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Abstract. Although mathematical models do not fully match reality, robustness of dynamical objects to pertur-
bation helps bridge from theoretical to real-world dynamical systems. Classical theories of structural
stability and isolated invariant sets treat robustness of qualitative dynamics to sufficiently small er-
rors. But they do not indicate just how large a perturbation can become before the qualitative
behavior of our system changes fundamentally. Here we introduce a quantity, intensity of attraction,
that measures the robustness of attractors in metric terms. Working in the setting of ordinary differ-
ential equations on R", we consider robustness to vector field perturbations that are time dependent
or independent. We define intensity in a control-theoretic framework, based on the magnitude of
control needed to steer trajectories out of a domain of attraction. Our main result is that intensity
also quantifies the robustness of an attractor to time-independent vector field perturbations; we prove
this by connecting the reachable sets of control theory to isolating blocks of Conley theory. In addi-
tion to treating classical questions of robustness in a new metric framework, intensity of attraction
offers a novel tool for resilience quantification in ecological applications. Unlike many measurements
of resilience, intensity detects the strength of transient dynamics in a domain of attraction.
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1. Introduction. Although differential equations are imperfect models of reality, they
capture the essential dynamics of many real-world systems remarkably well. This utility of
dynamical systems theory stems in part from studying robust dynamical objects. For example,
classical results about structurally stable systems [1, 23, 31] and isolated invariant sets [9, §]
guarantee that qualitative dynamics persist through sufficiently small errors, under suitable
conditions of nondegeneracy. In this work we push beyond “sufficiently small” to explore just
how wrong our models can be while still providing meaningful information about the long-
term behavior of a system. More precisely, we ask in metric terms how different a vector field
can become while retaining—in some sense—an original attractor.

To answer this question, we adapt the concept of intensity of attraction from the setting
of maps [19] and relations [33] to the setting of vector fields on R™. We define the intensity of
an attractor in section 5. What makes intensity so well suited to our purpose is that it
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(i) quantifies how far an attractor persists in the context of both time-independent and

time-varying changes to a vector field f : R — R™;

(ii) can be computed; and

(iii) is well-defined for ODE systems of any finite dimension.

Our main result, Theorem 6.11, links the time-dependent and time-independent vector field
perturbations in (i): roughly speaking, if we define the intensity p of an attractor A for a vector
field f as the magnitude of time-varying control needed to escape A’s domain of attraction,
then the attractor continues in a related form through any time-independent perturbations to
f that stay below p in an appropriate metric. This connection reduces the problem of attractor
persistence in an infinite-dimensional space to the well-studied problem of computing reachable
sets in a control framework [2, 4, 10, 25, 26, 27, 29].

In addition to quantifying tolerable modeling errors, intensity of attraction provides a
new tool for resilience quantification for applications in ecology and other fields [5, 20, 21]. In
particular, intensity measures the resilience of a particular regime—modeled as a domain of
attraction—to continuous-time, exogeneous disturbances. Unlike common resilience metrics
like eigenvalues or basin size [20] that are based solely on invariant sets, intensity detects the
strength of attracting dynamics over transient regions of state space.

We illustrate some of the preceeding points about intensity of attraction in a simple
example before outlining the paper’s full contents.

Ezample 1.1. Suppose the differential equations ' = f(z) and ¢y’ = f(y) model the dy-
namics of biological populations x and y. The vector fields f : R - Rand f : R - R
graphed in Figure 1(a) generate topologically equivalent dynamical systems, each with a re-
pelling equilibrium at the origin and an attracting equilibrium at 1. In the absence of error
or disturbance, we expect each biological population to approach a carrying capacity at 1.
But this topological picture misses a metric difference between the two models: f lies above
f over the transient interval (0, 1) of state space. The intensity of each attractor {x = 1} and
{y = 1} captures this metric difference: in this case, intensity boils down to the maximum
values p and f that the functions f and f achieve, respectively, over the interval (0,1).

The fact that the intensity p of {x = 1} exceeds the intensity i of {y = 1} holds implica-
tions for both population resilience and model interpretation. If we take the models at face

Figure 1. Motivating example. (a) Vector fields f and f generate topologically equivalent flows on R,
illustrated by the horizontal phase line. Intensities p and i of the mutual attractor at 1 capture metric differences
between the dynamics. (b) If f(x) is known to an error tolerance of € with 0 < € < p then we have f(x1)+e >0
and f(z2) £ € < 0, suggesting that some trajectories x(t) remain bounded and positive. (c) Under the same

error tolerance € on f(y), we have f(y) —e < 0 for all y € R, so it is possible that no trajectories stay positive.
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value, then pu > i suggests that population z is more resilient to external time-dependent forc-
ings (such as climate variability or seasonal harvests, as in [21]) than population y, based on
its higher rebound rate at depressed population levels. Notably, two common resilience quan-
tifiers based on invariant sets fail to detect this difference: f and J/”\share the same distance
between equilibria and the same eigenvalues (slopes) at equilibria.

On the other hand, suppose models 2/ = f(z) andAy' = f(y) originated from data on real-
world populations x and y, and the values of f and f are known to an accuracy of €, where
i < e < p. Asillustrated in Figure 1(b), we would still have topological grounds to believe
that population z can remain bounded above zero in the long term, because f(x1) £e > 0
and f(z2) £ e < 0. But under the same error tolerance € on f(y), we have f(y) — e < 0 for
all y € R (Figure 1(c)), so it is possible that no trajectories for population y remain bounded
above zero. In this way, the intensities ;1 and @ measure the degree to which each attracting
equlibrium (z = 1 or y = 1) persists to structure system behavior in the face of changes to the
vector field—whether these are extrinsic, time-varying perturbations to population growth or
intrinsic, time-independent changes to the model equations.

In the body of this paper, we generalize the notion of intensity from Example 1.1 to
an analogue for higher dimensional systems that still quantifies attractor persistence and is
computable. The organization is as follows.

Section 2 outlines the necessary preliminaries regarding R™ as a metric space and the
dynamics generated by an autonomous differential equation 2’ = f(z), x € R™.

In section 3 we introduce time-dependent perturbations to the vector field f via control
functions g(¢). In this work control functions g(¢) play a role analogous to discrete errors in
the theory of intensity of attraction for maps [19]. In particular, studying the dynamics of
2’ = f(x) + g(t) allows us to probe outwards from an attracting set that would otherwise
be invariant under f into the transient regions of its domain of atttraction. In contrast to
recent work on Morse decompositions for nonautonomous differential equations [24], we do
not study attractors of 2/ = f(z) + g(t). Instead, we use time-varying perturbations to reveal
information about the attractors of 2’ = f(z). We take controls g to be essentially bounded,
allowing quantification of resilience to both continuous and discontinuous perturbations. The
L> norm ||g||, reflects the norm in play on R". In the sections that follow we quantify how
large ||g||,, must become in order to escape the domain of attraction of an attractor under
f—this is the essential ingredient for defining intensity of attraction.

Towards this end, section 4 broadens our attention from individual control functions to
bounded collections of control functions. Given a set S C R™ and a bound r on control, we ask
which points in state space can be reached from S using some control g with ||g|| ., < 7. The
answer is called a reachable set, a term that carries a compatible and more general meaning in
the theory of control [7, 16] and differential inclusions [15, 32]. Indeed, it is possible to reframe
the collection of differential equations =’ = f(z) + g(t), ||g||,, < r as the differential inclusion
z’ € By(f(z)), where B,(f(z)) = {h € L* | ||h — f(z)||,, < r}. Although our focus is not
on the dynamics of this differential inclusion, it is interesting to note that the set reachable
from an attractor for 2’ = f(x) is invariant in the context of the differential inclusion, and in
many cases fits the definition of attractor developed in [15, 32].

Section 5 defines intensity of attraction in terms of reachable sets: roughly, intensity
reflects the largest value of r for which sets reachable from an attractor are bounded inside
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its domain of attraction. We connect intensity to resilience of predator-prey dyanmics in
Example 5.6. Additional examples revisit Figure 1 with greater precision (Example 5.3),
illustrate how the value of intensity depends on the metric used to quantify perturbations
(Example 5.4), and show how intensity relates to Colonius and Kliemann’s point of first
discontinuity in a map from control bounds to reachable sets [7] (Example 5.5).

Section 6 demonstrates that intensity of attraction also quantifies attractor persistence in
the face of time-independent perturbations to a vector field. Theorem 6.11 gives the main
result that intensity bounds from below the distance in the space of vector fields that an
attractor continues immediately. The key to this result is a link between reachable sets and the
isolating blocks of Conley theory, which we develop in subsections 6.1 and 6.2. Example 6.12
illustrates continuation of a predator-prey limit cycle through time-independent perturbations
that don’t exceed its intensity. Last, we leverage the present setting to provide a new proof
that attractors are upper semicontinuous (Theorem 6.15).

Section 7 makes some concluding remarks and identifies directions for further study.

2. Preliminaries.

2.1. R™ as a metric space. Let d : R” x R" — [0, 00) be a homogeneous and translation-
invariant metric on R™. Let [|-|]] denote the corresponding norm with ||z| = d(z,0) and
d(z,y) = ||lx —y||. Though we use the Euclidean metric and norm in most examples, we
intentionally develop the theory for general d and ||-||. In any particular application, context
should inform the choice of metric and norm.

The following definitions and notations are standard in this metric setting. We say a set
X C R™ is bounded if there exists an M > 0 such that ||| < M for all z € X. The distance
between two sets X, Y C R” is

dist(X,Y) = inf{d(z,y) |z € X,y € Y}

A single-point set {z} is not distinguished from its element z. For ¢ > 0 and z € R", we
denote the e-ball about x as

Be(z) ={y € R" | d(z,y) <€}
More generally, we denote the e-neighborhood of a set S C R" as
B(S) ={x e R" | d(z,5) < €}.

The metric topology is used throughout. For S C R”, int(S) and S denote the interior and
closure of S, respectively. A set N is a neighborhood of S if S C int(/N). The following lemma
states that a compact set has arbitrarily close compact neighborhoods; its straightforward
proof is omitted.

Lemma 2.1. If S C R" is compact, then for any neighborhood N of S there exists a compact
set K C int(N) that is also a neighborhood of S.

2.2. Dynamics generated by '’ = f(x). Consider an autonomous system of ordinary
differential equations

(2.1) ' = f(x),
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where z € R", 2’ denotes %, and f maps from an open set U C R" to R". We assume that
the vector field f in the differential equation (2.1) is bounded, so that || f||sup = sup,cy || f(2)]|
exists. We also take f to be globally Lipschitz on U, so that there exists a unique local solution
z(t) in U to each initial value problem

' = f(x), x(0)=mx9€U.

The solutions z(t) generate a local flow ¢ on a subset D of R x U given by ¢(t,x0) = z(t).
Although trajectories may in general leave U, preventing definition of a global flow ¢ : RxU —
U, we assume that ¢ is defined on any time domain of interest.

Fixing the time coordinate of ¢ yields a time-t map ' : U — U, given by x — ¢(t, z).
The collection of time-t maps for ¢ € R has the identity property ¢° = id and the group
property ¢! o p* = !, Functions such as the flow and the time-t map are extended in
the natural way to take sets as arguments. For example, if 77 C R and S C R"”, then
o(T,S) = User Ugeg o(t, ) and ¢*(S) = U,ecq ' (x). We next put this notation to work in
a few definitions that build to attractors, our main object of study.

Definition 2.2. A set S C U is forward invariant under the flow ¢ if ©'(S) C S for all
t > 0. S is invariant if ©'(S) =S for all t € R.

Definition 2.3. The omega limit set of a set S C U is w(S) = Npso U7 ¢1(S5).

Definition 2.4. An attractor is a compact, nonempty, invariant set A such that A = w(N)
for some neighborhood N of A.

The statement A = w(N) indicates that the neighborhood N is “attracted” asymptotically to
A in forward time. We will also use the following equivalent characterization of an attractor;
the proof is provided in supplementary section SM1.

Lemma 2.5. A compact, nonempty, invariant set A is an attractor if and only if there
exists v > 0 such that dg(p'(By(A)), A) — 0 as t — oo, where dy is Hausdorff distance.

We call the collection of all points that tend to A in forward time A’s domain of attraction.

Definition 2.6. The domain of attraction of an attractor A is
DA)={x €U | @ #w(x) C A}.

Our primary objective is to quantify what we’ll call the intensity of an attractor A, which
should in some way reflect the strength of transient dynamics over D(A). To test that strength,
we probe the domain of attraction with time-dependent control (section 3).

3. Time-dependent control functions. We introduce time-dependent perturbations to
the system (2.1) via nonautonomous control functions g, yielding a perturbed system

(3.1) 2 = (@) + g(t).

The control functions g are integrable and essentially bounded with respect to a measure m;
that is, given a time interval I C R we take g € L*°(I,R"), equipped with the norm

19lloe = nffc>0 : m{zel:|g@)|>c}) =0}
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Note that the value of ||g||,, which plays an important role in sections 4 to 6, depends on the
norm used in R™.

With g € L*(I,R"™), the right-hand side of (3.1) satisfies the Carathéodory conditions
on U x I: the function F(z,t) = f(x) 4 g(t) is measurable in ¢ for fixed =, continuous in x
for fixed ¢, and (without loss of generality) bounded on any compact subset of I x U by the
constant and hence integrable function || f|l,, + [|9/lo- Furthermore, F inherits f’s Lipschitz
property in x. It follows (see, e.g., [6, 11]) that for any initial condition x(t9) = xo there exists
a unique local solution x(¢) to (3.1), in the extended sense that

t

(3.2) £(t) = w(to) + / (f(x(s)) + 9(s)) ds

to
(3.3) and 2'(t) = f(x) + g(t) almost everywhere.

The characterization (3.2) of solutions provides an analytic tool, while (3.3) highlights the
meaning of ||g||,, as a maximum deviation from the vector field f. By default we assume that
a unique local solution z(t) to (3.1) can be continued on any desired time interval I.

Existence and uniqueness of solutions to (3.1) permit extension of standard flow notation
to include the control function g in a manner similar to [7].

Definition 3.1. For a given vector field f and time interval [0,T], the controlled flow
¢ :[0,T] x U x L*([0,T],R") — R"
is given by (£, 20, 9) = @(t, 20, 95 f) = (D),
where x(t) is the solution to ' = f(x) + g(t), x(0) = xo.

We omit the vector field f when it is clear from context. To emphasize dependence on initial
conditions, we write ¢(t,-,9) = ¢}(-). In what follows, we move fluidly between describing
solutions to (3.1) with the notation z(t) and with the flow notation of Definition 3.1. The
latter has the advantage of making ¢ visible.

The controlled flow (¢, x,¢g) is continuous not only with respect to ¢ and x (see [12]) but
also with respect to control input g.

Lemma 3.2. Fiz a vector field f : U — R™ and a time interval [0,T], and let g and h be
control functions in L>(]0,T],R™). Then for any €, there exists a 0 such that ||g — hl|lec < 0
implies ||p(t,z,g) — @(t,x,h)|| < e for allt € [0,T] and all x € U.

We omit the standard proof of Lemma 3.2, which follows directly by applying Grénwall’s
inequality to the function u(t) = ||¢(t, z, g) — ¢(t,x,h)||. See also Lemma 4.3.2 of [7].

4. Reachable sets. The controlled flow of Definition 3.1 gives outcomes under a single
function g € L*(I,R™), which highlights the effect of a known intervention in a controlled
system. However, when g represents an uncertain disturbance, it is natural to consider tra-
jectories corresponding to an entire family of such functions. We restrict our attention to
families of the form

B(0) = {g € L(LE") | |gll.. <1}

By using the collection B,(0), we focus on situations in which bounds on disturbances are
known, even though their exact forms are not. This approach is compatible with studies
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of random dynamical systems with bounded noise (e.g., [13, 14, 35]) and with differential
inclusions [4, 15, 32]. But in contrast to systems with unbounded noise such as stochastic
differential equations, trajectories cannot necessarily reach any state from another.

We use P,.¢(S) to denote the collection of states that can be reached in forward time from
a point in S C U by modifying the vector field f with r-bounded control.

Definition 4.1. Pr;7(S) = Uso Uses Uy <r ¢t 2,95 f)-

When no confusion could result by omitting the vector field f, we write P,.(S). In the present
work we will consider sets reachable from an attractor A. These can be found easily for
one-dimensional systems, as the following proposition shows.

Proposition 4.2. Consider the one-dimensional system =’ = f(x) with f(0) =0, f >0 on
(—€,0), and f <0 on (0,¢) for some € > 0. The reachable set from the attractor A = {0} is
P.(A) = (a,b) where

" {sup{x <0| f(x)=r} if f(x)=r for some z <0,

—00 otherwise,

and b= {inf{x >0| f(x) =—r} if f(x) =—r for some z >0,

00 otherwise.

The natural way to think about Proposition 4.2 is by comparison to the most extreme
controls possible, g(t) = £r. See supplementary section SM2 for a proof.

In the case of a one-dimensional linear system, Proposition 4.2 implies that the set reach-
able from the origin scales in direct proportion to the control bound and in inverse proportion
to the eigenvalue magnitude.

Corollary 4.3. For the one-dimensional, linear system ' = —\x (A > 0) with global attrac-
tor A =0, the reachable set from A forr >0 is P.(A) = (=%, %)

Reachable sets are, in general, harder to compute than in Proposition 4.2 and Corollary 4.3.
The following example shows that the computation can be nontrivial even for a diagonal, two-
dimensional linear system.

Ezample 4.4. The system

(4.1) ¥ =—x,
(4.2) y =2y
on R? has global attractor A = (0,0). Considering each variable separately, Corollary 4.3
indicates that P;(A) is contained in the rectangular region R = (—1,1)x(—2, 2). Furthermore,

the family of constant control functions {gg.(t) = ccos@ + csinf | 0 € [0,27),0 < ¢ < 1}
sends the origin asymptotically to points on ellipses 22 + 4y? = ¢?. Therefore, the reachable
set P;(A) contains the open region O enclosed by the ellipse E = {(z,y) | 22 + 4y* = 1}.
Control functions with magnitude 1 directed opposite to the vector field also drive trajectories
asympototically from O to E.

Because the vector field has magnitude 1 on E, one might expect that P;(A) = O. But
the vector field is not normal to F except at the vertices of the ellipse. Therefore, adjusting
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Figure 2. Inezxact bounds on a two-dimensional reachable set. The set in question consists of points
reachable from the origin in the linear system ' = —x, y' = —2y with control bound r = 1. This set must be
nested between the open set O and the rectangle R. Piecewise-constant control that shifts directions from vy to
va drives a trajectory (blue) outside of O.

a control function’s direction to push perpendicular to E can drive a solution outside O.
Figure 2 illustrates this phenomenon for piecewise constant control

v if 0 <t < 10,
(4.3) g(t) = .
vy if 10 < ¢,

where v = 0.99[‘{%2] and v = ().99[%/?;77] have magnitude 0.99 but different directions.

We therefore have the bounds O C P;(A) C R. Athough these bounds follow directly from
analytic computation of trajectories and Corollary 4.3, a closed form for P;(A) does not.

Numerical algorithms for computing reachable sets are an active topic of research in the
fields of control systems, differential inclusions, and optimization. The introductory piece [16]
outlines fundamental discretization challenges nicely. Existing approaches include set-valued
Euler schemes [4, 26, 27, 29], optimal control algorithms [25, 2], and level-set methods ([10]
and references therein).

Though the approximation of reachable sets can be involved, analytically they obey nice
nesting properties. The following lemma, which follows immediately from Definition 4.1, states
that the real number ordering of control bounds induces an order by inclusion on reachable
sets.

Lemma 4.5. Ifr <1/, then P.(S) C Py (S).
A stronger statement holds when the set S is an attractor A.

Proposition 4.6. For A an attractor, P,(A) \y A as r \ 0, in the sense that

(1) r < 1" implies P.(A) C P.(A);

(2) for any neighborhood V' of A, there is an r > 0 such that P,(A) C V; and

(3) A= ﬂr>0 PT(A)

Proof. Property (1) is a direct instance of Lemma 4.5. Towards property (2), fix a neigh-
borhood V' of A and choose 81 > 0 so that Bg, (A) C V. By Lemma 2.5 there exists
B2 > 0 such that dy(p'(Bg,(A)),A) — 0 as t — oo. Let B = min{pi, B2}. It follows that
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whenever ¢ > Tp. We thus have ¢'(Bg(A)) C Bgj(A) for all t > Ty. Next choose v > 0
such that B,(A) C ¢™(Bg(A)) C Bgs(A). Since B,(A) C Bg,(A), we have as before that
dp(0"(By(A)),A) — 0 as t — oo and there exists T} > 0 such that ¢*(B,(A)) C B, /5(A) for
all ¢ Z Tl.

Applying Lemma 3.2 with € = /2 and T = T gives a § > 0 such that ||g||,, < ¢ implies
H(ptg(:v) —¢'(z)|| < v/2 for all t € [0,T1] and for all x in state space. We now show that
choosing 0 < r < ¢ ensures P.(A) C V. Let g be a perturbation of size ||g||,, < r < d. We
have for ¢ € [0,77] that

di(¢'(Bg(A)), A) = 0 as t — oo, so there exists Ty > 0 such that dy(¢'(Bg(A)), A) < 5/2
0
)

gog(BV(A)) C By (¢ t(BV(A))) (Lemma 3.2)
C Bya(¢' (9™ (Bs(A)))) (By(A) C ¢™(Bg(A)))
L 2(0T70(Bg(A))) (group property of flow)
C B, 2(Bg/2(A)) (t+To = To)
C Bsg/a(A) (v < B/2)
C Bp(4)
cV.
Furthermore, at the timepoint 77,
(ngFl(BW(A)) C B2 (cpTl(BW(A))) (Lemma 3.2)
C By 2 (B,2(A)) (1 > TY)

C By(A).

From the previous two chains of inclusions, we have that the forward images of the neigh-
borhood B,(A) remain inside V' during the controlled flow over time [0, 7] and the forward
image of B, (A) returns to be contained within B, (A) at time 77. An inductive argument over
the time intervals [nT71, (n+41)T1] implies that ¢} (B, (A)) C V for all t > 0. Since A C B, (A),
this implies ¢}, (A) C V for all ¢ > 0 and all ||g|| ., < r. By Definition 4.1 we have P.(A4) C V,
establishing property (2).

The inclusion A C (1, P-(A) of property (3) is immediate. The reverse inclusion follows
from property (2): any point not in A can be excluded from some neighborhood of A and
hence from P,(A) for some r > 0. Hence any point in P,(A) for all » > 0 must be in A. This
completes the proof. |

5. Intensity of attraction. Intensity of attraction, introduced by McGehee for maps [19],
carries over naturally to the flow setting by replacing sets reachable from an attractor under
€ pseudo-orbits with sets reachable from an attractor under r-bounded control.

Definition 5.1. The intensity of attraction of an attractor A is
(5.1) pu(A) =sup{r >0: P.(A) C K C D(A) for some compact K C R"}.

In other words, intensity of attraction reflects the control magnitude ||g|| ., necessary to escape
from every compact subset of an attractor’s domain.
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Proposition 5.2. For A an attractor, u(A) > 0.

Proof. Let A be an attractor and let N be a neighborhood of A such that w(N) = A,
which implies via Definition 2.6 that N C D(A). By Lemma 2.1 there exists a compact
neighborhood K C R™ such that A C K C N C D(A). Taking K as V in Proposition 4.6, we
get an r > 0 such that P,.(A) C K C D(A). Definition 5.1 then implies that pu(A) > 0. [ ]

The following two examples, though somewhat synthetic, serve to illustrate two points
about attractor intensity: it is independent of eigenvalues and basin size (Example 5.3), and
its value depends on the norm [|-|| in play on R™ (Example 5.4).

Ezample 5.3. Tt is possible for two vector fields that share the same attracting equilibrium
A, the same eigenvalues at A, and the same domain of attraction D(A) to nonetheless exhibit
different intensities of attraction u(A). Consider the pair of C1(R,R) vector fields plotted in
Figure 1:

(5.2) f(z) =z — 22,
T if x <0,
(5.3) and f(z) = { 7 lsin(rz) f0<z <1,
1—x if x > 1.

The equilibrium at z = 1 is an attractor for both f and f, with eigenvalue —1. Its domain
of attraction is (0, 00) in each case. In fact, the eigenvalue at the repelling equilibrium 0 that
consitutes the boundary of D(A) is also 1 for both f and f. Yet u(A) = 1/4 under f while
f(A) = 71 ~ 0.318 under f . This example alerts us that eigenvalues and size of a domain of
attraction—two common measures of resilience in engineering and ecology [20]—can neglect
differences in the strength of transient dynamics over D(A). Intensity of attraction detects
this feature.

Ezample 5.4. To easily see how pu(A) depends on norm choice, consider the system

V2

(5.4) ' = T(fﬂ +y)? -,
(5.5) y = \f(x +y)? -y,

S

whose phase portrait is given in Figure 3(a). Rotating coordinates by 7/4 to u = 5% (x + y)
and v = @(y — x) gives

(5.6) v =u(u—1),
(5.7) v’
In these coordinates it is clear that A = (0,0) is an attractor with domain of attraction

D(A) = {(u,v) | u < 1}. The uncoupled form of (5.6) and (5.7) and the geometry of D(A)
allow us to restrict attention to the invariant line v = 0 when calculating p(A). On the

= —.
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A
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Figure 3. Intensity depends on norm. (a) Phase portrait for the system (5.4) and (5.5). A is an attracting
equilibrium and the dashed line marks the boundary of its domain of attraction, shaded gray. Analysis in rotated
coordinates ((5.6) and (5.7)) reveals that the intensity of A is the norm of the vector m. (b), (c¢), (d): The
1-norm, 2-norm, and max norm each yield different values of intensity of attraction for A.

interval 0 < u < 1, the maximum strength of the vector field in the direction of the origin
is 1/4, achieved by the vector m at u = 1/2. A control function must push with magnitude
greater than 1/4 in the direction of —m to steer a trajectory from A to D(A)®. The critical
control bound needed for this push, u(A), depends on the norm on (x,y) space. Under the
Euclidean norm (the 2-norm), the intensity is po(A) = 1/4 (Figure 3(c)). The intensity of
A under the 1-norm is p(A) = v/2/4 (Figure 3(b)) and the intensity under the max norm
iS fmax(A) = 1/4v/2 (Figure 3(d)). More generally, a straightforward calculation gives that

1_1
under the p-norm ||(x,y)|, = (2P + yP)}/P, the intensity of A is p,(A) = 2p72) . 1.

[

In specific applications, one should choose a norm compatible with the relevant notions
of disturbance or uncertainty. We anticipate that the max norm will be appropriate when
bounds on vector field perturbations are known componentwise rather than jointly. As in
Example 5.4, one expects p,(A) < pq(A) when p > g. Therefore, choosing a max norm may
also give the most conservative estimate of attractor intensity.

We next compare intensity to a closely related concept examined by Colonius and
Kliemann [7]: the lowest point of discontinuity in a map from control bound to the reachable
set (control set) of an attractor. Example 5.5 demonstrates that this first discontinuity may
differ from the intensity of the attractor.

Ezample 5.5. The one-dimensional system with vector field f(z) = %xA‘ — 23— 322 -1

has an attractor A = xy and repeller R = x1 corresponding to the roots zg and x;1 of the
quartic (Figure 4(a)). The domain of attraction of A is D(A) = (—o0,x1). Consider the map
C :[0,00) = Z(R) given by r — P.(A). Figure 4(b) depicts the graph of C. As the control
bound r increases from zero, the first discontinuity in C occurs at r = 2.25, corresponding to
the local minimum of f at (—1, —2.25). However, reachable sets remain bounded within D(A)
for small enough r > 2.25. It is not until the second discontinuity at r = 9, corresponding
to the global minimum of f at (2, —9), that reachable sets escape D(A). Hence the intensity
1(A) =9 exceeds the value of r at the first discontinuity (p* = 2.25 in the notation of [7]).
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A
P525(A) r ‘‘‘‘‘‘‘‘‘‘
lim P.(A) | | r

r\2.25 0 p*‘ =225 u(/l) =9

Figure 4. Intensity versus first discontinuity. (a) The vector field f of Example 5.5 yields an attractor A
and repeller R. As the control bound r increases, the first discontinuity in the map C that sends r to P.(A)
occurs at p* = 2.25. (b) The graph of C illustrates that the first discontinuity at p* = 2.25 occurs well below
the intensity u(A) = 9.

Example 5.5 shows that it is possible for reachable sets to expand discontinuously without
escaping a domain of attraction. Whether the reverse is possible—reachable sets escaping
a domain of attraction without expanding discontinuously—is an interesting question not
pursued further here.

We close this section with an ecological application that illustrates attractor intensity for
a stable limit cycle and the information about resilience it carries.

Ezample 5.6. Consider the following model of predator (y) and prey (z) dynamics, the
details of which can be found in [18, 28]:

dz T —ex
(5.8) ik (1 — E) — ky(l —e™ ),
(5.9) Y — byt By e,

As the prey carrying capacity K grows from 3 to 4, a Hopf bifurcation in the first quad-
rant transforms the stable equilibrium A; (Figure 5(a)) into an unstable equilibrium and a
stable limit cycle Az (Figure 5(c)). Rosenzweig used this predator-prey system to illustrate
a “paradox of enrichment” in which adding nutrients to an ecosystem (thus increasing K)
destabilizes the ecosystem [28]. The analysis was restricted to the dynamics near the rest
point in the first quadrant, which indeed turns from stable to unstable as K increases. But
in what sense is the periodic orbit Ay in Figure 5(c) “destabilized” relative to the spiral sink
Aj in Figure 5(a)? Both invariant sets are stable by standard mathematical definitions. In
present vocabulary we might say adding nutrients lowered the resilience of the populations.
Intensity of attraction provides one measure of this change in resilience.

Figure 5 plots the result of reachable set computations (described in supplement SM3
and SM4) for both the spiral sink (panel b) and stable limit cycle (panel d). Sets reachable
from the spiral sink remain bounded within its domain of attraction (the first quadrant) for
r < 0.06. For r = 0.08, the reachable set spills over the z-axis. From Figure 5(b), we
estimate 0.06 < p(A1) < 0.08. Figure 5(d) illustrates sets reachable from the periodic orbit
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Figure 5. Phase portraits ((a), (¢)) and reachable sets ((b), (d)) for a predator-prey equilibrium ((a), (b))
and limit cycle ((c), (d)) corresponding to (5.8) and (5.9). Reachable sets were computed using a fized-grid
set-valued Euler method at a resolution of 1073 (code available in supplementary materials file M138689_02.zip
[local/web 5.22KB] ). Parameters, in arbitrary units, are K = 3 ((a), (b)), K =4 ((¢), (d)), anda =1, k = 0.5,
c=15,b=0.5,8=1, f=0.5 (all panels).

Aa. These remain bounded within its domain of attraction (the first quadrant minus the
unstable rest point) for r < 0.02; for » = 0.03, the reachable set includes the unstable rest
point. Hence 0.02 < u(Az2) < 0.03. If we instead consider the attractor As, consisting of
the periodic orbit As and the region it encloses, we get a slightly higher intensity 0.03 <
1(As) < 0.04. Regardless of whether we consider Ay or As, the intensity estimates agree with
Rosenzweig’s argument that nutrient enrichment lowers stability (resilience): the attractor
in the first quadrant has a lower intensity of attraction in the “enriched” scenario K = 4
compared to K = 3. As a result, we might expect that environmental variability is more
likely to drive the predator and/or prey population to extinction from the cycle As than from
the equilibrium Aj.

6. Continuation of attractors. We now turn from time-dependent to time-independent
perturbations of a vector field. Subsection 6.1 introduces attractor blocks, an object from the
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theory of isolated invariant sets that is central to the following arguments. Subsection 6.2
establishes a connection between reachable sets and attractor blocks, which we exploit in sub-
section 6.3 to show that intensity of attraction gives a lower bound on attractor continuation
distance in the space of vector fields. Theorem 6.11, our main result, grounds the abstract
question of attractor persistence in infinite-dimensional vector field space to the study of a
single system’s reachable sets. We conclude in subsection 6.4 with a proof of the semicontinuity
of attractors based on reachable sets.

6.1. Attractor blocks. Attractors are a special type of isolated invariant set, a useful
object introduced by Conley for studying robust qualitative features of flows [8, 9]. When
the flow interacts nicely with the boundary of an isolating neighborhood, that neighborhood
earns the name isolating block. Various definitions of “nicely” have been used in [8, 9, 22, 34].
Here we restrict our attention to isolating blocks associated with attractors, henceforth called
attractor blocks. Roughly, the vector field should point inward to the interior of an attractor
block at each point along its boundary. The following definition generalizes this notion slightly.

Definition 6.1. An attractor block B for a flow ¢ : R x R™ — R™ is a nonempty, compact
subset of R™ satisfying ©'(B) C int(B) for all t > 0.

Any attractor block is associated with an attractor in its interior.
Lemma 6.2. For B an attractor block, w(B) is an attractor.

Proof. w(B) must lie interior to B because ¢'(B) C int(B) for all ¢ > 0. Therefore w(B)
is the omega limit set of its neighborhood B. Further, it follows directly from Definition 2.3
that w(B) is invariant and closed; as a subset of compact B it must also be compact. By
Definition 2.4, w(B) is an attractor. [ |

Definition 6.3. If B is an attractor block and w(B) = A, we call B an attractor block
associated with A.

6.2. Persistent attractor blocks from reachable sets. In this subsection we show that one
can construct attractor blocks from certain reachable sets; furthermore, these blocks persist
as such not just for sufficiently small perturbations to the vector field, but for perturbations
smaller than r, the metric bound on control. Before stating these results we establish a
definition and technical lemma.

Fixing all but the third argument in the controlled flow function (¢, z,g; f) of Defini-
tion 3.1 yields a map from control functions to trajectory endpoints.

Definition 6.4. Let Grao.r : L([0,T],R") — R™ be given by g — o(T,x0,9;f). The
subscripts on G may be omitted when f, T, and xy are clear from context or are general.

Lemma 6.5. G is an open map.

Proof. Tt suffices to show that G maps any basis element in the metric topology on
L>([0,T],R")—an open ball B.(g) = {h € L*>([0,T],R") : ||h — g|lcc < 7}—to an open
set in R™. To show that G(B,(g)) is open, we will show that for any h € B,(g) there
exists an ¢, sufficiently small so that the open €j-ball around G(h) is also in the image

G(Br(9))-
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Fix h € B,.(g) and consider a point G(h) + v in R™. We derive an €, so that ||v]| < €
implies there exists k € B,(g) such that G(k) = G(h) + v. First construct a path from zo to
G(h) + v: let xp(t) = @(t, zo, h) and let

v
T(t) = t t—.
(1) = (1) + 1.
Then Z(0) = z,(0) = zg and Z(T') = 2,(T) +v = G(h) 4+ v, so & is a path from zg to G(h)+v.
The velocity along the path Z (defined almost everywhere) is

d d v v

ZFt) = — [zn(D)] + = = ) + h(t) + —.

T50) = L len(0)] + 2 = Slan(t) +h) + 2
The control k(t) required to achieve the path Z(t) as a solution to 2’ = f(x) + k(t) is the
difference between the velocity vectors along the path and the underlying vector field, so

d

k(t) = 2(8) = f(2(t) = flza(t)) + h(t) + % — f(&(t)).

We will show that for ||v|| sufficiently small ||k — g|oc < r. Let L be the Lipschitz constant
for f. For almost every t € [0,T7,

Ik(t) = 9Ol = || £(@n(8) + h() + 7 = F@E(0) — 9(0)|

T
< I Gnte)) SR+ 1) — g0} + 12
< Ll|zn(t) — 2@)| + ||h(t) — g(t)] + ”;’
< Lol + [~ glle + 12

1
= L+ = h — gllco.
ol (4 7 ) + W=l

Let ¢, = "=li—dle  Then llv|| < e, implies that |k —g|,, < r. Because there exists an

L+1/T
ep-ball about any point in G(B,(g)) that is also in the image G(B,(g)), the image of any basis
element under G is open, and the proof is complete. |

With Lemma 6.5 in hand, we’re ready to construct attractor blocks from reachable sets
and prove their persistence properties.

Proposition 6.6. If S is a nonempty subset of R™ and if P,.¢(S) is bounded, then for any
globally Lipchitz and bounded vector field f : U — R™ satisfying Hf—stup < r, the set Pr.(S)
(defined using f) is an attractor block for the flow ¢ generated by f

Before proving Proposition 6.6, we note that in particular it says that boundedness of
P,.;(S) implies that P,.f(S) is an attractor block for the flow generated by f. Intuitively, one
can interpret this result as follows: whenever adding bounded control g results in a bounded
reachable set, the underlying vector field f must be counteracting the control at the boundary
of the reachable set, “pulling inwards” as required for an attractor block. The strength of this
inwards pull reflects the control bound r used to construct the block, and feeds the persistence
of the block through autonomous vector field perturbations.
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Proof. (Proposition 6.6) P,..¢(S) is compact since it is closed and bounded; it is nonempty

since it contains S. To confirm that P, ;(S) is an attractor block for ¢, it will suffice to show
that for any T > 0,

D (1)
(6.1) FPgE) T U el ) S mt(Prs(9)),

moeP,«;f(S)
l9ll oo <r

where the controlled flow in the middle term is generated by the vector field f; that is,
ol (z0) = @(T,x0,9;f). Fix T > 0. For inclusion (I), we first establish that ¢ (zo) €
U||9||oo<7“ gog(xo) for any point xy € R™. Let the path 2 : [0, 7] — R" be given by Z(¢) = ¢'(z0);
in other words, Z solves the initial value problem [z’ = f(z), 2(0) = ). Note that # also solves
the initial value problem [z’ = f(x)+g(t), 2(0) = x¢], where g : [0,T] — R™ is given by g(t) =
F(&(t))—=f(&(t)). In the notation of controlled flow for the vector field f, #(T) = oL (20). Since
by hypothesis ||g]loo < || f(2) = f(@)||sup < 7, it follows that ¢T (x¢) = #(T) € UllgHoo<7’ ol (xo).
Inclusion (I) follows directly by taking the union over xy € P,.¢(S). We argue inclusion (II)
by contradiction. Suppose there exists * € P,.¢(5) and ¢g* € L*>([0,T],R"), ||g*||,, < r, such
that gog* (*) & int(Py.f(S)). Because |g*| ., is strictly bounded below r, taking s = %
implies Bs(¢g*) C B,(0) C L*>([0,T],R"). The map G 4+ is open (Lemma 6.5) so it sends
Bs(g*) to an open neighborhood O of @QT* (z*). Because gogT* (*) & int(P.£(5)), it must be that
Oﬂ(Pr;f(S))c # &. Therefore, there exists a control h € B,(g) such that ¢} (z*) € (PT;f(S))C,
an open set. Continuity of ¢! () with respect to x implies that the inverse image of (P,..;(S N
under ¢! (-) is an open neighborhood V' of z*. V must intersect P,.;(S) nontrivially because
z* € Pr.s(S). Let b € P..¢(S)NV, so that b € P,.£(S) but ¢} (b) & P,.7(S). The contradiction
comes from concatenating controls to move from S to b to outside P..;(S). In particular,
b € P..¢(S) implies by Definition 4.1 that there exists 7 > 0, a € S, and j € L>([0,7],R"),
[7lloo <7, such that b = ¢7(a). Let k € L>([0, 7 + T],R") be given by

(t if 0 <t
h(it—7) ifr<t<7t+T.

Then by construction, ¢Z+T(a) = @z(ap}(a)) = ¢T'(b) & P,.(S). Yet since ||k||,, < r, Defini-

tion 4.1 implies that @Z+T(a) € P,.#(S). This contradiction completes the proof. [ ]

Proposition 6.6 does not guarantee any relationship between the set S used to construct the
attractor block P,.¢(S) and the attractor associated with P,.r(S). For example, if f: R — R
is given by f(z) = —z(z — 1)(z — 2) and we take a control bound 7 = 0.5 > sup,cp g || f ()|,
then any subset S C [0,2] will yield the attractor block Pys.¢(S) depicted in light blue in
Figure 6, with associated attractor A = w(P,.£(5)) = [0, 2].

On the other hand, if we construct the attractor block P.r(A) from an attractor A, we
recover A as the associated attractor under one further condition.

Corollary 6.7. If A is an attractor and if P.(A) is contained in a compact subset K of
D(A), then P.(A) is an attractor block associated with A.
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Figure 6. Relationship between reachable sets and attractors. For S any subset of [0,2], the reachable set
under control bound r = 0.5 is the light blue interval, and the associated attractor is the dark blue interval [0, 2].

Proof. Proposition 6.6 gives that P.(A) is an attractor block. It follows directly from
Definition 2.3 that the omega limit set preserves inclusion, and so w(A4) C w(P,(A)) C w(K).
By invariance of A, w(A) = (A). Further, an open cover argument gives that for K a compact
subset of D(A), w(K) C A. It follows that w(P,.(A)) = A, so the attractor block P.(A) is
associated with the attractor A. [ |

We have already seen in Lemma 6.2 that any attractor block is associated with an attractor.
We present a new proof of the converse using reachable sets.

Proposition 6.8. For any attractor A there exists an attractor block B associated with A.

Proof. Because p(A) > 0 (Proposition 5.2), by Definition 5.1 there exists r > 0 such that
P.(A) ¢ K C D(A) for some compact set K. By Corollary 6.7, P.(A) is an attractor block
associated with A. [ |

6.3. Intensity and continuation distance. In this subsection we leverage the persistent
attractor blocks of Proposition 6.6 and Corollary 6.7 to derive bounds on attractor contin-
uation distance. First, we make precise the notion of continuation. Suppose that when a
vector field f is perturbed to f , the original attractor A shifts to another attractor A with
qualitatively similar features. In what sense has A continued through the perturbation? We
use the following definition, adapted from [19].

Definition 6.9. Given an attractor A for vector field f and an attractor A for vector field
f, we say A continues immediately to A if there exists a set B that is an attractor block
associated with A under the flow generated by f and is an attractor block associated with A
under the flow generated by f

Remark 6.10. Because A and its immediate continuation A share a common attractor
block, they must also share any topological properties gleaned from the attractor block.

The next theorem gives our central result: an attractor’s intensity bounds from below the
distance in vector field space over which that attractor continues immediately.

Theorem 6.11. If A is an attractor for vector field f with intensity w(A), then for any
second vector field f satisfying || f — fllsup < 1(A), A continues immediately to an attractor A

for f
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Proof. T ||f — fllsup < t(A), then there exists a real number 7 > 0 such that || f — f|sup <
r < p(A). It follows from Definition 5.1 and Lemma 4.5 that P.(A) ¢ K C D(A) for
some compact set K C R™. This implies, by Corollary 6.7, that P,(A) is an attractor block
associated with A for vector field f. Proposition 6.6 gives that P,.(A) is also an attractor
block for vector field f. Defining A to be the omega limit set of P, (A) under f, we have that
P,(A) is an attractor block associated with attractors A and A under their respective flows.
Hence A continues immediately to fl, as claimed. |

The following example illustrates continuation of the predator-prey limit cycle from
Example 5.6.

Ezample 6.12. Consider the predator-prey system (5.8) and (5.9), which for suitable pa-
rameters features a stable limit cycle A in the first quadrant (see Figure 5(c)). Based on
reachable set computations with the Euclidean norm, we estimated 0.02 < u(A) < 0.03 in
Example 5.6. By Theorem 6.11, A should continue immediately to an attractor A for any
second vector field that differs from the original by up to 0.02 in Euclidean sup-norm. Figure 7
illustrates the immediate continuation A for three such vector field perturbations: (a) adding
0.02 to dx/dt, (b) subtracting 0.02 from dy/dt, and (c) changing the prey carrying capacity
parameter from K = 4 to K = 0.39801 (this parameter change perturbs the vector field by less
than 0.02 in a neighborhood of the attractor block Pp2(A)). The original cycle A is shown
with a solid line, the perturbed attractor A is shown with a dashed line, and their common
attractor block Ppg2(A) is shaded in green.

Example 6.12 highlights the strength of Theorem 6.11 in guaranteeing attractor continua-
tion across a variety of perturbation forms, rather than perturbation of a specific parameter.

The closing example in this subsection demonstrates that attractors may continue for
vector field perturbations that exceed intensity of attraction. This does not contradict Theo-
rem 6.11, but indicates that intensity does not give an upper bound on attractor continuation
distance.

(@ f=r+ { 0'82 } (¢) K =4, K=39801

5]

—A

4 PIHI'E(A) 4 p(ur.)(A)

3+

Figure 7. Continuation of a predator-prey limit cycle through three time-independent pertubations to the
vector field f. The perturbation is given above each panel. Solid and dashed lines give the original and perturbed
limit cycle, respectively. The reachable set from the original limit cycle with control bound r = 0.02 is shaded
mn green.
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Ezample 6.13. Let ' = f(z) = (1 — x). Then A =1 is an attractor for f with intensity
1(A) = 0.25. The set B = [1, %] is an attractor block associated with A. Consider a second
system 2/ = f(x) = cz(1 — ) with ¢ > 0. B remains an attractor block associated with {1}
for any such system. Yet the distance ||f — f |lsup may exceed 0.25 by taking c sufficiently

large. Thus the attractor A = 1 continues immediately to A = 1 despite || f — f l|sup exceeding
(A).

6.4. Upper semicontinuity of attractors. Without too much extra effort, the present
framework yields a new proof that attractors are upper semicontinuous—roughly, they do not
expand suddenly in response to changes in a vector field. Formally, we have the following.

Definition 6.14. An attractor A corresponding to the vector field f is upper semicontinuous
if for any meighborhood V' of A there exists a § > 0 such that for any second vector field f
with || f — fllsup < 0, A continues to an attractor A C V.

Theorem 6.15. Attractors in the present setting are upper semicontinuous in the sense of
Definition 6.14.

Proof. Fix a neighborhood V of an attractor A for ' = f(x). We will show that there
exists a d such that ||f — f llsup < 0 implies that A continues immediately to an attractor
A CV for f. Using Lemma 2.1, let K be a compact set with A C int(K) ¢ K C V ND(A).
Part 2 of Proposition 4.6 gives an r > 0 such that P,(A) C int(K). Then P.(A) C K C D(A).
Let & = . By Proposition 6.6, ||f — f|lsup < r implies that P,.(A) is an attractor block for f.
Let A be the omega limit set of P, (A) under f Then A is an attractor under f (Lemma 6.2),
is an immediate continuation of A (Definition 6.9), and is contained in V, as desired. [ |

7. Conclusions. We have defined a quantity, intensity of attraction, which gives a lower
bound on the magnitude of vector field perturbations through which an attractor continues to
structure the long-term behavior of trajectories. Intensity is an inherently metric property of
an attractor, and its value depends on the metric used on R™. Provided that time-dependent
perturbations to a vector field are essentially bounded below the intensity of an attractor,
trajectories that start at the attractor remain within its domain of attraction. And when
one autonomous vector field is perturbed to a second one, an attractor for the first continues
immediately to the second as long as the time-independent perturbation does not meet or
exceed its intensity.

An attractor and its immediate continuation share the topological properties encoded
in their common attractor block—and these properties are generally more coarse than the
details treated in earlier works on structural stability [1, 23, 31]. By accepting this coarser
lens on system structure we get attractor persistence not just for sufficiently small vector
field perturbations, as in [9, 8], but specifically for perturbations smaller than the attractor’s
intensity.

For a complementary approach to translating between physical or biological systems and
mathematical dynamics that bypasses an explicit deterministic model, see [3]. This recent
work constructs a multivalued map from data and studies its isolated invariant sets and their
robustness. Like the present work, [3] achieves lower bounds on persistence distance. Unlike
the present work, the bounds in [3] are derived from the binning resolution of discretized state
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space. A fixed discretization would yield uniform persistence distances across isolated invariant
sets, whereas alternative attractors in our setting could have different intensities. Developing a
concept of variable intensity for data-derived multivalued maps could help prioritize structures
for further experimental study, based on their robustness.

We envision several additional extensions of the present work. Efficient numerical algo-
rithms will be an important bridge between intensity theory for differential equations and the
real-world modeling problems that motivated its development. To compute the intensity of
an attractor we need information about both the domain of attraction and a nested collection
of sets reachable from the attractor. Delineating a domain of attraction in a nonlinear system
can be a nontrivial problem in its own right, and a variety of computational approaches have
been developed (see [17] and references therein). To compute reachable sets quickly, one could
pursue numerical strategies described in [30]. To achieve rigorous bounds on reachable sets,
one could use methods based on interval arithmetic ([10]).

Applying intensity theory to a real-world system will require selecting a metric that best re-
flects the perturbations of interest. Here we have considered homogenous, translation-invariant
metrics, carrying the same information as a norm. However, the relevant scale of perturba-
tions might vary across state space, requiring a metric in its full generality. Furthermore, in
certain settings one may want to restrict perturbations to a single coordinate while leaving
others unperturbed. This could be accomplished with an extended metric. Whether intensity
theory goes through for general or extended metrics remains to be determined.

Another theoretical question with practical implications concerns the relationship be-
tween intensity of attraction for discrete [19] and continuous-time dynamics. We conjecture
that pu(A) = limy_,o p¢(A)/t, where p gives the intensity of an attractor under a flow ¢ (Def-
inition 5.1) and p; gives the intensity of the attractor under the map ¢! (defined in [19,
section 5]). Proving this connection would provide a theoretical justification for discretizing
time in numerical computations of intensity u.

In this work we chose an intentionally broad class of perturbation functions g € L to sup-
port versatile resilience quantification. It remains open whether restricting to a smaller class
of controls (e.g., continuous) generates an equivalent theory, perhaps with simpler arguments.

Last, we aim to extend the theory of intensity to measure persistence properties of repellers
and other isolated invariant sets. If we can achieve bounds on the persistence of local dynamic
structures, it might be possible to describe how the global structure changes, in stages, under
perturbations of increasing magnitude. We conjecture that this series of changes will reveal a
Morse decomposition of the dynamical system.
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