ, σ ≤ I , then for all
sufficiently large n, we have ξ̄(c(n),N4) ≤ ξ̄(c(n),N ′

4)+2ϵ1/4.
In other words, the average decoding error for CQ-MAC N4

is bounded from above by the average decoding error for CQ-
MAC N ′

4 with an additional error of 2ϵ1/4 for the same rate
constraints and decoding strategy used for N ′

4. This concludes
the proof of Theorem 4.

B. Proof of Theorem 5

We again use the approach of source channel separation
with two modules. Consider a source given by (WS1,S2 , f).
For the source part, the theorem requires showing the above
source can be compressed to rates (R,R1, R2) that belongs to
Rs(WS1,S2

, f, q). Ahlswede-Han [9] source coding scheme
achieves this. This forms the source coding module. This
module produces messages Mj1,Mj2 at encoder j ∈ [2], at
rates Rj , R, respectively. As for the channel part, its task is
to recover (M11,M21,M12 ⊕ M22) reliably, and to provide
it to the source decoder. For this, we employ the result
from Theorem 4, which shows that if the triple (R,R1, R2)
belongs to Rc(N2, q), then for any arbitrary distribution of
pM11M12M21M22 , such a recovery is guaranteed. This com-
pletes the proof of the theorem.

VIII. CONCLUSION

We considered the task of communicating a bivariate func-
tion of two classical sources over a CQ-MAC. We proposed
a coding scheme based on algebraic structured codes, in
particular, nested coset codes, and provided a set of suf-
ficient conditions that allow the receiver of the CQ-MAC
to reconstruct an addition function, with respect to a prime
field, without necessarily recovering the individual sources
themselves. As the natural next step, we considered the task
of computing any generic function. Using the coding scheme
based on a classical superposition of algebraic structured codes
and unstructured codes, and the idea of embedding functions
on a prime field, we provided a new set of sufficient conditions
for communicating any arbitrary function over a generic CQ-
MAC. We provided these conditions in terms of single-letter
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quantum information-theoretic quantities. We also identified
examples, establishing the efficacy of our approach.

Our work opens further directions for exploration such
developing an outer bound to the performance limit, and
formulating the problem and characterizing a performance
limit in the one-shot case. One may extend the proposed
method to the case with entanglement assistance. Another
questions with potential wide-reaching implications is how
to extend the results to a fully quantum-quantum (QQ) setup
with quantum sources. In section III-C, we have been able to
show sufficient conditions required for reconstructing sum of
classical sources over a QQ-MAC. It is of interest to develop
the codes for reconstructing a CPTP map of quantum sources
over a QQ-MAC.

Acknowledgement: We thank the anonymous reviewers
for their comments that greatly helped in preparing a better
manuscript.

APPENDIX A
PROOF OF PROPOSITIONS

A. Proof of Proposition 5

We begin by denoting the event

J =∆
{

Θ(m) ≥ 1,V n(â, m̂) = x̂n

Am = d, V n(d,m) = xn

}
⊆K =∆

{
V n(â, m̂) = x̂n

V n(d,m) = xn

}
. (19)

Considering EP [T22], we perform the following steps.

EP [T22] =
∑
â∈Vk

EP [tr(Γâ,mρ⊗n
m )1{θ(m)≥1}1{â ̸=Am}]

=
∑
d∈Vk

∑
â∈Vk

∑
xn∈Tn

δ (pV )

∑
x̂n∈Vn

E
[
tr(Γâ,mρ⊗n

m )1{â̸=d}1J
]

=
∑
d∈Vk

∑
â ̸=d

∑
xn∈Tn

δ (pV )

∑
x̂n∈Vn

E
[
tr(Γâ,mρ⊗n

m )1J
]
,

where the restriction of the summation xn to Tn
δ (pV ) is valid

since |S(m)| > 1 forces the choice Am ∈ S(m) such that
V n(Am,m) ∈ Tn

δ (pV ). Going further, we have

EP [T22] =
∑

d,â∈Vk

â̸=d

∑
xn∈Tn

δ (pV )

∑
x̂n∈Tn

δ (pV )

E
[
tr(πρπx̂nπρρ

⊗n
xn )1J

]
=

∑
d,â:â̸=d

∑
xn∈Tn

δ (pV )

∑
x̂n∈Tn

δ (pV )

tr(πρπx̂nπρρ
⊗n
xn )P(J )

(a)

≤
∑

d,â:â̸=d

∑
x̂n∈Tn

δ (pV )

tr(πx̂nπρ)P(J )2−n[S(ρ)−H(pV )+δ1]

(b)

≤
∑

d,â:â̸=d

∑
x̂n∈Tn

δ (pV )

tr(πx̂nπρ)P(K)2−n[S(ρ)−H(pV )+δ1]

(c)
=

∑
d,â:â̸=d

∑
x̂n∈Tn

δ (pV )

tr(πx̂nπρ)
1

q2n
2−n[S(ρ)−H(pV )+δ1]

(d)

≤ 2−n[I(V ;Z)σ+δ1−2H(pV )− 2k
n log q+2 log q], (20)

where the restriction of the summation x̂n to Tn
δ (pV ) follows

from the fact that πx̂n is the zero projector if x̂n /∈ Tn
δ (pV ), (a)

follows from the operator inequality
∑

xn∈Tδ(pV ) πρρxnπρ ≤
2n(H(pV )+δ1(δ)πρρ

⊗nπρ ≤ 2n(H(pV )+δ1(δ)−S(ρ))πρ found in
[17, Eqn. 20.34, 15.20], (b) follows from Eqn. 19, (c) follows
from pairwise independence of the distinct codewords, and (d)
follows from πρ ≤ I and [17, Eqn. 15.77] and δ1(δ) ↘ 0 as
δ ↘ 0. We now derive an upper bound on EP [T23]. We have

EP [T23] =
∑

d,â∈Vk

∑
m̸̂=m

∑
xn,x̂n∈
Tn
δ (pV )

E
[
tr(πρΠâ,m̂πρρ

⊗n
Am,m)1J

]

=
∑

d,â∈Vk

∑
m̂ ̸=m

∑
xn,x̂n∈Tn

δ (pV )

tr(πx̂nπρρ
⊗n
xn πρ)P(J )

≤
∑

d,â∈Vk

∑
m̂ ̸=m

∑
x̂n∈Tn

δ (pV )

tr(πx̂nπρ)P(J )2−n[S(ρ)−H(pV )+δ1]

≤
∑

d,â∈Vk

∑
m̂ ̸=m

∑
x̂n∈Tn

δ (pV )

tr(πx̂nπρ)P(K)2−n[S(ρ)−H(pV )+δ1]

=
∑

d,â∈Vk

∑
m̂ ̸=m

∑
x̂n∈Tn

δ (pV )

tr(πx̂nπρ)
1

q2n
2−n[S(ρ)−H(pV )+δ1]

≤ 2−n[I(V ;Z)σ+2 log2 q−2H(pV )− 2k+l
n log2 q+δ1],

where the inequalities above use similar reasoning as in
bounding the above term corresponding to T22.

B. Proof of Proposition 6

We begin by defining the following events:

J =∆
{(

V n
1 (A1.m1 ,m1), X

n
1 (m1), V

n
2 (A2.m2 ,m2), X

n
2 (m2)

)
= (vn1 , x

n
1 , v2, x2) ∈ T8δ(pV1X1V2X2

)
}
,

V =∆ {V n
j (aj ,mj) = vnj : j ∈ [2]},

V̂ =∆ {V n(â,m1 ⊕m2) = v̂n}, A =∆ {Aj,mj
= aj : j ∈ [2]},

This gives,

EP [T22] = EP

[
4
∑
m

∑
a1,a2

∑
â̸=a⊕

∑
(vn,x)∈
T8δ(pV X)

pM (m)

× Tr
(
Γâ,m⊕ρ⊗n

m1m2

)
1J1A

]
,

(a)
= 4

∑
m

∑
a1,a2

∑
â̸=a⊕

∑
(vn,x)∈
T8δ(pV X)

∑
v̂n∈Vn

pM (m) Tr
(
πv̂nπρρ

⊗n
xn
1 x

n
2
πρ

)
× EP

{
1J1A1V̂

}
,

(b)

≤ 4
∑
m

∑
a1,a2

∑
â̸=a⊕

∑
(vn)∈

T8δ(pV )

∑
xn∈Xn

∑
v̂n∈Vn

pM (m)P(V,A, V̂)

×

 2∏
j=1

pXj |Vj
(xn

j |vnj )

Tr
(
πv̂nπρρ

⊗n
xn
1 x

n
2
πρ

)
,

(c)
= 4

∑
m

∑
a1,a2

∑
â̸=a⊕

∑
(vn)∈

T8δ(pV )

∑
v̂n∈Vn

pM (m)P(V,A, V̂)

× Tr
(
πv̂nπρρ

⊗n
vn
1 vn

2
πρ

)
,
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(d)

≤ 4
∑
m

∑
a1,a2

∑
â ̸=a⊕

∑
(vn)∈

T8δ(pV )

∑
v̂n∈Vn

pM (m)P(V, V̂)

× Tr
(
πv̂nπρρ

⊗n
vn
1 vn

2
πρ

)
≤ 4

∑
m

∑
a1,a2

∑
â̸=a⊕

∑
(vn)∈

T8δ(pV )

∑
v̂n∈Vn

pM (m)

q3n
Tr
(
πv̂nπρρ

⊗n
vn
1 vn

2
πρ

)
(e)

≤ 4
∑
m,

a1,a2

∑
â

∑
v̂n∈T8δ(V )

pM (m) Tr(πv̂nπρ)
1

q3n

× 2−n(S(ρ)−H(V1,V2)−δ1)

(f)

≤ 4
∑
m,

a1,a2

∑
â

pM (m)

q3n
2−n[S(ρ)−H(V1,V2)−δ1−

∑
vpV(v)S(ρv)−H(V)]

(g)

≤ 4 · exp

 −n
[
3 log q−H(V1, V2)− 3k

n log q − δ1

−
(∑

v pV (v)S(ρv) +H(V )− S(ρ)
)]
,

(21)

and (a) follows from a summing over possible choices for
V n(â,m1⊕m2), (b) follows from evaluating the expectation,
enlarging the summation range of xn

1 , x
n
2 and substituting the

distribution of the random code, (c) follows from the defini-
tions of ρv1v2 : v ∈ V , (d) follows as an upper bound since one
of the events has been enlarged, (e) follows from [27, Lemma
N.0.21c] and the operator inequality

∑
xn∈Tδ(pV ) πρρxnπρ ≤

2n(H(pV )+δ1(δ))πρρ
⊗nπρ ≤ 2n(H(pV )+δ1(δ)−S(ρ))πρ found in

[17, Eqn. 20.34, 15.20], and from the definition of πv̂n which
is the 0 projector if v̂n is not typical with respect to pV , (f)
follows from πρ ≤ I and [17, Eqn. 15.77], and finally (g)
follows by collating all the bounds.

We now analyze T23.

EP [T23] = EP

[
4
∑

m∈V2l

m̂ ̸=m1⊕m2

∑
a∈V2k

â∈Vk

∑
(vn,x)∈
T8δ(pV X)

pM (m)

× Tr
(
Γâ,m⊕ρ⊗n

m1m2

)
1J1A

]
= 4

∑
m∈V2l

m̂ ̸=m1⊕m2

∑
a∈V2k

â∈Vk

∑
(vn,x)∈
T8δ(pV X)

∑
v̂n∈Vn

pM (m)

× Tr
(
πv̂nπρρ

⊗n
xn
1 x

n
2
πρ

)
EP
[
1J1A1V̂

]
≤ 4

∑
m∈V2l

m̂ ̸=m1⊕m2

∑
a∈V2k

â∈Vk

∑
(vn)∈

T8δ(pV )

∑
xn∈Xn

∑
v̂n∈Vn

pM (m)P(V,A, V̂)

×

 2∏
j=1

pXj |Vj
(xn

j |vnj )

Tr
(
πv̂nπρρ

⊗n
xn
1 x

n
2
πρ

)
= 4

∑
m∈V2l

m̂ ̸=m1⊕m2

∑
a∈V2k

â∈Vk

∑
(vn)∈

T8δ(pV )

∑
v̂n∈Vn

pM (m)P(V,A, V̂)

× Tr
(
πv̂nπρρ

⊗n
vn
1 vn

2
πρ

)

≤ 4
∑

m∈V2l

m̂ ̸=m1⊕m2

∑
a∈V2k

â∈Vk

∑
(vn)∈

T8δ(pV )

∑
v̂n∈Vn

pM (m)P(V, V̂)

× Tr
(
πv̂nπρρ

⊗n
vn
1 vn

2
πρ

)
≤ 4

∑
m∈V2l

m̂ ̸=m1⊕m2

∑
a∈V2k

â∈Vk

∑
(vn)∈

T8δ(pV )

∑
v̂n∈Vn

pM (m)

q3n
Tr
(
πv̂nπρρ

⊗n
vn
1 vn

2
πρ

)

≤ 4
∑

m∈V2l

m̂ ̸=m1⊕m2

∑
a∈V2k

â∈Vk

∑
v̂n∈Vn

pM (m)

q3n
Tr(πv̂nπρ)

× 2−n(S(ρ)−H(V1,V2)−δ1)

= 4
∑
m,m̂

∑
â,

a1,a2

∑
v̂n∈Tδ(V1⊕V2)

pM (m)

q3n
Tr(πv̂nπρ)

× 2−n(S(ρ)−H(V1,V2)−δ1)

≤ 4
∑
m,m̂

∑
â,

a1,a2

pM (m)

q3n
2−n[S(ρ)−H(V1,V2)−δ1−

∑
vpV(v)S(ρv)−H(V)]

≤ 4 · exp

−n
[
3 log q−H(V1, V2)− (3k+l)

n log q − δ1

−
(∑

v pV (v)S(ρv) +H(V )− S(ρ)
)]
.

The above sequence of steps are analogous to those used in
deriving an upper bound on T22 and follow from the same
set of arguments as provided for the bounds in (21). This
completes the proof of the claimed statement.

C. Proof of Proposition 8

For m, am1 and am2 , define the following events:

V ≜ {V n
j (amj

,mj) = vnj : j ∈ [2]},

U ≜ {Un
j (mj+2) = un

j : j ∈ [2]},

W ≜ {Wn(m) = wn}, A ≜ {Amj
= aj : j ∈ [2]}.

Additionally, for m⊕ and a⊕, define the following events:

V̂ =∆ {V n(a⊕,m⊕) = vn}, Ŵ =∆ {Wn
V (m

⊕) = wn
V }.

EP [T20] = EP

[∑
m
a

∑
vnunvn

wnwn
V

pM (m)1V1V̂1U1W1Ŵ1A1E

× Tr
{(
I− Γvnunwn

V wn
U

)
ρ′unvnwn

}]
,

(a)

≤ 2τ +
∑
m
a

∑
(vnun)∈T

(n)
8δ

vnwnwn
V

pM (m)P(V, V̂,A)P (U)P(W, Ŵ)

× Tr
{(
I− Γvnunwn

V wn
U

)
ρ̃unvn

}
,

(b)

≤ 2τ + 4
∑
m
a

∑
(vnun)∈T

(n)
8δ

vnwnwn
V

pM (m)
[
Tr
{
(I− Π̃′)ρ̃unvn

}

+Tr
{
Π̂′

vnunwn
V wn

U
ρ̃unvn

}]
P(V, V̂,A)P (U)P(W, Ŵ),
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(c)
= 2τ + 4

∑
m
a

∑
(vnun)∈T

(n)
8δ

vnwnwn
V

pM (m)1{vn=vn
1 ⊕vn

2 }

× Tr
{
Π̂′

vnunwn
V wn

U
ρ̃unvn

}
P(V, V̂,A)P (U)P(W, Ŵ),

(d)

≤ 2τ + 4 · 18
τ2

∑
m
a

∑
(vnun,vn)∈T

(n)
8δ

pM (m)

×
( ∑

Φ∈U

(
1− Tr

{
ΠΦ

vnunρvnun

}))
P(V, V̂,A)P (U) ,

(e)

≤ 2τ +
28·18
τ2

δ2,

where U =∆ {V,Uj,VUj,U,VU}, and δ2(δ) ↘ 0 as δ ↘ 0,
and (a) follows from the argument

∥∥∥ρ′vnunwn − ρ̃vnun

∥∥∥
1
≤ 4τ

(similar to the [13, Equation 5]) and the trace inequality
Tr{∆ρ} ≤ Tr{∆σ} + 1

2∥ρ− σ∥1, where 0 ≤ ∆, ρ, σ ≤
I , (b) follows from Non-Commutative union bound [28],
(c) follows from the fact that Π̃′ is a projection operator
H′

Z
⊗n projecting onto H̄⊗n

Z , and ρ̃vnun ∈ D(H̄⊗n
Z ). Thus,

Tr{(I − Π̃′)ρ̃vnun} = 0, (d) follows from [13, Corollary 1],
and (e) follows from Proposition 7. Letting τ = δ

1/4
2 , we

obtain EP [T20] ≤ 504
√
δ2 + 2δ

1/4
2 .

This concludes the proof of the Proposition 8.

D. Proof of Proposition 9

For m, am1
and am2

, define the following events:

V ≜ {V n
j (amj

,mj) = vnj : j ∈ [2]},

U ≜ {Un
j (mj+2) = un

j : j ∈ [2]},

W ≜ {Wn(m) = wn}, A ≜ {Amj
= aj : j ∈ [2]}.

1) Analysis of T2V U : We begin by analyzing error event

T2V U =∆
∑
m

∑
â

∑
m̸̂=m⊕

m̂3 ̸=m3
m̂4 ̸=m4

pM (m) Tr
(
Γ(â,m̂),m̂3,m̂4

ρ′ ⊗n
m

)
1E .

Define the following additional events for m̂, m̂3, m̂4 and â:

V̂ =∆ {V̂ n(â, m̂) = v̂n},

Û ≜ {Un
j (m̂j+2) = ûn

j : j ∈ [2]},

Ŵ =∆ {Wn
V (m̂) = ŵn

V , Wn
U (m̂3, m̂4) = ŵn

U}.

Next consider the set of inequalities which provide an upper
bound on EP

[
T2V U

]
as given in the following page. We

provide the following explanations for the steps involved:
(a) follows by bounding 1A ≤ 1, (b) follows by using
P(V, V̂) = 1

q3n and rearranging the terms, (c) follows by using
the fact that wV used by the decoder is identical to wV1

and
expanding P(W|Ŵ) (for m̂ ̸= m⊕, m̂3 ̸= m3, m̂4 ̸= m4) as
follows:∑
wn

P(W|Ŵ)

=
∑
wn

P(Wn(m)=wn|Wn
V (m̂)= ŵn

V ,W
n
U (m̂3, m̂4)= ŵn

U ),

=

{∑
wn 1/|W|4n : m̂ ̸= m1∑
wn 1{wn

V1
=ŵn

V }1/|W|3n : m̂ = m1,

(d) follows from the observations [13, Section 4]:∑
wn

1

|W|4n
T VU
wn;τ (ρ̃vnun)

=
1

1 + 4τ2
ρ̃vnun +Nτ (ρ̃vnun),∑

wn

1{wn
V1

=ŵn
V }

1

|W|3n
T VU
wn;τ (ρ̃vnun)

=
1 + τ2

1 + 4τ2
T V1

ŵn
V ;τ (ρ̃vnun) +NV1

ŵn
V ;τ (ρ̃vnun),

(e) follows from the typicality property that for
vn ∈ T

(n)
8δ (pV1V2

) and sufficiently large n, we have∑
vn pnV (v

n)pnV |V (v
n|vn) ≤ 2−n(H(V1,V2)+δ1), and the

following observations found in [13, Section 4]:

(i)
∥∥Nτ (ρ̃vnun)

∥∥
∞ ≤ 4

√
2τ/
√

|W|n,
(ii) ||NV1

ŵn
V ;τ (ρ̃vnun)||∞ ≤ 4

√
2τ/
√
|W|n,

(iii) ||Γv̂nûnŵn
V ŵn

U
||1 ≤ 2|HZ |n,

(f) follows by using the definition ρ̃vnun =∑
vn pnV |V (v

n|vn)1{vn=vn
1 ⊕vn

2 }ρvnun ⊗ |0⟩⟨0|C2n

, (g)
follows from [13, Equation 8], and the fact that
Tr{Π̄VU

v̂nûn ρ̃} = Tr{ΠVU
v̂nûnρ}, (h) follows from Proposition 7,

and finally (i) follows by choosing |W| ≤ 2I(V,U1,U2;Z)σ .

2) Analysis of T2U : We now analyze the error event T2U

using similar techniques as used for analyzing T2V U . Define
the following events for m⊕, m̂3, m̂4 and a⊕:

V̂ =∆ {V n(a⊕,m⊕) = vn},

Û ≜ {Un
j (m̂j+2) = ûn

j : j ∈ [2]},

Ŵ =∆ {Wn
V (m

⊕) = wn
V , Wn

U (m̂3, m̂4) = ŵn
U}.

Now consider the set of inequalities which provide an upper
bound on EP [T2U ] as given in the following page. The
sequence of steps involved are analogous to those used in
deriving an upper bound on EP [T2V U ].

Similarly, for i, j ∈ [2] and i ̸= j, we get:

EP [T2V Uj ]

≤ 2

{
n
[(

3k+l+lj
n

)
log q−3 log q+H(V1,V2)+H(V )+3δ1−I(V,Uj ;Z|Ui)σ

]}
,

EP [T2V ]

≤ 2{n[(
3k+l

n ) log q−3 log q+H(V1,V2)+H(V )+3δ1−I(V ;Z|U1,U2)σ]},
EP [T2Uj

]

≤ 2

{
n
[(

2k+lj
n

)
log q−2 log q+H(V1,V2)+3δ1−I(Uj ;Z|V,Ui)σ

]}
.

This completes the proof of the Proposition 9
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EP

[
T2V U

]
= E

[∑
m
a

∑
unûnvnv̂n

wnŵn
V ŵn

U

∑
â

∑
m̂ ̸=m⊕

m̂3 ̸=m3
m̂4 ̸=m4

pM (m)Tr
{
Γv̂nûnŵn

V ŵn
U
ρ′vnunwn

}
1V1V̂1U1Û1W1Ŵ1A1E

]
,

(a)

≤
∑
m
a

∑
(un,vn)∈T

(n)
8δ

v̂nûn

wnŵn
V ŵn

U

∑
â

∑
m̂ ̸=m⊕

m̂3 ̸=m3
m̂4 ̸=m4

pM (m)Tr
{
Γv̂nûnŵn

V ŵn
U
ρ′vnunwn

}
P(V, V̂)P(U)P(Û)P(W, Ŵ),

(b)
=
∑
m
a

∑
v̂nûn

ŵn
V ŵn

U

∑
â

∑
m̂ ̸=m⊕

m̂3 ̸=m3
m̂4 ̸=m4

pM (m)

q3n
P(Û)P(Ŵ)Tr

{
Γv̂nûnŵn

V ŵn
U

∑
(un,vn)∈T

(n)
8δ

wn

P(U)P(W|Ŵ)ρ′vnunwn

}
,

(c)
=
∑
m
a

∑
v̂nûn

ŵn
V ŵn

U

∑
â

∑
m̂ ̸=m⊕

m̂3 ̸=m3
m̂4 ̸=m4

pM (m)

q3n
P(Û)P(Ŵ)Tr

{
Γv̂nûnŵn

V ŵn
U

∑
(un,vn)∈T

(n)
8δ

P(U)

×
[
1{m̸̂=m1}

∑
wn

1

|W|4n
T VU
wn;τ (ρ̃vnun) + 1{m̂=m1}

∑
wn

1{wn
V1

=ŵn
V }

1

|W|3n
T VU
wn;τ (ρ̃vnun)

]}
,

(d)

≤
∑
m
a

∑
v̂nûn

ŵn
V ŵn

U

∑
â

∑
m̂ ̸=m⊕

m̂3 ̸=m3
m̂4 ̸=m4

pM (m)

q3n
P(Û)P(Ŵ)Tr

{
Γv̂nûnŵn

V ŵn
U

∑
(un,vn)∈T

(n)
8δ

P(U)

×
[
1{m̸̂=m1}

( 1

1 + 4τ2
ρ̃vnun +Nτ (ρ̃vnun)

)
+ 1{m̂=m1}

( 1 + τ2

1 + 4τ2
T V1

ŵn
V ;τ (ρ̃vnun) +NV1

ŵn
V ;τ (ρ̃vnun)

)]}
,

(e)

≤
∑
m
a

∑
v̂nûn

ŵn
V ŵn

U

∑
â

∑
m̸̂=m⊕

m̂3 ̸=m3
m̂4 ̸=m4

pM (m)

q3n
P(Û)P(Ŵ)2n(H(V1,V2)+δ1)

∑
vn

pnV (v
n)

[
Tr
{
Γv̂nûnŵn

V ŵn
U

×
∑
un

P(U)
[
1{m̂ ̸=m1}

∑
vn:(un,vn)∈T

(n)
8δ

pnV |V (v
n|vn)1{vn=vn

1 ⊕vn
2 }ρ̃vnun+

+ 1{m̂=m1}T
V1

ŵn
V ;τ (

∑
vn:(un,vn)∈T

(n)
8δ

pnV |V (v
n|vn)1{vn=vn

1 ⊕vn
2 }ρ̃vnun)

]}
+

16
√
2τ |HZ |n√
|W|n

]
,

(f)
=
∑
m
a

∑
v̂nûn

ŵn
V ŵn

U

∑
â

∑
m̂ ̸=m⊕

m̂3 ̸=m3
m̂4 ̸=m4

pM (m)

q3n
P(Û)P(Ŵ)2n(H(V1,V2)+δ1)

[
Tr
{
Γv̂nûnŵn

V ŵn
U

×
∑
vnun

pnV (v
n)P(U)

[
1{m̂ ̸=m1}ρ̃vnun + 1{m̂=m1}T

V1

ŵn
V ;τ (ρ̃vnun)

]}
+

16
√
2τ |HZ |n√
|W|n

]
,

(g)

≤
∑
m
a

∑
v̂nûn

ŵn
V ŵn

U

∑
â

∑
m̸̂=m⊕

m̂3 ̸=m3
m̂4 ̸=m4

pM (m)

q3n
P(Û)P(Ŵ)2n(H(V1,V2)+δ1)

[
Tr
{
Π

VU
v̂nûnρ

}
+

16
√
2τ |HZ |n√
|W|n

]
,

(h)

≤
∑
m
a

∑
v̂nûn

ŵn
V ŵn

U

∑
â

∑
m̂ ̸=m⊕

m̂3 ̸=m3
m̂4 ̸=m4

pM (m)

q3n
P(Û)P(Ŵ)2n(H(V1,V2)+δ1)

[
2−n(I(V U1U2;Z)−δ1) +

16
√
2τ |HZ |n√
|W|n

]
,

(i)

≤ 2

{
n

[(
3k+l+l1+l2

n

)
log q−3 log q+H(V )+H(V1,V2)+3δ1−I(V,U1,U2;Z)σ

]}
,
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EP
[
T2U

]
= E

[∑
m
a

∑
vn,ûn,vn,un

wn
V ,wn,ŵn

U

∑
m̂3 ̸=m3
m̂4 ̸=m4

pM (m)Tr
{
Γvnûnwn

V ŵn
U
ρ′vnunwn

}
1V1V̂1U1Û1W1Ŵ1A1E

]
,

(a)

≤
∑
m
a

∑
vn(un,vn)∈T

(n)
8δ

ûnwnwn
V ŵn

U

∑
m̂3 ̸=m3
m̂4 ̸=m4

pM (m)Tr
{
Γvnûnwn

V ŵn
U
ρ′vnunwn

}
P(V, V̂)P(U)P(Û)P(W, Ŵ),

(b)
=
∑
m
a

∑
vnvnûn

wn
V ŵn

U

∑
m̂3 ̸=m3
m̂4 ̸=m4

pM (m)

q2n
P(Û)P(Ŵ)Tr

{
Γvnûnwn

V ŵn
U

∑
un:(un,vn)∈T

(n)
8δ

wn

P(U)P(W|Ŵ)ρ′vnunwn

}
,

(c)
=
∑
m
a

∑
vnvnûn

wn
V ŵn

U

∑
m̂3 ̸=m3
m̂4 ̸=m4

pM (m)

q2n
P(Û)P(Ŵ)Tr

{
Γvnûnwn

V ŵn
U

∑
un:(un,vn)∈T

(n)
8δ

P(U)

×
[
1{m⊕ ̸=m1}

∑
wn

1

|W|4n
T VU
wn;τ (ρ̃vnun) + 1{m⊕=m1}

∑
wn

1{wn
V1

=wn
V }

1

|W|3n
T VU
wn;τ (ρ̃vnun)

]}
,

(d)

≤
∑
m
a

∑
vnvnûn

wn
V ŵn

U

∑
m̂3 ̸=m3
m̂4 ̸=m4

pM (m)

q2n
P(Û)P(Ŵ)Tr

{
Γvnûnwn

V ŵn
U

∑
un:(un,vn)∈T

(n)
8δ

P(U)

×
[
1{m⊕ ̸=m1}

(
ρ̃vnun +Nτ (ρ̃vnun)

)
+ 1{m⊕=m1}

( 1 + τ2

1 + 4τ2
T V1
wn

V ;τ (ρ̃vnun) +NV1
wn

V ;τ (ρ̃vnun)
)]}

,

(e)

≤
∑
m
a

∑
ûn

wn
V ŵn

U

∑
m̂3 ̸=m3
m̂4 ̸=m4

pM (m)

q2n
P(Û)P(Ŵ)2n(H(V1,V2)+δ1)

∑
vn

pnV (v
n)

[
Tr
{
Γvnûnwn

V ŵn
U

∑
un

P(U)

×
[
1{m⊕ ̸=m1}p

n
V |V (v

n|vn)1{vn=vn
1 ⊕vn

2 }ρ̃vnun

+ 1{m⊕=m1}T
V1
wn

V ;τ (
∑

vn:(un,vn)∈T
(n)
8δ

pnV |V (v
n|vn)1{vn=vn

1 ⊕vn
2 }ρ̃vnun)

]}
+

16
√
2τ |HZ |n√
|W|n

]
,

(f)
=
∑
m
a

∑
ûn

wn
V ŵn

U

∑
m̂3 ̸=m3
m̂4 ̸=m4

pM (m)

q2n
P(Û)P(Ŵ)2n(H(V1,V2)+δ1)

∑
vn

pnV (v
n)

[
Tr
{
Γvnûnwn

V ŵn
U

×
[
1{m⊕ ̸=m1}

∑
un

P(U)ρ̃vnun + 1{m⊕=m1}T
V1

ŵn
V ;τ (

∑
un

P(U)ρ̃vnun)
]}

+
16
√
2τ |HZ |n√
|W|n

]
,

(g)

≤
∑
m
a

∑
wn

V ŵn
U

∑
m̂3 ̸=m3
m̂4 ̸=m4

pM (m)

q2n
P(Ŵ)2n(H(V1,V2)+δ1)

∑
vn

pnV (v
n)

×

[∑
ûn

P(Û)Tr
{
ΠV

vnûnρvn

}
+

16
√
2τ |HZ |n√
|W|n

]
,

(h)

≤
∑
m
a

∑
wn

V ŵn
U

∑
m̂3 ̸=m3
m̂4 ̸=m4

pM (m)

q2n
P(Ŵ)2n(H(V1,V2)+δ1)

[
2−n(I(U1U2;Z|V )−δ1) +

16
√
2τ |HZ |n√
|W|n

]
,

(i)

≤ 2{n[(
2k+l1+l2

n ) log q−2 log q+H(V1,V2)+3δ1−I(U1,U2;Z|V )σ]}.

APPENDIX B
CHARACTERIZATION OF CERTAIN HIGH PROBABLE

SUBSPACES

In this appendix, we characterize certain high probability
subspaces of tensor product quantum states. The statements

we prove here are colloquially referred to as ‘pinching’ [17]
in the literature. We prove statements in a form that can be
used for use in the proof of aforementioned Theorems and
Lemma 1. We begin with definitions of typical and conditional
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typical projectors. We adopt strong (frequency) typicality. All
statements hold for most of the variants of notion of typicality.
For concreteness, the reader may refer to [7, App. A].

Lemma 1. Suppose (i) A,B are finite sets, (ii) pAB is a PMF
on A × B, (iii) (ρb ∈ D(H) : b ∈ B) is a collection of
density operators, ρa =∆

∑
b∈B pB|A(b|a)ρb for a ∈ A and ρ =∑

a∈A
pA(a)ρa =

∑
b∈B

pB(b)ρb. There exists a strictly positive

µ > 0, whose value depends only on pAB , such that for every
δ > 0, there exists a N(δ) ∈ N such that for all n ≥ N(δ),
we have

Tr
(
Πδ

ρΠ
δ
anΠδ

ρρbn
)
≥ 1− exp{−nλδ2},

whenever (an, bn) ∈ T
(n)
δ (pAB) where Πδ

an is the conditional
typical projector of ρan = ⊗n

t=1ρat
[17, Defn. 15.2.4] and

Πδ
ρ is the unconditional typical projector [17, Defn. 15.1.3] of

ρ⊗n .

Proof. We rename A = V , B = X , pAB = pV X , a as v and
b as x. We have

Tr
(
Πδ

ρΠ
δ
vnΠδ

ρρxn

)
≥ Tr

(
Πδ

vnρxn

)
− 1

2

∥∥ρxn −Πδ
ρρxnΠδ

ρ

∥∥ .
(22)

In the following we derive a lower bound on Tr
(
Πδ

vnρxn

)
and derive an upper bound on

∥∥ρxn −Πδ
ρρxnΠδ

ρ

∥∥. Toward
the deriving the former, we recall that we have (vn, xn) ∈
T

(n)
δ (pV X). Let us define:

pY |XV (y|x, v) =∆
〈
ey|v|ρx|ey|v

∣∣ey|v|ρx|ey|v〉 ,
for all (x, v, y) ∈ X × V × Y . Clearly, we have
pY |XV (y|x, v) ≥ 0, and

∑
y∈Y pY |XV (y|x, v) =∑

y∈Y
〈
ey|v|ρx|ey|v

∣∣ey|v|ρx|ey|v〉 = Tr(ρx) = 1. Hence, we
see that pY |XV is a stochastic matrix. Next we note that∑
x∈X

pY |XV (y|x, v)pXV (x, v)

=
∑
x∈X

pXV (x, v)
〈
ey|v|ρx|ey|v

∣∣ey|v|ρx|ey|v〉
=pV (v)

×
〈
ey|v|

∑
x∈X

pX|V (x|v)ρx|ey|v

∣∣∣∣∣ey|v|∑
x∈X

pX|V (x|v)ρx|ey|v

〉
= pV (v)

〈
ey|v|ρv|ey|v

∣∣ey|v|ρv|ey|v〉 = pV (v)qY |V (y|v),
(23)

where we have used the spectral decomposition of ρv .
Observe that if (xn, vn) ∈ Tn

δ/4(pXV ), and yn ∈
Tn
δ (pXV pY |XV |xn, vn), then we have (xn, vn, yn) ∈

Tn
δ (pXV pY |XV ). This implies that we have (vn, yn) ∈

Tn
4δ(pV Y ), where pV Y is the marginal of pXV pY |XV . Using

this and (23), we see that (vn, yn) ∈ Tn
4δ(pV qY |V ). In

summary, we see that if (xn, vn) ∈ Tδ(pXV ), then we have

Tn
4δ(pXV pY |XV |xn, vn) ⊆

{
yn : (vn, yn) ∈ Tn

4δ(pV qY |V )
}
.

We are now set to provide the promised lower bound.
Consider

Tr(Πvnρxn)

= Tr


 ∑

yn:

(vn,yn)∈T
(n)
4δ (pV qY |V )

n⊗
t=1

∣∣eyt|vt

〉 〈
eyt|vt

∣∣

 n⊗

j=1

ρxj




= Tr


 ∑
yn:(vn,yn)∈T

(n)
4δ (pV qY |V )

n⊗
t=1

∣∣eyt|vt
〉 〈

eyt|vt
∣∣ ρxt




=
∑
yn:

(vn,yn)∈T
(n)
4δ (pV qY |V )

n∏
t=1

〈
eyt|vt |ρxt |eyt|vt

∣∣eyt|vt |ρxt
|eyt|vt

〉

≥
∑

yn∈T
(n)
4δ (pXV pY |XV |xn,vn))

n∏
t=1

pY |XV (yt|xt, vt)

≥ 1− 2|X ||Y||V| exp
{
−2nδ2pXV Y (x

∗, v∗, y∗)

4(log(|X ||Y||V|))2

}
, (24)

where we used (23) in the last equality, and (x∗, v∗, y∗) is the
triple which attains the minimum non-zero probability.

We next provide the upper bound. Note from the Gentle
measurements lemma [17, Lemma 9.4.2], we have ∥ρxn −
Πδ

ρρxnΠδ
ρ|| ≤ 3

√
ϵ if Tr

(
Πδ

ρρxn

)
≥ 1 − ϵ. In the following

we provide a lower bound on Tr
(
Πδ

ρρxn

)
. Recall that Πδ

ρ =∑
yn∈Tn

δ (sY )

⊗n
t=1 |gyt

⟩ ⟨gyt
|, where

ρ =
∑
y∈Y

sY (y) |gy⟩ ⟨gy| ,

is the spectral decomposition of ρ, and ρ =
∑

x∈X pX(x)ρx.
Let p̂Y |X(y|x) =∆ ⟨gy|ρx|gy|gy|ρx|gy⟩, for all (x, y) ∈ X ×Y .
Note that p̂Y |X is not related to pY |X defined previously.
We note that p̂Y |X(y|x) ≥ 0, and

∑
y∈Y p̂Y |X(y|x) =∑

y∈Y ⟨gy|ρx|gy|gy|ρx|gy⟩ = Tr(ρx) = 1 for all x ∈ X . Thus
we see that p̂Y |X is a stochastic matrix. It can also be noted
that ∑

x∈X
p̂Y |X(y|x)pX(x)

=

〈
gy|
∑
x∈X

pX(x)ρx|gy

∣∣∣∣∣gy|∑
x∈X

pX(x)ρx|gy

〉
= ⟨gy|ρ|gy|gy|ρ|gy⟩ = sY (y),

for all y ∈ Y . This implies that the condition yn ∈ Tn
δ (sY ) is

equivalent to the condition yn ∈ Tn
δ (p̂Y ), where p̂Y (y) =∑

x∈X p̂Y |X(y|x)pX(x). Moreover, if xn ∈ Tn
δ/2(pX),

and yn ∈ Tn
δ (pX p̂Y |X |xn), then we have (xn, yn) ∈

Tn
δ (pX p̂Y |X). Consequently, we have yn ∈ Tn

δ (p̂Y ), which
in turn implies that yn ∈ Tn

δ (sY ). In essence, we have that
if xn ∈ Tn

δ/2(pX) then Tn
δ (pX p̂Y |X |xn) ⊆ Tn

δ (sY ). Now we
are set to provide the lower bound on Tr

(
Πδ

ρρxn

)
as follows:

Tr
(
Πδ

ρρxn

)
= Tr

 ∑
yn∈Tδ(sY )

n⊗
t=1

|gyt
⟩ ⟨gyt

| ρxt


=

∑
yn∈Tδ(sY )

n∏
t=1

⟨gyt |ρxt |gyt |gyt |ρxt |gyt⟩
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=
∑

yn∈Tδ(sY )

n∏
t=1

p̂Y |X(yt|xt)

≥
∑

yn∈Tδ(p̂Y |XpX |xn)

n∏
t=1

p̂Y |X(yt|xt)

≥ 1− 2|X ||Y| exp

{
−
2nδ2p2X(x∗)p̂2Y |X(y|x)

4(log(|X ||Y|))2

}
.

(25)

where x∗ is the value which attains the minimum non-zero
probability. We therefore have

∥ρxn−Πδ
ρρxnΠδ

ρ∥≤6|X ||Y| exp

{
−
2nδ2p2X(x∗)p̂2Y |X(y|x)

4(log(|X ||Y|))2

}
,

and

Tr(Πvnρxn) ≥ 1− 2|X ||Y|||V|
2nδ2p2X(x∗)p̂2Y |X(y|x)

4(log(|X ||Y|))2
,

thereby permitting us to conclude that

Tr
(
Πδ

ρΠ
δ
vnΠδ

ρρxn

)
≥ Tr

(
Πδ

vnρxn

)
− 1

2
∥ρxn −Πδ

ρρxnΠδ
ρ∥

≥ 1−
2nδ2p2X(x∗)p̂2Y |X(y|x)

4(log(|X ||Y|))2
,

if (xn, vn) ∈ Tn
δ/2(pXV ).
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