Using RSSI to Form Path in an Indoor Space
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Abstract—Generating paths of a mobile device in indoor
space by sensing its Bluetooth RSSI value is challenging but has
real-world applications. Although Bluetooth RSSI suffers from
different factors that limit its usability, this research shows that
it can still be used to detect mobility and, over a duration of time,
can be used to form paths. This poster presents algorithms that
can create a path of a moving mobile device by sensing its RSSI
values over time and then presents early results of the
algorithm's effectiveness while tracking health practitioners'
movement within a community care clinic setting.
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I. INTRODUCTION

While there are numerous causes of waste in the US
healthcare system, some are associated with inefficiency.
There have been multiple proposed solutions to address
inefficiency, one of which is clinic layout optimization [1].
Such optimization depends on how furniture and instruments
are placed in the clinic and how clinicians move through and
between different clinic rooms. Traditionally, such
optimization research involves manual monitoring by human
proctors, which is inaccurate, unproductive, and subjective.
If mobility patterns in an indoor space can be determined
automatically, such optimization can be improved
significantly.

Mobile crowdsensing is a powerful but cheap technology
for the pervasive sensing of valuable data that provides
solutions to various real-world problems. From a community
clinic's perspective, opportunistic crowdsensing data from the
clinician can be leveraged to allow more productive clinic
layout optimization. Data that such mobile sensing apps can
sense include the practitioner's movement within the clinic
and their contextual information, such as location, body
position, and device analytics. By combining such
contextualized movement data within the clinic, appropriate
big-data analytics and visualization can extract intelligence
and improve this instance of human-centric service delivery
by addressing several pressing needs. These needs may
include incorporating different clinic layouts to improve
patient experience, finding the most efficient way to utilize
resources to improve patient contact time, making the
practitioner productive in providing patient care, and
improving their learning experience.

Traditionally, Bluetooth Low Energy beacons are used for
similar indoor localization problems [2]-[3]. Although
beacons are cheap and easy to install, they lack the
computational smartness and power needed to localize and
contextualize the data. This poster presents an approach that
combines stationary and mobile devices within an indoor
space to detect motion by using a proximity-based approach
as utilized in COVID-19 contact tracing. More specifically,
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this research utilizes basic Bluetooth RSSI values sensed by
one or more stationary devices to form a path of a mobile
device.

II. RELATED WORK

Mobile crowdsensing is a broad research area, and a
plethora of work [4]-[5] was performed in different aspects of
this domain. Indoor localization [6] is one of the most
important topics addressed by mobile crowdsensing and is
recognized as a challenging research area. There are currently
several techniques [6] for indoor localization, and extensive
research [4]-[7] has been conducted in this area. Although
these techniques have some strengths and shortcomings, this
research has different goals and approaches. The application
domain requires easy application of this technology without
sophisticated hardware or the need for precious accuracy or
efficient energy usage. Since mobility detection is the goal,
the approach does not need high precision. Additionally, the
use of stationary devices connected to power gives this
approach the flexibility needed to use the Bluetooth proximity
detection [8] technique in a useful way. With the incorporation
of computationally intensive and power-savvy stationary
mobile devices instead of specialized beacons with less
computation power, this research presents an approach to
indoor mobility detection without the need for any specialized
hardware. Although there is a plethora of related work [4]-[7]
in this research area, the proposed research is different from
others in the following two ways: 1) it explicitly uses
Bluetooth proximity detection, as used by COVID-19
exposure notification apps and 2) it does not utilize any
specialized hardware or software and focuses on the easy
application of this approach in real-world scenarios.

III. PATH FORMING

Assume that we have n stationary devices Si, Sz, S3....5n
placed in 7 clinic rooms with their corresponding proximity.
Proximity is defined by a RSSI value within a specific range,
indicating that a particular device is close. Let us also assume
that if the mobile device D has moved from proximity 1 to
proximity 2 between time # and #, each stationary device
detects the mobile device's RSSI value in both instances. We
denote that as Ps;, where s denotes the stationary device and ¢
denotes the time. Between a starting time () and an ending
time (Zena), the collected data by the stationary devices looks
like the following:
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Once the above data is collected and aggregated by the
stationary devices on the edge, the following algorithm
creates vectors (with a tail (from) to a head (towards)) that
indicate the mobile device's movement after sorting the data
by time:

1. The source of the Path (Ds) is the stationary device that
has the largest RSSI value at fstar.
2. The destination of the Path (Dgs) is the stationary device
that has the largest RSSI value at fenq.
3. Foreveryt
a. getthe / row values and designate that as R
b. getthe /" (i+1) row values and designate that as S
c. forevery RSSlvaluein R
i. if Psi < Pg: This indicates that the device is moving
away from the current location (stationary device s)
towards the destination (ds), then create a vector Ds
2 Dygs.
ii. if Psi > Pg : This indicates that the device is moving
closer to the source (Ds), then create a vector Ds >
Dsr.

After the above algorithm determines the source and the
destination and goes through each timestamped data to create
all the vectors, the following algorithm merges all the vectors
into a path:

1. Assign Ds-in the beginning of the path.
2. For every vector
a. If the tail is equal to Ds- and the head is equal to Dys:
e This is already in the path, so ignore
b. If the tail is equal to Ds, but the head is not equal to
DdsZ
e Append the head of the vector to the path
c. If the tail is not equal to Dy, but the head is equal to
Dys:
e Append the tail of the vector to the path
d. |If the tail is not equal to D, and the head is not equal
to Dgs:
e Append the tail of the vector to the path
e Append the head of the vector to the path
3. Append Dgs to the end of the path.

The above algorithm creates a sequence of stationary device
proximities (Sa, Sb, .... S»), denoting a path through which the
mobile device has moved between time fsa and fena.

IV. RESULTS, CHALLENGES, AND THE FUTURE

To test the algorithm's accuracy, we manually generated
several sets of simulated data with three stationary devices (S},
S2, S3). Fig. 1 (a) shows one such path and the corresponding
path generated by the algorithm. The algorithm identified all
the other paths with 100% accuracy. In our next set of
experiments, physical devices were used to gather actual RSSI
data within a physical space where 3 stationary devices were
placed in a hall and a volunteer with a mobile device walked
between the devices. Fig. 1 (b) shows that mobility and what
the algorithm generates based on these inputs. Similarly, the
volunteer physically walked other paths, and data were
collected and fed to the algorithm, which identified all the
paths with 100% accuracy. However, one thing was observed
in the physical experimentation, depicted in Fig. 1 (b).
Although the volunteer walked from stationary device S; to S3
via Sz and back to S again, the path created by the algorithm
shows the repetition of stationary device S2 on the way back
to Si, although the volunteer did not go explicitly to that

Generated path by the
algorithm: Sy, Sz, S5

Generated path by the
algorithm: 54, S5, Sz, S5, 54

(a) (b)
Fig. 1. Sample paths.

device. This is because, while the volunteer is moving from Sj3
to S1, S2's reception of the RSSI value of the mobile device
also changed from low to high. Therefore, the algorithm
shows a path from S; to S> because the volunteer was within
the proximity of Sz, even if they did not directly approach it.
Currently, the algorithm is not able to distinguish between
these two situations. Along with that, the following are couple
of other challenges that this research is going to investigate in
the future:

e  The algorithm can work with five stationary devices right
now. It needs to be generalized so that it can work with
any number of stationary devices.

e How to detect the RSSI values better, given that the
environment has lot of noise from other nearby devices.

e All the stationary devices sense the RSSI values of the
mobile device asynchronously because of how the app in
the stationary devices is scheduled by the operating
system. Although this seems to be a benefit, further
investigations need to be performed to see the effect of
synchronized data collection.
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