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Abstract—The paper addresses the fundamental information
theoretic limits — in terms of achievable rates and distortions
— in a broad class of multiterminal communication scenarios
with general continuous-valued sources and channels. A general
framework is presented which involves fine discretization of the
source and channel variables followed by communication over the
resulting discretized network. In order to evaluate fundamental
performance limits under the proposed discretization process,
convergence results for information measures are provided. The
framework is used to study the distributed source coding in
source coding, as well as the computation over multiple access
channels in channel coding. In each case, a communication
scheme is presented, the resulting achievable region is derived,
and the region is evaluated for Gaussian sources and channels.

I. INTRODUCTION

Information theory has provided a framework for the study
of the fundamental limits of communication — such as
achievable rates and distortions — and design of source and
channel coding strategies in a wide range of communica-
tion scenarios. This has led to the characterization of the
optimal rate-distortion function in point-to-point (PtP) source
coding and channel capacity in PtP channel coding. These
techniques were extended to various multiterminal communi-
cation scenarios, where inner and outer bounds for the set
of achievable rates and distortions for storage of discrete
sources and transmission over discrete channels were derived
[1], and the optimal achievable region was derived for special
cases of interest such as communication over discrete multiple
access channel (MAC) [2], discrete deterministic and semi-
deterministic broadcast channels [3], and multiple-descriptions
source coding in the no-excess rate regime [4]. However,
there is still a lack of a unifying framework for the study
of data compression for general continuous sources and data
transmission over general continuous channels.

Many of the derivations in the discrete case rely on the
concept of strong typicality which is based on the frequency
of occurrence of symbols in sequences of discrete random
variables [5]. The notion of strong typicality does not extend
naturally to sequences of continuous variables. Prior works
address the issue in an ad-hoc fashion. As a result, the optimal
performance in terms of achievable rates and distortions is
usually known only for special cases when the underlying
distributions of all variables are restricted to be Gaussian
variables, e.g. distributed storage of Gaussian sources [6],
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and communication over the Gaussian broadcast channel [7].
For certain problems, such as PtP source coding, PtP channel
coding, and communication over MAC, performance limits
have been derived using techniques using weak typicality [8]
instead of strong typicality. However, weak typicality is not
applicable in many multiterminal communication problems
such as distributed source coding, and communication over
broadcast channels, since for instance, the Markov lemma [9]
(a crucial step in the derivation of achievable regions) is not
valid for weakly typical sequences. To address this, Wyner
[10] proposed a method for the study of PtP source coding
with side-information, which can also be used for distributed
source coding. Wyner’s method involves fine quantization of
the source, the side-information, and the auxiliary variables to
create a finite-alphabet problem, and then using the achievable
results for the finite-alphabet problem to derive performance
limits for the original problem using convergence properties of
mutual information. This idea of ‘discretizing’ the continuous
communication system, and then applying discrete coding
strategies and analytical techniques has also been recently
used in the study of the compute-and-forward communication
scenario [11], as well as in investigating the correspondence
between a set of useful inequalities in terms of entropies of
discrete variables and their analogs in terms of differential en-
tropies of continuous variables [12]. Another method to study
continuous networks is to modify the notion of weak typicality,
and use weak-* typicality instead. In [13], the Markov lemma
has been shown to hold for weak-* typical sequences. The
results were applied to source compression in the presence
of side-information. The derivations in [10], [13] are based on
unstructured random code ensembles. An additional technique
which has been considered for compression of linear quadratic
Gaussian (LQG) sources and channels is to use subtractive
dithered lattice codes [14], [15]. The drawback of these lattice
codes is that (a) they are very specific to the LQG nature
of the problem, and hence not amenable to non-Gaussian
and nonlinear problems, and (b) they are based on point-
to-point communication perspective, and hence not general
enough to be extended to the multiuser techniques such as joint
quantization as seen in multiple-description coding, and joint
source-channel mapping as seen in transmission of correlated
sources over multiple-access channels.

This work develops a unified framework to study the perfor-
mance limits of communication for general continuous-valued
sources and channels in network communication scenarios.
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This builds upon techniques introduced in [16] which studied
the problem under restrictive assumptions on the source and
channel distributions such as boundedness of the individual
support, non-zero lower bound for the joint probability den-
sity function (PDF) over the bounded support, and Riemann
integrability. The contributions are summarized as follows:
• We build upon Wyner’s fine quantization technique, and

derive covering bounds, packing bounds, and prove the
Markov lemma when unstructured random code ensembles
are used as well as for structured code ensembles.

• We apply these results to distributed source coding —
where we extend the achievable region in [16] to source
distributions which are not Riemann integrable — and to
the computation over multiple access channel scenario.

• In each case, we evaluate the achievable region when Gaus-
sian test channels are used. In the case of distributed source
coding, we show that the region is strictly larger when the
underlying discrete coding techniques use structured codes
(e.g. linear codes) instead of unstructured codes.

Notation: Collections of sets are denoted by sans-serif letters
such as B,C. The set {n, n+1, · · · ,m}, n,m 2 N is denoted
by [n,m]. For the interval [1,m], we sometimes use the
shorthand notation [m]. We write x

n to represent the vector
(x1, x2, . . . , xn). The Borel sigma algebra is denoted by B.

II. FRAMEWORK FOR CONTINUOUS TO DISCRETE SOURCE
AND CHANNEL TRANSFORMATION

This section introduces the components of the discretization
framework which is considered in subsequent sections.

A. Source and Channel Models

We consider continuous memoryless source and channel
networks with real-valued inputs and outputs, and without
feedback. Such channel networks (source networks) are com-
pletely characterized by their associated channel transition
probability (source distribution) and input cost functions (out-
put distortion functions).

Definition 1 (Transition Probability). A transition probabil-
ity is a function P : R⇥B ! R such that:
• For x 2 R, P (·|x) : A 7! P (A|x) is a probability measure.
• For A 2 B, P (A|·) : x 7! P (A|x) is a measurable function.

Remark 1. We assume that for any variable X the PDF exists
and it approaches infinity in at most a finite number of points,
and that the set of points of discontinuity has (Lebesgue)
measure zero. Furthermore, we assume that the variable does
not have discrete points, i.e. @x 2 R, P (X = x) > 0).

Definition 2 (Memoryless Channel without Feedback). A
channel is characterized by i) a transition probability PY |X :
R⇥B ! R, and ii) a continuous cost function  : R ! R+,
where X and Y are the channel input and output, respectively.

Since the channel is memoryless and used without feedback,
the joint probability measure on (Rn

,Bn) for n channel-uses
with input xn 2 Rn is given by the unique product measure

P (Yi 2 Ai, i 2 [n]|Xn = x
n) =

nY

i=1

PY |X(Ai|xi),

for all A1,A2, · · · ,An 2 B.

Definition 3 (Joint Channel Probability Measure). For a
channel (PY |X ,), and given probability measure PX on
(R,B), the joint probability measure PXY on (R2

,B2) is
the unique extension of the measure on product sets

PXY (A⇥ B) =

Z

A
PX(dx)

Z

B
PY |X(dy|x), A,B 2 B.

Definition 4 (Memoryless Source). A source is characterized
by i) a probability measure PX : B ! R, and ii) a jointly
continuous distortion function d : R⇥ R ! R+ .

B. Source and Channel Discretization and Clipping

We will obtain achievable rate-distortion functions for
source coding and achievable rate-cost functions for channel
coding by first discretizing and clipping the associated random
variables. This approach is described in the following.

Definition 5 (Discretization function). Let n 2 N, The
discretization function Qn : R ! Zn is defined as

Qn(s) = arg min
a2Zn

|s� a|, s 2 R, where Zn : =
1

2n
Z.

Definition 6 (Clipping Function). Given a random variable
U defined on the probability space (R,B, PU ), and given ` >

0, the clipping function C` : R ! R is defined as

C`(U) : =

(
U if U 2 [�`, `],

U
0 Otherwise.

,

where U
0 is independent of U and fU 0(·) : = fU |U2[�`,`](·).

Remark 2. We denote bS`,n = Qn(C`(S)) as bS, and eS` =
C`(S) by eS when the subscript is clear from the context.

In our derivations, we sometimes need to smoothen a
given variable U using additive noise N✏, which is uniformly
distributed over [�✏, ✏] for some small ✏ > 0. The following
lemma shows that the smoothing noise becomes independent
of the smoothened variable as ✏ ! 0.

Lemma 1 (Smoothing Noise). Consider a bounded contin-
uous random variable U defined on the probability space
([�M,M ],B[�M,M ], PU ), such that h(U) < 1 and M >

0, and let N✏ be uniformly distributed over [�✏, ✏], ✏ > 0.
Assume that U and N✏ are independent. Then,

lim
✏!0

I(N✏;U +N✏) = 0.

Proof. Please refer to [17].

The following lemma is used in proving convergence of in-
formation measures under the proposed discretization process.

Lemma 2. For any quintuple of random variables
A,B,C,D,E with joint distribution that satisfies the Markov
chain (A,B)�C�(DE), consider a pair of random variables
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Â, Ê that are correlated with (B,D) such that PBA = PBÂ,
PDE = PDÊ , and Â�B � C �D � Ê, then

I(A;C|B) + I(E;C|D) � 1

2 ln 2
V

2(PCAE , PCÂÊ),

where V (P,Q) : = supA |P (A)�Q(A)| is the total variation
between P and Q.

III. DISCRETIZATION OF RANDOM VARIABLES AND THEIR
SUMS

In this section, we develop the framework that addresses
both structured and unstructured code ensembles for multi-
terminal communication. Consider jointly continuous random
variables X,Y, U, V with a joint PDF fXY fU |XfV |Y . That is
the variables satisfy the Markov chain U $ X $ Y $ V .
We denote the joint probability measure as PXY UV .

A. Discretization of Auxiliary Random Variables U, V

Fix `, `
0
, ✏ > 0, and n 2 N. Define the clipped variables eU` :

= C`(U), eV`0 = C`0(V ) as follows: We take `, `
0 sufficiently

large. Next, define the smoothed random variables eU`,✏,
eV`0,✏,

where

eU`,✏ : = eU` + eN✏,
eV`0,✏ : = eV` + eN 0

✏,

f eN✏
(ñ) =

1

2✏
, f eN 0

✏
(ñ0) =

1

2✏
, ñ, ñ

0 2 (�✏, ✏),

and the variables eN✏ and eN 0
✏ are mutually independent of

each other and of X,Y, V, U, U`, V`0 . Consider discretizing
eU`,✏ and eV`0,✏ to bUn,`,✏ : = Qn(eU`,✏) and bVn,`,✏ : = Qn(eV`0,✏),
respectively. Note that the by construction the Markov chain
bUn,`,✏ $ X $ Y $ bVn,`,✏ holds.

Theorem 1. Given ⇠ > 0 there exists n, `, `
0
, ✏ > 0 such that

|I(X; bUn,`,✏)� I(X;U)|  ⇠ (1)

|I(Y ; bVn,`0,✏)� I(Y ;V )|  ⇠ (2)

|I(bUn,`,✏ + bVn,`0,✏; bUn,`,✏)� I(U + V ;U)|  ⇠ (3)

|I(bUn,`,✏ + bVn,`0,✏; bVn,`0,✏)� I(U + V ;V )|  ⇠, (4)

|I(bUn,`,✏; bVn,`0,✏)� I(U ;V )|  ⇠, (5)

Furthermore, given a pair of jointly continuous distortion
functions di : R2 ! R+

, i 2 {1, 2} and continuous recon-
struction functions gi : R2 ! R, we have:

|E(d1(X, g1(bUn,`,✏,
bVn,`0,✏)))� E(d1(X, g1(U, V )))|  ⇠

(6)

|E(d2(Y, g2(bUn,`,✏,
bVn,`0,✏)))� E(d2(Y, g2(U, V )))|  ⇠ (7)

Proof. Please refer to [17].

B. Discretization of the Source Variables X,Y

In the following, we describe the procedure for discretizing
the source variables while ensuring that the long Markov chain
holds. Let `, `

0
> 0, and Z and W be variables that are

independent of (X,Y ) with distribution PZPW given by

PZPW (A⇥ B) =
PX(A \ [�`, `])PY (B \ [�`

0
, `

0])

PX([�`, `])PY ([�`0, `])

for all events A and B in Borel sigma algebra. Define the
clipped source variables as eX` = C`(X) and eY`0 = C`0(Y ).
Furthermore, let n 2 N, and define the quantized and clipped
source variables bXn,` : = Qn( eX`), and bYn,`0 : = Qn(eY`0).

Theorem 2. Given a quadruple of random variables
(X,Y, U, V ), where i) (X,Y ) are jointly continuous with joint
PDF fX,Y , and ii) U, V are discrete random variables defined
on finite sets U and V, respectively, and iii) the long Markov
chain U �X�Y �V holds. Then, For any ⇠ > 0 there exists
n, `, `

0
> 0 and variables Un,` and V n,`0 defined on U ⇥ V

such that the long Markov chain Un,` � bXn,` � bYn,`0 � V n,`0

holds, and the following conditions are satisfied

|I( bXn,`;Un,`)� I(X;U)|  ⇠ (8)

|I(bYn,`0 ;V n,`0)� I(Y ;V )|  ⇠ (9)
|I(Un,` + V n,`0 ;Un,`)� I(U + V ;U)|  ⇠ (10)
|I(Un,` + V n,`0 ;V n,`0)� I(U + V ;V )|  ⇠, (11)
|I(Un,`;V n,`0)� I(U ;V )|  ⇠, (12)

Furthermore, given a pair of jointly continuous distortion
functions di : R2 ! R+

, i 2 {1, 2} and continuous recon-
struction functions gi : R2 ! R, we have:

|E(d1( bXn,`, g1(Un,`, V n,`0)))� E(d1(X, g1(U, V )))|  ⇠,

|E(d2(bYn,`, g2(Un,`, V n,`0)))� E(d2(Y, g2(U, V )))|  ⇠.

Proof. Please refer to [17].

Corollary 1. Given a triple of random variables (Y, U, V ),
For any ⇠ > 0 there exists ✏, n, n

0
, `, `

0
, `

00
> 0 such that the

following conditions are satisfied

|I(bUn,`,✏ + bVn,`0,✏,
bYn0,`00 ; bUn,`,✏)� I(U + V, Y ;U)|  ⇠,

where bYn0,`00 = Qn0(eY`00).

IV. DISTRIBUTED SOURCE CODING PROBLEM

Consider a triple of memoryless continuous-valued sources
(X,Y, Z) characterized by a probability measure PXY Z . Let
d : R2 ! R+ be a jointly continuous distortion function. The
sources X and Y act as helpers for the third source Z. The
sources need to be compressed distributively with rates R1, R2

and R3, respectively, into bits to be sent to a joint decoder.
For simplicity we let R3 = 0. The joint decoder wishes to
reconstruct the source Z with respect to distortion function d.

Definition 7. An (n,⇥1,⇥2) transmission system consists
of mappings ei : Rn ! {1, 2, . . . ,⇥i}, for i = 1, 2,
and f : {1, 2, . . . ,⇥1} ⇥ {1, 2, . . . ,⇥2} ! Rn. A triple
(R1, R2, D) is said to be achievable if there exists a sequence
of (n,⇥1n,⇥2n) transmission systems such that for i = 1, 2,

lim
n!1

log⇥i

n
 Ri, lim

n!1
Edn(Zn

, f(e1(X
n), e2(Y

n)))  D.

Let R(D) denote the set of rates (R1, R2) such that
(R1, R2, D) is achievable.

We provide a coding theorem for the continuous sources.
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Theorem 3. Let P(D) denote the collection of transition
probabilities PQU1V1UV bZ|XY such that (i) (UU1) � (XQ) �
(Y Q) � (V V1) form a Markov chain, (ii) Q is independent
of (X,Y ), (iii) bZ = g(U1, V1, U + V ) for some func-
tion g, and (iv) Ed(Z, bZ)  D1, where the expectations
are evaluated with distribution PXY ZPQU1V1UV bZ|XY . For a
PQU1V1UV bZ|XY 2 P(D), let ↵(PQU1V1UV bZ|XY ) denote the
set of rate pairs (R1, R2) 2 [0,1)2 that satisfy

R1�I(X;UU1|QV1)+I(U+V ;V |QU1V1)�I(U ;V |QU1V1),

R2�I(Y ;V V1|QU1)+I(U+V ;U |QU1V1)�I(U ;V |QU1V1),

R1 +R2 � I(XY ;UV U1V1|Q) + I(U + V ;V |QU1V1)

+ I(U + V ;U |QU1V1)� I(U ;V |QU1V1)

where the mutual information terms are evaluated with
PXY PQU1V1UV bZ|XY . Let the information rate region be de-
fined as

↵(D) = cl

0

@
[

PQU1V1UV bZ|XY 2P(D)

↵(PQU1V1UV bZ|XY )

1

A

Then, we have ↵(D) ✓ R(D), i.e. ↵(D) is achievable.

To achieve the above rate-distortions, we propose a coding
scheme involving two layers to prove the theorem. The first
is the Berger-Tung unstructured coding layer. The second
is the structured coding layer that uses nested linear codes.
Although we do not have space to give a complete proof,
the key steps in the proof are as follows. First we quan-
tize the sources and the auxiliary variables, and apply the
technique developed in source coding with side-information
to come up with a discrete version of the problem at hand.
The Berger-Tung unstructured coding is accomplished in a
straightforward way. The structured coding is accomplished
using nested linear codes. The rates associated with this
layer can be understood as follows, for example, assuming
U1, V1 and Q to be trivial. R1 � I(X;U) + H(U + V ) �
H(U) = I(X;U) � I(U ;V ) + I(V ;U + V ), and similarly
R2 � I(Y ;V ) � I(U ;V ) + I(U ;U + V ). These rates can
be achieved using nested linear codes (over arbitrarily large
prime fields) along with joint-typical encoding and decoding.
Finally, we use the properties of mutual information to show
convergence. The complete proof is given in [17].

A. Gaussian Lossy Two-Help-One Example

Consider a pair of zero-mean jointly Gaussian unit variance
correlated sources X and Y with correlation coefficient ⇢ > 0.
Let Z = X � cY for some c, and let d(z, ẑ) = (z � ẑ)2. We
evaluate a subset of the inner bound to the achievable rate-
distortion region using specific Gaussian test channels. Let
us denote �

2
Z = 1 + c

2 � 2⇢c, and let D denote the target
distortion. Consider the achievable region in Theorem 3, and
let us choose Q = �, and U1 = V1 = 0. Moreover consider

U = X +Q1, and V = cY +Q2,

where Q1 and Q2 are independent zero-mean Gaussian ran-
dom variables that are independent of the pair (X,Y ). We
take their variances to be q1 and D�2

Z

�2
Z�D

� q1. With this
choice we see that U + V = Z + Q1 + Q2, and we take
bZ = E(Z|U + V ) = �2

Z�D
�2
Z

(U + V ), which results in

Ed(Z, bZ) = D. The achievable region is:

R1 � 1

2
log

�
4
Z

q1(�2
Z �D)

, and R2 � 1

2
log

�
4
Z

D�
2
Z�q1(�2

Z�D)
.

Eliminating q1 we see that the rate distortion tuple (R1, R2, D)
satisfying the following equations is achievable:

2�2R1 + 2�2R2 
✓
�
2
Z

D

◆�1

.

Next, we evaluate rates and distortions which are achievable
with unstructured codes, i.e., using just the first layer of the
scheme. Let (q1, q2) 2 R2

+, and define U1 = X + Q11

and V1 = Y + Q12, where Q11 and Q12 are zero-mean
independent Gaussian random variables with variances q1 and
q2, respectively, and independent of the pair (X,Y ). Then,
by Theorem 3, the convex closure of the region RDin is
achievable, where RDin is defined as the union over all of
rate-distortion triples (R1, R2, D) satisfying:

R1 � 1

2
log

(1 + q1)(1 + q2)� ⇢
2

q1(1 + q2)
,

R2 � 1

2
log

(1 + q1)(1 + q2)� ⇢
2

q2(1 + q1)
,

R1 +R2 � 1

2
log

(1 + q1)(1 + q2)� ⇢
2

q1q2
,

D � q1↵+ q2c
2
↵+ q1q2�

2
Z

(1 + q1)(1 + q2)� ⇢2
.

where ↵ : = 1� ⇢
2.

For a given distortion D, the minimum sum rate Rsum :
= R1 + R2 that lies in the convex closure o RDin can be
evaluated by direct optimization as in [18]. Fig. 1 is a contour
plot that illustrates the resulting rate-distortions in detail. We
observe that the structured coding scheme performs better than
the Berger-Tung based scheme for small distortions, provided
⇢ is sufficiently high and c lies in a certain interval. The
contour labeled R encloses that region in which the pair (⇢, c)
should lie for the lattice binning scheme to achieve a sum rate
that is at least R units less than the sum rate of the Berger-
Tung scheme for some distortion D. We observe that we get
improvements only for c > 0.

V. COMPUTATION OVER MAC

Consider a discrete memoryless two-transmitter multiple-
access channel (PY |X1,X2

,1,2). The decoder is interested
in recovering only single-letter bivariate function g(·, ·) of the
channel inputs sent by the transmitters reliably. We demon-
strate that structured codes can better facilitate the interaction
between the two transmitters to ensure that the decoder re-
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Fig. 1: Range of (⇢, c) where the lattice scheme performs
better than the Berger Tung scheme for D ! 0.

ceives the desired information while transmitting information
at a larger rate than can be sustained by unstructured codes.

Formally, a discrete memoryless two-transmitter multiple-
access channel is given by a tuple (PY |X1,X2

, X̂, g,1,2),
consisting of channel input alphabets X1,X2, the channel
output alphabet Y, a bivariate function g : X1 ⇥ X2 ! X̂,
and two cost functions 1 and 2.

Definition 8. Consider a multiple-access channel
(PY |X1,X2

, X̂, g,1,2). A transmission system with
parameters (n,⇥1,⇥2) consists of a pair of encoder
mappings ei : {1, 2, . . . ,⇥i} ! Xn

i , i = 1, 2 and decoder
mapping f : Yn ! X̂n. A quadruple of rates and costs
(R1, R2, ⌧1, ⌧2) is said to be achievable if 8✏ > 0, and all
sufficiently large n, there exists a transmission system with
parameters (n,⇥1,⇥2) such that for i = 1, 2,

1

n
log⇥i � Ri � ✏,

1

⇥i

⇥iX

j=1

i(ei(j))  ⌧i + ✏, i = 1, 2

⇥1X

j=1

⇥2X

k=1

1

⇥1⇥2
P

n
Y1,Y2|X1,X2

[f(Y n) 6= g
n(Xn

1 , X
n
2 )

|Xn
1 = e1(j), X

n
2 = e2(k))]  ✏, i = 1, 2.

The operational capacity region C(⌧1, ⌧2) is the set of all rate
pairs (R1, R2) such that (R1, R2, ⌧1, ⌧2) is achievable.

We provide an achievable rate region using the discretization
techniques in Section II, and the structured coding strategy for
computation over MAC with discrete alphabets introduced in
[19, Theorem 4.2]. We focus on continuous-valued channels,
i.e., X1 = X2 = Y = R, and g to be the addition operation on
the real field, i.e, g(x1, x2) = x1 + x2 for all x1, x2 2 R.

Theorem 4. Let P(⌧1, ⌧2) denote the collection of pairs
formed by a distribution (PQU1U2X1X2 defined on Q ⇥ R4

such that (i) (U1X1) � Q � (U2X2) form a Markov chain,
and (ii) E(i(Xi))  ⌧i. For a (PQU1U2X1X2) 2 P, let
↵F (PQU1U2X1X2) denote the set of rate pairs (R1, R2) 2

[0,1)2 that satisfy

R1  I(U1;Y |U2Q) + I(X;Y |U1U2Q)� I(X;X2|U1U2Q)

R2  I(U2;Y |U1Q) + I(X;Y |U1U2Q)� I(X;X1|U1U2Q)

R1 +R2  I(U1U2;Y )|Q) + 2I(X;Y |U1U2Q)

� I(X;X1|U1U2Q)� I(X;X2|U1U2Q)

where the mutual information terms are evaluated with
PQU1U2X1X2PY |X1X2

, and X = X1+X2. Let the information
rate region be defined as

↵F = cl

0

@
[

(PQU1U2X1X2 )2P

↵F (PQU1U2X1X2)

1

A

Then, the operational capacity cost region C(⌧1, ⌧2) contains
the information capacity region ↵(⌧1, ⌧2), i.e., ↵(⌧1, ⌧2) ✓
C(⌧1, ⌧2).

Gaussian MAC: Consider the MAC given by Y = X1 +
X2 + Z, where Z is zero-mean Gaussian with variance N .
We have power constraints on X1 and X2: 1(x1) = x

2
1 and

2(x2) = x
2
2, for all x1, x2 2 R.

The rates achievable using unstructured code ensembles is
given by the standard MAC capacity region given by
⇢
(R1, R2) : R1  1

2
log

✓
1 +

P1

N

◆
,

R2  1

2
log

✓
1 +

P2

N

◆
, R1 +R2  1

2
log

✓
1 +

P1 + P2

N

◆�
.

This is achieved using independent Gaussian inputs X1 and
X2 of variances P1 and P2, respectively. Using the same dis-
tribution, one can achieve the following rates while employing
structured code ensembles.

⇢
(R1, R2) : R1  1

2
log

✓
P1(P1 + P2 +N)

(P1 + P2)N

◆
,

R2  1

2
log

✓
P2(P1 + P2 +N)

(P1 + P2)N

◆�
.

Comparing the sum-rate we see that the structured coding
scheme performs better than the unstructured coding scheme
when ✓

1 +
P1

P2

◆✓
1 +

P2

P1

◆
 1 +

P1

N
+

P2

N
.

For the case when P1 = P2 = P is boils down to the condition
that P

N � 1.5.

VI. CONCLUSION

The fundamental information theoretic limits in multitermi-
nal communications with general continuous-valued sources
and channels were studied. A general framework was pre-
sented which involves discretization of the source and channel
variables followed by communication over the resulting dis-
cretized network. The framework was applied in the distributed
source coding and computation over multiple access channels
scenarios, where general resulting achievable regions were
derived, and they were evaluated for Gaussian sources and
channels.
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