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Abstract—This paper presents a novel approach to conduct
highly efficient federated learning (FL) over a massive wireless
edge network, where an edge server and numerous mobile
devices (clients) jointly learn a global model without transporting
the huge amount of data collected by the mobile devices to
the edge server. The proposed FL approach is referred to as
spatio-temporal FL (STFL), which jointly exploits the spatial
and temporal correlations between the learning updates from
different mobile devices scheduled to join STFL in various
training epochs. The STFL model not only represents the realistic
intermittent learning behavior from the edge server to the
mobile devices due to data delivery outage, but also features
a mechanism of compensating loss learning updates in order
to mitigate the impacts of intermittent learning. An analytical
framework of STFL is proposed and employed to study the
learning capability of STFL via its convergence performance. In
particular, we have assessed the impact of data delivery outage,
intermittent learning mitigation, and statistical heterogeneity of
datasets on the convergence performance of STFL. The results
provide crucial insights into the design and analysis of STFL-
based wireless networks.

I. INTRODUCTION

Conventional machine learning techniques typically work in
a centralized manner, where all clients transport the data to a
central server to execute learning. Although such centralized
learning techniques achieve the desired learning performance
while exploiting a large amount of data from clients, they
may suffer risk of transporting privacy-sensitive data. For
example, centralized machine learning may not be appropriate
in medical data analysis since the data of patients can not be
shared or transported due to privacy and security concerns.
In addition, implementing centralized machine learning over
wireless networks induces other practical challenges, such
as large transmission latency, heavy traffic load, and large
resource consumption. For example, in addition to suffering a
long latency, mobile devices may consume substantial amount
of power to upload their datasets to the radio access network.
This is because the backbone networks to the cloud are
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not optimally designed for delay-sensitive services [1], [2].
Moreover, the large amount of wireless data transportation
consumes considerable network resources, thereby leading
to significant networking latency. To address these issues,
federated learning (FL) over wireless communication becomes
a promising candidate in both academia and industry.

The mechanism of FL over a wireless network is to enable
all wireless clients to train a local model using their own
dataset before uploading the locally trained model to a server
for global model aggregation. The server then sends the
aggregated model back to all the wireless clients for the next
training round. As the training process between the wireless
clients and the server proceeds, the locally trained models
are expected to converge to a global model. The study of
FL over wireless networks is still in its infancy, yet it can
be categorized into three main directions: over-the-air digital
and analog data aggregation, communication and computa-
tion efficiency, privacy and security [3]–[12]. References [9]
and [10], for example, studied how to achieve FL through
digital and analog signal combining techniques in wireless
channels. The works [6], [7] focused on the computation off-
loading in FL, whereas the problems regarding the reduction of
edge computing and communication efficiency were addressed
in [13], [14].

Most existing works in the literature including the afore-
mentioned ones have not studied how to efficiently conduct
FL over a massive wireless network, such as an internet-of-
thing (IoT) network, where numerous IoT (mobile) devices
jointly conduct FL under the circumstance of limited radio
and/or networking resources. Therefore, there is an urgent
need to devise a new large-scale FL methodology to efficiently
exploit the huge amount of data stored in massive wireless
networks. Our main contribution in this paper is to propose a
novel FL model for a massive wireless edge network with
a large number of mobile devices (clients), referred to as
spatio-temporal FL (STFL), which aggregates different locally
trained models into a global learning model by exploiting their
spatial and temporal correlations. In addition, the proposed
STFL model considers a realistic intermittent learning scenario
from an edge server to mobile devices due to data delivery
outage, and employs a mechanism of mitigating the impact
of intermittent learning. We also propose a definition of
learning capability to devise a framework of analyzing the



Edge Server
Selected MD 
for uploading    

Global learning   
Local learning at 

Base 
Station

N (green) MDs are 
selected for joining 
STFL at time t+1

<latexit sha1_base64="Z6HAMywPbSQaHIknBPjnUiHmXcM=">AAAB8nicdVDLSgMxFM3UV62vqks3wSK4GjK109ZdQRcuK9gHTIeSSdM2NJMZkoxQhn6GGxeKuPVr3Pk3ZqYVVPRA4HDOveTcE8ScKY3Qh1VYW9/Y3Cpul3Z29/YPyodHXRUlktAOiXgk+wFWlDNBO5ppTvuxpDgMOO0Fs6vM791TqVgk7vQ8pn6IJ4KNGcHaSN4gxHpKME+vF8NyBdkNp153LyCyUa156aKcuM1qHTo2ylEBK7SH5ffBKCJJSIUmHCvlOSjWfoqlZoTTRWmQKBpjMsMT6hkqcEiVn+aRF/DMKCM4jqR5QsNc/b6R4lCpeRiYySyi+u1l4l+el+hx00+ZiBNNBVl+NE441BHM7ocjJinRfG4IJpKZrJBMscREm5ZKpoSvS+H/pFu1HddGt7VKq7aqowhOwCk4Bw5ogBa4AW3QAQRE4AE8gWdLW4/Wi/W6HC1Yq51j8APW2yfkXpGf</latexit>D

(a) (b)

<latexit sha1_base64="1Rmk1rOpIVDnSwVlFJnQj03QL0M=">AAACAHicbVA9SwNBEN2LXzF+nVpY2CwGwULCnUS0DNhYRkhiIBfC3maSLNn7YHdOCcc1/hUbC0Vs/Rl2/hs3yRWa+GDg8d4MM/P8WAqNjvNtFVZW19Y3ipulre2d3T17/6Clo0RxaPJIRqrtMw1ShNBEgRLasQIW+BLu/fHN1L9/AKVFFDZwEkM3YMNQDARnaKSefeQ9ij6MGKZeYwTIsl4anGNGe3bZqTgz0GXi5qRMctR79pfXj3gSQIhcMq07rhNjN2UKBZeQlbxEQ8z4mA2hY2jIAtDddPZARk+N0qeDSJkKkc7U3xMpC7SeBL7pDBiO9KI3Ff/zOgkOrrupCOMEIeTzRYNEUozoNA3aFwo4yokhjCthbqV8xBTjaDIrmRDcxZeXSeui4l5WnLtquVbN4yiSY3JCzohLrkiN3JI6aRJOMvJMXsmb9WS9WO/Wx7y1YOUzh+QPrM8f93WWlw==</latexit>b⇥m,t

<latexit sha1_base64="IyP/uqWI2zNP6nn4d9StLGW8n2g=">AAAB9XicdVDJSgNBEO2JW4xb1KOXxiAIytCTbeIt4MVjBLNAEkNPp5M06VnorlHCkP/w4kERr/6LN//GziKo6IOCx3tVVNXzIik0EPJhpVZW19Y30puZre2d3b3s/kFDh7FivM5CGaqWRzWXIuB1ECB5K1Kc+p7kTW98OfObd1xpEQY3MIl416fDQAwEo2Ck2w6MONBe4p/DmTPtZXPEdgouIS4mdjlfrrglQ/IXruMUsGOTOXJoiVov+97phyz2eQBMUq3bDomgm1AFgkk+zXRizSPKxnTI24YG1Oe6m8yvnuITo/TxIFSmAsBz9ftEQn2tJ75nOn0KI/3bm4l/ee0YBpVuIoIoBh6wxaJBLDGEeBYB7gvFGciJIZQpYW7FbEQVZWCCypgQvj7F/5NG3nZKNrku5qrFZRxpdISO0SlykIuq6ArVUB0xpNADekLP1r31aL1Yr4vWlLWcOUQ/YL19An4yknk=</latexit>

✓m,t+1

<latexit sha1_base64="63xSF6T8gnbwbBFgpKOyjQ6TU5k=">AAAB73icdVDLSsNAFJ3UV62vqks3g0VwFZIY27oruHFZoS9oQ5lMJ+3QycOZG6GE/oQbF4q49Xfc+TdO2goqeuDC4Zx7ufcePxFcgWV9GIW19Y3NreJ2aWd3b/+gfHjUUXEqKWvTWMSy5xPFBI9YGzgI1kskI6EvWNefXud+955JxeOoBbOEeSEZRzzglICWeoPWhAEZwrBcscyretVxq9gyLatmO3ZOnJp74WJbKzkqaIXmsPw+GMU0DVkEVBCl+raVgJcRCZwKNi8NUsUSQqdkzPqaRiRkyssW987xmVZGOIilrgjwQv0+kZFQqVno686QwET99nLxL6+fQlD3Mh4lKbCILhcFqcAQ4/x5POKSURAzTQiVXN+K6YRIQkFHVNIhfH2K/ycdx7QvTevWrTTcVRxFdIJO0TmyUQ010A1qojaiSKAH9ISejTvj0XgxXpetBWM1c4x+wHj7BF7tkCc=</latexit>

⇥t

<latexit sha1_base64="IyP/uqWI2zNP6nn4d9StLGW8n2g=">AAAB9XicdVDJSgNBEO2JW4xb1KOXxiAIytCTbeIt4MVjBLNAEkNPp5M06VnorlHCkP/w4kERr/6LN//GziKo6IOCx3tVVNXzIik0EPJhpVZW19Y30puZre2d3b3s/kFDh7FivM5CGaqWRzWXIuB1ECB5K1Kc+p7kTW98OfObd1xpEQY3MIl416fDQAwEo2Ck2w6MONBe4p/DmTPtZXPEdgouIS4mdjlfrrglQ/IXruMUsGOTOXJoiVov+97phyz2eQBMUq3bDomgm1AFgkk+zXRizSPKxnTI24YG1Oe6m8yvnuITo/TxIFSmAsBz9ftEQn2tJ75nOn0KI/3bm4l/ee0YBpVuIoIoBh6wxaJBLDGEeBYB7gvFGciJIZQpYW7FbEQVZWCCypgQvj7F/5NG3nZKNrku5qrFZRxpdISO0SlykIuq6ArVUB0xpNADekLP1r31aL1Yr4vWlLWcOUQ/YL19An4yknk=</latexit>✓
m
,t+

1

<latexit sha1_base64="63xSF6T8gnbwbBFgpKOyjQ6TU5k=">AAAB73icdVDLSsNAFJ3UV62vqks3g0VwFZIY27oruHFZoS9oQ5lMJ+3QycOZG6GE/oQbF4q49Xfc+TdO2goqeuDC4Zx7ufcePxFcgWV9GIW19Y3NreJ2aWd3b/+gfHjUUXEqKWvTWMSy5xPFBI9YGzgI1kskI6EvWNefXud+955JxeOoBbOEeSEZRzzglICWeoPWhAEZwrBcscyretVxq9gyLatmO3ZOnJp74WJbKzkqaIXmsPw+GMU0DVkEVBCl+raVgJcRCZwKNi8NUsUSQqdkzPqaRiRkyssW987xmVZGOIilrgjwQv0+kZFQqVno686QwET99nLxL6+fQlD3Mh4lKbCILhcFqcAQ4/x5POKSURAzTQiVXN+K6YRIQkFHVNIhfH2K/ycdx7QvTevWrTTcVRxFdIJO0TmyUQ010A1qojaiSKAH9ISejTvj0XgxXpetBWM1c4x+wHj7BF7tkCc=</latexit>

⇥t

<latexit sha1_base64="63xSF6T8gnbwbBFgpKOyjQ6TU5k=">AAAB73icdVDLSsNAFJ3UV62vqks3g0VwFZIY27oruHFZoS9oQ5lMJ+3QycOZG6GE/oQbF4q49Xfc+TdO2goqeuDC4Zx7ufcePxFcgWV9GIW19Y3NreJ2aWd3b/+gfHjUUXEqKWvTWMSy5xPFBI9YGzgI1kskI6EvWNefXud+955JxeOoBbOEeSEZRzzglICWeoPWhAEZwrBcscyretVxq9gyLatmO3ZOnJp74WJbKzkqaIXmsPw+GMU0DVkEVBCl+raVgJcRCZwKNi8NUsUSQqdkzPqaRiRkyssW987xmVZGOIilrgjwQv0+kZFQqVno686QwET99nLxL6+fQlD3Mh4lKbCILhcFqcAQ4/x5POKSURAzTQiVXN+K6YRIQkFHVNIhfH2K/ycdx7QvTevWrTTcVRxFdIJO0TmyUQ010A1qojaiSKAH9ISejTvj0XgxXpetBWM1c4x+wHj7BF7tkCc=</latexit>

⇥t

(c)

Temporal Learning

Spatial Learning

<latexit sha1_base64="0Ptu0/L6gGid1Sll6Uyd7Opfl/E=">AAACA3icbVDLSgNBEJyNrxhfUW96GQyCoIRd2agXIeDFk0QwD8iuYXYySYbMPpjpFcKy4MVf8eJBEa/+hDf/xkmyiEYLGoqqbrq7vEhwBab5aeTm5hcWl/LLhZXVtfWN4uZWQ4WxpKxOQxHKlkcUEzxgdeAgWCuSjPieYE1veDH2m3dMKh4GNzCKmOuTfsB7nBLQUqe44yQODBiQTuIfwaGVOqlm51Z6e9UplsyyOQE2y5WKadsW/lasjJRQhlqn+OF0Qxr7LAAqiFJty4zATYgETgVLC06sWETokPRZW9OA+Ey5yeSHFO9rpYt7odQVAJ6oPycS4is18j3d6RMYqFlvLP7ntWPonbkJD6IYWECni3qxwBDicSC4yyWjIEaaECq5vhXTAZGEgo6toEOwZl/+SxrHZeukbF7bpaqdxZFHu2gPHSALnaIqukQ1VEcU3aNH9IxejAfjyXg13qatOSOb2Ua/YLx/AaT9l3k=</latexit>

{✓m,t+1}Nm=1

<latexit sha1_base64="Sn8V0Vs6m3PnlOK0Kjyy+rDacGs=">AAAB83icdVBNS8NAEN3Ur1q/qh69LBZBEEISQ1tvBS8eK7S20ISy2W7apZsPdidCCf0bXjwo4tU/481/46atoKIPBh7vzTAzL0gFV2BZH0ZpbX1jc6u8XdnZ3ds/qB4e3akkk5R1aSIS2Q+IYoLHrAscBOunkpEoEKwXTK8Lv3fPpOJJ3IFZyvyIjGMeckpAS57XmTAgwxwu7PmwWrPMq2bdcevYMi2rYTt2QZyGe+liWysFamiF9rD67o0SmkUsBiqIUgPbSsHPiQROBZtXvEyxlNApGbOBpjGJmPLzxc1zfKaVEQ4TqSsGvFC/T+QkUmoWBbozIjBRv71C/MsbZBA2/ZzHaQYspstFYSYwJLgIAI+4ZBTETBNCJde3YjohklDQMVV0CF+f4v/JnWPaddO6dWstdxVHGZ2gU3SObNRALXSD2qiLKErRA3pCz0ZmPBovxuuytWSsZo7RDxhvnwUlkaQ=</latexit>

⇥t+1

<latexit sha1_base64="VS5eG4FMwJlxse3feH31TVHuTto=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbB05ItpfVY0IPHirYW2qVk02wbmuwuSVYoS3+CFw+KePUXefPfmLaLaPXBwOO9GWbmBYng2mD86RTW1jc2t4rbpZ3dvf2D8uFRR8epoqxNYxGrbkA0EzxibcONYN1EMSIDwe6DyeXcv39gSvM4ujPThPmSjCIeckqMlW6vBnJQrmAXL4CwW8eNat1D34qXkwrkaA3KH/1hTFPJIkMF0brn4cT4GVGGU8FmpX6qWULohIxYz9KISKb9bHHqDJ1ZZYjCWNmKDFqoPycyIrWeysB2SmLGetWbi/95vdSEF37GoyQ1LKLLRWEqkInR/G805IpRI6aWEKq4vRXRMVGEGptOyYbgrb78l3Sqrld38U2t0qzlcRThBE7hHDxoQBOuoQVtoDCCR3iGF0c4T86r87ZsLTj5zDH8gvP+BTS1jbU=</latexit>

Dm

<latexit sha1_base64="VS5eG4FMwJlxse3feH31TVHuTto=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbB05ItpfVY0IPHirYW2qVk02wbmuwuSVYoS3+CFw+KePUXefPfmLaLaPXBwOO9GWbmBYng2mD86RTW1jc2t4rbpZ3dvf2D8uFRR8epoqxNYxGrbkA0EzxibcONYN1EMSIDwe6DyeXcv39gSvM4ujPThPmSjCIeckqMlW6vBnJQrmAXL4CwW8eNat1D34qXkwrkaA3KH/1hTFPJIkMF0brn4cT4GVGGU8FmpX6qWULohIxYz9KISKb9bHHqDJ1ZZYjCWNmKDFqoPycyIrWeysB2SmLGetWbi/95vdSEF37GoyQ1LKLLRWEqkInR/G805IpRI6aWEKq4vRXRMVGEGptOyYbgrb78l3Sqrld38U2t0qzlcRThBE7hHDxoQBOuoQVtoDCCR3iGF0c4T86r87ZsLTj5zDH8gvP+BTS1jbU=</latexit>

Dm
<latexit sha1_base64="WUBZhEBG+zUC2ridXFqvKpjp29g=">AAACAXicbVDLSgNBEJyNrxhfq14EL4uJIAhhN4J6DHjxGCEvSEKYnfRmh8w+mOlVwhIv/ooXD4p49S+8+TdOkj1oYkFDUdVNd5cbC67Qtr+N3Mrq2vpGfrOwtb2zu2fuHzRVlEgGDRaJSLZdqkDwEBrIUUA7lkADV0DLHd1M/dY9SMWjsI7jGHoBHYbc44yilvrmUan7wAfgU0y7dR+QTvopnjuTUt8s2mV7BmuZOBkpkgy1vvnVHUQsCSBEJqhSHceOsZdSiZwJmBS6iYKYshEdQkfTkAageunsg4l1qpWB5UVSV4jWTP09kdJAqXHg6s6Aoq8Wvan4n9dJ0LvupTyME4SQzRd5ibAwsqZxWAMugaEYa0KZ5PpWi/lUUoY6tIIOwVl8eZk0K2XnsnxxVylW7SyOPDkmJ+SMOOSKVMktqZEGYeSRPJNX8mY8GS/Gu/Exb80Z2cwh+QPj8wf/FZaK</latexit>b⇥t+1

<latexit sha1_base64="HBz7EPwq8IZAZdsFl8hH14qiuKk=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBi2VXSu2x4MVjBfsB7VqyabaNzSZLkhXq0v/gxYMiXv0/3vw3pu0etPXBwOO9GWbmBTFn2rjut5NbW9/Y3MpvF3Z29/YPiodHLS0TRWiTSC5VJ8CaciZo0zDDaSdWFEcBp+1gfD3z249UaSbFnZnE1I/wULCQEWys1Hq6Ty+8ab9YcsvuHGiVeBkpQYZGv/jVG0iSRFQYwrHWXc+NjZ9iZRjhdFroJZrGmIzxkHYtFTii2k/n107RmVUGKJTKljBorv6eSHGk9SQKbGeEzUgvezPxP6+bmLDmp0zEiaGCLBaFCUdGotnraMAUJYZPLMFEMXsrIiOsMDE2oIINwVt+eZW0LstetVy5rZTqtSyOPJzAKZyDB1dQhxtoQBMIPMAzvMKbI50X5935WLTmnGzmGP7A+fwBPJeO4w==</latexit>

z�1<latexit sha1_base64="UIm1zazcXk6ja06vwIC3fj/XtZo=">AAAB8XicdVBNS8NAEN3Ur1q/qh69LBbBU0hqaOut4MVjhbYW21A22027dLMJuxOhhP4LLx4U8eq/8ea/cdNWUNEHA4/3ZpiZFySCa3CcD6uwtr6xuVXcLu3s7u0flA+PujpOFWUdGotY9QKimeCSdYCDYL1EMRIFgt0G06vcv71nSvNYtmGWMD8iY8lDTgkY6W7QnjAgwwzmw3LFsS8btapXw47tOHW36uakWvcuPOwaJUcFrdAalt8Ho5imEZNABdG67zoJ+BlRwKlg89Ig1SwhdErGrG+oJBHTfra4eI7PjDLCYaxMScAL9ftERiKtZ1FgOiMCE/3by8W/vH4KYcPPuExSYJIuF4WpwBDj/H084opREDNDCFXc3IrphChCwYRUMiF8fYr/J92q7dZs78arNL1VHEV0gk7ROXJRHTXRNWqhDqJIogf0hJ4tbT1aL9brsrVgrWaO0Q9Yb58pOZE4</latexit>

⇥t

Fig. 1. (a) A massive wireless edge network in which a base station randomly selects N MDs from set D to join STFL in each time slot.
(b) The model of STFL between the edge server and Dm selected to upload its local learning outcome θm,t+1 in time slot t+ 1. (c) The
block diagram of the spatio-temporal learning model at the edge server.

convergence performance of STFL. We derive a sufficient
condition that ensures STFL to achieve its learning capability,
which further leads to the corresponding transient analysis
of STFL. Our analytical findings quantify the fundamental
relationships between data delivery outage, effect of mitigating
intermittent learning, and statistical heterogeneity of data in
different datasets. The results provide profound insights into
the improvement of the convergence rate of STFL.

II. MODEL OF SPATIO-TEMPORAL FEDERATED LEARNING

We consider a massive wireless edge network consisting of
a base station (BS) and a large set of mobile devices (MDs)
denoted by D. The BS is connected to an edge server with a
learning facility and helps the information exchange between
the edge server and the MDs in set D. Each MD possesses a
dataset to perform a local learning algorithm. The edge server
and all the MDs in the edge network aim to learn a global
model (vector) by utilizing the data stored in all the datasets
of the MDs. Due to privacy and other practical concerns, none
of the datasets of the MDs can be transported to or accessed
by any other devices in the edge network. Since set D is fairly
large and the radio resource is limited, current prevailing FL
models in the literature may not be directly adopted in such
a scenario. In order to efficiently exploit the large amount of
data stored in D, we propose a new model of FL between the
edge server and set D as follows. In each training epoch of
the learning process, the BS randomly selects N MDs from D
to join the learning process, which is merely a small portion
of the MDs in D. Each of the selected MDs utilizes its own
dataset to train the local learning model before uploading its
training outcome to the edge server through the BS. The edge
server then aggregates all the received local models into a
global model and sends it back to all the MDs to complete a
training epoch.

To ensure the learning process will efficiently exploit the
data from the N selected datasets, we propose a novel FL
model as follows. Suppose MD m is selected to upload its
local learning model at time t and its dataset can be expressed
as

Sm , {Sm,i ∈ Rd × R : Sm,i = (xm,i, ym,i),

xm,i ∈ Rd, ym,i ∈ R}, (1)

where Sm,i denotes data point i in dataset Sm, xm,i is a d-
dimensional (d-D) data vector with d feature elements, and
ym,i is the labeled (scalar) output corresponding to xm,i. At
(training epoch) time t, MD Dm receives the global model
Θt ∈ Rd sent by the BS and uses this Θt to update its local
learning model θm,t+1 via the following algorithm:





Θm,t = γm,tΘt + (1− γm,t)Θ̂m,t

gm(Θ) = 1
|Sm|

∑
Sm,i∈Sm ∇Θ`(Sm,i,Θ)

θm,t+1 = Θm,t − αmgm (Θm,t)

. (2)

Here, γm,t ∈ {0, 1} is a Bernoulli random variable that
characterizes the data delivery outage from the edge server
to Dm

1, Θ̂m,t is the estimate of Θt once Θt is lost, αm > 0
denotes the spatial learning rate for MD m, |Sm| denotes the
number of the data points in Sm, `(·, ·) : Rd × R → R+ is
a differentiable loss function2, and ∇Θ`(·,Θ) represents the
gradient of `(·,Θ) with respect to argument Θ. The function
Θ̂m,t is to compensate Θt when MD Dm does not receive it
at time t and we will demonstrate how to determine Θ̂m,t in
Section III. The learning model between the edge server and
MD Dm in a massive wireless edge network is illustrated in
Fig. 1(a) and (b).

At time t+ 1, the N MDs selected by the BS upload their
locally trained models to the edge server through the BS. The
edge server then adopts the following algorithm to find Θt+1,





Θ̂t+1 =
∑N
m=1

|Sm,t|
|St| θm,t+1

Θt+1 = Θt − βt
(

Θt − Θ̂t+1

) , (3)

where βt ∈ (0, 1) is known as the temporal learning rate,
Sm,t denotes the dataset of an MD Dm selected at time t,
and |St| ,

∑N
m=1 |Sm,t|. The algorithm for Θ̂t+1 is the

spatial learning over the N datasets {Sm,t}Nm=1, whereas the
recursive algorithm for Θt+1 conducts the temporal learning
over all Θt before time t+1. The algorithm in (3) is motivated
by the idea of the moving average among the t global learning

1The data delivery outage from the server to an MD could be caused, among
others, by wireless channel fading, network congestion, and queuing delay.

2The loss function `(·, ·) can be generally designed to represent various
learning models adopting a stochastic gradient decent method, e.g., support
vector machines, neural networks, and linear regression.



models found prior to time t+ 1 because Θt in (3) reduces to
the moving average of the set {Θ1, . . . ,Θt} if βt = 1/(t+1).
For the simplicity of modeling the learning behavior at the
edge server, we assume that the data delivery outage from an
MD to the edge server in (3) does not impact the learning
process of Θt

3. The global learning algorithm in (3) can
exploit the spatial (local) learning outcomes across different
times and datasets distributed over the edge network since
the global models found at different times are likely based
on different local datasets. As a result, the local learning
algorithm in (2) and the global learning algorithm in (3) are
referred to as STFL in this paper. Thus, the proposed STFL
model is able to achieve the spatial average over the set D
as t → ∞ since D is large according to the mean-field
theory [15]. Note that the proposed STFL model reduces to
the general FL model in the literature whenever γm,t = βt = 1
for all t ∈ N. This manifests the fact that a general FL
model cannot handle data delivery outage in the presence
of a huge amount of data widely distributed over a massive
edge network. The block diagram of the STFL algorithm is
shown in Fig. 1(c). In the following section, we will study the
convergence performance of STFL.

III. CONVERGENCE ANALYSIS OF STFL
In this section, we investigate the convergent performance

of the proposed STFL so as to understand how data delivery
outages impact federated learning. Let Θ∗ ∈ Rd be the target
global model that all the MDs would like to learn, that is, all
the local models in (2) are expected to converge to Θ∗ as time
goes to infinity. We will first analyze the steady-state behavior
of STFL to understand when the proposed STFL algorithm
is able to accurately learn the global model. We will then
focus on the transient analysis of STFL in understanding the
transient behavior and convergence rate.

A. Analysis of the Learning Capability of STFL

To evaluate if STFL is able to learn in a long-time sense, we
propose the notion of “learning capability” for the proposed
STFL, as defined in the following.

Definition 1 (Learning capability of STFL). Let εm,t ,
E
[
‖θm,t −Θ∗‖2

]
be the learning error of the local model

θm,t of MD Dm at time t. The proposed STFL is said to
possess the learning capability if εm,t converges to zero as t
goes to infinity for all Dm ∈ D.

Definition 1 manifests the fact that the proposed STFL pos-
sesses a learning capability if the learning error of all the
local models is sufficiently small after a long training time.
According to this definition, we can find the condition that
enables STFL to possess a learning capability, as shown in
the following theorem.

Theorem 1. If each MD Dm ∈ D is able to estimate its missed
global model such that E[‖Θt − Θ̂m,t‖2] ≤ δmεm,t holds for

3This is a reasonable assumption as it is very unlikely that many of the
N MDs fail to transmit their data to the server at the same time, where the
temporal learning also mitigates the effects of data delivery outage.

a small δm > 0 and all t ∈ N, then the STFL algorithm
proposed in (2) and (3) possesses the learning capability if
the following inequality holds

max
m:Dm∈D

{√
(1 + qmδm)σm(Θ)

}
< 1, (4)

where qm = P[γm,t = 0] is the outage probability of the data
delivery from the edge server to Dm and σm(Θ) is the spectral
radius of matrix Id − αm∇Θgm(Θ), and Id denotes a d× d
identity matrix.

Proof: See Appendix A.
The inequality in Theorem 1 reveals some important impli-

cations, which are worth pointing out in the following. First of
all, the result characterizes how the data delivery outage and
the accuracy of estimating the missed global model at each
MD impact the learning capability of STFL. The data delivery
outage brings a negative impact on the learning capability
because it increases the right hand side of the inequality in (4),
which makes (4) more difficult to hold. Nonetheless, such a
negative impact can be significantly mitigated if all δm’s are
very small, which is accomplished whenever each MD is able
to accurately estimate and compensate its lost global model.
We will propose a stochastic approximation algorithm for each
MD to estimate the global model and numerically evaluate its
estimation performance in the following section. In addition to
accurately compensating the lost global model, another effec-
tive method that helps STFL equip with the learning capability
is to find an optimal αm that minimizes

√
(1 + qmδm)σm(Θ).

If λm,i > 0 denotes one of the eigenvalues of ∇Θgm(Θ), then
σm(Θ) = maxi{|1−αmλm,i|} and the following optimization
problem for αm can be formulated,

min
αm

{
max

i∈{1,...,d}
{|1− αmλm,i|}

}
(5)

s.t.

√
(1 + qmδm)− 1

λmax
m

√
(1 + qmδm)

< αm <

√
(1 + qmδm) + 1

λmax
m

√
(1 + qmδm)

, (6)

where (6) is derived from the constraint σm(Θ) = maxi{|1−
αmλm,i|} < 1 and λmax

m , max{λm,1, . . . , λm,d}. The
solution to this optimization problem can be found as

α∗m =
2

λmax
m + λmin

m

(7)

if the following inequality holds

1 <
λmax
m

λmin
m

<

√
(1 + qmδm) + 1√
1 + qmδm − 1

,

where λmin
m = min{λm,1, . . . , λm,d} and λmax

m

λmin
m

is known as
the condition number of ∇Θgm(Θ). Apparently, the condition
number of ∇Θgm(Θ) has a profound impact on the learning
capability of STFL. For example, if λmax

m

λmin
m

is small and close
to one (i.e., λm,1 ≈ λm,i ≈ λm,d ≈ λm), α∗m ≈ 1

λm
, thereby

1 − α∗mλm,i ≈ 0. In such a scenario, STFL will readily
possess the learning capability by using the optimal learning
rate α∗m even if it may seriously suffer from the data delivery
outage. A large condition number usually leads to small αm



in order to enable the learning capability, thereby reducing the
convergence rate of STFL. Another important implication that
can be learned from (4) is how the different distributions of
the non-i.i.d. datasets in the edge network affect the learning
capability. This is because whether or not (4) holds hings
on the eigenvalues of ∇gm(Θ) that are dependent on the
distribution of the data point in dataset Sm. In general, the
term

√
(1 + qmδm)σm(Θ) in (4) increases and α∗m in (7)

accordingly decreases as the number of the non-i.i.d. datasets
in the edge network increases. Hence, Theorem 1 provides an
analytical foundation on how non-i.i.d. datasets influences the
learning performance. Nonetheless, we are unable to infer the
transient behavior of STFL from Theorem 1 alone, the study
of which is presented in the following subsection.

B. Analysis of the Transient Performance of STFL

The transient behavior of STFL can be characterized by how
fast the local learning models converge within a fixed number
of training epochs. Accordingly, we propose the concept of
the learning time constant of STFL specified in the following
definition.

Definition 2 (Learning Time Constant of STFL). Suppose
STFL possesses the learning capability. The local time con-
stant of MD Dm, denoted by τm, is defined as

τm , inf{T : εm,t+T ≤ e−1εm,t, t ∈ N}. (8)

The learning time constant of STFL is τ , maxm:Dm∈D{τm}.
The physical meaning of the learning time constant τm is

the minimum time period needed to make the learning error
εm,t+τm reduce to 36.79% of εm,t, and it is similar to the
meaning of the time constant of a linear dynamic system.
The learning time constant of STFL is thus defined as the
maximum among all the local time constants. Therefore, the
key to improving the convergence rate of STF is to reduce the
learning time constant. The time constant defined in (8) can
be equivalently expressed as

τm = inf

{
T : ln

(
εm,t
εm,t+T

)
≥ 1, t ∈ N

}
, (9)

which can be explicitly found as shown in the following
theorem.

Theorem 2. If the STFL possesses the learning capability, the
local time constant of MD Dm can be found as

τm =
−1

2 ln
(√

(1 + qmδm)σ∗m(Θ)
) , (10)

where σ∗m(Θ) , maxi∈{1,...,d}{|1−α∗mλm,i|} and α∗m is given
in (7). The learning time constant of STFL is thus obtained as

τ = −1

2

{
max

m:Dm∈D
ln
(√

(1 + qmδm)σ∗m(Θ)
)}−1

. (11)

Proof: See Appendix B.
The outcomes shown in Theorem 2 clearly indicate how

the convergence rate of STFL is quantitatively affected by

the data delivery outage, the effect of compensating the lost
global model on the MD side, and the statistical property of
the datasets in the edge network. To decrease τm, we need to
keep

√
(1 + qmδm)σ∗m(Θ) as small as possible. As such, both

the transient behavior and the learning capability of STFL are
dominated by the value of

√
(1 + qmδm)σ∗m(Θ). The distribu-

tions of the non-i.i.d. datasets have a much more critical impact
on the transient behavior of STFL than the data delivery outage
and the compensating effect. The reason is that (1 + qmδm)
can be reduced to one, whereas ln(σ∗m(Θ)) can be reduced to
a value much smaller than one. To demonstrate this, consider a
scenario of no data delivery outage (or the lost global learning
model is perfectly compensated), the convergence performance
of STFL is dominated by the maximum of σ∗m(Θ),

max
m
{σ∗m(Θ)} = max

m
max
i

{∣∣∣∣1−
2λm,i

λmax
m + λmin

m

∣∣∣∣
}
, (12)

which approaches to zero as λmin
m increases to λmax

m , and
thereby − ln(σ∗m(Θ)) can be quite large. Namely, τ can be
considerably reduced as the condition number of ∇Θgm(Θ)
that depends on Sm is close to unity. This suggests that
carefully removing some features of the non-crucial input data
points helps to reduce the condition number and accordingly
improves the convergence rate of STFL. We will illustrate this
observation in the following section.

IV. NUMERICAL RESULTS

In this section, some numerical results are provided to
illustrate our analytical findings in the previous section. We
consider the wireless edge network in Fig. 1, where 10000
MDs are uniformly distributed in set D and the BS randomly
schedules 100 MDs to join the learning process of STFL in
each training epoch. For simplicity, a linear regression problem
is tackled in the wireless edge network by using STFL. As
a result, the loss function becomes `(Sm,i,Θ) = 1

2 (ym,i −
ΘTxm,i)

2 so that we obtain ∇Θ`(Sm,i,Θ) = (ΘTxm,i −
ym,i)xm,i and ∇Θgm(Θ) = 1

|Sm|
∑
Sm,i∈Sm xm,ix

T
m,i ≈

Σm + E[xm]E[xm]T , where Σm is the covariance matrix of
all xm,i’s in Sm. Each MD adopts the following algorithm to
find Θ̂m,t in (2),

Θ̂m,t = (1− ω)
t∑

i=1

ωt−i [(1− γm,i)θm,i−1 + γm,iΘi] ,

(13)

where ω ∈ (0, 1). Note that ω = 0 corresponds to the case
that each MD does not compensate its lost global model.
Since it is clear that limt→∞ Θ̂m,t = Θ∗ once Θt → Θ∗
as t → ∞, there must exist a fairly small δm such that
‖Θ̂m,t − Θt‖ ≤ δm‖θm,t − Θ∗‖ = δmεm,t. In the following
simulation, ω = 0.25 will be used in (13) if MD Dm needs
to compensate its lost global model and consider δm ≤ 1.
Moreover, all the datasets in the network are of the same size
with 100 data points, i.e., |Sm| = 100 and xm,i ∈ R3 for
m = 1, 2, . . . , 10000 and i = 1, 2, . . . , 100. The datasets are
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Fig. 2. The simulation results of the averaged learning error εt.

non-i.i.d. and equally likely share two different 2-D Gaussian
distributions with two distinct means

E[xm,i] ∈
{[

1
1

]
,

[
2.2
1.8

]}
, (14)

and covariance matrices

Σm ∈
{[

1 1.25
1.25 3

]
,

[
2 1.75

1.75 2

]}
. (15)

The STFL algorithm aims to learn a 2-D global model Θ∗ =
1√
2
[1 −1]T . Accordingly, all the input data points xm,i in Sm

are generated by using (14) and (15), and all the output data
points ym,i in Sm are generated by ym,i = ΘT

∗ xm,i.
According to (7) and (15), we can find α∗m ≈ 0.5 for all

Dm ∈ D. We adopt βt = 1/(t + 1) in (3), assume the same
qm for all Dm ∈ D, and define the averaged learning error
as εt = 1

N

∑N
m=1 εm,t. The simulation results of εt is shown

in Fig. 2 for four different combinations of qm and αm. As
shown in the figure, all the curves eventually converge, yet two
of them (i.e., the curves with squares) do not converge to zero.
Namely, the two combinations, qm = 0.9, αm = 0.25 and
qm = 0.9, α∗m = 0.5, do not make STFL possess the learning
capability because they do not satisfy (4). Furthermore, the
dash-square curve is the case of no global model compensation
so that its εt apparently converges to a much higher value
than the other three. The other two combinations satisfy (4)
and indeed their curves converge to zero. Also, the circle-
solid (red) curve with optimal α∗m = 0.5 converges much
faster than the circle-dash (blue) one without α∗m, as expected.
Fig. 3 shows the simulation results of how the learning time
constant τ varies with qmδm. As can be seen from the figure,
the learning time constant found in (11) is slightly larger than
the simulated one. This is because we use a (tight) bound when
deriving τ . Nonetheless, τ in (11) is still very accurate so that
it provides a useful evaluation on how the convergence rate of
STFL is affected under different values of qmδm.

V. CONCLUSION

To effectively learn from the data stored in a massive edge
network with a limited radio resource, we devised a novel
STFL technique, which is able to spatially and temporally
conduct the learning process among a large number of MDs.
The salient features of STFL lie in two facets of modeling the
realistic conditions incurred by massive wireless networking of
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Fig. 3. The simulation results of the learning time constant τ .

unreliable communication and limited radio resource. The pro-
posed STFL algorithm employs a mechanism of compensating
lost global models at each MD as well as scheduling MDs
at the edge server. An analytical framework for characterizing
the learning capability of STFL was proposed and employed to
find a sufficient condition for STFL convergence in a long-term
sense. The learning time constant of STFL was defined and
derived in order to evaluate the transient performance of STFL.
Our analytical findings shed new light on the fundamental
interplay between data delivery outage, compensation of lost
data, and distribution of non-i.i.d. datasets.

APPENDIX

A. Proof of Theorem 1
First of all, we adopt the notation ∆z , z − Θ∗ for the

difference between any vector z and the vector Θ∗. Such a
notation will be frequently used in the following derivations.
As a result, let us define ∆θt+1 ,

∑N
m=1

|Sm,t|
|St| ∆θm,t+1 and

thereby we can rewrite (3) as

∆Θt+1 = (1− βt)∆Θt + βt∆θt+1.

This gives rise to the following inequality

‖∆Θt+1‖ ≤ (1− βt)‖∆Θt‖+ βt‖∆θt+1‖
due to the triangle inequality, where ‖z‖ denotes the (any)
norm of vector z. Thus, we can further obtain

E
[
‖∆Θt+1‖2

]
≤ (1− βt)2E

[
‖∆Θt‖2

]
+ 2βt(1− βt)

× E
[
‖∆Θt‖‖∆θt+1‖

]
+ β2

tE
[
‖∆θt+1‖2

]
.

This means that E
[
‖∆Θt‖2

]
eventually converges to zero as

long as we ensure limt→∞ E
[
‖∆θt‖2

]
= 0 and βt < 1 in

that limt→∞ E
[
‖∆θt‖2

]
= 0 makes ‖∆θ̄t‖ converge to zero

and βt < 1 makes ‖∆Θt‖ reduce to zero almost surely as
time goes to infinity. In order to ensure E

[
‖∆θt‖2

]
eventually

converge to zero, we need to have limt→∞ E[‖∆θm,t‖2] =
limt→∞ εm,t = 0 for all m because it guarantees ‖∆θm,t‖
reduce to zero, which leads to limt→∞ E

[
‖∆θ̄t‖2

]
= 0 when

considering E
[
‖∆θ̄t‖2

]
≤ (
∑N
m=1

|Sm,t|
|St| ‖∆θm,t‖)

2.
Next, ∆θm,t in (2) can be explicitly written as

∆θm,t+1 = ∆Θm,t − αmgm (∆Θm,t + Θ∗)
(a)≈ ∆Θm,t − αm [gm(Θ∗) +∇gm(Θ∗)∆Θm,t]

(b)
= [Id − αm∇gm(Θ∗)] ∆Θm,t,



where (a) is obtained by using the first-order Taylor’s ex-
pansion of gm(∆Θm,t + Θ∗) and (b) is due to considering
gm(Θ∗) = 0 and a d×d identity matrix Id. Hence, the covari-
ance matrix of ∆θm,t, denoted by Pm,t , E[∆θm,t∆θ

T
m,t],

can be expressed as

Pm,t+1 = QmE
[
∆Θm,t∆ΘT

m,t

]
QT
m, (A.1)

where Qm , Id − αm∇g(Θ∗) and T denotes the transpose
notation of vectors and matrices. Moreover, we know

E
[
∆Θm,t∆ΘT

m,t

]
=(1− qm)E[∆Θt∆ΘT

t ]

+ qmE[∆Θ̂m,t∆Θ̂T
m,t]

because qm = P[γm,t = 0]. In addition, we know ∆Θ̂m,t =

Θ̂m,t − Θt + Θt − Θ∗ = ∆Θt − (∆Θt − ∆Θ̂m,t) whereas
∆Θt and (∆Θt − ∆Θ̂m,t) are orthogonal. We thus have
E[∆Θ̂m,t∆Θ̂T

m,t] = E[∆Θt∆ΘT
t ]+E[(∆Θt−∆Θ̂m,t)(∆Θt−

∆Θ̂m,t)
T ] so that E[∆Θm,t∆ΘT

m,t] can be expressed as

E[∆Θm,t∆ΘT
m,t] = E[∆Θt∆ΘT

t ] + qm

E[(Θt − Θ̂m,t)(Θt − Θ̂m,t)
T ].

Since Θt − Θ∗ is “less random” than θm,t − Θ∗, we know
E[∆Θt∆ΘT

t ] ≤ E[∆θm,t∆θ
T
m,t] = Pm,t; i.e., Pm,t −

E[∆Θt∆ΘT
t ] is positive semi-definite. Now consider the mean

square estimation error of Θt at Dm, i.e., E[‖Θt − Θ̂m,t‖2]
can be bounded by δm(E[‖∆Θt‖2]) for all t such that
δmE[∆Θt∆ΘT

t ] ≥ E[(Θt − Θ̂m,t)(Θt − Θ̂m,t)
T ]. Therefore,

we have

E[∆Θm,t∆ΘT
m,t] ≤ Pm,t + qmδmE[∆Θt∆ΘT

t ]

≤ (1 + qmδm)Pm,t (A.2)

due to E[∆Θt∆ΘT
t ] ≤ Pm,t. According to (A.1) and (A.2),

we can conclude the following:

Pm,t+1 ≤ (1 + qmδm)QmPm,t+1Qm, (A.3)

which leads to

‖Pm,t+1‖ ≤
(√

(1 + qmδm)‖Qm‖
)2

‖Pm,t‖, (A.4)

where ‖ · ‖ is any matrix norm. When
√

(1 + qmδm)‖Qm‖
is smaller than unity, ‖Pm,t‖ will converge to zero as t goes
to infinity. Namely, εm,t → 0 as

√
(1 + qmδm)‖Qm‖ < 1 for

all Dm ∈ D. Since all the matrix norms are equivalent, we
choose ‖Qm‖2 = σm(Θ), i.e., the spectral norm of Qm. As a
result, STFL possesses the learning capability as long as the
inequality in (4) holds.

B. Proof of Theorem 2
Suppose the eigenvalue decomposition of Qm is

VmΛmVT
m, where Vm is a unitary matrix of ∇Θgm(Θ)

and Λm = diag{(1 − αmλm,1) · · · (1 − αmλd)}. According
to (A.3) and tr(Pm,t) = εm,t, we can obtain

εm,t+1 ≤ (1 + qmδm)tr
(
VmΛmVT

mPm,tVmΛmVT
m

)

(a)

≤ (1 + qmδm)tr
(
Λ2
mVmPm,tV

T
m

)

(b)

≤ (1 + qmδm)σ2
m(Θ)tr(Pm,t),

where (a) is due to tr(AB) = tr(BA) for two matrices A
and B with the same dimension, and (b) is because Vm

is a unitary matrix such that tr(VmPm,tV
T
m) = tr(Pm,t)

and tr(Λ2
mPm,t) ≤ σ2

m(Θ)tr(Pm,t) = σ2
m(Θ)εm,t. Thus, we

obtain

ln

(
εm,t
εm,t+T

)
≥ −T ln

(
(1 + qmδm)σ2

m(Θ)
)
,

and then let the above lower bound be greater than or equal
to one yields

T ≥ −1

ln(1 + qmδm) + ln (σ2
m(Θ))

.

The lower bound on T can be minimized by substituting α∗m
in (7) into σm(Θ) so as to ensure σm(Θ) achieve its maximum
value σ∗m(Θ). Therefore, τm in (10) is found according to (9)
and τ in (11) is readily obtained based on the definition.
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