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Abstract—We consider the task of communicating a generic
bivariate function of two classical sources over a Classical-
Quantum Multiple Access Channel (CQ-MAC). The two sources
are observed at the encoders of the CQ-MAC, and the decoder
aims at reconstructing a bivariate function from the received
quantum state. Inspired by the techniques developed for the
classical setting, and employing the technique of simultaneous
(joint) decoding developed for the CQ setup, we propose and
analyze a coding scheme based on a classical superposition of
algebraic structured codes and unstructured codes, and the idea
of embedding functions on a prime field. We derive a new set
of sufficient conditions that strictly enlarge the largest known
set of sources (capable of communicating the bivariate function)
for any given CQ-MAC. We provide these conditions in terms of
single-letter quantum information-theoretic quantities.

I. INTRODUCTION

In this work, we consider the problem of computing func-
tions of information sources transmitted over a classical-
quantum multiple access channel (CQ-MAC) N . Comput-
ing functions of sources has been used in a wide range
of practical applications. In the classical framework, these
include, compute-and-forward strategy for wireless networks
[1], interference management in the cellular uplink channel
[2], and network coding [3]. As for the CQ setup, recent
works have explored compute-and-forward (CAF) relaying
technique in quantum one-hop relay network and symmetric
private information retrieval (SPIR) over a quantum internet
network [4].

The problem can be described as follows: consider a
scenario where two distributed parties observe two classical
information streams Sjt P Sj : t ě 1, with the pair pS1t,
S2tq : t ě 1 being independent and identically distributed
(IID) according to the distribution WS1S2

. These parties
intend to send a bivariate function fpS1, S2q to a centralized
receiver using the CQ-MAC N , and the receiver then aims to
reconstruct the bivariate function f from the received quantum
state. In this work, we aim to characterize the sufficient
conditions, on the distribution of sources WS1S2

, such that
for a given CQ-MAC, the centralized decoder reconstructs
the bivariate function with an arbitrary low probability of
error. The conventional approach to characterize the sufficient
conditions for this problem rely on enabling the receiver to
reconstruct the pair of classical sources, and then computing
the function. This would be a direct consequence of the result
derived in [5]. The authors in [4] addressed this CQ-MAC
problem where the sum of sources is computed directly with-
out explicitly reconstructing the individual sources. However,
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they restrict their attention to uniform input distribution. The
authors in [6] instead employed a different technique, using
asymptotically good random nested coset codes that directly
reconstruct arbitrary function f of sources of arbitrary distri-
butions. Their work was built on the earlier ideas, developed
in the classical setup, of recovering the sum of sources without
recovering either of the sources at the receiver [7]–[10]. These
classical techniques are part of a broader framework for
the multi-terminal problems and are characterized by codes
with asymptotically large block-length and algebraic structure.
These algebraic structured codes can achieve performance
limits that are not achievable with conventional techniques
using unstructured random codes [11].

However, even in the classical multi-terminal setup, the
coding techniques relying on the algebraic structure may show
gains for certain class of problems and in certain rate regimes.
Therefore, a unified technique that captures the gain of both
unstructured coding techniques and the algebraic structured
coding techniques is needed to approach the performance
limits for multi-terminal problems. In this regard, considering
a multi-terminal problem of classical lossless distributed com-
pression, Alhswede-Han [10] obtained the best known inner
bound by combining the Slepian-Wolf [12] coding scheme
with the algebraic structured based scheme of Kórner-Marton
[7]. Motivated by this, we provide a unified approach for the
problem of computing a bivariate function of two sources over
CQ-MAC, capitalizing on the gains of the algebraic structured
techniques developed in [6], while making the most of the
unstructured coding approach developed for this problem [5].

We propose an approach where each transmitter intends
to send two pieces of information, about its corresponding
source, to the receiver. The first piece of information from
both the sources needs to be reconstructed individually at the
receiver. Then, conditioned on this reconstruction, we let the
receiver reconstruct the necessary function f of the second
piece. At the ith transmitter, the two pieces are constructed
on auxiliary variables Ui and Vi, and then fused to form the
channel input Xi. To model this transmission, as an interme-
diary step, we construct a 4´input CQ-MAC with inputs (U1,
U2, V1, V2), and the objective is to decode the triple pU1, U2,
V1‘qV2q, where ‘q represents addition with respect to a prime
finite field Fq . For this, the decoder needs a CQ simultaneous
decoding technique. The ideas of joint typicality using tilting,
smoothing, and augmentation introduced by Sen [13], [14]
solved the problem of simultaneous decoding of individual
messages on CQ-MAC, however, it is based on unstructured
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coding techniques. We develop a unified coding framework
that combines unstructured and structured coding techniques
while using this jointly typicality approach that enables the
decoder to reconstruct pU1, U2, V1 ‘q V2q simultaneously.

In light of this, the main contribution of the current work is
in providing a new set of sufficient conditions (see Theorem 1
and 2), while strictly subsuming the current known conditions,
for reconstructing arbitrary function of sources over a generic
CQ-MAC. Furthermore, we have provided examples where
the gains by our unified approach are demonstrated (see [15]).
This work opens up an opportunity to investigate a generic
approach encompassing both the conventional unstructured
and algebraic structured techniques for other multi-terminal
problems in the classical-quantum regime [16]–[18].

II. PRELIMINARIES AND NOTATION

Notation: We supplement the notation in [19] with the fol-
lowing. For positive integer n, rns “

∆
t1, ¨ ¨ ¨ , nu. We employ

an underline notation to aggregate objects of similar type. For
example, s denotes ps1, s2q, xn denotes pxn

1 , x
n
2 q, S denotes

the Cartesian product S1 ˆ S2. Let c.c.pSq denote the convex
closure of the set S.

Consider a (generic) 2-user CQ-MAC N2, which is specified
through (i) finite sets Xj : j P r2s, (ii) Hilbert space HY , and
(iii) a collection pρx1,x2

P DpHY q : px1, x2q P X1 ˆ X2q of
density operators. This CQ-MAC is employed to transmit a
pair of sources such that the centralized receiver is capable of
reconstructing a bivariate function of the classical information
streams observed by the senders. Let S1,S2 be finite sets, and
pS1, S2q P S1 ˆ S2, distributed with PMF WS1S2

, model the
pair of information sources observed at the encoders. Specif-
ically, sender j observes the sequence Sjt P Sj : t ě 1. The
sequence pS1t, S2tq : t ě 1 is assumed to be IID with single-
letter PMF WS1S2 . The receiver aims to recover the sequence
fpS1t, S2tq : t ě 1 losslessly, where f : S1 ˆ S2 Ñ R is a
specified bivariate function, and R is some finite set.

Definition 1. A CQ-MAC code cf “ pn, e1, e2,λq of block-
length n for recovering f consists of two encoding maps ej :
Sn Ñ Xn

j : j P r2s, and a POVM λ “ tλrn P PpHY q : rn P

Rnu. The average error probability of the cf is

ξpcf q “ 1 ´
ÿ

sn:fpsnq“rn

Wn
S1S2

psn1 , s
n
2 qTr

´

λrnρ
bn
c,sn

¯

where ρbn
c,sn “ bn

i“1ρx1ipsn1 qx2ipsn2 q, ejpsnj q “ pxj1psnj q,
xj2psnj q, ¨ ¨ ¨ , xjnpsnj qq for j P r2s.

Definition 2. A function f of the sources WS1S2
is said to be

reconstructable over a CQ-MAC N2 if for ϵ ą 0, D a sequence
c

pnq

f “ pn, e
pnq

1 , e
pnq

2 ,λq such that limnÑ8 ξpc
pnq

f ,N2q “ 0.
Restricting f to a sum, we say the sum of sources WS1S2

over
field Fq is reconstructable over a CQ-MAC if S1 “ S2 “ Fq

and the function fpS1, S2q “ S1 ‘ S2 is reconstructable over
the CQ-MAC.

III. MAIN RESULTS

Our objective is to develop a single-letter sufficient con-
ditions for a given pair of sources WS1,S2

and function f
that is reconstructible over a given CQ-MAC N2. As an
intermediate step toward providing the main result, we present
an intermediary result that will be useful in obtaining the main
result and can also be of independent interest.

A. 4-to-3 decoding over CQ-MAC

In this subsection, we consider the problem of 4-to-3
decoding over a 4-user CQ-MAC, where the receiver aims
to compute functions of messages of user 1 and 2, and the
individual message of users 3 and 4. Consider a (generic)
4-user CQ-MAC N4, which is specified through (i) finite
(input) sets Vj : j P r2s and Uj : j P r2s, (ii) a (output)
Hilbert space HZ , and (iii) a collection of density operators
pρv1v2u1u2

P DpHZq : pv1, v2, u1, u2q P V1 ˆ V2 ˆ U1 ˆ U2q.

Definition 3. A code c “
`

n,Fq, eVj : j P r2s, eUj : j P r2s,λ
˘

of block-length n, for 4-to-3 decoding over N4 consists of four
encoding maps eVj

: Fl
q Ñ Vn

j : j P r2s, eUj
: rqlj s Ñ Un

j :
j P r2s, and a POVM λ “ tλtm‘,m3,m4u P PpHZq : pm‘,

m3,m4q P Fl
q ˆ rql1s ˆ rql2su, where m‘ “

∆ m1 ‘ m2, l, l1
and l2 are positive integers, and q is a prime number.

Definition 4. Given a CQ-MAC N4, and a prime q, a rate
triple pR,R1, R2q ą 0 is said to be achievable for 4-to-3
decoding over the CQ-MAC if given any sequence of triples
plpnq, l1pnq, l2pnqq, such that lim supnÑ8

lpnq

n log q ă R,

lim supnÑ8
lipnq

n log q ă Ri : i P r2s, and any sequence
p

pnq

M1M2M3M4
of PMFs on Fl

q ˆ Fl
q ˆ rql1s ˆ rql2s, there exists

a code cpnq “ pn,Fq, eVj : j P r2s, eUj : j P r2s,λq for 4-to-3
decoding over CQ-MAC N4 of block-length n such that

lim sup
nÑ8

ξ̄pcpnq,N4q “

lim sup
nÑ8

1 ´
ÿ

m

pM pmqTr
´

λtm‘,m3,m4uρ
bn
m

¯

“ 0,

where ρbn
m “

∆ ρvn
1 pm1qvn

2 pm2qun
1 pm3qun

2 pm4q “

bn
i“1ρv1ipm1qv2ipm2qu1ipm3qu2ipm4q (assuming n-independent

uses of N4). The convex hull of the union of the set of all
achievable rate triples pR,R1, R2q is the capacity region of
the 4-to-3 decoding over CQ-MAC N4 and prime number q.

Definition 5. Given a CQ-MAC N4 and a prime q, let
PpN4, qq be defined as collection of PMF tpV U : pV U “

pV1
pV2

pU1
pU2

is a PMF on V ˆ Uu. For pV U P PpN4, qq,
let RppV U q be the set of rate triple pR,R1, R2q such that the
following inequalities holds:

R ď IpV ;Z|U1, U2qσ ´ ImaxpV1, V2, V qσ,

R1 ď IpU1;Z|V,U2qσ,

R2 ď IpU2;Z|V,U1qσ,

R ` R1 ď IpV,U1;Z|U2qσ ´ ImaxpV1, V2, V qσ,

R ` R2 ď IpV,U2;Z|U1qσ ´ ImaxpV1, V2, V qσ,

R1 ` R2 ď IpU1, U2;Z|V qσ
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R ` R1 ` R2 ď IpV,U1, U2;Zq ´ ImaxpV1, V2, V qσ,

where ImaxpV1, V2, V qσ “ maxtIpV1;V qσ, IpV2;V qσu, V “

V1 ‘ V2 and the mutual information quantities are taken with
respect to the classical-quantum state σV UV Z “

∆

ÿ

v,u,v

pV1
pv1qpV2

pv2qpU1
pu1qpU2

pu2q1tv“v1‘v2u|vyxv|V b

|v1yxv1|V1 b |v2yxv2|V2 b |u1yxu1|U1 b |u2yxu2|U2 b ρvu.

Let RpN4, qq “
∆ c.c.

ď

pV UPPpN4,qq

RppV U q .

Theorem 1. If the rate triple pR,R1, R2q P RpN4, qq, then
pR,R1, R2q is achievable for 4-to-3 decoding over a CQ-MAC
N4 and prime q.

Proof. The proof is provided in Section IV.

B. Decoding Sum of Sources over CQ-MAC N2

Here we provide our main result characterizing the suffi-
cient conditions on the sources, for the reconstruction of the
bivariate function f at the centralized decoder of the given
CQ-MAC.

Definition 6. The function f : S Ñ R of sources WS1S2
is

said to be embeddable in a finite field Fq if there exists (i) a
pair of functions hj : Sj Ñ Fq for j : t1, 2u, and (ii) a function
g : Fq Ñ S, such that fps1, s2q “ gph1ps1q ‘ h2ps2qq1.

Theorem 2. Given the sources pS1, S2,WS1S2 , fq, consider
a prime q such that f is embeddable (according to Definition
6) in Fq . Let P be the set of PMFs PQW1W2|S1S2

defined on
QˆW1 ˆW2 such that (a) Q and pS1, S2q are independent,
(b) W1 ´ S1Q ´ S2Q ´ W2 forms a Markov chain, and (c)
Q,W1,W2 are finite sets. For PQW1W2|S1S2

P P , let us define,

RSpPQW1W2|S1S2
q “

∆
!

pR,R1, R2q : R ě HpS|W1W2Qq,

R1 ě IpS1;W1|QW2q, R2 ě IpS2;W2|QW1q,

R1 ` R2 ě IpS1S2;W1W2|Qq,
)

where S “ h1pS1q ‘ h2pS2q.

RspWS1S2 , f, qq “
∆ c.c.

ď

pPP
RSppq.

Given a CQ-MAC N2, and prime q, let P be the set
of PMFs PX1|U1V1

and PX2|U2V2
with the input alphabets

pU1,V1q and pU2,V2q, and output alphabets X1 and X2,
respectively. Define,

RCpPX1|U1V1
, PX2|U2V2

, qq “ RpN4, qq,

where the corresponding 4-user CQ-MAC N4 is characterized
as: ρvu “

ÿ

x1x2

PX1|U1V1
px1|u1v1qPX2|U2V2

px2|u2v2qρx1x2
.

Define,

RcpN2, qq “
∆ c.c

ď

␣

PXj |UjVj
: jPr2s

(

PP

RCpPXj |UjVj
: j P r2sq.

1Note that for any given function f , the set of prime q for which f is
embeddable with respect to Fq is always non-empty [11, Def.3.7].

Then, if RspWS1S2
, f, qq Ă RcpN2, f, qq. for some prime

q, then the bivariate function f of the sources WS1S2 is
reconstructible over the CQ-MAC N2.

Proof. We use the approach of source channel separation
with two modules. Consider a source given by pWS1,S2

,
fq. For the source part, the theorem requires showing the
above source can be compressed to rates pR,R1, R2q that
belongs to RspWS1,S2

, f, qq, which by using Ahlswede-Han
[10] source coding scheme is achievable. This forms the source
coding module. This module produces messages Mj2,Mj1

at encoder j P r2s, at rates R,Rj , respectively. As for the
channel part, the task is to recover pM12 ‘ M22,M11,M21q

reliably and provide it to the source decoder. For this, we
employ the result from Theorem 1, which shows that if the
triple pR,R1, R2q belongs to RcpN2, qq, then for any arbitrary
distribution of pM11M12M21M22

, such a recovery is guaranteed.
This completes the proof of the theorem.

IV. PROOF OF THEOREM 1

Let pV U P PpN4, qq be a PMF on V1 ˆ V2 ˆ U1 ˆ U2

where V1 “ V2 “ Fq . We begin by describing the coding
scheme in terms of a specific class of codes. In order to choose
codewords of a desired empirical distribution pVj , we employ
Nested Coset Code (NCC), as described below.

Definition 7. An pn, k, l, gI , gO{I , b
n, eq NCC built over a

finite field V “ Fq comprises of (i) generator matrices gI P

Vkˆn, gO{I P V lˆn (ii) a bias vector bn, and (iii) an encoding
map e : V l Ñ Vk. We let vnpa,mq “ agI‘qmgO{I‘qb

n : pa,
mq P Vk ˆ V l, for a “ epmq, and denoted as am.

Now, we intend to use the above mapping vnpa,mq from
V l Ñ Vn, as a part of the encoder in relation to Definition
1. Both the encoders eVj : j P r2s employ cosets of the
same linear code. We then consider a 4-to-3 decoding over a
‘perturbed’ variant of CQ-MAC, which we denote as N 1

4. The
decoder wants to decode three messages simultaneously and
hence we use the framework of CQ joint typicality developed
using the ideas of tilting, smoothing and augmentation [14].
This allows us to perform intersection of non-commuting
POVM elements to construct a set of POVMs for N 1

4. Finally,
towards bounding the average error probability for N4, we use
an argument, similar to [14, Equation 5], which shows that the
outputs of the channel N 1

4 and N4 are indistinguishable in trace
norm. Thus, the POVMs constructed for N 1

4 can be used for
N4 with an additional boundable error term.

We now define a 4-to-3 decoding over ‘perturbed’ CQ-MAC
N 1

4 that consists of the following: (i) Finite (augmented input)
sets pVj ˆ WVj

q, pUj ˆ WUj
q : j P r2s. (ii) An (extended

output) Hilbert space

H1
Z “ H̄Z

à

jPr2s

pH̄Z b WVj
q
à

jPr2s

pH̄Z b WUj
q,

where H̄Z “ pHZ b C2q, and WVj
denotes both a finite

alphabet as well as a Hilbert space with dimension given by
|WVj |. The states in this Hilbert space are used as quantum
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registers to store classical values. Similarly WUj
is defined.

(iii) A collection of density operators

tρ1
vuw P DpH1

Zq : pv, u, wV , wU q P V ˆ U ˆ WV ˆ WUu,

where w “ pwV1
, wV2

, wU1
, wU2

q, wV “ pwV1
, wV2

q,
and WV “ WV1

ˆWV2
. Similarly wU and WU are defined.

Define ρ1
vuw “

∆ T VU
w;ε pρvub|0yx0|C

2

q, where T VU
w;ε is a tilting

map [14, Section 4] from H̄Z to H1
Z defined as:

T VU
w;ε p|zyq “

∆ 1
?
1 ` 4ε2

p|zy
à

j

ε
∣∣z, wVj

D
à

j

ε
∣∣z, wUj

D

q,

and ε will be chosen appropriately in the sequel.
Encoding: Consider two NCCs pn, k, l, gI , gO{I , b

n
j , ejq hav-

ing the same parameters except with different bias vectors bjs
and encoding maps ejs. For each j P r2s and mj P Fl

q , let

Ajpmjq “
∆

#

tamj
: vnj pamj

,mjq P Tn
δ ppVj

qu if θpmjq ě 1

t0ku otherwise,

where θpmjq “
∆ ř

aPFk
q
1tvn

j pa,mjqPTn
δ ppV qu. For mj P Fl

q : j P

r2s, a pre-determined element amj P Ajpmjq is chosen and
let vnj pamj ,mjq “

∆ amjgI ‘ mjgO{I ‘ bnj for pamj ,
mjq P Fk`l

q for j P r2s. Moreover, for each j P r2s and
mj`2 P rqlj s, construct a codeword un

j pmj`2q P Un
j . Simi-

larly, for each j P r2s, mj P Fl
q and mj`2 P rqljs, construct

the codewords wn
Vj

pmjq P Wn
Vj

and wn
Uj

pmj`2q P Wn
Uj

.
For later convenience, we define an additional identical map
wn

V pmq “ wn
V1

pmq for all m P Fl
q . On receiving the message

m P Fl
q ˆ Fl

q ˆ rql1s ˆ rql2s, the quantum state ρ1 bn
m “

∆

ρ1
vn
1 pam1

,m1qwn
V1

pm1qvn
2 pam2

,m2qwn
V2

pm2qpun
1 ,w

n
U1

qpm3qpun
2 ,w

n
U2

qpm4q

is (distributively) prepared. Towards specifying a decoding
POVM’s, we define the following associated density operators.

ρ “
∆

ÿ

vn,un

pnV pvnqpnU punqρvnun , (1)

ρvn “
∆

ÿ

vn,un

pnV |V pvn|vnqpnU punqρvnun ,

ρun
i

“
∆

ÿ

vnun
j

pnUj
pun

j qρvnun : i ‰ j, i, j P r2s,

ρvnun
i

“
∆

ÿ

vn,un
j

pnV |V pvn|vnqpnUj
pun

j qρvnun : i ‰ j, i, j P r2s,

where pnV |V pvn|vnq “
∆ pnV pvnq{pnV pvnq1tvn

1 ‘vn
2 “vnu.

Decoding: The decoder is designed to decode the sum of
the messages m‘ along with the individual messages m3

and m4 transmitted over the ‘perturbed’ 4-to-3 CQ-MAC N 1
4.

To decode m3 and m4, we use the codebook used by the
encoder, but to decode m‘, we use the NCC pn, k, l, gI , gO{I ,
bn, eq, with all the parameters same as the NCCs used in the
encoding, except that bn “ bn1 ‘bn2 , and e to be specified later.
Define vnpa,mq “

∆ agI ` mgO{I ` bn. representing a generic
codeword and a generic coset, respectively.
POVM construction We start by defining the sub-POVMs for
channel N , subsequently we will construct the sub-POVMs

for N 1
4 using the process of tilting [14]. Let πρ be the typical

projector for the state ρ. Furthermore, for j P r2s and for
all jointly typical vectors pvn, unq P T pnq

δ ppV U q, let πvn , πun
j
,

πvnun
j
, πun and πvnun be the conditional typical projector [19,

Def. 15.2.4] with respect to the states ρvn , ρun
i
, ρvnun

i
, ρun and

ρvnun , respectively. Now, we define the following sub-POVMs
in the Hilbert space Hbn

Z :

ΠV
vnun “

∆ πρπvnπvnunπvnπρ,Π
Uj

vnun “
∆ πρπun

j
πvnunπun

j
πρ,

Π
VUj

vnun “
∆ πρπvnun

j
πvnunπvnun

j
πρ,Π

U
vnun “

∆ πρπunπvnunπunπρ,

Π
VU
vnun “

∆ πρπvnunπρ : i ‰ j, i, j P r2s. (2)

The following is a well-known result regarding typical projec-
tors and typical vectors pvn, unq P T pnq

δ ppV U q.

Proposition 1. For all ϵ ą 0, and δ P p0, 1q sufficiently small
and n sufficiently large, and i, j P r2s with i ‰ j the following
inequality holds for the sub-POVMs defined in (2).

Tr
´

ΠΦ
vnun ρvnun

¯

ě 1 ´ ϵ,

for all Φ P tV,Uj,VUj,U,VUu,

Tr
´

Π
VU
vnunρ

¯

ď 2´npIpV,U1,U2;Zqσ´ϵq,
ÿ

un

pnU punqTr
´

ΠV
vnunρvn

¯

ď 2´npIpU1,U2;Z|V qσ´ϵq,

ÿ

vn

pnV pvnqTr
´

Π
U
vnunρun

¯

ď 2´npIpV ;Z|U1,U2qσ´ϵq,

ÿ

un
i

pnUi
pun

i qTr
´

Π
VUj

vnunρvnun
j

¯

ď 2´npIpUi;Z|Uj ,V qσ´ϵq,

ÿ

vnun
i

pnV pvnqpnUi
pun

i qTr
´

Π
Uj

vnunρun
j

¯

ď 2´npIpV,Ui;Z|Ujqσ´ϵq.

After constructing the sub-POVMs, we now construct the
projectors. It is worth to observe that by the Gelfand-Naimark
theorem [20], there exists orthogonal projectors Π̄V

vnun ,

Π̄
Uj

vnun , Π̄
VUj

vnun , Π̄
U
vnun and Π̄

VU
vnun in H̄bn

Z that gives the same
measurements statistics on the states

`

σ b |0yx0|C
2n˘

P

DpH̄bn
Z q that sub-POVMs defined in (2) give on the states

σ P DpHbn
Z q. To summarize upto this point we have con-

structed the projectors in H̄bn
Z for the channel N4 using

the sub-POVMs defined in (2), and we are now equipped
to construct the sub-POVMs for N 1

4. Let us define Ω̄V
vnun

as the orthogonal complement of the support of Π̄V
vnun .

Analogously, we define Ω̄
Uj

vnun , Ω̄
VUj

vnun , Ω̄
U
vnun , and Ω̄

VU
vnun .

Then we define the corresponding tilted subspace in H1
Z

bn as:
ΩV

vnunwn
V wn

U
“
∆ T V

wn
V ;εpΩ̄V

vnunq , for all wn
V P Wn

V1
. Likewise,

define Ω
Uj

vnunwn
V wn

U
,Ω

VUj

vnunwn
V wn

U
and Ω

U
vnunwn

V wn
U

. Also, let us
define a new subspace pΩvnunwn

V wn
U

, which is analogous to the
‘union’ of ‘complement’ of orthogonal projectors correspond-
ing to the sub-POVMs defined in (2).

pΩvnunwn
V wn

U
“
∆ Ω̄

VU
vnun

à

ΩV
vnunwn

V wn
U

à

jPr2s

Ω
Uj

vnunwn
V wn

U

à

jPr2s

Ω
VUj

vnunwn
V wn

U

à

Ω
U
vnunwn

V wn
U
. (3)
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Consider a collection of orthogonal projectors pΠ1
vnunwn

V wn
U

in H1
Z

bn projecting onto pΩvnunwn
V wn

U
, and the orthogonal

projector rΠ1 projecting onto H̄bn
Z . Subsequently, define the

sub-POVMs in H1
Z

bn for channel N 1
4 as follows:

γvnunwn
V wn

U
“
∆
´

I´ pΠ1
vnunwn

V wn
U

¯

rΠ1
´

I´ pΠ1
vnunwn

V wn
U

¯

,

The decoder now uses the sub-POVMs γvnunwn
V wn

U
as defined

above, to construct a square root measurement [19], [20] to
decode the messages, we define following operators,

λpa,mq,m3,m4
“
∆ γ̄´1{2 γpa,mq,m3,m4

γ̄´1{2, (4)

where γ̄ “

´

ř

â,m̂

ř

m̂3,m̂4
γpâ,m̂q,m̂3,m̂4

¯

2.
Distribution of Random Code: The distribution of the

random code is completely specified through the distri-
bution Pp¨q of GI , GO{I , B

n
j , Amj , ,W

n
Vj

pmjq, Un
j pmj`2q,

Wn
Uj

pmj`2q : j P r2s. We let

P

¨

˚

˚

˝

GI “ gI , GO{I “ gO{I , B
n
j “ bnj , Amj

“ amj
,

Un
j pmj`2q “ un

j pmj`2q,
Wn

Vj
pmjq “ wn

vj pmjq,Wn
Uj

pmj`2q “ wn
uj

pmj`2q

: j P r2s , m P Fl
q ˆ Fl

q ˆ rql1s ˆ rql2s

˛

‹

‹

‚

“
ź

jPr2s

1tamj
PAjpmjqu

θpmjq|WVj ||WUj |
pnUj

pun
j pmj`2qq

1

qkn`ln`2n
. (5)

Error Analysis: We derive an upper bound on ξ̄pcpnq,N 1
4q,

by averaging over the above ensemble. Our key insight for
the error analysis will be similar to the those adopted in proof
of [6, Theorem 2] and [14, Section 4]. Using the encoding and
decoding rule stated above, the average probability of error of
the code is given as,

ξ̄pcpnq,N 1
4q “

ÿ

m

pM pmqTr

#˜

I´
ÿ

a

λpa,m‘q,m3,m4

¸

ρ1 bn
m

+

ď
ÿ

m

pM pmqTr
!

`

I´ λpa‘,m‘q,m3,m4

˘

ρ1 bn
m

)

where a‘ “
∆ am1

‘am2
and ρ1

m is as defined in the Encoding
section (Sec. IV). Now consider the event,

E “
∆

"ˆ

V n
1 pAm1

,m1q, V n
2 pAm2

,m2q,
Un
1 pm3q, Un

2 pm4q, V npA‘,m‘q

˙

P T
pnq

8δ ppV UV q

*

where V npA‘,m‘q “
∆ V n

1 pAm1
,m1q ‘V n

2 pAm2
,m2q. Then,

EP

!

ξ̄pcpnq,N 1
4q

)

“ EP

!

ξ̄pcpnq,N 1
4q1E c ` ξ̄pcpnq,N 1

4q1E

)

,

ď EP t1E cu
loooomoooon

T1

`EP

!

ξ̄pcpnq,N 1
4q1E

)

looooooooooomooooooooooon

T2

.

To bound the error T1, we provide the following proposition.

2γpa,mq,m3,m4
is an abbreviation for

γvnpa,mqwn
V

pmqun
1 pm3qun

2 pm4qwn
U1

pm3qwn
U2

pm4q, and the perturbation
wV used by the decoder is, without loss of generality, identical to wV1 .

Proposition 2. For all ϵ P p0, 1q, and for all sufficiently large
n and sufficiently small δ, we have EP t1E cu ď ϵ, if k

n log q ě

log q ´ mintHpV1q, HpV2qu ` δ.

Proof. Refer to [9, Appendix B] for the proof.

To upper bound the error probability T2, we apply the
Hayashi-Nagaoka inequality [21]. Then we get,

T2 ď EP

”

2T20`4
!

T2V `
ÿ

j

T2Uj
`
ÿ

j

T2V Uj
`T2U`T2V U

)ı

,

where, T20 “
∆ 1 ´

ÿ

m

pM pmqTr
´

ΓpA‘,m‘q,m3,m4
ρ1 bn
m

¯

1E

T2U1
“
∆ 4

ÿ

m

ÿ

m̂3‰m3

pM pmqTr
´

ΓpA‘,m‘q,m̂3,m4
ρ1 bn
m

¯

1E ,

T2V “
∆
ÿ

m

ÿ

â

ÿ

m̂‰m‘

pM pmqTr
´

Γpâ,m̂q,m3,m4
ρ1 bn
m

¯

1E ,

T2V U1 “
∆
ÿ

m

ÿ

â

ÿ

m̂‰m‘

m̂3‰m3

pM pmqTr
´

Γpâ,m̂q,m̂3,m4
ρ1 bn
m

¯

1E ,

T2U “
∆
ÿ

m

ÿ

m̂3‰m3
m̂4‰m4

pM pmqTr
´

ΓpA‘,m‘q,m̂3,m̂4
ρ1 bn
m

¯

1E ,

T2V U “
∆
ÿ

m

ÿ

â

ÿ

m̂‰m‘

m̂3‰m3
m̂4‰m4

pM pmqTr
´

Γpâ,m̂q,m̂3,m̂4
ρ1 bn
m

¯

1E ,

and ΓpA‘,m‘q,m̂3,m̂4
is a randomized version of

γpa‘,m‘q,m̂3,m̂4
. The analysis of all the above error

terms are provided in [15]. Below, we summarize all the
rate constraints obtained from bounding these error terms.
For any ϵ P p0, 1q and for all sufficiently large n, we have
EP

␣

ξ̄pcpnq,N 1
4q1E

(

ď ϵ, if the following inequalities holds:

2k ` lj
n

log q ď 2 log q`IpUj ;Z|V,Uiq´HpV1,V2q´ϵ,

2k ` l1 ` l2
n

log q ď 2 log q`IpU1,U2;Z|V q´HpV1,V2q´ϵ,

3k ` l

n
log q ď 3 log q`IpV ;Z|U1, U2q´HV1,V2

´ϵ,

3k ` l ` lj
n

log q ď 3 log q`IpV,Uj ;Z|Uiq´HV1,V2
´ϵ,

3k `l `l1 `l2
n

log q ď 3 log q`IpV,U1, U2;Zq´HV1,V2
´ϵ,

where i, j P r2s, i ‰ j, and HV1,V2
“ HpV1, V2q ` HpV q.

Now, we need to bound average error probability for N4.
For any ϵ P p0, 1q, if we let τ “ ϵ1{4, and use the
following argument,

∥∥∥ρ1
vnunwn ´ ρ̃vnun

∥∥∥
1

ď 4τ (similar to
the provided in [14, Equation 5]) and the trace inequality
Trt∆ρu ď Trt∆σu ` 1

2∥ρ ´ σ∥1, where 0 ď ∆, ρ, σ ď I ,
then for all sufficiently large n, we have ξ̄pcpnq,N4q ď ξ̄pcpnq,
N 1

4q ` 2ϵ1{4. In other words, the average decoding error for
CQ-MAC N4 is bounded from above by the average decoding
error for CQ-MAC N 1

4 with an additional error of 2ϵ1{4 for
the same rate constraints and decoding strategy used for N 1

4.
This concludes the proof of Theorem 1.
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