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Abstract—We consider the task of distilling local purity from
a noisy quantum state pAB , wherein we provide a protocol for
three parties, Alice, Bob and Charlie, to distill local purity (at
a rate P) from many independent copies of a given quantum
state p“PC. The three parties have access to their respective
subsystems of pAB €, and are only allowed to use local unitary
operations. In addition, Alice and Bob can communicate with
Charlie using a one-way multiple-access dephasing channel of
link rates R; and Rq, respectively. The objective of the protocol
is to minimize the usage of the dephasing channel (in terms of
rates R; and R>) while maximizing the asymptotic purity that
can be jointly distilled from p“Z€. To achieve this, we employ
ideas from distributed measurement compression protocols, and
in turn, characterize a set of sufficient conditions on (P, R, R)
in terms of quantum information theoretic quantities such that
P amount of purity can be distilled using rates R, and Ro.

I. INTRODUCTION

A primary task in quantum information theory is to quan-
tify the amount of local and non-local information present
within a quantum information source. For instance, the task
of entanglement distillation aims at capturing the non-local
correlations to transform a noisy shared state p% into pure
bell states (in particular, the ebit |[®*)), in an aymptotic sense.
A complementary notion to this task is the paradigm of local
purity distillation, where pure ancilla qubits are distilled from
a distributed state p? using local unitary operations.

Although it may seem unusual, local pure states cannot
be considered as a free resource. One may argue that pure
states can be obtained from a mixed state by performing
a measurement, but this is only true after a measurement
apparatus is initialized in a pure state. For this reason, the
second law of thermodynamics recognizes purity as indeed a
resource [1], [2]. In this regard, the idea of distilling of local
purity was first introduced in [3], [4] where the aim was to
manipulate the qubits and concentrate the existing diluted form
of purity. Two version of this problem have been introduced,
(i) a single-party variant and (ii) a distributed version. In
the former single-party scenario, also called as local purity
concentration, many copies of a noisy state p“ are provided
to Alice, and she aims at concentrating or extracting purity
using only unitary operations. The authors in [5] characterized
the asymptotic performance limit of this protocol (k(p?))
as the difference between the number of qubits describing
the system and the von Neumann entropy of the state p?.
For the latter case of distilling purity from a non-local dis-
tributed state, commonly termed as local purity distillation,
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two parties, Alice and Bob, share many copies of the noisy
state p® and aim at jointly distilling pure ancilla qubits.
Again, they are allowed to perform only local unitaries and
but can communicate classically (LOCC), possibly through
the use of a dephasing channel [3]. Further, the protocols
for both the variants require isolation (Closed-LOCC) from
the environment which eliminated the possibility of unlimited
consumption of the pure ancilla qubits. The authors in [4]
provided bounds for this problem in the one-way and the two-
way classical communication scenarios.

Later, Devetak in [6] considered a new paradigm called
1-CLOCC’, which was defined as an extension of Closed-
LOCC, with (i) the allowance of using additional catalytic pure
ancilla as long as these are returned back to the system, and (ii)
the unlimited bidirectional classical communication replaced
by unlimited one-way communication from Alice to Bob.
Devetak obtained an information theoretic characterization of
the distillable purity and also highlighted its connection to
the earlier known one-way distillable common randomness
measure [7]. Building upon this, the authors in [8] extended the
result to a setting with bounded one-way classical communi-
cation. They improved upon the classical communication rate
by using the Winter’s approximate measurement [9], instead
of an n-letter product measurement, and extracted purity for
the states obtained thereby.

In this work, we revisit the task of distilling purity and
consider a three-party setup. We ask the question of how many
ancilla qubits can be distilled from a noisy state pAZC | shared
among three parties, Alice, Bob and Charlie. Similar to earlier
problem formulation, we only allow local unitary operations at
each party in a closed setting but permit the use of additional
catalytic ancillas with the promise of returning them at the
end of the protocol. In addition, similar to [8], we only allow
limited classical communication, which we model using a one-
way multiple-access dephasing channel, with Alice and Bob
as the senders and Charlie as the centralized receiver.

The contributions of our work can be summarized as fol-
lows. We first formulate a three-party purity distillation prob-
lem, and develop a 1-CLOCC’ multi-party purity distillation
protocol for this problem capable of extracting purity from n
copies of the noisy shared state p%%c, using only local unitary
operations and a one-way multiple-access dephasing channel.
Further, for p%%c, we define the asymptotic performance limit
of the problem as the set of all triples (P, Ry, Rs), where P
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denotes the amount of purity that can be distilled from pA8¢
using Ry, and Ry bits of classical communication. Then we
characterize a quantum-information theoretic inner bound to
the achievable rate region in terms of computable single-letter
information quantities (see Theorem 1).

Toward the development of the results, we encounter two
main challenges. The first challenge is in the compression of
the joint measurements. Since the classical communication
allowed by the protocol is limited, the joint measurements,
that Alice and Bob employ, are required to be compressed.
Although a distributed measurement compression protocol for
compressing a joint measurement have been developed earlier
[10], one cannot directly use this protocol as a complete black
box. The reason for this is that the measurement compression
protocol also requires additional common randomness as a
resource which the current purity distillation protocol does not
allow. Apart from this, the measurement compression proto-
cols provided in [9]-[11] shows the “faithfulness” of the post-
measurement state of the reference along with the classical-
quantum register storing the measurement outcome. These
protocols remain unconcerned about the post-measurement
state of the system on which the measurement is performed.
However, in the current problem the closeness of the latter
is needed. To overcome this, we identify appropriate purifica-
tions of the post-measurement reference states and argue an
existence of a collection of unitary operations achieving the
latter (see Lemma 2 for more details).

The second major challenge is that after the application of
the compressed measurement, the states across the three parties
are not necessary separable. This is because a compressed
measurement is usually not a “sharp” rank-one measurement.
In [6] rank-one measurements are employed which makes the
states separable and hence eases the analysis. To handle this,
we develop a technique (see Lemma 3) and employ it in our
proof.

II. DISTRIBUTED PURITY DISTILLATION

In the following we describe the problem statement. Let
pABC be a density operator acting on Ha ® Hp @ He.
Consider two measurements M, and Mp on sub-systems
A and B, respectively. Imagine that we have three parties,
named Alice, Bob and Charlie, trying to distill local purity
from the noisy joint state pABC. The resources available
to these parties are (i) the classical communication links
of specified rates between Alice and Charlie, and Bob and
Charlie, modelled as a multiple-access dephasing channel, and
(ii) an additional triple of pure catalytic quantum systems A¢,
B¢ and C¢ available to Alice, Bob and Charlie, respectively.
Given the distributed nature of the problem, no communication
is possible between Alice and Bob. The problem is formally
defined in the following.

Definition 1. For a given finite set Z, and a Hilbert space
HiQ@Hp®Hc, a distributed purity distillation protocol with
parameters (n, ©1,Oq, K1, K2, K3, L1, L2, t3) is characterized by

1) a unitary operation on Alice’s system Uy: H%n ®
Hae — Ha, @ Hx, ® Ha,, with dim(HAp) = K1,
dim(HAc) =1, and dim(HXl) = 0.

2) a unitary operation on Bob’s system Up : ’H%"@”HBC -
HB,, RHx, ®'HBQ, with dim('HBp) = kg, dim(Hp,) =
L2, and dim(HX2) = 92.

3) a multiple access dephasing channel N': Hyx, ® Hx, —
Hx, @ Hx,.

4) a unitary operation on Charlie’s system Uc: ’H%” ®
Heo @Hx, QHx, — Hcp ®7‘[cg , with dim(HCC) =13
and dim(H¢,) = k3.

Definition 2. Given a quantum state p“2¢ € D(HA @ Hp ®
C), atriple (P, Ry, R2) is said to be achievable, if for all ¢ > 0
and for all sufficiently large n, there exists a distributed purity
distillation protocol with parameters (n, ©1, O, K1, K2, K3, L1,
L2, t3) such that

G & ¢4 B —|ox0["” ®[0X0[” ®[0X0|°" |1 < e,
1
g10g2®¢ <R, +e:ie[2],

Z (logy ki —loggy 1) < P + ¢,

i€[3]

where |¢) & UcNUBUA|WEm)ABCR and W@ )ABOR s o
purification of (pAB¢)®"_ The set of all achievable triples (P,
Ry, R») is called the achievable rate region.

S|

Given a POVM M £ {A%},cx acting on p, the post-

measurement state of the reference together with the classical

outputs is represented by (id ® M) (U7, ,) a e lTX2| ®

Tra{(I" @A) P4}
Definition 3. Consider a quantum state pP° € D(Has ®
Hp®Hc), and a POVM Myp = Ma® Mp acting on Ha®
Hp where My = {A%}scs and Mp = {AP},c7. Define the
auxiliary states

ofBO5 & (idp ® Ma ® idpc)(PEAPC),

ofACT & (idp @ idac ® Mp)(VEAEC), and

oS 2N\ /pAB (R @ AP) /p B ® |s)s| @ [t
s,t

for some orthonormal sets {|s)}ses and {|t)}ie7, where
WRABC s a purification of pABC. Let Ry(pAP, Map) be
defined as the set of all pairs (R, Rz) such that there exists
finite sets ¢/ and V and a pair of mappings fs : S — U
and fr : T — V, yielding U = fg(S), V = fr(T), and
W = (U,V), and the following inequalities are satisfied:

Ry 2 I(U; RBC)q, — Iy(U; V),
Ry = I(V; RAC),, — Iy(U; V) 4y,
Ry + Ry > I(U; RBC),, + I(V; RAC),,
where I;()e = b X I(*),
Theorem 1. Given a quantum state p*B¢ € D(HA @ Hp ®

Hc), a triple (Ry, Ra, P) is achievable if there exists a POVM
Map = Ms® Mp acting on Ha @ Hp with POVMs M4 =

- Ib(U; V)O‘g?
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{A}ses and Mp = {AP}ieT Ha ® Hp and a real number
b € [0,1] such that the following holds:

P < #(pa) + £(pB) + £(pc) + I(C;U,V)o = I(U; V),
and (Ry, Ry) € Ry(pABC, M), where

oM & (idp ®ide ® Ma ® Mp)(WEAEC).
Proof. The proof is provided in Section III. O

Definition 4. Given a quantum state pAB Ce DHARHE®
Hc), and a dephasing channel with communication links of
rates Ry and R, define 1-way distillable distributed local
purity £_, (pABC, Ry, Ry) as the supremum of the sum of all
the locally distillable purity.

Corollary 1. Given a quantum state p*B¢ e D(HA @ Hp ®
Hc), let

KL (PABC, By, Ry) 2 w(p%) + k(o) + 5(6°)
+ PB(pABcv Rl’ RQ)}
1

hrn PP((p"BY®" nRy, nRy),
nn

{I(C;U,V)e — L,(U; V),

||l>

P—D>(pABcvR1a RQ)

>

max
MAB,bE[O,l]

(Rla RQ) € Rb(pABC7MAB)}-

pB(pABC7R1’ R2)

With the above definitions, we have r' (pABC Ri,Ry) <
k. (pABC Ry, Ry). In other words, for any communication
rates (Ry, Ra), kL, (pABC, Ry, Ry) amount of purity can be

jointly distilled from the three parties using the protocol
defined in Def. 1.

Proof. The proof follows from Theorem | and regularization.
O

III. PROOF OF THEOREM 1

The proof is mainly composed of two parts. In the first
part, we construct a protocol by developing all the actions
of the three parties, and describe them as unitary evolution
(as these are the only actions allowed by the protocol, Def.
1). Simultaneously, we also provide necessary lemmas needed
for the next part. The second part deals with characterizing the
action of the developed unitary operators on the shared quan-
tum state pA2¢ and then bounding the error between the final
state and the desired pure state. Since our result is derived for
a bounded communication channel, we start by approximating
the measurements to achieve a decreased outcome set, while
preserving the statistics of the measurement.

A. Approximation of the measurement My ® Mp

We start by generating the canonical ensembles correspond-
ing to M4 and Mp, defined as

Ni & Tr{Adpt), AP & Tr(AB)pP),
/\AB A TI"{(AA ®AB> AB}

. 1 . 1
8 VNIV, 38 2 AP,

and

A 1
pal 2 VAP (AL @A)V p AP )

uv

Let II,» and II,5 denote the J-typical projectors (as in
[12, Def. 15.1.3]) for marginal density operators p”* and p?,
respectlvely Also, for any u™ € Y™ and v™ € V", let 14, and

B, denote the strong conditional typical projectors (as in [12,
Def 15.2.4]) for the canonical ensembles (M p2t) and (A5,
pB1, respectively. For each u™ € 7:; )(U) and v € Ts n)( )
define

P AT aTIA, pATIA T

umn

p~1)n = H BHUnpvnH H B,

and g, = 0, and 55, = 0 for u” ¢ 7MW ) and v ¢

T (V), respectively, with p4, & ®, p 2 ®, 8.
Randomly and independently select 2”R1 and 2"%2 ge-

quences (U™ (1), V™ (k)) according to the pruned distributions,

i.e.,

P (@), V=) (k) = (", 0"))

A,ﬁn )\En n n
e um e TM(U), o e T (V) ’

0 otherwise

A and pB, 2

3)

where ¢ = Zu”ET(")(U) Zvnﬁ_&(n)(v) AB LetC
denote the codebook containing all pairs of codewords (U™ (1),
V" (K)).

Further, define o

/ A, / / B,
oA A 2 (1 u )pf", o8B A Z (1 v

u"G'T(;(n)( U) ’U"‘G'T(s(n)( V)

A4, and &’

! s
A" and 0P as

- ’
)pfl,

“4)

where ¢ = Zune’ré(“(U) /\fn and ¢ = Zvnefs(")(v) A3,
Note that 02" and o8  defined above are expectations with
respect to the pruned distribution [12]. Let 14 and II7 be the
projectors onto the subspaces spanned by the eigenstates of
o and o8 corresponding to eigenvalues that are larger than
g2~ US(pa)+01) gnd ¢/9-n(S(B)+d1)  \where §; > 0 is such
that Tr(IT,,) < 27(5(Pa)+00) "and Tr(11,,) < 27(SPE)+o0)
and 67 \, 0 as § N\ 0. Lastly, define

pa, & 114 and p5 211558115

Pyn =

Note that using the Average Gentle Measurement Lemma [12,
Lemma 9.4.3], for any given € € (0, 1), and sufficiently large
n and sufficiently small §, we have

DNl AL

A ~A
Pun = Pyn
uneyn meY™

for all u™ € T5(U) and v™ € T5(V). (A detailed proof of the
statement can be found in [11, Eq. 35].)
Using this, construct operators

Aun = Yunr (m pun\/i 1) and
v" - Cv" (\/piB pv"\/i 1)’ (5)

pu"H )

<€,

~B
Pin — Pnlln

1<67
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where
A 1- an n _ n
T & R U0 = )] and
A 1- —nR; n n
n = 2 2 =
G & TSRk V) = 0, ©

where 7 € (0, 1) is a parameter that determines the probability
of not obtaining sub-POVMs. Then construct M.™ and M{™
as in the following

M{" & (A u” e T (U),
M A By o™ e TL(V)) 7

We show later that M and M{" form sub-POVMs,
with high probability, These collections Ml(") and MQ(n)
are completed using the operators I — Zu”eT(")(U)A

and T — ) omeT ™ (V) B,~, and these operators are associ-
ated with sequences ug and vy, which are chosen arbi-
trarlly from L{”\fs ( ) and V"\T; (n)( V), respectively. Let
{SP—I} denote the indicator random variable corresponding

to the event that MZ-(") form sub-POVM for ¢ = 1,2. We
use the trivial POVM {I} in the case of the complemen-
tary event and associate it with ug and v{ as the case
maybe. In summary, the POVMs are given by {1 {sP-l}AU” +
(1 — ]l{sP-1})]1{u"=u3}l}u"61/l"7 and {]l{sP-z}BU" + (1 —
Lisp2y) Lin =gy fonevr-

Now, we intend to use the completions [Ml(”ﬁ 1)] and
[MQ("’” 2)] in constructing the unitaries U4 and Ug, as de-
scribed in the protocol (Def. 1), for Alice and Bob, respec-
tively. Note that the above constructed POVMs are different
from Winter’s POVMs, in that they do not have the cut-off
operators. Before concluding the discussion on the POVMs,
we provide two lemmas which would be useful in the sequel.
The first lemma deals with bounding from below the proba-
bility that the constructed collection of operators indeed form
a sub-POVM, and is as follows.

Lemma 1. For any ¢ € (0,1), any n € (0,1), any § € (0,1)
sufficiently small, and any n sufficiently large, we have

1
_ 22(4@[1 1 _D<2e,
N1N2ﬁl,,;2 {(sP-1}*{sP-2}

if Ry > I(U;RB),, and Ry > I(V; RA),,, where 01,0 are

defined as in the statement of the theorem.

Proof. The proof is provided in [13]. O

The second lemma provides a unitary to show closeness
of the post-measurement states obtained from approximating
measurements and the actual measurements. Note that the
faithful simulation results [9]-[11] show the closeness of states
in the reference system, but the current result proves the
closeness of the post-measurement states. The main elements
of the proof is in identifying appropriate purifications and
using the Uhlmann’s Theorem [12]. The lemma is as follows.

Lemma 2. Using the above definitions, for all (u™,v™) € C
let

(IE® /A;?n)|\:[/p®n>ABCR
VAL, ’
(IE ® /7Aun) ’\I/p®n>ABCR

~ AE
‘Uu"> N )

>AE

>

16un

>

(16522 and |5,2YPF defined analogously) where E and
F' denotes the system BCR and ACR, respectively, then for
each | € [2""] and k € [2"72] there exists a pair of unitaries
UA(l) and UB (k), such that

2
Pl (1P @ UA I3 ) = (1 Lt~ 1)

2
. \BF . \BF -

Pl (I @UP (k)50 = (1= 51585 ~8.11)

Proof. The proof is provided in the detailed version [13]. [

We now move on to characterizing the unitaries Uy and Up.

B. Action of Alice and Bob

Using the approximating POVMs constructed above, as a
first unitary Alice and Bob implements the coherent version

of the approximating POVM defined as
A/ Bvnr) ® k).

kE[2 nR2

UL £ ur 2

Ayny @11y,

le[2’"Rl]

Although the operators defined above are isometry operators,
but with the help of additional catalyst qubits, these can be
implemented as unitary operators. Now, to extract purity from
the states obtained after performing the measurements we
employ the approach of [8]. More formally, we define the
collection of unitaries {Ulj“(l)}lepml] and {Uf(k)}kepmz%
as the unitaries that can extract purity for the collection o
states {Ul }15[2"1?1] and {ak }ke [2nfiz]’ respectively. Note that
since Uz and ak and product states, the approach of [8]
can be followed in a straight-forward manner in designing
the unitaries sz‘(l) and UJ (k), respectively. However, note
that since the approximating measurements are not rank-
one operators, Uz‘,‘l(l) and U7 (k) will act on not necessarily
separable states. Therefore, we provide the following lemma
which ensures that the state of the remaining sub-systems is
only slightly disturbed after distilling purity from a given sub-
system.

Lemma 3. Consider the above defined joint state p”B¢
Let N be any CPTP map capable of concentrating local
purity out of the n-letter state (p*)®", while using additional
catalytic ancilla, returned at the end of the protocol, i.e.,

I (p8") — 0X0[ 4, 1 < € for any €, some sub-system H 4,
and sufficiently large n, then

|V @ 1P W™ — pEe R ®10)01, | < 26, (8)
where \II;‘BCR is the canonical purification of p*BC, pa 4

TYBCR{PABCR}r and ppcr 2 TI"A{PABCR}'
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Proof. The proof is provided in [13]. O
Now we characterize the complete action at Alice and Bob as
Ua & UAUAUZ and Up 2 UPUPUE, )

where U2 and U2 are controlled unitaries defined as

éZUA UAAZUA

lE[Qan] le [Qan]

® X1, ® [1X1]

and similar is true for U and UZ. This gives

Ua = Z U;(Z)U:‘(l) Ayny ® 1)

le[2nf1]
Us= D, UZ(R)UP(k)\/Byn ® k)
ke[2nf2]

Finally, let

A
“1/1>ABCRLK é (ICR®UA ®UB) ’\I’p®n> BCR

C. Transmission over the Dephasing Channel N

Before we proceed to employ the dephasing channel, ob-
serve that the classical registers created by the coherent mea-
surement contains correlations across Alice and Bob. These
correlations could be exploited which can further reduce the
communication needed over the dephasing channel. For this,
we employ the traditional binning operation. Begin by fixing
the binning rates (R, Rs), with Ry < Ry and Ry < R».
For each sequence u™ € 7:5n)(U ) assign an index from [1,
27f1] randomly and uniformly, such that the assignments for
different sequences are done independently. Perform a similar
random and independent assignment for all v" € ’7'5(")(‘/)
with indices chosen from [1,2"#2]. For each i € [1,2"]
and j e [1,2"f2], let By(i) and By(j) denote the i*" and
the ;" bins, respectively. More precisely, B (i) is the set
of all u™ sequences with assigned index equal to ¢, and
similar is Bz(j). Also, note that the effect of the binning
is in reducing the communication rates from (Rhég) to
(R1, R2). Moreover, let ¢ T(n)( U) — [1,27*], and
Lo ’7:5(7L)(V) — [1,2nf2], denote the corresponding random
binning functions. With this, we can denote |I) for [ € [2"/1]
as |1y, = e (1)), |Bu(1)),, and similarly, |k) for k € [27F2]
as [k) g = [12(k)) g, |Bv (k )>K2 where the functions Sy and
By describe the remaining R; — R; and R2 — Ry qubits,
respectively. Now the qubits in the state |¢1(-)) and |ia(+))
are sent over the multiple-access dephasing channel N, each
requiring rates of Ry and Ry qubits, respectively. Let

O_ABCRLK A N(\IllABCRLK).

With this, we move on to describing the action Charlie.

"Note that 11 (1) =
Bv.

¢1(U™(1)), and similar holds for the functions ¢2, By,

D. Action of Charlie
Charlie begins by undoing the binning operation. For this, let

D, ; é{(u" v")eC: (u™,v") e 7:5(n)(UV)
and (u”,v") € By (i) x B2(j)}.

For every i € [1,2"f1] and j € [1,2"2] define the function
F(i,j) = (u™,v™) if (u™,v™) is the only element of Dj ;;
otherwise F(z,]) = (uy,vy) Further, F(i,j) = (uf,vy) for
1 = 0 or 7 = 0. Using the qubits received from Alice and Bob,
and the above definition of F'(4, j), Charlie aims at undoing the
binning operations. This can be characterized as an isometric

map US : Hy, @ Hy, — Hy, @ Hy, ® Hr defined as

uc & Z >, id F(i5)) Gl

277.1?,1 _]6 2nR2]

(10)

where dim(Hr) = Ry 2 Ry — Ry + Ro— R». Note that, since
binning decreased the total number of qubits transmitted by
Ry, to implement the above isometry, Charlie would need Ry,
number of additional catalytic qubits present in the pure state.
As the protocol allows for the use of additional catalysts, as
long as they are returned successfully, such an isometry can
be implemented as a unitary.

Remark 1. As will be shown in the sequel, the error analysis
gives an upper bound on Ry,. As this is only an upper bound,
one can choose to not bin at the maximum rate and can save on
the catalytic qubits needed. However, this would increase the
communication rates by equivalent factors. This is modelled
in the theorem statement using the real number b € [0,1].
Therefore, we observe a continuous trade-off between the
distillable purity and classical communication, which was not
prominent in the two-party setup [8] (although, time-sharing
between P at R = 0 and P at maximum allowable R could
give one such trade-off).

After the complete identification of the measurement out-
comes of Alice and Bob, Charlie now extracts the purity
from her state, conditioned on these outcomes. For this, she
develops an collection of unitaries {Uf(k, l)}le[le]’ke[Qnéz],
analogous to the earlier ones, using the approach of [8].
Further, she constructs the controlled unitary US defined as

ufe Y > USD®ILEXLE . (D)
le[2nB1] ke[2nR2]
This characterizes Charlie’s unitary as Uc = USUS, and

gives

At this point, we have the characterized the actions of all the
three parties as unitary operations. The next step is to measure
the distance between the obtained state and the desired pure
state, and establish the G can be made arbitrary small. For
the remainder of the proof, we direct the interested readers
to detailed version of the manuscript [13] where the complete
analysis is provided.
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