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Abstract—Let A(n, d) denote the maximum number of code-
words in a binary code of length n and minimum Hamming dis-
tance d. Deriving upper and lower bounds on A(n, d) has been
a subject for extensive research in coding theory. In this paper,
we examine upper and lower bounds on A(n, d) in the high-
minimum distance regime, in particular, when d = n/2−Θ(

√
n).

We will first provide a lower bound based on a cyclic construc-
tion for codes of length n = 2m − 1 and show that A(n, d =
n/2−2c−1√n) ⩾ nc, where c is an integer with 1 ⩽ c ⩽ m/2−1.
With a Fourier-analytic view of Delsarte’s linear program, novel
upper bounds on A(n, n/2−

√
n) and A(n, n/2− 2

√
n) are ob-

tained, and, to the best of the authors’ knowledge, are the first
upper bounds scaling polynomially in n for the regime with d =
n/2−Θ(

√
n).

I. INTRODUCTION

Low-capacity scenarios are of increasingly greater impor-
tance with the advent of the Internet of Things (IoT) and the
next generation of mobile networks. In general, IoT devices op-
erate under extreme power constraints and often need to com-
municate at very low signal-to-noise ratio (SNR), e.g., −13
dB or 0.03 bits per transmission (in terms of channel capac-
ity) in Narrow-Band-IoT protocols [1]. In the standard, legacy
turbo codes or convolutional codes at moderate rates together
with many repetitions are adopted. This implies effective code
rates as low as 1.6 × 10−4 are supported in such protocols.
It is expected, however, that repeating a moderate-rate code
to enable low-rate communication will result in rate loss and
suboptimal performance. As a result, studying ultra-low-rate
error-correcting codes for reliable communications in such low-
capacity regimes becomes necessary [2]–[6].

In this paper we focus on minimum distance properties of
codes in the ultra-low-rate regime, which can be also described
as the large minimum distance regime, to be specified later.
Let C be a binary (n,M, d) code of length n, size M , min-
imum distance d = (n − j)/2. The dimension of C is given
by k = log2 M , the rate by R = k/n, and relative distance by
δ = d/n. Given positive integers n and d, A(n, d) denote the
maximal value of M such that a (n,M, d) code exists. A(n, d)
is a fundamental quantity in coding theory subject to extensive
studies in the past. Lower bounds on A(n, d) are usually ob-
tained by constructions. For a survey on the known bounds with
finite n and d, the reader is referred to [7] and the websites [8],
[9]. For asymptotic lower bounds and a survey of prior asymp-
totic results the reader is referred to [10], [11]. In this paper,
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we focus on studying bounds on A(n, d) in the high-minimum
distance regime, in particular, when d = n/2−Θ(

√
n).

For j = n − 2d ⩽ 0, provided that a sufficient number of
Hadamard matrices exist, a widely accepted conjecture, Plotkin
and Levenshtein (see [12, Chapter 2, Theorem 8]) have es-
sentially settled the problem and showed that A(2d, d) = 4d,
A(n, d) = 2 ⌊d/(2d− n)⌋ for even d > n/2, and A(n, d) =

2
⌊

d+1
2d+1−n

⌋
for odd d > (n− 1)/2.

In what follows, we consider the scenario with j > 0. When
j scales linearly with n, asymptotic results can be found in
[10], [13]. In particular, the conjecture is that there does not
exist any binary code exceeding the Gilbert-Varshamov lower
bound (Theorem 1).

There are very few studies in the literature targeting the
regime where j is sub-linear in n. In 1973, McEliece (see [12,
Chapter 17, Theorem 38]), using the linear programming ap-
proach, established the following bound that is valid for j =
o(
√
n):

A(n, d) ⩽ n(j + 2). (1)

For j ≈ n1/3, codes have been constructed [14] to meet
McEliece’s upper bound, hence showing the tightness of this
bound in this regime. A few improvements [15], [16] have
been derived in the literature in the regime j = o(n1/3). How-
ever, to the best of the authors’ knowledge, no explicit upper
bounds (or lower bounds with general enough parameters) on
A(n, d) are derived in the regime j = Θ(

√
n). In this pa-

per, we attempt to answer the following question: If the term
j = n − 2d scales as j = Θ(

√
n), what is the best size M

one can achieve?
The rest of this paper is organized as follows. In Section II

we review some well-known asymptotic bounds on A(n, d) and
examine their scaling behaviour when j = Θ(

√
n). In Section

III-A, a BCH-like cyclic code construction is given to estab-
lish a non-trivial new lower bound. In Section III-B, we review
an alternative proof of a well-known first linear programming
bound on A(n, d) (formally decribed in Theorem 7) through
a covering argument using Fourier analysis on the group Fn

2 .
Then two upper bounds on A(n, d) with d ⩾ n/2 −

√
n and

d ⩾ n/2− 2
√
n, that are strictly tighter than all prior results,

are derived. Finally, the paper is concluded in Section IV.

II. PRELIMINARIES

Let H2(·) denotes the binary entropy function. Let n ⩾ r be
positive integers. Let Br(0, n) ∈ {0, 1}n denote the Hamming
ball of radius r centered at 0 = (0, 0, . . . , 0), and its volume by
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V ol(r, n)
def
= |Br(0, n)| =

∑r
i=0

(
n
i

)
. We recall the following

bounds
1) V ol(r, n) ⩽ 2H2(r/n)n; and
2) V ol(r, n) ⩾ 2H2(r/n)n−o(n) for sufficiently large n.

A. Known Bounds on Code Sizes

The following bounds on the size of binary codes can be
found in standard coding theory textbooks, e.g. [12], [13].
Bounds for the regime j = Θ(

√
n) are derived and given

following the general bounds, e.g. inequalities (3), (5), (7),
(8), (9), and (11). When the scaling behaviour of j matters,
we choose j = 2a

√
n, i.e., d = n/2 − a

√
n, for ease of

comparison between bounds, as in (3), (9), and (11).
Theorem 1 (Gilbert-Varshamov or GV lower bound, [17]):

Let positive integers n and d ⩽ n/2 be given. Then

A(n, d) ⩾
2n

V ol(d− 1, n)
. (2)

Asymptotically, suppose 0 ⩽ δ < 1/2, then there exists an
infinite sequence of (n,M, d) binary linear codes with d/n > δ
and rate R = k/n satisfying R ⩾ 1 − H2(d/n). To evaluate
Theorem 1 when j = Θ(

√
n), consider j = 2a

√
n. Central

limit theorem, coupled with the Berry–Esseen theorem, pro-
vides an upper bound

V ol(d− 1, n) ⩽ 2n
[
Q(2a) +O(1/

√
n)
]
,

where Q(·) denotes the tail distribution function of the stan-
dard normal distribution. Hence (2) becomes

A(n, n/2− a
√
n) ⩾

[
Q(2a) +O(1/

√
n)
]−1

, (3)

which is loose compared with the Plokin-Levenshtein bound
A(2d, d) = 4d.

Theorem 2 (Hamming Bound): For every (n,M, d) code
C ⊂ {0, 1}n,

M ⩽ 2n/V ol(e, n), (4)

where e = ⌊(d− 1)/2⌋.
In the asymptotics, Theorem 2 bounds the rate from above,

in terms of the relative distance δ, by R ⩽ 1 −H2(δ/2). For
j = Θ(

√
n), the term e = n/4 − Θ(

√
n), and V ol(e, n) ⩾

2H2(1/4)n−o(n). Hence Theorem 2 becomes

M ⩽ 2(1−H2(1/4))n+o(n) ⩽ 20.189n, (5)

for all sufficiently large n.
Theorem 3 (Singleton Bound): The following holds for any

code C ⊂ {0, 1}n with distance d and dimension k.

k ⩽ n− d+ 1. (6)

Under the regime j = Θ(
√
n), Theorem 3 becomes

M ⩽ 2n/2+o(n), (7)

which is weak compared to (5).
Theorem 4 (Plotkin Bound, [18]): The following holds for

any code C ⊂ {0, 1}n with distance d

1) If d = n/2, |C| ⩽ 2n.
2) If d > n/2, |C| < 2

⌈
d

2d−n

⌉
.

One may use a combinatorial argument and Theorem 4 to de-
rive the following corollary.

Corollary 5: If a (n,M, d) binary code C has distance d <
n/2, then the size M ⩽ d · 2n−2d+2.
Using Corollary 5, one may bound the size of any code with
d = (n− j)/2 < n/2 by

M ⩽ d · 2j+2 < 2n · 2j . (8)

When j scales as j = Θ(
√
n), the size M is bounded from

above by a polynomial scaling sub-exponentially in n. In par-
ticular, set j = 2a

√
n, i.e. d = n/2− a

√
n, (8) becomes

M ⩽ 2n · 22a
√
n. (9)

Theorem 6 (Elias-Bassalygo Bound): For sufficiently large
n, every code C ⊂ {0, 1}n with relative distance δ and rate R
satisfies the following:

R ⩽ 1−H2(J2(δ)) + o(1), (10)

where J2(δ)
def
= 1

2 (1−
√
1− 2δ).

Assuming d = n/2− a
√
n, one may adopt steps similar to

the proof of Theorem 6 as in [13, p.147] to show an upper
bound:

M ⩽ n3 · 2 a
ln 2

√
n+O(1). (11)

The last upper bound we introduce is known as the first
linear programming bound or the MRRW bound on binary er-
ror correcting codes, or, alternatively, on optimal packing of
Hamming balls in a Hamming cube. The bound was originally
proved by McEliece, Rodemich, Rumsey, and Welch [19], fol-
lowing Delsarte’s linear programming approach [20]. Delsarte
viewed the distance distribution of a code C of length n as an
(n + 1)-dimensional vector a = (a0, a1, . . . , an), where ai is
given by the number of pairs of codewords at distant i, and
discovered a system of linear inequalities satisfied by every a
associated with a length-n, minimumm distance d code. The
coefficients of the linear constraints can be viewed as values
of a family of orthogonal polynomials called the Krawchouk
polynomials. Based on the duality theorem of linear program-
ming, one may find a feasible solution to the dual program,
and view the obtained linear program as an extremal problem.
(See [12, Chapter 17] for details.) Good feasible solutions of
the dual program were constructed in [19]. The resulting bound
is the best known asymptotic upper bound on the cardinality
of a code with a given minimal distance scaling linearly in n,
for a significant range of the relative distance.

Theorem 7 (MRRW Bound, [19]): For sufficiently large n,
every code C ⊂ {0, 1}n with relative distance δ and rate R
satisfies the following:

R ⩽ H2

(
1

2
−
√
δ(1− δ)

)
. (12)

Remark 1: Another bound, known as the second linear pro-
gramming bound, is also given in [19] in the form

R ⩽ min
0⩽u⩽1−2δ

1 + g(u2)− g(u2 + 2δu+ 2δ), (13)

where the function g(x)
def
=H2((1−

√
1− x)/2). For 0.273 ⩽

δ ⩽ 0.5, the bound (13) simplifies to that of (12). For δ <
0.273, the inequality (13) is strictly tighter than (12).
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Plugging in δ = d/n into (12), we have the following bound:

M ⩽ 2
nH2

(
1/2−

√
d/n(1−d/n)

)
+o(n)

. (14)

Note that, due to the o(n) term, the bound (14) is not tighter
than (8) when j = Θ(

√
n). This appears to the contrary of the

fact the MRRW bound is tighter than all the other bounds for
relative distance δ > 0.273. However, a tailored treatment of
the proof technique may lead to a nontrivial bound as in the
derivation of (11) from Theorem 6. In Section III-B, one such
bound is given through an alternative proof of the Theorem 7 by
working with the maximal eigenfunctions of Hamming balls.

III. MAIN RESULTS

A. Cyclic Code with High Minimum Distance

Let n = 2m−1, and m ∈ N be an even integer with m ⩾ 4.
Let c be an integer with 1 ⩽ c ⩽ m/2 − 1. We construct a
binary cyclic code C of length n with high minimum distance
as follows.

Theorem 8: There exists a binary cyclic code C of length
n, dimension cm, and minimum distance

d ⩾ 2m−1 − 2m/2+c−1 ⩾
n

2
− 2c−1

√
n. (15)

Proof: Consider the finite field F = F2m and a subfield
K = F2 < F . Let α be a primitive root of unity in F , and set
αi = α1+2m/2+i

for i = 1, 2, . . . , c. Consider the binary cyclic
code with the generator polynomial

g(x) =
xn − 1∏c

i=1 Mαi(x)
,

where Mβ(·) is the minimal polynomial of β over K. Note
that the αi’s belong to different conjugacy classes, i.e,

Ai
def
=

{
α2j

i |j = 0, 1, 2, . . . ,m− 1
}

=
{
α2j+2m/2+i+j

|j = 0, 1, 2, . . . ,m− 1
}

are disjoint subsets of F \{0}, and |Ai| = m for each i. This is
ensured by the particular choice of αi’s. More specifically, let
Pi =

{
2j + 2m/2+i+j mod 2m − 1|j = 0, 1, 2, . . . ,m− 1

}
be the set of the powers over α for elements in Ai. Each
Pi is a cyclotomic coset mod 2 in F and the length-m bi-
nary representation for each p, p′ in Pi are cyclic shifts of
each other. Let pi = 1 + 2m/2+i be the coset representa-
tive of Pi. The claim on the size of |Ai| holds by noting
that |Ai| = |Pi| = m. To claim that Ai’s are disjoint, it suf-
fice to show that the cyclotomic cosets Pi’s are disjoint. First
note that for two cyclotomic cosets Pi and Pk, they are ei-
ther disjoint or identical. Assume for some i ̸= k, cosets Pi

and Pk are identical. Then pi = 1 + 2m/2+i is an element in
Pk, that is, there is a p′ = 2l + 2m/2+k+l ∈ Pk for which
pi = p′ modulo 2m − 1. As both pi and p′ are sums of two
powers of 2, we note that neither m|l and m|(l + k − i), nor
m|(l − m/2 − i) and m|(m/2 + k − l), can happen. Hence
pi /∈ Pk, and thus Pi and Pk are disjoint. Thus the degree of
the polynomial g(x) is n− cm.

For the minimum distance, let t = 2m−1 + 2m/2+c−1 + 1.
We show next that for j = t, t + 1, . . . , 2m − 1, αj is a root
for the generator polynomial g(x). In other words, Ai∩{t, t+

1, . . . , 2m − 1} = ∅, for i = 1, 2, . . . , c. This is by noting that
the powers of the elements in Ai, after taking modulo 2m− 1,
can be written as the sum of two powers of two, i.e., 2l + 2j ,
where the difference between l and j is at least m/2− c, and
that such a number does not belong to {t, t+ 1, . . . , 2m − 1}.
Hence, the minimum distance of the code d is at least 2m −
t+ 1 = 2m−1 − 2m/2+c−1 by BCH bound.

Note that the parameters of the codes constructed in Theo-
rem 8 are, in a sense, sitting between those of the first order
and the second order Reed-Muller (RM) codes of length n =
2m. More specifically, RM(m, 1) has minimum distance equal
to n/2 and dimension equal to m + 1, while RM(m, 2) has
minimum distance n/4, and dimension 1 +m +

(
m
2

)
. Hence,

there is a wide gap in the minimum distance between the first
order and the second order RM codes and, intuitively speaking
the BCH-like codes constructed in Theorem 8 can be used to
fill this gap. In particular, the parameters of the constructed
code in the extreme cases of c, i.e., the cases of c = 1 and
c = m/2− 1, are close to those of RM(m, 1) and RM(m, 2),
respectively.

B. Improved Code Size Upper Bound
We will follow the covering argument by Navon and

Samorodnitsky [21] and show two upper bounds on the size
of any code C with length n and minimum distance d, the
first holds for any d ⩾ n/2 −

√
n, and the second for any

d ⩾ n/2 − 2
√
n. The viewpoint presented in [21], provid-

ing an alternative proof to Theorem 7, is different from that in
[19], which relies on analytical properties of the Krawchouk
polynomials, and instead adopts Fourier analysis on the group
Fn
2 as their main tool.

In particular, the authors of [21] exploit the expediency
of working with the maximal eigenfunctions of Hamming
balls. One key finding was that, given any real-valued func-
tion f on {0, 1}n with a small support B ⊂ {0, 1}n, such
that the adjacency matrix of the Hamming cube acts on f by
multiplying it pointwise by a large factor, the cardinality of
error-correcting codes with minimum distance d can be upper
bounded by n |B|. The applicability will depend on the value
of the multiplying factor. By proposing functions f supported
on Hamming balls B = Br(0, n) of different radii r, one
may derive a lower bound of the multiplying factor, formally
called the maximal eigenvalue of adjacency matrix of the sub-
graph incduced by B. This made possible a simple proof of
the first linear programming bound.

Let us now state the definition of the maximal eigenvalue of
a graph. Let G = (V,E) be a (finite, undirected, simple) graph.
Let AG = (Aij) denote the |V | × |V | adjacency matrix of G,
defined by Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise for ver-
tices i, j ∈ V . Note that AG is symmetric, so its eigenvalues are
real, and can be ordered as λ1 ⩾ λ2 ⩾ . . . ⩾ λn. For any func-
tion f on Fn

2 , the function Af sums at each point of {0, 1}n
the values of f at its neighbours. That is, the value taken by
the function Af at a vertex x ∈ Fn

2 , denoted by (Af)(x) or
Af(x), is given by Af(x) =

∑
y∈Fn

2 :wH(x,y)=1 f(y). When
the graph is a subset of the cube, B ⊆ {0, 1}n, set

λB
def
= max

{
⟨Af, f⟩
⟨f, f⟩

∣∣∣ f : Fn
2 → R, supp(f) ⊆ B

}
. (16)
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That is, λB is the maximal eigenvalue of adjacency matrix of
the subgraph of {0, 1}n induced by B.

Two lemmas were shown in [21] to show (12).
Lemma 9 ( [21] Prop 1.1): Let C be a code with block

length n and minimal distance d. Let B be a subset of {0, 1}n
with λB ⩾ n− 2d+ 1. Then |C| = M ⩽ n |B|.

Lemma 10 ( [21] Lemma 1.4): Let B = Br(0, n) ⊆
{0, 1}n. The maximal eigenvalue associated with B is
λB ⩾ 2

√
r(n− r)− o(n).

To prove (12), we note that Lemma 10 implies that a ra-
dius r∗ = n/2−

√
d(n− d) + o(n) exists such that λB(r∗) ⩾

n− 2d+ 1. Lemma 9 in turn shows that any code of length n
and minimal distance d has at most n |B(r∗)| = nV ol(r∗, n)
codewords. The cardinality of a Hamming ball of radius r is
V ol(r, n) = 2H2(r/n)n+o(n). Equation (14) follows the above
argument, hence yielding equation (12).

We note that the above argument can not be used directly to
show an upper bound when d = n/2 − Θ(

√
n). In particular,

the o(n) term in Lemma 10 renders the search for a meaningful
r∗ impossible, as we would ideally require a subset B with λB

close to n− 2d+ 1 = Θ(
√
n).

First we provide a proposition in place of Lemma 10 when
the radius of Hamming ball does not scale linearly in n.

Proposition 11: Let B = B3(0, n) ⊆ {0, 1}n be the Ham-
ming ball of radius 3. The maximal eigenvalue associated with
B is λB ⩾

√
3 +

√
6
√
n ≈ 2.334

√
n.

Proof: Recall the definition of the maximal eigenvalue
in (16). We prove the proposition by constructing a func-
tion f with support in B, and for which ⟨Af, f⟩/⟨f, f⟩ =√
3 +

√
6
√
n. The function f will be symmetric, namely its

value at a point will depend only on the Hamming weight of
the point. With a slight abuse of notation, such a function is
fully defined by its values f(0), f(1), . . . , f(n) at Hamming
weights 0, 1, . . . , n.

Set f(0) = 1, f(j) = 0 for j ⩾ 4, and let λf(i) = Af(i) =
if(i−1)+(n−i)f(i+1) for i = 0, 1, 2 (assuming f(−1) = 0),
where λ = t

√
n. We have

f(1) =
λf(0)

n
=

t√
n
, f(2) =

λf(1)− 1f(0)

n− 1
=

t2 − 1

n− 1
,

f(3) =
λf(2)− 2f(1)

n− 2
=

1

n− 2

(
t2 − 1

n− 1
t
√
n− 2

t√
n

)
.

We may use the values f(i) and calculate

⟨Af, f⟩ = 2t
√
n+ t(t2 − 1)2

n
√
n

n− 1
,

⟨f, f⟩ = 1 + t2 + (t2 − 1)2/2 + t2(t2 − 3)2/6 + o(1).

We are now ready to optimize the value

⟨Af, f⟩
⟨f, f⟩

=

[
2t+ t(t2 − 1)2

(t6 − 3t4 + 9t2 + 9)/6
+ o(1)

]√
n (17)

over t > 0. Taking t =
√

3 +
√
6, the square bracket term in

(17) becomes
√

3 +
√
6 + o(1).

In order to provide a bound as tight as possible, we improve
upon Lemma 9 and show the following proposition.

Proposition 12: Let C be a code with block length n and
minimal distance d. Let B be a subset of {0, 1}n with λB >
n− 2d. Then |C| = M ⩽ n

λB−(n−2d) |B|.
The proof can be shown using a similar argument as in the

proof of Lemma 9 in [21], and is provided in Appendix-B for
reference.

With Proposition 11 and Proposition 12, we are ready to state
the upper bound on A(n, n/2−

√
n).

Theorem 13: If a (n,M, d) binary code C has minimum
distance d ⩾ n/2 −

√
n, then M ⩽

√
n√

3+
√
6−2

V ol(3, n) =

O(n3.5).
Proof: Let B = B3(0, n) be the radius-3 Hamming ball.

The maximal eigenvalue λB ⩾
√
3 +

√
6
√
n according to Pro-

position 11. Since n − 2d ⩽ 2
√
n < λB , the cardinality of C

can be upper bounded using Proposition 12 as

M ⩽
n

λB − (n− 2d)
|B| ⩽

√
n√

3 +
√
6− 2

V ol(3, n).

Remark 2: We note that the argument above can upper bound
the size as M = O(n3.5) as long as (n − 2d)/

√
n is strictly

smaller than
√
3 +

√
6. That is, for any d ⩾ n/2 − t

√
n, for

some constant t <
√
3 +

√
6/2 ≈ 1.167, we have A(n, d) =

O(n3.5).
Using similar technique as in the proof of Proposition 11,

one may show lower bounds of the maximal eigenvalues asso-
ciated with Hamming balls of different radii. For example, we
can list bounds of λBr/

√
n for 2 ⩽ r ⩽ 8, r ̸= 3:

λB2
/
√
n ⩾

√
3, λB4

/
√
n ⩾ (5 +

√
10)0.5 ≈ 2.857,

λB5
/
√
n ⩾ 3.324, λB6

/
√
n ⩾ 3.75,

λB7
/
√
n ⩾ 4.14, λB8

/
√
n ⩾ 4.51.

This implies A(n, n/2 − t1
√
n) = O(n2.5), A(n, n/2 −

t2
√
n) = O(n4.5), and so on, for all t1 >

√
3/2 ≈ 0.866 and

t2 > 1.428. In particular, we have the following bound
Theorem 14: If a (n,M, d) binary code C has minimum dis-

tance d ⩾ n/2−2
√
n, then M ⩽

√
n

4.14−4V ol(7, n) = O(n7.5).
Proof: The theorem can be proved using a similar argu-

ment as Theorem 13 by taking B = B7(0, n).
In general, by finding the values of, or the lower bounds

thereof, the maximal eigenvalues λBr
for r = 1, 2, . . ., one

may obtain a sequence of upper bounds on A(n, d = n/2 −
t
√
n) for various t.

IV. CONCLUDING REMARKS

In this paper, we study the asymptotic performance bounds
of the cardinality of codes with minimum distance d = n/2−
Θ(

√
n). The codes in this regime have vanishing rate and thus

renders ineffective most bounds that dictate the tradeoff be-
tween code rate and relative distance. We obtain a sequence
of lower bounds based on a cyclic code construction, and two
upper bound for d ⩾ n/2−

√
n and d ⩾ n/2− 2

√
n, respec-

tively.
The proposed cyclic linear code is the first construction ob-

served in the specified distance regime, and allows one to con-
struct codes of sizes polynomial in n. The proof of the upper
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bound makes extensive use of Fourier analysis on the Hamming
cube as a group, and the calculation of the maximal eigenvalue
associated with Hamming balls of small radii.

An interesting problem for future work is to study the rela-
tionship between the maximal eigenvalue λB associated with
B = Br(0, n) and the radius r, for r ≪ n. The solution can
be used to provide a sequence of upper bounds on A(n, d) for
the regime d = n/2−Θ(

√
n).

APPENDIX

A. Harmonic Analysis

We compile in this section harmonic analysis preliminaries
as in [21], [22]. See [22] for a more detailed treatment. Here
we list several necessary definitions and simple facts.

Consider the abelian group structure Fn
2 = (Z/2Z)n on the

hypercube {0, 1}n. The characters of the abelian group Fn
2

are {χz}z∈Fn
2

, where χz : {0, 1}n → {−1, 1} is given by
χz(x) = (−1)⟨x,z⟩ and ⟨x, z⟩ =

∑n
i=1 xizi.

Consider the R-vector space L(Fn
2 ) = {f : Fn

2 → R} en-
dowed with the inner product ⟨·, ·⟩, associated with the uniform
distribution on {0, 1}n:

⟨f, g⟩ = EUn
fg =

1

2n

∑
x∈Fn

2

f(x)g(x). (18)

The set of 2n characters {χz}z∈Fn
2

form an orthonormal ba-
sis in the space L(Fn

2 ), equipped with uniform probability dis-
tribution. That is, for each z, z′ ∈ {0, 1}n, ⟨χz, χz′⟩ = δz,z′ ,
where δ is the Kronecker delta function. The Fourier trans-
form of a function f ∈ L(Fn

2 ) is the function f̂ ∈ L(Fn
2 ) given

by the coefficients of the unique expansion of f in terms of
the characters:

f(x) =
∑
z

f̂(z)χz(x) or equivalently, f̂(z) = ⟨f, χz⟩. (19)

One may show that ˆ̂
f = 2nf , and E f = f̂(0). If f, g ∈

L(Fn
2 ), we have Parseval’s identity: ⟨f, g⟩ =

∑
z f̂(z)ĝ(z) =

2n
〈
f̂ , ĝ

〉
. A special case of the above equality is the following

equality: E f2 =
∑

z f̂(z)
2
=

∥∥∥f̂∥∥∥2
2
.

The convolution of f and g is defined by (f ∗ g)(x) =
Ey f(y)g(x+ y). The convolution transforms to dot product:
f̂ ∗ g = f̂ · ĝ. The convolution operator is commutative and
associative. One may also show that for arbitrary functions
f, g, h ∈ L(Fn

2 ), the following equality holds:

⟨f ∗ g, h⟩ = ⟨f, g ∗ h⟩. (20)

In this section and in Appendix-B, let L(x) = 2n for x ∈
{0, 1}n with wH(x) = 1 and L(x) = 0 otherwise. For any
f ∈ L(Fn

2 ) holds Af = f ∗ L because for x ∈ Fn
2 , Af(x) =∑

y:dH(x,y)=1 f(y) =
∑

y:wH(y)=1 f(x + y) = Ey L(y)f(x +

y) = (f ∗L)(x). The Fourier transform of L is the function L̂
given by L̂(z) = ⟨L, χz⟩ =

∑
x:wH(x)=1 (−1)⟨x,z⟩ = n − 2 ·

wH(z).
For C ⊂ Fn

2 , let 1C ∈ L(Fn
2 ) be the indicator function of

C. It can be shown that a code C has minimum distance d if
and only if (1C ∗ 1C)(x) = 0 for all 0 < wH(x) < d.

B. Proof of Proposition 12

Let fB be an eigenfunction supported on B corresponding to
its maximal eigenvalue λB . That is λB = ⟨AfB , fB⟩/⟨fB , fB⟩.
It is known that the maximum can be attained with an non-
negative function fB , and further we have AfB ⩾ λBfB (see
[23, p.13-15 and appendix C]) for details). We write f = fB
and λ = λB interchangeably, and denote the Hamming weight
of x ∈ Fn

2 by |x| = wH(x), in this proof. As f is supported
on B, Cauchy-Schwarz inequality yields the following:

E2 f = ⟨f, 1B⟩2 ⩽ E f2 · E(1B)2 = E f2 · |B| /2n. (21)

Let ϕ ∈ L(Fn
2 ) be a function such that (ϕ̂)2 = ϕ̂ ∗ ϕ =

1C ∗1C . Equivalently, ϕ∗ϕ = 2n ̂1C ∗ 1C = 2n1̂C
2
. Therefore

we have

ϕ ∗ ϕ ⩾ 0 and
E(ϕ2)

E2(ϕ)
=

(ϕ ∗ ϕ)(0)
ϕ̂2(0)

= |C| . (22)

Now let F = ϕ ∗ f . We estimate the product ⟨AF,F ⟩ in two
ways. First,

⟨AF,F ⟩ = ⟨(ϕ ∗ f) ∗ L, ϕ ∗ f⟩ = ⟨ϕ ∗ ϕ ∗ f, f ∗ L⟩
= ⟨ϕ ∗ ϕ ∗ f,Af⟩ ⩾ ⟨ϕ ∗ ϕ ∗ f, λf⟩
= λ⟨ϕ ∗ f, ϕ ∗ f⟩ = λ⟨F, F ⟩ = λEF 2.

Second, by Parseval’s identity,

⟨AF,F ⟩ = 2n
〈
ÂF , F̂

〉
= 2n

〈
L̂ · F̂ , F̂

〉
=

∑
z

(n− 2 |z|) F̂ 2(z).

Since F̂ = ϕ̂ · f̂ and (ϕ̂)2(z) = (1C ∗ 1C)(z), F̂ (z) = 0 for all
0 < |z| < d. We can estimate ⟨AF,F ⟩ by∑

z

(n− 2 |z|) F̂ 2(z) = nF̂ 2(0) +
∑

z:|z|⩾d

(n− 2 |z|) F̂ 2(z)

⩽ nF̂ 2(0) + (n− 2d)
∑
z

F̂ 2(z) = nE2 F + (n− 2d)EF 2.

Combining the two estimates, we have the following inequal-
ity: nE2 F ⩾ (λ− (n− 2d)) EF 2. Since

E2 F = E2(ϕ ∗ f) = [ϕ̂ ∗ f(0)]2 = [ϕ̂(0)f̂(0)]2 = E2 ϕE2 f,

EF 2 = ⟨F, F ⟩ = ⟨ϕ ∗ f, ϕ ∗ f⟩ = ⟨ϕ ∗ ϕ, f ∗ f⟩
⩾ 1/2n(ϕ ∗ ϕ)(0)(f ∗ f)(0) = 1/2n Eϕ2 E f2,

as ϕ ∗ ϕ = 2n · 1̂C
2
⩾ 0, we now have

nE2 ϕE2 f ⩾ (λ− (n− 2d))
1

2n
Eϕ2 E f2. (23)

Leveraging equations (21), (22), and (23), the size of any code
C with minimum distance d is

|C| = Eϕ2

E2 ϕ
⩽

n

λ− (n− 2d)
· 2nE

2 f

E f2
⩽

n

λ− (n− 2d)
|B| .
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