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Abstract—Federated learning (FL) is a promising distributed
learning technique particularly suitable for wireless learning
scenarios since it can accomplish a learning task without raw
data transportation so as to preserve data privacy and lower
network resource consumption. However, current works on FL
over wireless networks do not profoundly study the fundamental
performance of FL over wireless networks that suffers from
communication outage due to channel impairment and network
interference. To accurately exploit the performance of FL over
wireless networks, this paper proposes a novel intermittent FL
model over a cellular-connected Unmanned Aerial Vehicle (UAV)
network, which characterizes communication outage from UAV
(clients) to their server and data heterogeneity among the datasets
at UAVs. We propose an analytically tractable framework to
derive the uplink outage probability and use it to devise a
simulation-based approach so as to evaluate the performance
of the proposed intermittent FL. model. Our findings reveal how
the intermittent FL. model is impacted by uplink communication
outage and UAV deployment. Extensive numerical simulations
are provided to show the consistency between the simulated and
analytical performances of the proposed intermittent FL. model.

Index Terms—Federated learning, deep learning, unmanned
aerial vehicle network, outage probability, point process.

I. INTRODUCTION

In the recent years, we have witnessed that machine learn-
ing (ML) techniques have been dramatically advanced and
successfully applied to tackle many real-world problems. The
remarkable success of ML is mainly attributed to two key
factors — highly powerful computing and extremely efficient
data analytics, yet such a remarkable success in ML signifi-
cantly relies on whether or not there are enough data to support
ML algorithms so as to make them work satisfactorily, which
becomes a crucial issue in many ML applications. Due to the
proliferation of smart mobile devices, collecting data through
them becomes much feasible and easier such that a mobile
cellular network has gradually been a huge live database
abounding with real-time information, which can be utilized by
ML to optimize network operations and managements. Proper
and efficient utilization of ML techniques based on data dis-
tributed over a massive mobile network becomes an important
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issue. This is especially true when transporting raw data from
all mobile devices to a server in a massive network because
it causes many issues, such as network congestion, energy
consumption, privacy, security, etc. To avoid transporting a
huge amount of distributed data to a server for conducting
centralized ML, a distributed learning methodology without
raw data transportation, such as federated learning (FL) [1],
[2], [3], becomes a viable solution.

A number of the existing FL algorithms were developed
with uniformly compressible data and shown to achieve con-
vergence based on the assumption of error-free and reliable
data communications between a server and clients. For ex-
ample, reference [4] proposed a compression protocol that
inherits the compression techniques of top-k sparsification and
quantization for uplink and downlink communication in FL.
In [5], FL-based multi-access edge computing was studied
with limited network resources and it adopted a gradient
descent approach to find the optimal trade-off between local
update at clients and global aggregation at a server. There
are also a number of works in the recent years studying the
problem of FL over wireless communication, where many
of them approached the problem from the perspective of
signal processing. The authors of reference [6], for instance,
devised a compressive sensing approach for FL over single-
antenna communication systems. The authors of reference [7]
proposed a compressive sensing approach for FL over a MIMO
communication system, where the server recursively finds the
linear minimum-mean-square-error estimate of the transmitted
signal by exploiting the sparsity of the signal. In [8], the au-
thors studied the over-the-air computation (AirComp, proposed
in [9]) problem with one-bit broadband digital aggregation.
Furthermore, very few works studied FL over UAV networks,
such as [10].

In these prior works, a fundamental issue of FL over
wireless network is far from being fully resolved, that is, data
communication between clients and a server may fail due to
unreliable wireless transmissions, which leads to communi-
cation outage and degrades the convergence performance of
FL accordingly. Another crucial issue that was not addressed
much in the prior works is the heterogeneity of datasets among
different mobile clients. Namely, most of the existing works
focus on developing wireless FL algorithms by assuming
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(a) A cellular-connected UAV network consisting of UAVs (clients), APs, an edge server, and a cloud. Each UAV associates with an AP in order

to jointly conduct the proposed intermittent FL with the edge server. (b) A schematic diagram to illustrate a UAV association scenario in which UAV U;
associates with the typical AP located at the origin, denoted by A, which sends the global model vector w: to U; and receives Vw; ¢ from Uj.

that all mobile clients possess independent and identically
distributed (i.i.d.) datasets. To tackle these two issues, we first
propose a more realistic FL. model over a cellular-connected
UAV network that characterizes uplink communication outage
from UAV (clients) to an edge server, which is our first
contribution. Our second contribution is to propose a 3D
random deployment model of UAVs and use it to develop a
tractable framework of analyzing the uplink outage probability
of a UAV in the network. Our third contribution is to analyt-
ically show that the performance of the proposed intermittent
FL over a UAV network can be significantly degraded by
communication outage from UAVs to the edge server due to
the improper deployments of access points (APs) and UAVs in
the network. In addition, intensive numerical simulations are
conducted to validate our analytical findings.

II. SYSTEM MODEL
A. Model of a Cellular-Connected UAV Network

In this paper, we consider a cellular network consisting of an
edge server, a tier of APs, and a tier of flying users, i.e., UAVs,
which collect data for learning. The edge server is connected
to a cloud through a gateway and it sends data to the cloud
whenever it needs the cloud to do large-scale data processing
and learning. An illustration of the cellular-connected UAV
network is shown in Fig. 1(a). All the UAVs in the network
are assumed to be distributed according to the following 3D

point process':

AU eR* xRy U, = (X, Hy),ie Ny}, (1)

where U;, denotes UAV ¢ and its 3D location, X; € R? is the
projection of U; on the ground, and H; € R, is the (random)
altitude of U;. All the H;’s are i.i.d. and independent of all the
X;’s. Fig. 1(b) shows a typical AP located at the origin and a
UAV U; associating with it. The set of the projections of all
the UAVSs, ie., {X;}, are assumed to form a 2D independent
Homogeneous Poisson Point Process (HPPP) of density A,
whereas all the APs also form a 2D independent HPPP of A,
which can be expressed as

o ={4; eR*:jeN, ], (2)

IThis 3D point process is a generalization of the 3D point process proposed
in our previous work [11] by considering a general distribution of the altitude
of each UAV.

where A; denotes AP j and its location.

Due to the 3D position of a UAV, a wireless link between
a UAV and a ground AP can be line-of-sight (LoS) or non-
LoS (NLoS). A wireless LoS link between two spatial points
means that the link is not visually blocked from one point to
the other. For a low-altitude platform of UAV communications,
the LoS probability of a wireless link between a UAV and a
ground point was proposed in [12]. We adopt it in this paper
and express it by using the coordinate system in Fig. 1(b)
where a typical AP is located at the origin (denoted by A,)
and a UAV is located at U; as follows:

1
o.)4
P(Ois) 1+ caexp(—c10;,)’

3)

where ©;, £ tan—!(H,/||X;|) is the elevation angle from
the typical AP to UAV Uj, || X;|| denotes the distance between
X; and the typical AP, ¢; and ¢z are the environment-related
positive coefficients (for rural, urban, etc.).

Each UAV associates with an AP in the network that
provides it with the strongest signal power on average. For
example, if UAV U; in Fig. 1(b) associates with the typical
AP located at the origin, i.e., A,, which satisfies the following
expression:

A, = Li:||U; — Aql|~®
* argj:g;aé’éa a:.'” i J”

_a
2

= Li; (|1 X: — Aj))% + || Hs )
arg max Lij (1% = Az 11 + [ H:ll?)

@ X — Ay =0, @

= arg min L_ =
jiAjed,

where a > 2 denotes the path loss exponent, L;; € {1, £} is

the LoS link gain between U; and Aj;, and © s due to the
fact that | H;|| does not affect the result of associating with an
AP. L;; is a Bernoulli random variable that is one if the link
between U; and A; is LoS and £ € (0, 1) otherwise. Note that
the transmit power of the APs and the fading effect in each
wireless link are not considered in (4) because all the APs
are assumed to have the same transmit power and the fading
effect in each wireless link is averaged out on the receiver side.
Moreover, we assume a densely distributed scenario of UAVs
(ie., Ay = Ag) in the network such that each AP is almost
surely associated with at least one UAV, and thereby each AP
is able to deliver the signals between its UAVs (clients) and
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the edge server for federated learning. A more realistic model
of federated learning between the edge server and the UAVs
will be proposed in the following subsection.

B. Model of Intermittent Federated Learning

In the UAV network proposed in Section II-A, we aim to
study the realistic performance of FL over the UAV network
that undergoes communication outages from a UAV to its
(associating) AP, which lead to non-continuous FL between the
edge server and the UAVs. Thus, we propose an intermittent
FL model over the network in Fig. 1(a) as follows. Suppose
there are /' UAVs distributed on average in the network and
they would like to jointly learn a global model with the edge
server in 7' training rounds. To simply characterize the impact
of communication outages on FL over the network, we assume
FL is much severely impacted by the communication outages
in the uplink direction, i.e., from a UAV to its AP. Such an
assumption is reasonable since the communication outages
in the downlink direction can be significantly mitigated by
multiple broadcasting attempts from an AP to its UAVs during
the training process of FL. As such, we propose the model of
intermittent FL. over the cellular-connected UAV network, as
detailed in Algorithm 1.

In Algorithm 1, each UAV U; is assumed to possess a
dataset D; given by

where D;; denotes data point j in dataset D;, x;; is the
input data vector with an appropriate dimension, y;; is the
labeled scalar output corresponding to z;;. We assume that all
the datasets D;’s are non-i.i.d and all the UAVs are able to
synchronously update their local learning model. At the tth
round of training, UAV U; updates its local model vector w; ;
according to the following algorithm:

(6)

w; ¢ < download; s (w;_1)
Vwiy < 3., ep, SGD(Dij, wie) —wie

where SGD(D;;, w; ) stands for the calculation of Stochastic
Gradient Descent with data point D;; and model vector w; ;.
After receiving the global model vector w;_; from the edge
server broadcasted by the AP, UAV U,; updates its local
model vector w;; by SGD so as to find the gradient Vw; ;.
Afterwards, UAV U; uploads Vw; ; to the edge server through
the typical AP. To characterize the communication outage from
Ui to the typical AP, a Bernoulli random variable §; ; € {0, 1}
is used to model the uplink communication outage from UAV
U; to the typical AP at the tth round’. As a result, the data
aggregation algorithm at the edge server can be written as

{ Ve ¢ =g o i P

D,|Vw1t
)
wi — wi—1 + Vwy
Namely, the edge server proportionally combines the received
gradients into Vw; based on the sizes of the datasets at the

2Note that the distribution of Bi,¢ is affected by the density of the UAVs
transmitting at the same time, which will be elaborated in Section III.

Algorithm 1 Intermittent Federated Learning
1: inputs: initial model vector w,
2: outputs: improved model vector w
3: initialize: the global model is initialized as wy < w,.
Each client holds non-i.i.d. dataset D; with equal size.
Vwo, wa <~ 0.
4. fort=1,---,T do
5 for i € {1,--- , K} do in parallel’
6: client ¢ does:
7.
8
9

- w;; < download; g(w;_1)
- Vwig < 3 5p, ep, SCD(Dij, wit) — wig
- uploadg, ;(Vw; )

10: end for

11: edge server does:

12: . th — m Zz 6i,t|Di|Vwi7t
13: s wp — wi—1 + Vwy

14: S W — Wy

15: - broadcast; g (w;)

16: end for

17: return w

UAVs [2]. As previously pointed out, some local gradients
may not be successfully uploaded to the edge server because
of uplink communication outage, and thereby the edge server
may not be able to aggregate all the local gradients transmitted
by all the UAVs. The global model vector w;, at the ¢th round is
updated and then broadcast to all the UAVs in the next round.
Such an intermittent FL process between the edge server and
the K UAVs proceeds until the predesignated number 7' of
training rounds is reached.

To illustrate how the proposed intermittent FL in Algo-
rithm 1 is impacted by uplink communication outage, we
will first provide the analyses of the outage probability of the
uplink communications from a UAV to its AP in the following
section. Next, some simulation results regarding intermittent
FL will be provided in Section IV-A to numerically demon-
strate how the performance of intermittent FL is impacted by
the uplink communication outages.

III. ANALYSIS OF THE UPLINK OUTAGE PROBABILITY

Suppose the network is interference-limited and consider the
uplink communication scenario from U; to the typical AP A,
shown in Fig. 1(b). As such, the Signal-to-Interference Ratio
(SIR) at A, can be defined as

-y Gi*Li*||A*||7a

1% I* )
where G, is the fading channel gain from U; to A,. Accord-
ingly, the uplink outage probability of a UAV is defined as

®)

Pout = Plyix <n] =P[Bit = 0], forall 4 and ¢, (9)

where 17 > 0 is the SIR threshold for successful decoding.
In this section, we focus on the analysis of p,,; that affects
the performance of the intermittent FL. model proposed in
Section II-B. To facilitate the derivation of p,,:, we first need
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to introduce two related theorems. The first theorem stated in
the following is about the distribution of the path loss of a
wireless link from a UAV to its AP.

Theorem 1. Suppose UAV U; associates with the typical AP
located at the origin. If R;,(r) = P[L;,||Us|| = < r], then for
UAV U; with a given altitude H; it can be found as given by

Ri(r) = exp [—m A Yi(7)], (10)
where Y;(-) is defined as

(r % —H2)* 2 *
Ty(r) é/ , p(Vi(y)) dy + (() —H3>
()" a—HH* r
(11)
in which (z)™ £ max{0,z} and 9;(y) = tan™'(H;/\/y).

Proof: See Appendix A. ]
Note that Y;(r) is a decreasing function of r when the upper
limit of the integral in (11) is not zero. From the expression
in (11), we thus know how R;,(r) varies with H;, A,, and £.

Next, we need to analyze the interference received by the
typical AP. To make the analysis tractable, we assume all
the UAVs associating with the same AP do not use the same
resource blocks in the uplink so that the UAVs using the same
resource blocks in the network also form a 3D point process.
Let I, be the interference received by the typical AP and it
can be defined as

2

k:Ur€®,\U;

I* = G}c*Lk*||UkH_a7 (12)

where 5u is the set of all the UAVs using the same resource
block as U; and Gy ~ exp(1l) that denotes an exponential
random variable with unit mean is the fading channel gain
from UAV U}, € ®,, to the typical AP and and independent of
any other random variables in I, for all £k € N,. Hence, all
Gy ’s are i.i.d. In the following theorem, we specifically show
the Laplace transform of I,, which is defined as Lj, (s) =
Elexp(—sl,)] for s > 0.

Theorem 2. The Laplace transform of I, can be found as
oo
et = e (—on [ Te (o) ). a3)
0

where 9(y) £
defined as

T (u,w) £p(w)[1 — E{Lg(ucos™(w))}]
(1 plw))[1 — E{ L (ucos™(w)}]
in which L5(s) £ E[exp(—sGy)].

Proof: See Appendix B. [ |
From Theorem 2, we are able to learn how the statistical prop-
erties of the uplink interference is affected by the deployments
of UAVs and APs. Note that (13) is a function of A, since the
density of the UAVs using the same uplink resource blocks is
also the same as that of the APs.

tanfl(%) and Zg(u,w) for u,w > 0 is

(14)

TABLE I
NETWORK PARAMETERS FOR SIMULATION
Parameter Value
UAV Density \,, (UAVs/m?) 1x107°
AP Density \q (APs/m?) A /[10, 300]
UAV Height H; (m) 100
SIR Threshold n 0.5
Path-loss Exponent o 2.75
(c1, ¢2) in (3) for urban (0.1581,43.9142)
Attenuation Gain of NLoS Channels ¢ 0.25
Size of Training Dataset at each UAV |D;] 20
Average Number of UAVs (clients) K 10, 30, 50
Number of Training Rounds 7T 200

Using the results in Theorems 1 and 2, we can derive the
uplink outage probability as shown in the following theorem.

Theorem 3. According to the uplink outage probability de-
fined in (9), it can be explicitly found as

% -3
Pout =1 —E {eXp (Ma/ Tc (nyR,,ﬁi(y)) dy) } ,
0 Tk

5)

where R, (r) = dR&;(T) = =\ Yi(r) exp (=AY (r)).

Proof: According to p,,: in (9), it can be rewritten as

Nl Ui
DPou :P[Gz S:l :1_£1*< — )
K * LZ*”A*” « LI*HA*” *

By employing the results in Theorems 1 and 2 to the above
expression of p,y¢, the explicit result of Ly, (-) can be found
so that p,,: in (15) is readily obtained. |
Theorem 3 clearly indicates how p,,: relates to A, and /,
which reveals the fact that the distribution of ;; is affected
by A, and ¢ as well. In other words, the realistic performance
of FL over a UAV network depends on how densely UAVs
are distributed in the network and how they are positioned in
the sky. In the following section, some numerical results will
be provided to demonstrate this observation.

IV. NUMERICAL RESULTS AND DISCUSSIONS

This section provides some simulation results of the pro-
posed intermittent FL by considering the MNIST datasets of
handwritten digits stored at the UAVs. We numerically evalu-
ate the performance of the proposed intermittent FL. by using
the metric of learning accuracy, which is defined as the rate of
using the global model w learned by the proposed intermittent
FL to successfully classify the images of handwritten digits in
the entire dataset stored in the network®. We first present and
discuss the numerical results of the learning accuracy of the
proposed intermittent FL. over the network and afterwards we
show the numerical results of how the learning accuracy is
influenced by the deployment densities of the APs and UAVs.
The values of the network parameters used for simulation are
listed in Table 1.

4Thus, the entire dataset in the network is the union of all the local datasets
stored at the UAVs.
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Fig. 2. The numerical results of the proposed intermittent FL: (a) Uplink
outage probability versus learning accuracy for different numbers of UAVs
with ii.d. datasets; (b) Uplink outage probability versus learning accuracy
for different numbers of UAVs with non-i.i.d. datasets; (c) Uplink outage
probability versus the ratio of the UAV density to the AP density.

A. Numerical Results of the Proposed FL Model

In this subsection, we provide numerical results regarding
how the performance of the proposed intermittent FL. model
is influenced by uplink communication outages. All the uplink
channels are assumed to experience independent block fading
such that all 3;+’s are i.i.d. for all ¢ and t. Also, the datasets
at the UAVs are assumed to be of the same quality and size.
To make the learning processes at different UAVs consistent,
all the UAVs adopt the same architecture of a deep neural
network to perform local learning, that is, the neural networks
at different UAVs adopt the same batch sizes, the same number
of the neurons in each layer, and the same number of hidden
layers. The learning cases of i.i.d. and non-i.i.d. datasets are
both considered in the simulation. Each UAV collects a dataset
where the ratio of training data size to testing data size is 2:1.
To make each learning case fairly compared, all the ten image
classes are uniformly collected by the UAVs. For example, if
there are 50 UAVs involved in the training processing of FL,
the image class of handwritten digit “3” is collected by exactly
5 UAVs among the 50 UAVs, which happens to the other nine
image classes likewise.

The numerical results of the proposed intermittent FL are
shown in Fig. 2. Specifically, Figs. 2 (a) and (b) show how the
learning accuracy varies with p,,; for the different numbers
of the UAVs with i.i.d. and non-i.i.d. datasets, respectively.
As can be seen in Fig. 2(a), the learning accuracy reduces as
Doyt iNCreases, yet it improves as the average number of the
UAVs in the network increases. As p,,: increases, the uplink
communication outage is more likely to happen and thus the
edge server more likely does the global model aggression with
less local learning outcomes, which essentially slows down
the convergence process of FL. As a result, the global model
vector wy is less likely to converge to a stable vector within
T training rounds. This is why the learning accuracy reduces
as Doyt increases. When more UAVs with i.i.d. datasets join
FL, more local training outcomes with a similar statistical
distribution are likely to be aggregated at the edge, which
improves the convergence rate of FL. Therefore, increasing
the average number of the UAVs with i.i.d. datasets in the

Learning Accuracy

O Simulated FL (& — 50)

0.5 |— Analytical FL (KX = 50)
A Simulated FL (K = 30)
0.45 |— Analytical FL (K = 30)
O Simulated FL (K = 10) L
0.4 IT—Analytical FL (K = 10)| | | |
: 50 100 150 200 250 300
Au/Aa

Fig. 3. Simulation results of the learning accuracy of the proposed FL model
for the case of non-i.i.d. datasets at the UAVs.

network helps to improve the learning accuracy because it
mitigates the negative impact of the uplink communication
outage on the convergence process of FL. Moreover, Fig. 2(b)
reveals a phenomenon different from Fig. 2(a), that is, the
learning accuracy is more sensitive to the average number of
the UAVs with non-i.i.d. datasets in the network. For example,
when p,,,: = 0.6, increasing K from 10 to 50 significantly
improves the learning accuracy, whereas we cannot observe
this in Fig. 2(a). This phenomenon stems from the fact that
every local learning outcome is crucial to the global model
aggregation at the edge server in that the local learning
outcomes obtained from non-i.i.d. datasets may have a very
distinct statistical distribution. Hence, the negative impact of
non-i.i.d. datasets on the convergence process of FL can be
effectively mitigated by increasing the average number of the
UAVs. Fig. 2(c) presents how p,,; increases along with A, /A,.
When A, /), increases, more UAVs are in the network and
more uplink interference is generated, thereby making uplink
communication outage more likely occur. The results in this
figure provide a fundamental relationship between p,,; and
Au/Aq and they can be used together with the results in
Figs. 2(a) and (c) to provide some insight into how to deploy
APs and UAVs in order to achieve a desired learning accuracy
for a given uplink outage probability. For instance, we can
deploy APs and UAVs with a ratio of A\, /A, = 100 in order
to achieve a learning accuracy about 0.75 by deploying the
average number of the UAVs with non-i.i.d. datasets greater
than 30.

B. Numerical Results of the Learning Accuracy vs. Ay [Aq

Fig. 3 shows how the learning accuracy varies with \, /A,
when all the UAVs have non-i.i.d. datasets. Two cases of
simulated FL and analytical FL are presented in the figure. The
results of the simulated FL are completely obtained by running
numerical simulations, yet the results of the analytical FL
are obtained by first calculating p,,: based on the expression
in (15) for different values of A\, /), and then using Fig. 2(b)
to find the values of learning accuracy corresponding to the
calculated values of p,,;. As can be seen in the figure, the
results of analytical FL almost coincide with their corre-
sponding results of simulated FL. This reveals the correctness
and accuracy of the uplink outage probability found in (15).
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Furthermore, the results in Fig. 3 demonstrate the fact that
the performance of FL over a UAV network can indeed be
impacted by how densely the APs and UAVs are deployed in
the network. This is an important and interesting finding worth
further investigation.

V. CONCLUSION

In the literature, the studies of FL over wireless network
were mainly conducted based on a unrealistic assumption,
i.e., no communication outage between clients and a server
when conducting FL. Such studies cannot practically reflect
the accurate performance of FL over wireless networks. To
understand how communication outage impacts FL, this paper
proposed an intermittent FL. model that is able to characterize
uplink communication outages in a cellular-connected UAV
network. A tractable approach to analyzing the uplink outage
probability was proposed and the uplink outage probability of
a UAV was explicitly derived in a neat form. We found that the
performance of FL over a UAV network can be significantly
impacted by the uplink outage probability that depends on how
the APs and UAVs are deployed in the network. Numerical
results not only validate the accuracy of the analyses of the
uplink outage probability, but also support the finding on how
the uplink outage probability degrades the the performance of
FL over unreliable wireless networks.

APPENDIX
A. Proof of Theorem 1
According to the definition of R;,(r), R;.(r) for a given H;

can be further written as

(a) L;
Rix(r) = P < <
) [2“ { X, — A2 + B3 } ]

(b) [ L;; ]
=E Pl——————— <r
AH 4,2+ B2)%
oo
c L
© exp —27r)\a/ Pl———= >r|zdx |,
0 [z2 + H?]®

where (a) is obtained based on the UAV association scheme
in (4), (b) is obtained by considering X; as the origin and
the fact that all L;; /(]| A;]|*> + sz)a/z ’s are independent, and
(c) is obtained by applying probability generating functional
(PGFL) of an HPPP to ®,. The subscript 75 of L;; is dropped
for simplifying notation. Replacing z with y and letting ¥,, =
tan~'(H;//y) yield the following:

P [y—&-lflﬁ]g >r| = p(d;(y)P {m > r}
= P | oy > 7] = (i)

Qv

Ply<rd 2]+ - st v < (1) - 2

Thus, T(r) = [ P [L(y + H?)~% > r]dy and R;,(r) are
obtained accordingly.

B. Proof of Theorem 2

According to the definition of I, and ||Ux||®> = || Xk|* +
|| Hy||?, the Laplace transform of I, can be further written as

H 5G s L )

exp (—a
X2+ H?
o PTG + B

@ h e
= exp | —TAq 1—FE|e w+H?) dy
0
) > sL
= €xXp 77T>\a\/ {1E|:£ (W):|}dy>a
< 0 ¢ (y —+ H2) 2

where (a) is obtained by applying the PGFL of an HPPP to the
projections of @, and using G instead of Gi,. Since ¥(y) =
tan~'(H/,/y), we thus have

E {cg ((y;gz)g)] =E [Lc (sLy™ % sec®(9(y)))] =

p(D:(W)E [La (sy~ % sec™(D(y)))] + [1 — p(Ws(y))]
xE|[Lq (sy*(%éseca(ﬂ(y)))] .
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