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Abstract—Generating paths of a mobile device in indoor 
space by sensing its Bluetooth RSSI value is challenging but has 
real-world applications. Although Bluetooth RSSI suffers from 
different factors that limit its usability, this research shows that 
it can still be used to detect mobility and, over a duration of time, 
can be used to form paths. This poster presents algorithms that 
can create a path of a moving mobile device by sensing its RSSI 
values over time and then presents early results of the 
algorithm's effectiveness while tracking health practitioners' 
movement within a community care clinic setting.   
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I. INTRODUCTION  
While there are numerous causes of waste in the US 

healthcare system, some are associated with inefficiency. 
There have been multiple proposed solutions to address 
inefficiency, one of which is clinic layout optimization [1]. 
Such optimization depends on how furniture and instruments 
are placed in the clinic and how clinicians move through and 
between different clinic rooms. Traditionally, such 
optimization research involves manual monitoring by human 
proctors, which is inaccurate, unproductive, and subjective. 
If mobility patterns in an indoor space can be determined 
automatically, such optimization can be improved 
significantly. 
Mobile crowdsensing is a powerful but cheap technology 

for the pervasive sensing of valuable data that provides 
solutions to various real-world problems. From a community 
clinic's perspective, opportunistic crowdsensing data from the 
clinician can be leveraged to allow more productive clinic 
layout optimization. Data that such mobile sensing apps can 
sense include the practitioner's movement within the clinic 
and their contextual information, such as location, body 
position, and device analytics. By combining such 
contextualized movement data within the clinic, appropriate 
big-data analytics and visualization can extract intelligence 
and improve this instance of human-centric service delivery 
by addressing several pressing needs. These needs may 
include incorporating different clinic layouts to improve 
patient experience, finding the most efficient way to utilize 
resources to improve patient contact time, making the 
practitioner productive in providing patient care, and 
improving their learning experience.  

Traditionally, Bluetooth Low Energy beacons are used for 
similar indoor localization problems [2]-[3]. Although 
beacons are cheap and easy to install, they lack the 
computational smartness and power needed to localize and 
contextualize the data. This poster presents an approach that 
combines stationary and mobile devices within an indoor 
space to detect motion by using a proximity-based approach 
as utilized in COVID-19 contact tracing. More specifically, 

this research utilizes basic Bluetooth RSSI values sensed by 
one or more stationary devices to form a path of a mobile 
device. 

II. RELATED WORK 
Mobile crowdsensing is a broad research area, and a 

plethora of work [4]-[5] was performed in different aspects of 
this domain. Indoor localization [6] is one of the most 
important topics addressed by mobile crowdsensing and is 
recognized as a challenging research area. There are currently 
several techniques [6] for indoor localization, and extensive 
research [4]-[7] has been conducted in this area. Although 
these techniques have some strengths and shortcomings, this 
research has different goals and approaches. The application 
domain requires easy application of this technology without 
sophisticated hardware or the need for precious accuracy or 
efficient energy usage. Since mobility detection is the goal, 
the approach does not need high precision. Additionally, the 
use of stationary devices connected to power gives this 
approach the flexibility needed to use the Bluetooth proximity 
detection [8] technique in a useful way. With the incorporation 
of computationally intensive and power-savvy stationary 
mobile devices instead of specialized beacons with less 
computation power, this research presents an approach to 
indoor mobility detection without the need for any specialized 
hardware. Although there is a plethora of related work [4]-[7] 
in this research area, the proposed research is different from 
others in the following two ways: 1) it explicitly uses 
Bluetooth proximity detection, as used by COVID-19 
exposure notification apps and 2) it does not utilize any 
specialized hardware or software and focuses on the easy 
application of this approach in real-world scenarios.  

III. PATH FORMING 
Assume that we have n stationary devices S1, S2, S3….Sn 

placed in n clinic rooms with their corresponding proximity. 
Proximity is defined by a RSSI value within a specific range, 
indicating that a particular device is close. Let us also assume 
that if the mobile device D has moved from proximity 1 to 
proximity 2 between time ti and tj, each stationary device 
detects the mobile device's RSSI value in both instances. We 
denote that as Pst, where s denotes the stationary device and t 
denotes the time. Between a starting time (tstart) and an ending 
time (tend), the collected data by the stationary devices looks 
like the following: 
 

tstart P1start P2start P3start ……… Pnstart 
…. 
…. 
ti  P1i P2i P3i ………  Pni 
tj  P1j P2j P3j ………  Pnj 
…. 
…. 
tend  P1end P2end P3end ………  Pnend 



Once the above data is collected and aggregated by the 
stationary devices on the edge, the following algorithm 
creates vectors (with a tail (from) to a head (towards)) that 
indicate the mobile device's movement after sorting the data 
by time: 
 
1. The source of the Path (Dsr) is the stationary device that 

has the largest RSSI value at tstart.  
2. The destination of the Path (Dds) is the stationary device 

that has the largest RSSI value at tend. 
3. For every ti 
a. get the ith row values and designate that as R 
b. get the jth (i+1) row values and designate that as S 
c. for every RSSI value in R 
i. if Psi < Psj : This indicates that the device is moving 
away from the current location (stationary device s) 
towards the destination (ds), then create a vector Ds 
à Dds.  

ii. if Psi > Psj : This indicates that the device is moving 
closer to the source (Dsr), then create a vector Ds à 
Dsr.  

 

After the above algorithm determines the source and the 
destination and goes through each timestamped data to create 
all the vectors, the following algorithm merges all the vectors 
into a path: 
 
1. Assign Dsr in the beginning of the path. 
2. For every vector 
a. If the tail is equal to Dsr and the head is equal to Dds: 

• This is already in the path, so ignore 
b. If the tail is equal to Dsr, but the head is not equal to 

Dds: 
• Append the head of the vector to the path 

c. If the tail is not equal to Dsr, but the head is equal to 
Dds: 

• Append the tail of the vector to the path 
d. If the tail is not equal to Dsr, and the head is not equal 

to Dds: 
• Append the tail of the vector to the path 
• Append the head of the vector to the path 

3. Append Dds to the end of the path.  

The above algorithm creates a sequence of stationary device 
proximities (Sa, Sb, …. Sn), denoting a path through which the 
mobile device has moved between time tstart and tend. 

IV. RESULTS, CHALLENGES, AND THE FUTURE 
 To test the algorithm's accuracy, we manually generated 
several sets of simulated data with three stationary devices (S1, 
S2, S3). Fig. 1 (a) shows one such path and the corresponding 
path generated by the algorithm. The algorithm identified all 
the other paths with 100% accuracy. In our next set of 
experiments, physical devices were used to gather actual RSSI 
data within a physical space where 3 stationary devices were 
placed in a hall and a volunteer with a mobile device walked 
between the devices. Fig. 1 (b) shows that mobility and what 
the algorithm generates based on these inputs. Similarly, the 
volunteer physically walked other paths, and data were 
collected and fed to the algorithm, which identified all the 
paths with 100% accuracy. However, one thing was observed 
in the physical experimentation, depicted in Fig. 1 (b). 
Although the volunteer walked from stationary device S1 to S3 
via S2 and back to S1 again, the path created by the algorithm 
shows the repetition of stationary device S2 on the way back 
to S1, although the volunteer did not go explicitly to that 

device. This is because, while the volunteer is moving from S3 
to S1, S2's reception of the RSSI value of the mobile device 
also changed from low to high. Therefore, the algorithm 
shows a path from S3 to S2 because the volunteer was within 
the proximity of S2, even if they did not directly approach it. 
Currently, the algorithm is not able to distinguish between 
these two situations. Along with that, the following are couple 
of other challenges that this research is going to investigate in 
the future: 

• The algorithm can work with five stationary devices right 
now. It needs to be generalized so that it can work with 
any number of stationary devices.  

• How to detect the RSSI values better, given that the 
environment has lot of noise from other nearby devices. 

• All the stationary devices sense the RSSI values of the 
mobile device asynchronously because of how the app in 
the stationary devices is scheduled by the operating 
system. Although this seems to be a benefit, further 
investigations need to be performed to see the effect of 
synchronized data collection.  
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(a)                                  (b) 
Fig. 1. Sample paths. 


