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Abstract—Updating the state of reservoir nodes is one of the
essential operations of reservoir computing (RC), which highly
affects the system’s performance. In an echo state network (ESN),
one of the primary types of RC, the process of state renewal can
be divided into two stages: multiplication of the weight matrix
with the input-state vector and applying a nonlinear activation
function on the sum of products. The weight matrix is typically
large and sparse, providing opportunities for optimizing the
matrix multiplication; the choices of activation functions may
also affect hardware resource utilization. This paper introduces
an optimized reservoir node architecture for FPGA-based RC
systems. Specifically, we adopt the bit-serial matrix multiplier
and direct spatial implementation of the weight matrix to fully
exploit the sparseness property. The canonical signed digit repre-
sentation is also employed to further optimize the multiplier logic.
Furthermore, a hyperbolic tangent activation function is designed
and optimized to maintain the nonlinearity of the neural network
without affecting its accuracy. Compared with existing hardware
ESN designs, our reservoir node architecture significantly reduces
resource utilization while maintaining comparable performance.

Index Terms—Reservoir computing, field-programmable gate
array, echo state network, architecture

I. INTRODUCTION

Artificial neural networks (ANN) are based on the concept
of constructing a network from neurons or nodes, which are
commonly denoted as black boxes with nonlinear activation
functions. Signals can be transmitted between the neurons via
complex connections, similar to the synapses in brains. In
feedforward networks, neurons are fully or partially connected
between adjacent layers. When arriving at the output nodes,
the output signals will be reshaped based on the network
connections and the activation function of internal neurons.

Feedforward neural networks without internal loops cannot
solve some of the complex problems that require temporal in-
formation. Recurrent neural networks (RNNs) induce recurrent
connections to solve the above difficulty. In RNNs, the input
signals can be stored in the network for a longer time [1],
and the states of neurons are dependent on both the current
inputs and the previous ones. However, recurrence introduces
difficulties like nonlinearity and high computational resource
requirements.
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Reservoir computing (RC) is a recently introduced frame-
work for computation. It is derived from RNN but has bet-
ter computation efficiency on many tasks that are deemed
computationally hard, including time-series prediction [2],
character recognition [3], or speech recognition [4], among
others. By mapping the inputs to reservoir states in higher
dimensions, an RC system only needs to train the connections
from the internal reservoir to the output layer using simple
linear regression techniques. Therefore, the training of RNN is
highly simplified. The implementation of reservoir computing
varies, among which the three common types are echo state
network (ESN) [8], liquid state machine (LSM) [5], and
delayed feedback reservoir (DFR) [6], [7].

Modern ESN system designs require less costly, more
energy-efficient, and fast platforms. Although the training
procedure of RC is highly improved, the computational cost
of ESN is still significant due to a large number of multiply-
and-accumulate (MAC) operations and nonlinear function
mappings. Field-programmable gate arrays (FPGAs) are re-
configurable computer chips consisting of different types of
flexibly interconnected programmable blocks. Compared with
application-specific integrated circuits (ASIC), FPGAs require
much less non-recurring engineering costs. Unlike CPUs or
GPUs with fixed architecture for general use cases, FPGAs
enable hardware implementation with specific architecture
reconfigurable to target applications. Moreover, FPGA can
utilize extensive parallelism to increase computational speed.

This paper proposes an optimized reservoir node archi-
tecture for the ESN system. Considering that the weight
matrices are large, sparse, and unchanged during the training
and inference operations, we adopt the bit-serial vector-matrix
multiplier for the multiply-and-accumulate (MAC) operation
and optimized implementation of the weight matrices in the
hardware. As for the activation function, a hyperbolic tangent
function is chosen and further designed and optimized for
low resource utilization. This novel design can significantly
reduce resource utilization without introducing performance
losses compared to prior FPGA-based ESN hardware designs.

The structure of the paper is as follows: In Section II, we
introduce the background of reservoir computing, including
the ESN system model and state-of-the-art FPGA architecture
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Fig. 1. The architecture of a typical echo state network, with K inputs, N
reservoir nodes, and L outputs

optimizations. Section III reviews the bit-serial computation
mechanism and describes the architecture of the bit-serial
multiplier and the activation function. Section IV compares
the device utilization and throughput of the ESN system
using the introduced reservoir node architecture with other
implementations [18]. Finally, Section V summarizes this
paper and discusses future work.

II. BACKGROUND
A. Reservior Computing

The concept of reservoir computing is mainly inspired by
the information processing procedure of biological brains. The
input signals activate the neurons and generate different pat-
terns of neuronal activities. Reservoir computing generalizes
several traditional neural networks, such as echo state networks
and liquid state machines. The similarities of these models
are that they all focus on dynamic systems to solve temporal
problems. Reservoir computing successfully solved one criti-
cal drawback of RNNs: the high computational training cost.

In RC systems, a reservoir is an extensive network consist-
ing of reservoir neurons (or reservoir nodes) as the critical part
of the system. It receives input signals from the input layer and
nonlinearly transforms them into a high-dimensional space.
This function requires the reservoir to contain enough neurons
with recurrent interconnections. The input history information
and the states of reservoir nodes are stored in the network
to update current states and states in the future. Only the
connections between the reservoir and the final output layer
need to be trained. Since only linear regression strategies are
needed for training the output weights, the training of recurrent
networks becomes feasible and costs less [9].

B. Echo State Network

Echo state network was first proposed by Jaeger in [8]
to improve the efficiency of the training of RNNs. It has
been further developed in the following decades [10]-[12].
Figure 1 shows the typical structure of ESN. There are three
components in the model which corresponds to the three parts
of an RC system: the input layer receives the input series; the
reservoir layer finishes the input mapping, updates and store
the states of reservoir nodes; the output layer generates the
transformed signals for prediction and training.

As is shown in Figure 1, u(n) = (uy(n), ua(n), ..., ux(n))
denotes the input vector at timestep n, and y(n) =
(y1(n),y2(n), ...,y (n)) denotes the output vector. The reser-
voir states stand for the output of each reservoir node, which
are written as (n) = (z1(n), x2(n), ...,z y(n)). The reservoir
system can be described using the following equations [13]:

z(n+1) = f(W"u(n+1) + Woz(n) + Wly(n)), (1)
y(n+1) = foW u(n +1),z(n+1),y(n)]). Q)

Equations 1 and 2 represent the process of calculating the
current states and the current outputs, where win Wwe Wi,
and W°¥ denote the input, reservoir, feedback, and output
weight matrix, respectively; f is the activation function used
in reservoir nodes, and f°“ is the activation function for the
output layer.

To simplify the notation, an extended state vector z(n) is
introduced to represent a concatenation of {x(n);u(n); y(n—
1)}. The weight matrices win, W=, Wb can be also concate-
nated and replaced by a extended weight matrix W°*. Then,
equation 1 and 2 can be simplified as follows:

z(n+1) = f(Wz(n+ 1)), 3)
y(n+1) = oUW z(n +1)). 4)

Only the output weights need to be updated when training an
ESN. Linear regression algorithms, such as least mean squares
and recurrent least squares, can be applied to train the output
weights and minimize the training error.

C. State-of-the-art RC System Implementation

In reservoir computing, FPGA is still one of the significant
research and development platforms. The bit-level configura-
bility enables more flexible architectures than CPUs or GPUs.
On the other hand, ASIC chips are a different category of dig-
ital systems, with similar advantages like flexibility, reconfig-
urability, and parallelism. The analog circuit implementations
of RC, especially the delayed feedback reservoir (DFR), have
received more and more attention due to the simple reservoir
structure. Previously, [14] presented the implementation of a
complete analog DFR computing system. However, compared
with FPGA, ASIC design of RC system are more limited in
the time-to-market and the cost of the non-repeating technical
design.

There have been ongoing investigations of the FPGA design
of the RC system since the concept of RC was proposed. In
[15], David V. et al. first discussed an RC system with analog
neurons on FPGA. The new type of neurons communicates
using stochastic bitstreams instead of fixed values, which
simplifies the implementation of arithmetic operations in RC
updating. A liquid-state-machine-based hardware implementa-
tion for real-time speech recognition is realized by Benjamin
et al. in [16]. Moreover, in [17], the ESN architecture can
be fully implemented in the FPGA platform without software
assistance, including the training process. Recently, a cost-
efficient ESN architecture on FPGA has been proposed in [18],
which optimizes the utilization of DSP units inside the FPGA.
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Fig. 2. The structure of a bit-serial adder

In contrast, this work focuses on optimizing the multipliers for
MAC operation, considering the sparse characteristic of the
matrices in the calculation.

III. PROPOSED ARCHITECTURE OF ESN RESERVOIR
NEURONS

A. Bit-serial Matrix-vector Multipliers

As discussed in Section II, the reservoir nodes were updated
in two steps: the MAC operation and the subsequent nonlinear
activation. Since the reservoir is supposed to be sparse, a sub-
stantial proportion of the connection weights within a reservoir
are zeros. Therefore, the weight matrix in the MAC operation
should be large, sparse, and fixed. This allows optimizing the
multiplication implementation through constant propagation,
i.e., simplifying the multiplication with zero. Considering that
not only the value of a weight but also the individual bits
of the value can be zeros, we adopt the bit-serial multiplier
for the MAC operation to further reduce the number of bit
multipliers.

In this work, the embedded multipliers or the digital signal
processing units in FPGA are not considered. The bit-serial
multipliers are implemented by re-purposing the look-up tables
in FPGA into basic devices like shift registers and utilizing the
registers inside. The details of the architecture of the bit-serial
devices are described below.

1) Bit-serial adder: The bit-serial adder is the essential
component of bit-serial designs. As shown in Figure 2, a bit-
serial adder consists of a full adder, a D flip-flop, and three
shift registers. The two operands are stored in two right-shift
registers A and B. A pair of bits are sent to the full adder for
calculation at each clock cycle. The carry bit is temporarily
kept in a D flip-flop as the carry-in bit of the next addition
operation, while the sum of the current pair of inputs is sent
to the output shift register.

The bit-serial subtractor can be easily created from the
bit-serial adder. Similar to the subtraction of signed two’s
complement numbers, taking the case a —b as an example, the
operation generates the same output as a+(—b)+ 1, which can
be implemented by adding an inverter before the shift register
of b and set the initial value of the carry-in bit to 1.

2) Single-bit Vector Multiplier: a = (a1, as,...,an) and
b = (by,bo,...,by) are two vectors of length N, with a length
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Fig. 3. The design of multi-bit by single-bit multiplier

of 1 bit for each element. The dot product of a and b can be
calculated as

=N
S = Z a; * bi. (5)
i=1

In this MAC operation, the multiplication between bits can be
implemented using only the AND gates, and the products will
be accumulated by a tree of bit-serial adders.

3) Multi-bit by Single-bit Multiplier: Suppose the bit width
of elements in @ is k£ (k > 1) and the elements in b remain
1-bit wide. Each multi-bit a;(a; x_10;,6k—2..-G;,0) is stored in
a shift register and sent to an AND gate to multiply with b;,
one bit per clock cycle from LSB to MSB. The products are
accumulated by a tree of bit-serial adders, and the final result
is stored in another shift register. The calculation process is
described in the following equations:

N
S=> aixb 6)

i=1
N

= Z(ai,k—lai,k—Q---ai,O) * by @)
=1
N k-1 ]

=> O Yai ) xb; (8)
i=1 j=0
N k-1

= Z 2 a; ; * b )
i=1 j=0
k—1 N )

=> O 2a;;=b). (10)

<
Il

o
-
I

—

In equation 10, the jth bit of the k-bit result S is Zf\il a; j*b;,
which can be implemented as Figure 3.

Considering that the weight matrix is fixed in the ESN
design, the vector b can be regarded as constant. Therefore,
the element b; will be either 0 or 1, leading to the logic
optimization on the tree of bit-serial adders. If b; is fixed to 1,
one of the inputs of the AND gate is always 1, and the output
will be the direct propagation of a;. In this case, the AND gate
can be removed without affecting the logic of the circuit, i.e.,
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Fig. 4. Two optimization principles of the multi-bit by single-bit multiplier

the shift register of a; can be connected to the bit-serial adder
directly. If b; is fixed to 0, the AND gate will only transmit
a zero to the adder. In this case, the adder can be replaced
by a D flip-flop to store the output of the other AND gate. In
summary, the original circuit can be significantly optimized
on the cost with these two principles, as illustrated in Figure
4.

4) Multi-bit Vector Multiplier: For multi-bit by multi-bit
vector multiplier, the elements in vector b will be more than
1 bit wide. Assuming the bit width of them is ¢ (¢t > 1),
the result of multiplication of a and b can be calculated as
follows:

(1D
=1
N
= Z(ai,k—lai,k—zmai,o) s (bj1—1bi—2...0i0)  (12)
i=1
N k-1 t—1
=D (O Yai) =« (D 2"bim)) (13)
i=1 =0 m=0
-1 k=1 N
2" (Y0 27a; 5 % bim). (14)
m=1 7j=0 i=1
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Fig. 5. The design of the multi-bit multiplier

In equation 14, the summation Zf;é (Zivzl 29a; j*b; ) can
be implemented as the multi-bit by single-bit multiplier (multi-
single multiplier). To combine these products with different
weights, we adopt a chain of bit-serial adders to connect
all the outputs of the multi-single multipliers and store the
final result into a shift register. With one clock delay between
adjacent multipliers, the products are automatically timed by
their weights. The design of the multi-bit multiplier is shown
in Figure 5.

5) Vector-matrix Multiplier: With the multi-bit vector mul-
tiplier, we can now deal with the MAC operations in the
reservoir nodes, which is the multiplication between an input
vector and a weight matrix. In equation 3, the dimensions of
the extended weight matrix We* are N x (K + N), and the
extended input vector z(¢) is composed of (K + N) elements.
To generate the (N x 1) product, in which each row is used to
produce the new state of one reservoir node, we can calculate
the elements separately. Each row of the W** is a vector with
dimensions 1 x (K + N). We multiply the vectors with z(t)
using multi-bit vector multipliers, and the results make up the
output vector we want. The architecture of the final multiplier
design is depicted in Figure 6. The calculation process can be
described by the following equations:

wo,0 Wo, K4+ N—1 2o(t)
output =
WN-2,0 WN-2,K+N—1 Zr4+N—2(t)
WN-1,0 WN-1,K+N—1 Zr4+N—1(t)

row_vectory

= : input_vector”
row_vectorn_o

row_vectorn_1

row_vectory x input_vector

row_vector y_o * input_vector
row_vector ny_1 * input_vector

B. Canonical Signed Digit

For the multi-bit by single-bit multiplier, its operation can be
regarded as the summing of the a; selected by b;. This design
works with both signed and unsigned a, which represents the
inputs of the RC system. However, only the unsigned weights
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Fig. 6. Overall architecture of the final vector-matrix multiplier

[T

b is allowed. One solution is to encode the signed weights into
two pairs of unsigned weights, multiply the inputs with them
separately, and subtract the two results to get the final results.
The method we choose is canonical signed digit (CSD).

One advantage of the CSD representation is that it makes
the digital multipliers more efficient. Suppose that we calculate
the multiplication between x and a binary number y = 11110.
The standard process is as

product = 2*x + 23z + 222 + 2'z, (15)

which contains four shift operations and three additional
operations. However, if we replace the binary number y with
a subtraction like y = 11110 = 100000 — 000010, equation
15 can be simplified as

product = 25z — 2z, (16)

for which only two shifts and a subtraction being needed.
Thus, the CSD representation minimizes the number of non-
zero digits. In this way, we are able to optimize the power of
the multiplications using CSD numbers.

Transforming unsigned binary numbers to CSD numbers is
simple. We use three digits 1, 0, -1 to build the new format
and search the sequence of unsigned binary numbers. If there
are subsequences with continuous ones like ‘0111°, we replace
it with a new sequence ‘100(-1)’ to reduce the proportion of
ones. If the highest several bits are ‘111°, we need to extend
the number with a O at the head and then use the transforming
principle. In this way, the generated CSD numbers will be
one bit wider than the original binary numbers. Furthermore,
there can be more than one iteration since the replacement
may introduce a new subsequence of continuous ones.

To apply the CSD presentation to the vector-matrix multipli-
cation, we need to separate the CSD number into two unsigned

numbers that can be recognized for calculation. Taking ‘1011’
for example, we can translate it into the CSD format “10(-1)0(-
1)’ with two iterations. Here the value of the number is

1x 2%+ (1) x 22 4+ (=1) x 2°. (17)

To maintain the same value, we use the subtraction of two
5-bit unsigned numbers ‘10000’ and ‘00101’ to substitute the
CSD number with three types of digits. And the result is the
same as the original value.

As for signed binary numbers, we need to slightly modify
the transferring process. If the number is negative, we need to
flip the sign bit of the first unsigned number that is separated
from the CSD number.

C. Nonlinear Activation Function: Hyperbolic Tangent

The nonlinear activation function is the other step of the
reservoir updating besides the MAC operation, which also
influences the cost of the hardware implementation. In many
cases, nonlinear functions like hyperbolic tangent (tanh) [18]
are applied as the activation function of the reservoir nodes
to increase the nonlinearity. In our design, we also choose the
tanh function for the sake of accuracy on the application of
OFDM symbol detection, the details of which are described
in [18]. However, compared with the design in [18], we can
use simple DSP units instead of large DSP groups to realize
the activation function, which reduces the utilization of DSPs
to a large degree.

IV. EXPERIMENTAL RESULTS

We apply the new architecture of the reservoir node to
an ESN system, adopting the bit-serial multipliers, the CSD
algorithm, and the simplified hyperbolic tangent activation
function. And then test the ESN architecture on a symbol
detection task in an orthogonal frequency division multiplex-
ing (OFDM) system, which is fully described in [18]. The
design is written in SystemVerilog and synthesized using
Xilinx Vivado 2019.1.3. Since the bit-serial multiplier is the
essential part of our design, we first test the function and the
performance of it with a direct input vector and weight matrix.
The result is generated with a delay of 44 clocks, which is
related to the bitwidth of the input, the bitwidth of weights
,and the length of the input vector (which decides the depth
of the adder tree within the multiplier).

After that, based on our previous work in [18], we synthe-
size the new ESN structure with optimized reservoir nodes on
the Virtex-7 VC707 Evaluation Platform and compare it with
the original DSP-based ESN. The comparison of the resource
utilization between them is presented in Table II, where we can
see that the new ESN significantly reduces the resource needed
for implementation. While optimizing the utilization of DSP,
the number of look-up tables and flip-flops are also reduced
to a smaller quantity, which is attributed to the adoption
of the new structure of multiplier and the simplification of
the hyperbolic tangent activation function. Moreover, we also
compare the throughput of these two designs, and the result
is shown in Table III. For each testing case, there are 4 inputs
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of 16-bit width. For the design in [18], the time interval
of input streams is 0.46 us, which is increased to 0.83 us
in the proposed design. The 44.5% loss of throughput in
ESN is acceptable, considering the significant improvement
in hardware cost.

TABLE I
PARAMETERS OF ESN FOR OFDM SYMBOL DETECTION

Symbol Detection
Number of
: 4
input nodes
Number of
. 16
reservoir nodes
Number of output nodes 2
Range of inputs (-1, 1)
Range of outputs (-10,10)
Range of learned weights (-5000,5000)
Bit w_ldth of outputs of 20 bits
activation function

TABLE II
RESOURCE UTILIZATION COMPARISON BETWEEN DSP-BASED AND
PROPOSED ARCHITECTURES

ESN with ESN with neurons
DSP-based neurons | of proposed architecture
LUT 11011 (3.63%) 2133 (0.7%)
FF 7001 (1.15%) 5978 (0.98%)
BRAM 12 (1.17%) 0
DSP 162 (5.79%) 16 (0.57%)
10 389 (55.57%) 389 (55.57%)
BUFG 1 (3.13%) 1 (3.13%)
TABLE III

THROUGHPUT COMPARISON BETWEEN THE TWO ESN DESIGNS

ESN with
DSP-based neurons
64bits / 0.46us

ESN with neurons
of proposed architecture
64bits / 0.83us

Throughput

V. SUMMARY AND CONCLUSIONS

This paper introduces an optimized architecture of reservoir
nodes for ESN systems. The corresponding FPGA implemen-
tation is verified with an OFDM symbol detection application.
The optimization of the reservoir node architecture includes a
bit-serial multiplier, a canonical signed digit representation,
and a simplified hyperbolic tangent activation function, which
aims at reducing the device utilization without significant loss
in accuracy and throughput. Compared with previous DSP-
based ESN design, the proposed ESN architecture eliminates
most DSP blocks and reduces the LUT utilization by 80.7%
and FF by 14.8%. The costs of the above improvements are
the throughput lost due to the bit-serial operation mechanism
and the speed decrease of MAC compared with built-in DSP.
Our work presents a successful design trade-off between re-
source utilization and performance to meet specific application
requirements.
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