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Abstract—We consider the task of communicating a generic
bivariate function of two classical sources over a Classical-
Quantum Multiple Access Channel (CQ-MAC). The two sources
are observed at the encoders of the CQ-MAC, and the decoder
aims at reconstructing a bivariate function from the received
quantum state. Inspired by the techniques developed for the
classical setting, and employing the technique of simultaneous
(joint) decoding developed for the CQ setup, we propose and
analyze a coding scheme based on a classical superposition of
algebraic structured codes and unstructured codes, and the idea
of embedding functions on a prime field. We derive a new set
of sufficient conditions that strictly enlarge the largest known
set of sources (capable of communicating the bivariate function)
for any given CQ-MAC. We provide these conditions in terms of
single-letter quantum information-theoretic quantities.

I. INTRODUCTION

In this work, we consider the problem of computing func-
tions of information sources transmitted over a classical-
quantum multiple access channel (CQ-MAC) A. Comput-
ing functions of sources has been used in a wide range
of practical applications. In the classical framework, these
include, compute-and-forward strategy for wireless networks
[1], interference management in the cellular uplink channel
[2], and network coding [3]. As for the CQ setup, recent
works have explored compute-and-forward (CAF) relaying
technique in quantum one-hop relay network and symmetric
private information retrieval (SPIR) over a quantum internet
network [4].

The problem can be described as follows: consider a
scenario where two distributed parties observe two classical
information streams S;; € S;: ¢ > 1, with the pair (S,
Sat):t = 1 being independent and identically distributed
(IID) according to the distribution Wg,g,. These parties
intend to send a bivariate function f(S7,S2) to a centralized
receiver using the CQ-MAC N, and the receiver then aims to
reconstruct the bivariate function f from the received quantum
state. In this work, we aim to characterize the sufficient
conditions, on the distribution of sources Wg, 5,, such that
for a given CQ-MAC, the centralized decoder reconstructs
the bivariate function with an arbitrary low probability of
error. The conventional approach to characterize the sufficient
conditions for this problem rely on enabling the receiver to
reconstruct the pair of classical sources, and then computing
the function. This would be a direct consequence of the result
derived in [5]. The authors in [4] addressed this CQ-MAC
problem where the sum of sources is computed directly with-
out explicitly reconstructing the individual sources. However,
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they restrict their attention to uniform input distribution. The
authors in [6] instead employed a different technique, using
asymptotically good random nested coset codes that directly
reconstruct arbitrary function f of sources of arbitrary distri-
butions. Their work was built on the earlier ideas, developed
in the classical setup, of recovering the sum of sources without
recovering either of the sources at the receiver [7]-[10]. These
classical techniques are part of a broader framework for
the multi-terminal problems and are characterized by codes
with asymptotically large block-length and algebraic structure.
These algebraic structured codes can achieve performance
limits that are not achievable with conventional techniques
using unstructured random codes [11].

However, even in the classical multi-terminal setup, the
coding techniques relying on the algebraic structure may show
gains for certain class of problems and in certain rate regimes.
Therefore, a unified technique that captures the gain of both
unstructured coding techniques and the algebraic structured
coding techniques is needed to approach the performance
limits for multi-terminal problems. In this regard, considering
a multi-terminal problem of classical lossless distributed com-
pression, Alhswede-Han [10] obtained the best known inner
bound by combining the Slepian-Wolf [12] coding scheme
with the algebraic structured based scheme of Kérner-Marton
[7]. Motivated by this, we provide a unified approach for the
problem of computing a bivariate function of two sources over
CQ-MAC, capitalizing on the gains of the algebraic structured
techniques developed in [6], while making the most of the
unstructured coding approach developed for this problem [5].

We propose an approach where each transmitter intends
to send two pieces of information, about its corresponding
source, to the receiver. The first piece of information from
both the sources needs to be reconstructed individually at the
receiver. Then, conditioned on this reconstruction, we let the
receiver reconstruct the necessary function f of the second
piece. At the ith transmitter, the two pieces are constructed
on auxiliary variables U; and V;, and then fused to form the
channel input X;. To model this transmission, as an interme-
diary step, we construct a 4—input CQ-MAC with inputs (Uq,
Us, V1, Vs), and the objective is to decode the triple (Uy, Us,
V1,V2), where @, represents addition with respect to a prime
finite field IF,. For this, the decoder needs a CQ simultaneous
decoding technique. The ideas of joint typicality using tilting,
smoothing, and augmentation introduced by Sen [13], [14]
solved the problem of simultaneous decoding of individual
messages on CQ-MAC, however, it is based on unstructured
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coding techniques. We develop a unified coding framework
that combines unstructured and structured coding techniques
while using this jointly typicality approach that enables the
decoder to reconstruct (Uy, Us, Vi @4 V2) simultaneously.

In light of this, the main contribution of the current work is
in providing a new set of sufficient conditions (see Theorem |
and 2), while strictly subsuming the current known conditions,
for reconstructing arbitrary function of sources over a generic
CQ-MAC. Furthermore, we have provided examples where
the gains by our unified approach are demonstrated (see [15]).
This work opens up an opportunity to investigate a generic
approach encompassing both the conventional unstructured
and algebraic structured techniques for other multi-terminal
problems in the classical-quantum regime [16]—[18].

II. PRELIMINARIES AND NOTATION

Notation: We supplement the notation in [19] with the fol-
lowing. For positive integer n, [n] £ {1,---,n}. We employ
an underline notation to aggregate objects of similar type. For
example, s denotes (s1,s2), ™ denotes (z7,z%), S denotes
the Cartesian product S; x Sa. Let c.c.(S) denote the convex
closure of the set S.

Consider a (generic) 2-user CQ-MAC N>, which is specified
through (i) finite sets X : j € [2], (ii) Hilbert space Hy, and
(iii) a collection (pg, 5, € D(Hy) : (x1,22) € X1 X Xs) of
density operators. This CQ-MAC is employed to transmit a
pair of sources such that the centralized receiver is capable of
reconstructing a bivariate function of the classical information
streams observed by the senders. Let S1,Ss be finite sets, and
(S1,52) € 81 x S, distributed with PMF W, 5,, model the
pair of information sources observed at the encoders. Specif-
ically, sender j observes the sequence S;; € S; : t > 1. The
sequence (S1¢, So;) 1t = 1 is assumed to be IID with single-
letter PMF Wg, 5,. The receiver aims to recover the sequence
f(Sit,S2¢) : t = 1 losslessly, where f : S; x S; — R is a
specified bivariate function, and R is some finite set.

Definition 1. A CQ-MAC code ¢; = (n,eq, ez, A) of block-
length n for recovering f consists of two encoding maps ¢; :
S" — Xl':je (2], and a POVM X = {\,n € P(Hy) : 1" €
R™}. The average error probability of the ¢y is

o= 1= Y W (sT,55) Tr (A p)
8™ j( ) rn
where pcs" = ® lpr’u(S )9321(85)’ 6j(5?) = (‘le(‘s?)v
2ja(s0), s 2jn(s)) for j € [2].

Definition 2. A function f of the sources Wg, g, is said to be
reconstructable over a CQ-MAC AN if for € > 0, 3 a sequence
c;") = (n,el™, el ) such that lim,,_. S(cf"),./\/'g) =0
Restricting f to a sum, we say the sum of sources Wg, 5, over
field ¥, is reconstructable over a CQ-MAC if §; = S = F,,
and the function f(S7,S52) = S1 @ Ss is reconstructable over

the CQ-MAC.

III. MAIN RESULTS

Our objective is to develop a single-letter sufficient con-
ditions for a given pair of sources Wg, s, and function f
that is reconstructible over a given CQ-MAC AMN>. As an
intermediate step toward providing the main result, we present
an intermediary result that will be useful in obtaining the main
result and can also be of independent interest.

A. 4-t0-3 decoding over CQ-MAC

In this subsection, we consider the problem of 4-to-3
decoding over a 4-user CQ-MAC, where the receiver aims
to compute functions of messages of user 1 and 2, and the
individual message of users 3 and 4. Consider a (generic)
4-user CQ-MAC N, which is specified through (i) finite
(input) sets V;: j € [2] and U;: j € [2], (i) a (output)
Hilbert space #Hz, and (iii) a collection of density operators
(Pvyvousus € D(Hz) 1 (v1,v2,u1,u2) € Vi x Vo x Uy x Us).

Definition 3. A code ¢ = (n,Fq,ev,: j € [2],eu,: j € [2],A)
of block-length n, for 4-to-3 decoding over N consists of four
encoding maps ey, : F, — V' : j € [2], ey, : [¢"] — U]
j€2], and a POVM A — {/\{m@ myma} € P(Hz) : (m9,
ms3,my) € Fl x x [¢"'] x [¢*2]}, where m® 2 my @ mo, I, I
and [, are positive integers, and ¢ is a prime number.

Definition 4. Given a CQ-MAC Ny, and a prime ¢, a rate
triple (R, Ry, Rs) > 0 is said to be achievable for 4-to-3
decoding over the CQ-MAC if given any sequence of triples
(I(n),l1(n),l3(n)), such that limsup,,_, l(:) logg < R,
logg < R;:i € [2], and any sequence
pgc}z oty az, Of PMEs on FL x FL x [g] x [¢'2], there exists
a code ¢ = (n,Fy,ey,: j € [2],ev,: j € [2],A) for 4-t0-3
decoding over CQ-MAC N of block-length n such that

lim sup £(¢™, Ny) =

lim sup,, #

n—o0
limsup1 — ZP}M ) Tr (A{m®,m3,m4}l’%n) =0,
n—o0 m o
n A
where ,0% = P (m1)vy (ma2)uf (ms)ul (ma) -

®F1Po1; (m1)vzi (ma)uti (ma)usi (ma) (assumlng n-independent
uses of AVy). The convex hull of the union of the set of all
achievable rate triples (R, R, Ry) is the capacity region of
the 4-to-3 decoding over CQ-MAC N, and prime number q.

Definition 5. Given a CQ-MAC AN, and a prime q, let
P (Ny, q) be defined as collection of PMF {pyy: pvu =
PviPVaPU, PU, 18 @ PMF on V¥ x U}. For pyy € P(Ny,q),
let Z(pvu) be the set of rate triple (R, Ry, Rz) such that the
following inequalities holds:

R\ (V Z|U1,U2) - max(vlyv%v)a’?

Ry < I(Uy; Z|V,U2),0,

Ry < I(Uy; Z|V,Uy)s
R+ Ry < I(V,U1; Z|U2) 6 — Iimax(V1, V2, V)4,
R+ Ry < I(V,U2; Z|U1) 6 — Imax(V1, V2, V)4,
Ri+ Ry < I(Uh,Us; Z|V),
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R+ Ry + Ro < I(V,U1,U2; Z) = Ijmax(V1, V2, V)o,

where Iax(V1, Vo, V) = max{I(V1;V),, I(Vo;V)s}, V =
V1 @ V5, and the mutual information quantities are taken with
respect to the classical-quantum state oYUVZ a

D7 v (01)pvs (V2)pu, (U)o, (U2) T o —v, @} V)WV ®

[v1){v1]v; ® |v2){valv, ® |u1){us o, & |ug){uz|v, @ puu-
Let Z(N1,q) £ c.c. U Z(pvu) -
pvu€P (Nu,q)

Theorem 1. If the rate triple (R, Ry, Ry) € #(N4,q), then
(R, R1, Ry) is achievable for 4-to-3 decoding over a CQ-MAC
Ny and prime q.

Proof. The proof is provided in Section IV. O

B. Decoding Sum of Sources over CQ-MAC N>
Here we provide our main result characterizing the suffi-
cient conditions on the sources, for the reconstruction of the

bivariate function f at the centralized decoder of the given
CQ-MAC.

Definition 6. The function f : S — R of sources Wg, g, is
said to be embeddable in a finite field I, if there exists (i) a
pair of functions h; : S; — F, for j : {1, 2}, and (ii) a function
qg: Fq — S, such that f(51, 82) = g(h1(81) &) hQ(SQ))].

Theorem 2. Given the sources (S1, 52, Ws,s,, f), consider
a prime q such that f is embeddable (according to Definition
6) in Fy. Let P be the set of PMFs Pow,w,|s,s, defined on
Q x Wy x Wy such that (a) Q and (S1,S2) are independent,
(b) Wy — 51Q — S2Q — Wy forms a Markov chain, and (c)
Q, Wi, Ws are finite sets. For Pow,w,|s, s, € P, let us define,

Rs(Pow, w28, S5) 2 {(R»Rl,Rﬂi R > H(S|WW>Q),
Ry = I(S1; W1|QW3), Ry = I(Sq; Wa|QWH),
R+ Ry > 1(5152;W1W2|Q)7}
where S = h1(S1) ® ha(Ss).
Rs(Ws,s,, f,9) & cc. | ] Zs(p).

peP
Given a CQ-MAC N3, and prime q, let & be the set
of PMFs Px u,v, and Px,u,v, with the input alphabets
(U1, V1) and (Us,Vs), and output alphabets Xy and Xo,
respectively. Define,

Hc(Px, vy Py uaves @) = Z(Na, q),
where the corresponding 4-user CQ-MAC Ny is characterized

as: pPou = ZPXllUlvl (z1]|u1v1) Pxy v, v, (T2]u2v2) pry oy -
1T
Define, e
A .
%C(N'27Q) = C.C U %C(PX7|U7V7' .] € [2])'

{Px]-wjvj : 3'5[2]}69Z

INote that for any given function f, the set of prime ¢ for which f is
embeddable with respect to [Fy is always non-empty [11, Def.3.7].

Then, if #s(Ws,s,,f.q) = (N2, f,q). for some prime
g, then the bivariate function f of the sources Wg, g, is
reconstructible over the CQ-MAC No.

Proof. We use the approach of source channel separation
with two modules. Consider a source given by (Wg, g,,
f). For the source part, the theorem requires showing the
above source can be compressed to rates (R, Rj, Ro) that
belongs to %Zs(Ws, s,, f,q), which by using Ahlswede-Han
[10] source coding scheme is achievable. This forms the source
coding module. This module produces messages M, M 1
at encoder j € [2], at rates R, R;, respectively. As for the
channel part, the task is to recover (Mo @ Moo, M11, May)
reliably and provide it to the source decoder. For this, we
employ the result from Theorem 1, which shows that if the
triple (R, Ry, Ro) belongs to Z.(Na, q), then for any arbitrary
distribution of Py, , a1y, Mo, Ma,» SUCh a recovery is guaranteed.
This completes the proof of the theorem. O

IV. PROOF OF THEOREM 1

Let pyy € P(Na,q) be a PMF on V; x Vo x Uy X Uz
where Vi = Vo = F,. We begin by describing the coding
scheme in terms of a specific class of codes. In order to choose
codewords of a desired empirical distribution py,, we employ
Nested Coset Code (NCC), as described below.

Definition 7. An (n,k,l,91,90/1,b",¢) NCC built over a
finite field V = F, comprises of (i) generator matrices gr €
ykxn g, /1€ P! (ii) a bias vector b", and (iii) an encoding
map e : V! — VE. We let v"(a,m) = agr®,mgo,1®qb" : (a,
m) e V¥ x V!, for a = e(m), and denoted as a,,.

Now, we intend to use the above mapping v™(a,m) from
V! — V", as a part of the encoder in relation to Definition
1. Both the encoders ey,: j € [2] employ cosets of the
same linear code. We then consider a 4-to-3 decoding over a
‘perturbed’ variant of CQ-MAC, which we denote as N, 4 The
decoder wants to decode three messages simultaneously and
hence we use the framework of CQ joint typicality developed
using the ideas of tilting, smoothing and augmentation [14].
This allows us to perform intersection of non-commuting
POVM elements to construct a set of POVMs for N\’ ;- Finally,
towards bounding the average error probability for Ny, we use
an argument, similar to [14, Equation 5], which shows that the
outputs of the channel A} and N} are indistinguishable in trace
norm. Thus, the POVMs constructed for A can be used for
N, with an additional boundable error term.

We now define a 4-to-3 decoding over ‘perturbed” CQ-MAC
N that consists of the following: (i) Finite (augmented input)
sets (V; x Wy,), (U; x Wy,): j € [2]. (ii) An (extended
output) Hilbert space

/Z = 7:[Z @ (7:[2 ®WV]) @ (ﬁZ@WUj)7
jel2] Jel2]

where Hz = (Hz ® C?), and Wy, denotes both a finite
alphabet as well as a Hilbert space with dimension given by
Wy, |. The states in this Hilbert space are used as quantum
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registers to store classical values. Similarly Wy, is defined.
(iii) A collection of density operators

{Po € D7) -

where w = (wy,,wy,wy,,Wr,), Wy = (wy,wy),
and Wy, = Wy, x Wy,. Similarly w;; and W;; are defined.

Define p/,,., 2 T (p,u®|0X0|C"), where To2 is a tilting
map [14, Section 4] from Hz to H', defined as:

(v, u, wy,wy) €V x U x Wy x Wy},

Tord(|zy) &

and ¢ will be chosen approprlately in the sequel.

Encoding: Consider two NCCs (n,k,l, g1, 90/1,b}, €;) hav-
ing the same parameters except with different bias vectors b;s
and encoding maps e;s. For each j € [2] and m; € qu, let
A (m]) A {aZLJ : v;?(amj,mj) € Tgl(pvj)} if H(m]) >1

{0~} otherwise,

A )
where 0(m;) = Zang ]l{vy(a)mj)eng(pv)}. For m; e Fl: je
[2], a pre-determined element a,,, € A;(m;) is chosen and
let v;‘(amj,mj) a am;91 © mjgoy @ b} for (A,
m;) € FE+! for j e [2]. Moreover, for each j € [2] and
m;ji2 € [¢9], construct a codeword ul(mji2) € Uj'. Simi-
larly, for each j € [2], m; € F, and mj,» € [q¢!], construct
the codewords wf, (m;) € Wv and wy; (mj2) € Wy .
For later convenience, we define’ an additional identical map
wiy(m) = wy, (m) for all m e ]Fl On receiving the message
m e FL x FL x [¢"] x [¢'2], the quantum state p), & £

/
pv{” (amq,m1 )w{}l(ml )03 (@my ,ma )w&z(mg)(u{” ,w{’jl )(m3)(ul ,wf}Q )(ma)

is (distributively) prepared. Towards specifying a decoding
POVM'’s, we define the following associated density operators.

pe D pYm)pE (") pyran (1)

v™,umn

pun £ Z pV|V ")y (W) puran
VU
pu;l é Z pTI}J (U?)Pg"@n: Z 5‘& .7327,7 € [2]’
v"u;‘
pv”u';f é 2 p&v(” ‘7) )pU (u?)pgnyn: { # .777’7j € [2]7
v™ru

where pV|V( n|,U ) = ( )/pv( )]]-{U{l®v"711"}
Decoding: The decoder is designed to decode the sum of
the messages m® along with the individual messages ms
and my transmitted over the ‘perturbed’ 4-to-3 CQ-MAC N.
To decode ms and my4, we use the codebook used by the
encoder, but to decode m®, we use the NCC (n, k, [, g1, 9o/1s
b™, e), with all the parameters same as the NCCs used in the
encoding, except that b = b7 @b5, and e to be specified later.
Define v™(a,m) a agr +mgo,r + b". representing a generic
codeword and a generic coset, respectively.

POVM construction We start by defining the sub-POVMs for
channel N/, subsequently we will construct the sub-POVMs

for NV using the process of tilting [14]. Let 7, be the typical
projector for the state p. Furthermore, for j € [2] and for
all jointly typical vectors (v™,u™) € T(n) (pvu), let mpn, Tun,
Tynyr, Tyn and myn,~ be the cond1t10nal typical projector [19
Def. 15 2.4] with respect to the states py», Pur s Ponun s Pun and
Punun, respectively. Now, we define the followmg sub-POVMs
in the Hilbert space HE":

HV

A U; A
pnyn = TpTyn Tynyn Tyn Ty, Myny = T Tymyn Ty Tp,

1_[VUJ A HQ A
vy —7Tp7711”u"7rv u"Trv"u" Tpy vrun T TpTyn Tynyn TTynTp,

The following is a well-known result regarding typical projec-
tors and typical vectors (v™, u™) € 7:;(n) (pvu)-

7T-pTr'U"'u,”ﬂ-p Z # jﬂ,] € [2]

Proposition 1. For all e > 0, and § € (0, 1) sufficiently small
and n sufficiently large, and 4, j € [2] with ¢ # j the following
inequality holds for the sub-POVMs defined in (2).

Tr (anun pq,nun) >1—¢
for all ® € {V,U;,VU;,U, VU},

(Hx%np) < 2—71,(I(V,U1,U2;Z)<,—e),

I(U,,U2;Z|V )6 —e€
'U unp’l)" LU2Z|V) )7

V ZIUl,Uz)U—E)
Y
m

>, (] )Tr( S Py

I(Us;Z1U;, V)U—e)

) <2
i) <2
)<

P ("o, () T (T2 gy ) < 27 VU210e ),

vrul

After constructing the sub-POVMs, we now construct the
projectors. It is worth to observe that by the Gelfand-Naimark

theorem [20] there exists orthogonal projectors I:I}}/nun,
— U; -
I,

o En,anun, I:Ipbun and ﬁ},’%n in 7:1(23" that gives the same
measurements statistics on the states (o ® |0)(0[") e
D(HE™) that sub-POVMs defined in (2) give on the states
o€ D(’H%n). To summarize upto this point we have con-
structed the projectors in 7:l®" for the channel N using
the sub-POVMs defined in (2), and we are now equlpped
to construct the sub-POVMs for Nj. Let us define €2,

as the orthogonal complement of the support of IIY,
Analogously, we define Q% ., QY anun,
Then we deﬁne the corresponding tilted subspace in H', & as:

vru™

vty

VU
VU 71”71,” 9 and Qﬂnun

Q. g ’TV (QYuyn) , for all wv € Wy, . Likewise,
define Q) QVU’ . and Q5 . Also, let us

vrurwwe v"u"wvw v U WY Wy

define a new subspace Qq,nunw , which is analogous to the
V U

‘union’ of ‘complement’ of orthogonal projectors correspond-

ing to the sub-POVMs defined in (2).

PN A AVU
QU"E"WQQU Qv“u“ @Qv"u"w Lwy @ Q'u nunrwwy

@ Qv”u”wva @Qv um™ wVwU (3)

Jel2]
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Consider a collection of orthogonal projectors I
in #,®"

projector I projecting onto 7—[®" Subsequently, define the
sub-POVMs in H/, ®" for channel A} as follows:

U) H, (I H;)"u"wva)v

The decoder now uses the sub-POVMSs ~ynynyrwr as defined
above, to construct a square root measurement [19], [20] to
decode the messages, we define following operators,

MM
vtu wva

prOJectmg onto Qv nunwiwy, and the orthogonal

/
Yorurwpwy = (I Hv nuntwilw

= ’7_1/2 'y(a,m),mg,m4’7_1/2a (4)

/\(a,m),mg ;my

where 7 = (Zam Zma,m 7(&¢m)7m3,m4)2

Distribution of Random Code: The distribution of the
random code is completely specified through the distri-
bution P(:) of GI,GO/I,B.?,Amj,7W(}j(mj)7U]7‘(mj+2),
W{}j (mj+2): jE [2] We let

Gr =y91,Gor = goy1, B} = b7, Ay = am,;,
P Uj"(m]+2) U (mJ+2)
Wv (m;) = wy (mJ) WU (mJ+2) = wy, (M 42)
jel2], mG]Fl x FL % [¢"] x [q]
{am €A;(my)} o ( " (m, +2))¥. )
) 0(m;) [ Wy, [|Wu, | Pu, J ghntint2n

Error Analysis: We derive an upper bound on £(c(™), N}),
by averaging over the above ensemble. Our key insight for
the error analysis will be similar to the those adopted in proof
of [6, Theorem 2] and [14, Section 4]. Using the encoding and
decoding rule stated above, the average probability of error of
the code is given as,

Ny) = ZPM(m)Tr { (I— Z A(mm@),m&m) P }

I\
gl

pM(m)Tr { (I_ A(a@,rrL@),mg,’rrL4) p/m®n}

where a® £ Uy @ Gm, and p}, is as defined in the Encoding
section (Sec. IV). Now consider the event,

A V1n<Am1vm1)>V2n(Am27m2>7 (n)
¢= {(Ufl(m?))a Uz (my), V' (A®, m®) € Tgs ' (pvuv)

where V"(A®, m®) 2 V'(A,,,,m1) ®VJ(Apm,, m2). Then,
Ep {€(, N} = Ep {&c™), N Lee + £, N 16},
< Ep {]lgu} +Ep {E(C(n),/\q)]lg’} .
—_——

T:

T>

To bound the error T}, we provide the following proposition.

abbreviation for
and the perturbation

27(a,m) ms3,my is an
Yo (a,m)wy; L (m3)wp, (ma)>
wy used by the decoder is, w1thout loss of generallty identical to wy;, .

(m)uf (m3z)ug (ma)wy;

Proposition 2. For all € € (0,1), and for all sufficiently large
n and sufficiently small 6, we have Ep {1 ¢} < ¢, if £logq >
log g — min{H (V1), H(V2)} + 4.

Proof. Refer to [9, Appendix B] for the proof. [

To upper bound the error probability T, we apply the
Hayashi-Nagaoka inequality [21]. Then we get,

T, <Ep [2T20+4{Tgv+2 T2U7 +Z TQVUJ. +T2Q+T2VQ}] ,
J J

where, Too £ 1 — ZPM (m)

m

T2Ulé42 Z P (m)

m mz#ms3

Tr (F(A® m®), mg’mzkp;n@")]lg
Tr (F(A®,M®)aﬁ"b3,M4p;n®n> ﬂé"v
( (a, m),m37m4pm )]lg,

(F(a m),ms, m.4pm 1e,

")
Z pum(m )TT<F(A® m®),m3,m4p;n®n)]lz§’a
")

(F(a m), m;,m4pm 11657

m3¢m3

ma7#my
and  I'(4® m®)smsm, 18 @ randomized version of
V(a®,m®),ms,m,- 1he analysis of all the above error

terms are provided in [15]. Below, we summarize all the
rate constraints obtained from bounding these error terms.
For any ¢ € (0,1) and for all sufficiently large n, we have

Ep {f_ ™ N ]].g'} < ¢, if the following inequalities holds:
28 4 Ui g g < 2log g+ U Z|V.Us)— H(V:,Vs) —

%4_72714_121 ogq < 2log q+I(Uy, Uz Z|V) = H(V1,Va) —e,
384 U \og g < 3log g+ I(V: Z|Uy, Us)— Hys vy —e,
wl ogq < 3logq+I1(V,Uj; Z|U;)— Hvy v, —¢,

3k +1+1; +1s

logq < 3logq+1(V,Uy,Usz; Z)—Hy, v, —¢,

where ¢,5 € [2],i # j, and Hy, v, = H(V4, Vo) + H(V).
Now, we need to bound average error probability for Nj.
For any ¢ € (0,1), if we let 7 = €4 and use the

following argument, wr — Porun || < 47 (similar to

the provided in [14, Equatlon 5]) and t]he trace inequality
Tr{Ap} < Tr{Ac} + 3|lp— oll;, where 0 < A, p,0 < I,
then for all sufficiently large n, we have &(c(™, N}) < &(c™,
N}) + 2€Y4. In other words, the average decoding error for
CQ-MAC N; is bounded from above by the average decoding
error for CQ-MAC N/ with an additional error of 2¢'/4 for
the same rate constraints and decoding strategy used for Aj.
This concludes the proof of Theorem 1.
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