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Abstract—Let A(n,d) denote the maximum number of code-
words in a binary code of length » and minimum Hamming dis-
tance d. Deriving upper and lower bounds on A(n,d) has been
a subject for extensive research in coding theory. In this paper,
we examine upper and lower bounds on A(n,d) in the high-
minimum distance regime, in particular, when d = n/2—©(y/n).
We will first provide a lower bound based on a cyclic construc-
tion for codes of length n = 2™ — 1 and show that A(n,d =
n/2—2°"1/n) > n°, where c is an integer with 1 < c < m/2—1.
With a Fourier-analytic view of Delsarte’s linear program, novel
upper bounds on A(n,n/2 —+/n) and A(n,n/2 —2./n) are ob-
tained, and, to the best of the authors’ knowledge, are the first
upper bounds scaling polynomially in »n for the regime with d =

n/2 — O(y/n).
I. INTRODUCTION

Low-capacity scenarios are of increasingly greater impor-
tance with the advent of the Internet of Things (IoT) and the
next generation of mobile networks. In general, IoT devices op-
erate under extreme power constraints and often need to com-
municate at very low signal-to-noise ratio (SNR), e.g., —13
dB or 0.03 bits per transmission (in terms of channel capac-
ity) in Narrow-Band-IoT protocols [1]. In the standard, legacy
turbo codes or convolutional codes at moderate rates together
with many repetitions are adopted. This implies effective code
rates as low as 1.6 x 10™* are supported in such protocols.
It is expected, however, that repeating a moderate-rate code
to enable low-rate communication will result in rate loss and
suboptimal performance. As a result, studying ultra-low-rate
error-correcting codes for reliable communications in such low-
capacity regimes becomes necessary [2]-[6].

In this paper we focus on minimum distance properties of
codes in the ultra-low-rate regime, which can be also described
as the large minimum distance regime, to be specified later.
Let C be a binary (n, M, d) code of length n, size M, min-
imum distance d = (n — j)/2. The dimension of C is given
by k = log, M, the rate by R = k/n, and relative distance by
d = d/n. Given positive integers n and d, A(n,d) denote the
maximal value of M such that a (n, M, d) code exists. A(n, d)
is a fundamental quantity in coding theory subject to extensive
studies in the past. Lower bounds on A(n,d) are usually ob-
tained by constructions. For a survey on the known bounds with
finite n and d, the reader is referred to [7] and the websites [8],
[9]. For asymptotic lower bounds and a survey of prior asymp-
totic results the reader is referred to [10], [11]. In this paper,
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we focus on studying bounds on A(n, d) in the high-minimum
distance regime, in particular, when d = n/2 — O(y/n).

For j = n — 2d < 0, provided that a sufficient number of
Hadamard matrices exist, a widely accepted conjecture, Plotkin
and Levenshtein (see [12, Chapter 2, Theorem 8]) have es-
sentially settled the problem and showed that A(2d,d) = 4d,
A(n,d) = 2|d/(2d — n)] for even d > n/2, and A(n,d) =
2 {Qd‘_ﬁl_"J for odd d > (n —1)/2.

In what follows, we consider the scenario with 7 > 0. When
7 scales linearly with n, asymptotic results can be found in
[10], [13]. In particular, the conjecture is that there does not
exist any binary code exceeding the Gilbert-Varshamov lower
bound (Theorem 1).

There are very few studies in the literature targeting the
regime where j is sub-linear in n. In 1973, McEliece (see [12,
Chapter 17, Theorem 38]), using the linear programming ap-
proach, established the following bound that is valid for j =

o(v/):

A(n,d) < n(j +2). (1)

For j ~ n!/3, codes have been constructed [14] to meet

McEliece’s upper bound, hence showing the tightness of this
bound in this regime. A few improvements [15], [16] have
been derived in the literature in the regime j = o(n'/3). How-
ever, to the best of the authors’ knowledge, no explicit upper
bounds (or lower bounds with general enough parameters) on
A(n,d) are derived in the regime j = ©(y/n). In this pa-
per, we attempt to answer the following question: If the term
j = n — 2d scales as j = O(y/n), what is the best size M
one can achieve?

The rest of this paper is organized as follows. In Section II
we review some well-known asymptotic bounds on A(n, d) and
examine their scaling behaviour when j = ©(y/n). In Section
III-A, a BCH-like cyclic code construction is given to estab-
lish a non-trivial new lower bound. In Section III-B, we review
an alternative proof of a well-known first linear programming
bound on A(n,d) (formally decribed in Theorem7) through
a covering argument using Fourier analysis on the group F'.
Then two upper bounds on A(n,d) with d > n/2 — \/n and
d > n/2 — 2+/n, that are strictly tighter than all prior results,
are derived. Finally, the paper is concluded in SectionIV.

II. PRELIMINARIES

Let Hs(+) denotes the binary entropy function. Let n > r be
positive integers. Let B,.(0,n) € {0,1}" denote the Hamming
ball of radius r centered at 0 = (0,0, ...,0), and its volume by
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Vol(r, n)d§f|Br(0,n)| =37 o (). We recall the following
bounds

1) Vol(r,n) < 2H2(7/mn; and

2) Vol(r,n) > 2H2(r/m)n—0(n) for sufficiently large n.

A. Known Bounds on Code Sizes

The following bounds on the size of binary codes can be
found in standard coding theory textbooks, e.g. [12], [13].
Bounds for the regime j = O(y/n) are derived and given
following the general bounds, e.g. inequalities (3), (5), (7),
(8), (9), and (11). When the scaling behaviour of j matters,
we choose j = 2a+/n, ie., d = n/2 — a\/n, for ease of
comparison between bounds, as in (3), (9), and (11).

Theorem 1 (Gilbert-Varshamov or GV lower bound, [17]):
Let positive integers n and d < n/2 be given. Then

2"1

> —
Aln, d) 2 Vol(d—1L,n)

2

Asymptotically, suppose 0 < 0 < 1/2, then there exists an
infinite sequence of (n, M, d) binary linear codes with d/n > §
and rate R = k/n satisfying R > 1 — Hs(d/n). To evaluate
Theorem 1 when j = O(y/n), consider j = 2ay/n. Central
limit theorem, coupled with the Berry—Esseen theorem, pro-
vides an upper bound

Vol(d — 1,n) < 2" [Q(2a) + O(1/v/n)]

where ((-) denotes the tail distribution function of the stan-
dard normal distribution. Hence (2) becomes

A(n,n/2 — ay/n) > [Q(20) + O(1/vm)] ", ()

which is loose compared with the Plokin-Levenshtein bound
A(2d,d) = 4d.
Theorem 2 (Hamming Bound): For every (n,M,d) code
C c{o0,1}",
M < 2" /Vol(e,n), 4

where e = |(d —1)/2].

In the asymptotics, Theorem 2 bounds the rate from above,
in terms of the relative distance d, by R < 1 — H3(d/2). For
j = O(y/n), the term e = n/4 — O(y/n), and Vol(e,n) >
oH>(1/4)n=0(n) Hence Theorem 2 becomes

M < 2(1—H2(1/4))n+0(n) < 20.18971, (5)

for all sufficiently large n.
Theorem 3 (Singleton Bound): The following holds for any
code C' C {0,1}" with distance d and dimension k.

k<n—d+1. (6)
Under the regime j = O(y/n), Theorem 3 becomes
M < 271/2Jr0(n)7 (7)

which is weak compared to (5).
Theorem 4 (Plotkin Bound, [18]): The following holds for
any code C' C {0,1}" with distance d

1) If d =n/2, |C| < 2n.

2) If d > n/2, |C] < 2 [L

2d—n |°

One may use a combinatorial argument and Theorem4 to de-
rive the following corollary.
Corollary 5: If a (n, M, d) binary code C has distance d <
n/2, then the size M < d -2 24+2,
Using Corollary 5, one may bound the size of any code with
d=(n—7j)/2<n/2by
M<d 212 <2on- 2, (8)
When j scales as j = ©(y/n), the size M is bounded from
above by a polynomial scaling sub-exponentially in n. In par-
ticular, set j = 2a+/n, i.e. d =n/2 — a+/n, (8) becomes
M < 2n - 220V, 9)

Theorem 6 (Elias-Bassalygo Bound): For sufficiently large
n, every code C' C {0,1}" with relative distance ¢ and rate R
satisfies the following:

R <1 - H(J2(5)) +o(1),
where Jg(é)déf%(l —/1-26).

Assuming d = n/2 — a+/n, one may adopt steps similar to
the proof of Theorem 6 as in [13, p.147] to show an upper
bound:

(10)

M < nd . 2wz Vo), (a1

The last upper bound we introduce is known as the first
linear programming bound or the MRRW bound on binary er-
ror correcting codes, or, alternatively, on optimal packing of
Hamming balls in a Hamming cube. The bound was originally
proved by McEliece, Rodemich, Rumsey, and Welch [19], fol-
lowing Delsarte’s linear programming approach [20]. Delsarte
viewed the distance distribution of a code C' of length n as an
(n + 1)-dimensional vector a = (ag, a1, .- ., a,), where a; is
given by the number of pairs of codewords at distant 7, and
discovered a system of linear inequalities satisfied by every a
associated with a length-n, minimumm distance d code. The
coefficients of the linear constraints can be viewed as values
of a family of orthogonal polynomials called the Krawchouk
polynomials. Based on the duality theorem of linear program-
ming, one may find a feasible solution to the dual program,
and view the obtained linear program as an extremal problem.
(See [12, Chapter 17] for details.) Good feasible solutions of
the dual program were constructed in [19]. The resulting bound
is the best known asymptotic upper bound on the cardinality
of a code with a given minimal distance scaling linearly in n,
for a significant range of the relative distance.

Theorem 7 (MRRW Bound, [19]): For sufficiently large n,
every code C' C {0,1}" with relative distance ¢ and rate R
satisfies the following:

R < Hy (; — /o1 = 5)) . (12)

Remark 1: Another bound, known as the second linear pro-
gramming bound, is also given in [19] in the form

R<  min 1+ g(u?) — g(u® + 20u + 26),

0<u<1—28

13)

where the function g(m)déng((l —+/1—12)/2). For 0.273 <
6 < 0.5, the bound (13) simplifies to that of (12). For § <
0.273, the inequality (13) is strictly tighter than (12).
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Plugging in 6 = d/n into (12), we have the following bound:
M < 2nH2(1/27«/d/n(17d/n))+o(n).

Note that, due to the o(n) term, the bound (14) is not tighter
than (8) when j = ©(y/n). This appears to the contrary of the
fact the MRRW bound is tighter than all the other bounds for
relative distance 6 > 0.273. However, a tailored treatment of
the proof technique may lead to a nontrivial bound as in the
derivation of (11) from Theorem 6. In Section III-B, one such
bound is given through an alternative proof of the Theorem 7 by
working with the maximal eigenfunctions of Hamming balls.

(14)

III. MAIN RESULTS
A. Cyclic Code with High Minimum Distance

Let n =2™ —1, and m € N be an even integer with m > 4.
Let ¢ be an integer with 1 < ¢ < m/2 — 1. We construct a
binary cyclic code C' of length n with high minimum distance
as follows.

Theorem 8: There exists a binary cyclic code C of length

n, dimension ¢m, and minimum distance
n
d 2 2m—1 _ 2m/2+c—1 2 5 _ 2C—1\/ﬁ. (15)

Proof: Consider the finite field F' = Fam and a subfield
K =T < F. Let « be a primitive root of unity in F', and set

a; = 2" for i =1,2,...,c. Consider the binary cyclic
code with the generator polynomial
z" —1

A )

where Mpg(-) is the minimal polynomial of 8 over K. Note
that the «;’s belong to different conjugacy classes, i.e,

{a?j|j:0,1,2,...,m—1}
- {azj“’””““u :0,1,2,...,m—1}

are disjoint subsets of F'\ {0}, and |A;| = m for each i. This is
ensured by the particular choice of «;’s. More specifically, let
P = {27 +2m/%**imod 2™ — 1] =0,1,2,...,m — 1}
be the set of the powers over « for elements in A;. Each
P; is a cyclotomic coset mod 2 in F' and the length-m bi-
nary representation for each p,p’ in P; are cyclic shifts of
each other. Let p; = 1 + 2™/2%% be the coset representa-
tive of P;. The claim on the size of |A;| holds by noting
that |A;| = |P;| = m. To claim that A;’s are disjoint, it suf-
fice to show that the cyclotomic cosets P;’s are disjoint. First
note that for two cyclotomic cosets P; and P, they are ei-
ther disjoint or identical. Assume for some i # k, cosets P,
and P are identical. Then p; = 1 + 2m/2+i i an element in
Py, that is, there is a p/ = 2! 4 27/2+k+l ¢ Py for which
p; = p' modulo 2™ — 1. As both p; and p’ are sums of two
powers of 2, we note that neither m|l and m|(l + k — i), nor
m|(l — m/2 — i) and m|(m/2 + k — l), can happen. Hence
p; ¢ Py, and thus P; and Py are disjoint. Thus the degree of
the polynomial g(x) is n — cm.

For the minimum distance, let ¢ = 2m~1 4 gm/2+c=1 4 1
We show next that for j = ¢,t +1,...,2™ — 1, o/ is a root
for the generator polynomial g(z). In other words, A; N{t, ¢+

def
4;%

1,...,2m —1} =0, for i = 1,2,...,c. This is by noting that
the powers of the elements in A;, after taking modulo 2™ — 1,
can be written as the sum of two powers of two, i.e., 2l 24,
where the difference between [ and j is at least m/2 — ¢, and
that such a number does not belong to {¢t,¢t+1,...,2™ — 1}.
Hence, the minimum distance of the code d is at least 2™ —
t+1=2m-1_9m/2+c=1 by BCH bound. [ ]

Note that the parameters of the codes constructed in Theo-
rem 8 are, in a sense, sitting between those of the first order
and the second order Reed-Muller (RM) codes of length n =
2™. More specifically, RM(m, 1) has minimum distance equal
to n/2 and dimension equal to m + 1, while RM(m, 2) has
minimum distance n/4, and dimension 1+ m + (). Hence,
there is a wide gap in the minimum distance between the first
order and the second order RM codes and, intuitively speaking
the BCH-like codes constructed in Theorem 8 can be used to
fill this gap. In particular, the parameters of the constructed
code in the extreme cases of ¢, i.e., the cases of ¢ = 1 and
¢ =m/2 —1, are close to those of RM(m, 1) and RM(m, 2),
respectively.

B. Improved Code Size Upper Bound

We will follow the covering argument by Navon and
Samorodnitsky [21] and show two upper bounds on the size
of any code C' with length n and minimum distance d, the
first holds for any d > n/2 — \/n, and the second for any
d > n/2 — 2./n. The viewpoint presented in [21], provid-
ing an alternative proof to Theorem 7, is different from that in
[19], which relies on analytical properties of the Krawchouk
polynomials, and instead adopts Fourier analysis on the group
E3 as their main tool.

In particular, the authors of [21] exploit the expediency
of working with the maximal eigenfunctions of Hamming
balls. One key finding was that, given any real-valued func-
tion f on {0,1}" with a small support B C {0,1}", such
that the adjacency matrix of the Hamming cube acts on f by
multiplying it pointwise by a large factor, the cardinality of
error-correcting codes with minimum distance d can be upper
bounded by n |B|. The applicability will depend on the value
of the multiplying factor. By proposing functions f supported
on Hamming balls B = B,.(0,n) of different radii r, one
may derive a lower bound of the multiplying factor, formally
called the maximal eigenvalue of adjacency matrix of the sub-
graph incduced by B. This made possible a simple proof of
the first linear programming bound.

Let us now state the definition of the maximal eigenvalue of
a graph. Let G = (V, E) be a (finite, undirected, simple) graph.
Let Ag = (A;;) denote the |V| x |V| adjacency matrix of G,
defined by A;; = 1if (4, j) € FE and A;; = 0 otherwise for ver-
tices 4, j € V. Note that A is symmetric, so its eigenvalues are
real, and can be ordered as \; > A2 > ... > \,. For any func-
tion f on I}, the function Af sums at each point of {0,1}"
the values of f at its neighbours. That is, the value taken by
the function Af at a vertex x € ', denoted by (Af)(z) or
Af(l‘), is given by A.f(x) = ZyEF;:wH(a;,y):l f(y) When
the graph is a subset of the cube, B C {0,1}", set

ef A ’ n
)\Bd:fmax{ <<fjjfj;> ‘ f:F = R, supp(f) C B}~ (16)
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That is, Ap is the maximal eigenvalue of adjacency matrix of
the subgraph of {0,1}" induced by B.

Two lemmas were shown in [21] to show (12).

Lemma 9 ( [21] Prop 1.1): Let C be a code with block
length n and minimal distance d. Let B be a subset of {0, 1}"
with Ag > n —2d + 1. Then |C| = M < n|B].

Lemma 10 ( [21] Lemma 1.4): Let B = B,(0,n) C
{0,1}". The maximal eigenvalue associated with B is
Ag = 2y/r(n—1)—o(n).

To prove (12), we note that Lemma 10 implies that a ra-
dius 7* = n/2 — \/d(n — d) + o(n) exists such that Ag(,.«) >
n —2d+ 1. Lemma9 in turn shows that any code of length n
and minimal distance d has at most n |B(r*)| = nVol(r*,n)
codewords. The cardinality of a Hamming ball of radius r is
Vol(r,n) = 2H2(r/n)nto(n) "Equation (14) follows the above
argument, hence yielding equation (12).

We note that the above argument can not be used directly to
show an upper bound when d = n/2 — ©(y/n). In particular,
the o(n) term in Lemma 10 renders the search for a meaningful
r* impossible, as we would ideally require a subset B with Ap
close to n — 2d + 1 = O(y/n).

First we provide a proposition in place of Lemma 10 when
the radius of Hamming ball does not scale linearly in n.

Proposition 11: Let B = Bs(0,n) C {0,1}" be the Ham-
ming ball of radius 3. The maximal eigenvalue associated with
Bis A\p > V3 +V6y/n =~ 2.334y/n.

Proof: Recall the definition of the maximal eigenvalue
in (16). We prove the proposition by constructing a func-
tion f with support in B, and for which (Af, )/(f, f) =
/3 +v/64/n. The function f will be symmetric, namely its
value at a point will depend only on the Hamming weight of
the point. With a slight abuse of notation, such a function is
fully defined by its values f(0), f(1),..., f(n) at Hamming
weights 0,1,...,n.

Set f(0) =1, f(j) =0forj >4, and let A\f(i) = Af(i) =
if(i—1)+(n—1i)f(i+1) fori = 0, 1,2 (assuming f(—1) = 0),
where A = t/n. We have

_ 2 _
sy =20 e - MO0 o
o= - (T ).

We may use the values f(i) and calculate
(AL, 1) = 2 1007 — 17 2V
(f. /)y =1+ 4 (2= 1)%/2+ (1 — 3)*/6 + o(1).

We are now ready to optimize the value

(Af. 1)
(£, 1)

over t > 0. Taking t = /3 + /6, the square bracket term in
(17) becomes /3 + /6 + o(1). |

In order to provide a bound as tight as possible, we improve
upon Lemma9 and show the following proposition.

2t +t(t2 —1)2
p— 1
@ —srirort o6 W v

A7)

Proposition 12: Let C be a code with block length n and
minimal distance d. Let B be a subset of {0,1}" with A >
n —2d. Then |C| =M < 5=z 1 Bl-

The proof can be shown using a similar argument as in the
proof of Lemma9 in [21], and is provided in Appendix-B for
reference.

With Proposition 11 and Proposition 12, we are ready to state
the upper bound on A(n,n/2 — \/n).

Theorem 13: If a (n, M,d) binary code\:ﬁ C' has minimum
distance d > n/2 — \/n, then M < mVOZ(&n) =
O(n3'5).

Proof: Let B = B3(0,n) be the radius-3 Hamming ball.

The maximal eigenvalue Ag > V3 + \/6\/5 according to Pro-
position 11. Since n — 2d < 2v/n < Ap, the cardinality of C
can be upper bounded using Proposition 12 as

" p< "
Ap — (n —2d) V3+v6-2

M < Vol(3,n).
|

Remark 2: We note that the argument above can upper bound
the size as M = O(n>?®) as long as (n — 2d)/\/n is strictly
smaller than \/3 + /6. That is, for any d > n/2 — t\/n, for
some constant £ < \/3 +v/6/2 ~ 1.167, we have A(n,d) =
O(n39).

Using similar technique as in the proof of Proposition 11,
one may show lower bounds of the maximal eigenvalues asso-
ciated with Hamming balls of different radii. For example, we
can list bounds of Ap, //n for 2 <r < 8,7 # 3:

Mg, /vVn = V3, A, /vn = (5+V10)"° ~ 2.857,
AB. /vV/n = 3.324, Ap./v/n = 3.75,
Ag, /v/n > 414, Ap./v/n = 4.51.

This implies A(n,n/2 — t1/n) = O(n?%), A(n,n/2 —
tay/n) = O(n*?), and so on, for all t; > 1/3/2 ~ 0.866 and
to > 1.428. In particular, we have the following bound
Theorem 14: If a (n, M, d) binary code C' has minimum dis-
tance d > n/2—2+/n, then M < ﬁVol(Z n) = O0(n"").

Proof: The theorem can be pﬁol\%eci1 using a similar argu-
ment as Theorem 13 by taking B = B7(0,n). [ |
In general, by finding the values of, or the lower bounds
thereof, the maximal eigenvalues Ap, for » = 1,2,..., one

may obtain a sequence of upper bounds on A(n,d = n/2 —
ty/n) for various ¢.

IV. CONCLUDING REMARKS

In this paper, we study the asymptotic performance bounds
of the cardinality of codes with minimum distance d = n/2 —
©(y/n). The codes in this regime have vanishing rate and thus
renders ineffective most bounds that dictate the tradeoff be-
tween code rate and relative distance. We obtain a sequence
of lower bounds based on a cyclic code construction, and two
upper bound for d > n/2 — \/n and d > n/2 — 2/n, respec-
tively.

The proposed cyclic linear code is the first construction ob-
served in the specified distance regime, and allows one to con-
struct codes of sizes polynomial in n. The proof of the upper
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bound makes extensive use of Fourier analysis on the Hamming
cube as a group, and the calculation of the maximal eigenvalue
associated with Hamming balls of small radii.

An interesting problem for future work is to study the rela-
tionship between the maximal eigenvalue \p associated with
B = B,(0,n) and the radius r, for » < n. The solution can
be used to provide a sequence of upper bounds on A(n, d) for
the regime d = n/2 — O(y/n).

APPENDIX
A. Harmonic Analysis

We compile in this section harmonic analysis preliminaries
as in [21], [22]. See [22] for a more detailed treatment. Here
we list several necessary definitions and simple facts.

Consider the abelian group structure Fj' = (Z/2Z)™ on the
hypercube {0,1}". The characters of the abelian group F
are {XZ}ZEFQ"’ where ., : {0,1}" — {—1,1} is given by
xo(@) = (-1 and (z,2) = " z;z.

Consider the R-vector space L(F)') = { f:Fr — R} en-
dowed with the inner product (-, -), associated with the uniform
distribution on {0,1}":

(f.9) = Eu, fg = 5

> fl@)g(@)

x€F}

(18)

The set of 2™ characters {x.}, cEp form an orthonormal ba-
sis in the space L(IF"), equipped with uniform probability dis-
tribution. That is, for each 2,2’ € {0,1}", (x5, X2) = 052/,
where § is the Kronecker delta function. The Fourier trans-
form of a function f € L(Fy') is the function f € £(F}) given
by the coefficients of the unique expansion of f in terms of
the characters:

Zf z)xx(x

One may show that f =2"f,and Ef =
L(IF}), we have Parseval’s identity: (f,g) =

) or equivalently, f( )= {f,xz)- (19)

F0). If f,g €
> f(2)iz) =

2"< 7, g>. A special case of the above equality is the following

2
equality: E /2 = 3., ()" = | 1]

The convolution of f and ¢ is defined by (f x g)(z) =
I&,i(y) g(z +y). The convolution transforms to dot product:
fxg = f - g. The convolution operator is commutative and
associative. One may also show that for arbitrary functions
fyg,h € L(IFY), the following equality holds:

(fxg,h)=(f,gxh).

In this section and in Appendix-B, let L(z) = 2" for = €
{0,1}" with wy(x) = 1 and L(z) = 0 otherwise. For any
f € L(F}) holds Af = f x L because for z € F}', Af(z) =
Zy:dH(az,y)zl f(y> = Zy:wH(y)zl f(SU + y) = Ey L(y)f(x —’:
y) = (f * L)(x). The Fourier transform of L is the function L
given by L(2) = (L X2) = o sy (-1 =n—2-
wg (2).

For C' C F, let 1¢ € L(F}) be the indicator function of
C. It can be shown that a code C has minimum distance d if
and only if (1¢ * 1¢)(x) = 0 for all 0 < wy(z) < d.

(20)

B. Proof of Proposition 12

Let fp be an eigenfunction supported on B corresponding to
its maximal eigenvalue Ag. Thatis Ag = (AfB, f5)/{fB, [B)-
It is known that the maximum can be attained with an non-
negative function fp, and further we have Afp > Apfp (see
[23, p.13-15 and appendix C]) for details). We write f = fg
and A\ = \p interchangeably, and denote the Hamming weight
of x € F} by |z| = wg(x), in this proof. As f is supported
on B, Cauchy-Schwarz inequality yields the following:

E*f = (f.1p)" <Ef*-E(1p)* =Ef*-|B|/2". QD)
Let ¢ € L(IF) be a function such that ((;3) qb/*\qb =

1o * 1¢. Equivalently, ¢ * ¢ = 2”10 1o = 2"1(; Therefore
we have

E(¢%) _ (6 )(0)
E*(¢)  ¢2(0)
Now let F' = ¢ * f. We estimate the product (AF, F') in two
ways. First,

¢ *¢ >0 and

=lc|. (2

(AFF) =((o* [)*x L,px f) =(p*d* f, f* L)
=(pxgx* f,Af) = (o ¢ f,\f)
Mo f,o* f) = MF, F) = \EF2

Second, by Parseval’s identity,
(AF,F) = 2"<ZF, F> _ 2"<£ P, F>

=Y (n—2]z)) F*(2).

Since F' = ¢- f and (¢)%(2) = (1¢ *1¢)(2), F(z) = 0 for all
0 < |z| < d. We can estimate (AF, F') by

Yo (n=22)) F*(z) = nE?(0) + Y (n—2]z)) F*(2)

z z:|z|>d

< nE?(0) + (n — 2d) ZFQ ) =nE*F + (n—2d)E F2.

Combining the two estimates, we have the following inequal-
ity: nE*F > (A — (n — 2d)) E F?. Since

E2F =EX(¢+ f) = [6+ 1(0)]2 = [$(0)f(0)]> = E2$E? f,
EF? = (F,F)= (¢ f,oxf)=(p*o,fxf)

>1/2"(¢+ ¢)(0)(f * )(0) = 1/2"E¢°E f?,

—~2
as ¢ox ¢ =2"-1c =0, we now have

nE2¢E*f > (A — (n — 2d)) QinEqbQEfQ. (23)

Leveraging equations (21), (22), and (23), the size of any code
C with minimum distance d is

]Eq/)2 < n

< E2f< n
E2¢ ~ A—(n—2d)

Ef2 = \—(n—2d)

Ol = -2" Bl
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