
Upper Bounds on the Feedback Error Exponent of
Channels With States and With Memory

Mohsen Heidari
CS Department

Purdue University
Email: mheidari@purdue.edu

Achilleas Anastasopoulos
ECE Department

University of Michigan
Email: anastas@umich.edu

S. Sandeep Pradhan
ECE Department

University of Michigan
Email: pradhanv@umich.edu

Abstract—As a class of state-dependent channels, Markov
channels have been long studied in information theory for
characterizing the feedback capacity and error exponent. This
paper studies a more general variant of such channels where
the state evolves via a general stochastic process, not necessarily
Markov or ergodic. The states are assumed to be unknown to
the transmitter and the receiver, but the underlying probability
distributions are known. For this setup, we derive an upper
bound on the feedback error exponent and the feedback capacity
with variable length codes (VLCs). The bounds are expressed
in terms of the directed mutual information and directed
relative entropy. The bounds on the error exponent reduce to
Burnashev’s expression for discrete memoryless channels. Our
method relies on tools from the theory of martingales to analyze
a stochastic process defined based on the entropy of the message
given the past channel’s outputs.

I. INTRODUCTION

Communications over channels with feedback has been a
longstanding problem in information theory literature. The
early works on discrete memoryless channels (DMCs) pointed
to a negative answer as to whether feedback can increase
the capacity [1]. Feedback, though, improves the channel’s
error exponent — the maximum attainable exponential rate of
decay of the error probability. The improvements are obtained
using variable length codes (VLCs), where the communication
length depends on the channel’s realizations. In a seminal
work, Burnashev [2] completely characterized the error ex-
ponent of DMCs with noiseless and casual feedback. This
characterization has a simple, yet intuitive, form:

E(R) = C1(1−
R

C
), (1)

where R is the (average) rate of transmission, C is the
channel’s capacity, and C1 is the maximum exponent for
binary hypothesis testing over the channel. It is equal to the
maximal relative entropy between conditional output distri-
butions. The Burnashev’s exponent can significantly exceed
the sphere-packing exponent for no-feedback communications
as it approaches capacity with a nonzero slope. The use of
VLCs is shown to be essential to establish these results, as no
improvements are gained using fixed-length codes [3]–[5].

This result led to the question as to whether the feedback
improves the capacity or error exponent of more general
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channels, modeling non-traditional communications involving
memory and intersymbol interference (ISI). Among such mod-
els are channels with states where the transition probability
of the channel varies depending on its state which itself
evolves based on the past inputs and channel’s realizations.
Depending on the variants of this formulation, the agents may
have no knowledge about the state (e.g., arbitrarily varying
channels), or they may exactly know the state [6]. Feedback
can improve the error exponent when the state is known
at the transmitter and the receiver. Notably, Como, et al.
[7] extended Burnashev-type exponent to finite-state ergodic
Markov channels with known state and derived a similar form
as in (1). The error exponent for channels with more general
state evolution is still unknown; only the feedback capacity,
when restricted to fixed-length codes, is known [8].

This paper studies the feedback error exponent for channels
with more general state evolution and allowing VLCs. More
precisely, we study discrete channels with states where the
state evolves via an arbitrary stochastic process (not neces-
sarily ergodic or Markov) depending on the past realizations.
Furthermore, the realization of the states is assumed to be
unknown, but the transmitter or the receiver may know the
underlying probability distribution governing the evolution
of the state. However, noiseless feedback is available at the
transmitter with one unit of delay. The main contributions are
twofold. First, we prove an upper bound on the error exponent
of such channels, which has the familiar form

E(R) ≤ sup
N>0

sup
PN∈PN

D(PN )(1− R

I(PN )
),

where D is the directed relative entropy, I is the directed
mutual information, and PN is a collection of “feasible”
probability distributions. As a special case, the bound reduces
to Burnashev’s expression when the channel is DMC. Second,
we introduce an upper bound on the feedback capacity of
VLCs for communications over these channels with stochastic
states. This upper bound generalizes the results of Tatikonda
and Mitter [8] and Permuter et al. [9] where fixed-length codes
are studied. Our approach relies on the analysis of the entropy
of the stochastic process defined based on the entropy of the
message given the past channel’s output. We analyze the drift
of the entropy via tools from the theory of martingales.
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Related works on the capacity and error exponent of chan-
nels with feedback are extensive. Yamamoto and Itoh [10]
introduced a two-phase iterative for achieving the Burnashev
exponent. Berlin et al. [11] provided a simpler proof of
Burnashev’s expression for DMCs. The error exponent of
DMCs with feedback and cost constraints is studied in [12].
Channels with state and feedback have been studied under
various frameworks on the evolution model of the states and
whether they are known at the transmitter or the receiver. On
one extreme of such models are arbitrarily varying channels
[13]. The feedback capacity of these channels for fixed-
length codes is derived in [8]. Tchamkerten and Telatar [14]
studied the universality of Burnashev error exponent. They
considered communication setups where the parties have no
exact knowledge of the channel’s statistics but know it belongs
to a certain class of DMCs. The authors proved that no
zero-rate coding scheme achieves the Burnashev’s exponent
simultaneously for all the DMC’s in the class. However, they
showed positive results for two families of such channels (e.g.,
binary symmetric and Z) [15]. Another class of channels with
states are Markov channels that have been studied extensively
for deriving their capacity [6], [16], [17], and error exponent
using fixed-length codes [8]. A lower bound on the error
exponent of unifilar channels is derived [18], where the state is
a deterministic function of the previous ones. Other variants of
this problem have been studied, including continuous-alphabet
channels [19], [20], and multi-user channels [21], [22].

II. PROBLEM FORMULATION AND DEFINITIONS

The formal definitions are presented in this section. For
shorthand, we use [1 : M ] to denote {1, 2, ...,M} .

A discrete channel with stochastic state has three finite sets
X ,Y , and S representing the input, output, and state of the
channel, respectively. Consider a collection of channels Q :=
{Q(·|·, s) : s ∈ S}, indexed by s ∈ S , where each element
Q(·|·, s) : X → P(Y) is the transition probability of the
channel at state s. The states {St}t>0, evolve according to
PSt|St−1,Xt−1 , t > 0 depending on the past inputs and state
realizations. As a result, after t uses of the channel with xt−1,
st−1, yt−1 being the channels input, state and output, the next
output is given by

P (st, yt|xt−1, st−1, yt−1) = Pt,S(st|st−1, xt−1)Q(yt|xt, st).

Such evolution of the states induces memory over time as it
depends on past inputs.

After each use of the channel, the output of the channel
yt as feedback is available at the transmitter with one unit of
delay. Moreover, we allow VLCs for communications where
the transmitter nor the receiver do not know the state of the
channel. More precisely, the setup is defined as follows.

Definition 1. An (M,N)-VLC for communications over a
channel Q with states and feedback is defined by

• A message W with uniform distribution over [1 : M ].
• Encoding functions et : [1 : M ]× Yt−1 → X , t ∈ N.
• Decoding functions dt : Yt → [1 : M ], t ∈ N.

• A stopping time T with respect to (w.r.t) the filtration Ft

defined as the σ-algebra of Y t for t ∈ N. Furthermore,
it is assumed that T is almost surely bounded as T ≤ N .

For technical reasons, we study a class of (M,N)-VLCs for
which the parameter N grows sub-exponentially with logM,
that is N ≤ (logM)m for some fixed number m. An example
is the sequence (M (n), N (n))-VLCs, n ≥ 1, where M (n) =
2nr1 , N (n) ≤ nm, with r1, r2,m > 0 being fixed parameters.

In what follows, for any (M,N)-VLC, we define average
rate, error probability, and error exponent. Given a message
W , the tth output of the transmitter is denoted by Xt = et(W,
Y t−1), where Y t−1 is the noiseless feedback up to time t. Let
Ŵt = dt(Y

t) represent the estimate of the decoder about the
message. Then, at the end of the stopping time T , the decoder
declares ŴT as the decoded message. The average rate and
(average) probability of error for a VLC are defined as

R =∆
log2 M

E[T ]
, Pe =

∆ P
{
ŴT ̸= W

}
.

Definition 2. A rate R is achievable for a given channel with
stochastic states, if there exists a sequence of (M (n), N (n))-
VLCs such that

lim sup
n→∞

P (n)
e = 0, lim sup

n→∞

logM (n)

E[T (n)]
≥ R,

and N (n) ≤ (n)m,∀n > 1, where m is fixed. The feedback
capacity, CV LC

F , is the convex closure of all achievable rates.

Naturally, the error exponent of a VLC with probability of
error Pe and stopping time T is defined as E =∆ − log2 Pe

E[T ] . The
following definition formalizes this notion.

Definition 3. An error exponent function E(R) is said to be
achievable for a given channel, if for any rate R > 0 there
exists a sequence of (M (n), N (n))-VLCs such that

lim inf
n→∞

− logP
(n)
e

E[T (n)]
≥ E(R), lim sup

n→∞

logM (n)

E[T (n)]
≥ R,

and lim supn→∞ M (n) = ∞ with N (n) ≤ (n)m,∀n > 1,
where m is fixed. The reliability function is the supremum of
all achievable reliability functions E(R).

III. MAIN RESULTS

We start with deriving an upper bound on the feedback
capacity of channels with stochastic states and allowing VLCs.
The expressions are based on the directed information as
introduced in [23] and defined as

I(Xn → Y n) =∆
n∑

i=1

I(Xi;Yi|Y i−1). (2)

We further extend this notion to variable-length sequences.
Consider a stochastic process {(Xt, Yt)}t>0 and let T be a
(bounded) stopping time w.r.t an induced filtration Ft, t > 0.
Then, the directed mutual information is defined as

I(XT → Y T ) =∆ E
[ T∑
t=1

I(Xt;Yt | Ft−1)
]
. (3)
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Now, we are ready for an upper bound on the feedback
capacity. For any integer N , let PN be the set of all N -letter
distributions PXN ,SN ,Y N on XN × SN ×YN that factors as

N∏
ℓ=1

Pℓ(xℓ|xℓ−1, yℓ−1)Pℓ(sℓ|sℓ−1, xℓ−1)Q(yℓ|xℓ, sℓ). (4)

Theorem 1. The feedback capacity of a channel with stochas-
tic states is bounded as

CV LC
F ≤ sup

N>0
sup

PN∈PN

sup
stop time T :T≤N

1

E[T ]
I(XT → Y T ).

Observe that for a trivial stopping time T = N , the bound
reduces to that for fixed-length codes as given in [8].

A. Upper Bound on the Error Exponent

We need a notation to proceed. Consider a pair of
random sequences (Xn, Y n) ∼ PXnY n . Let X∗

r be the
MAP estimation of Xr from observation Y r−1, that is
X∗

r = argmaxx P
{
Xr = x|Y r−1 = yr−1

}
. Also, let Q̄r =

PYr|Xr,Y r−1 which is the effective channel (averaged over
possible states) from the transmitter’s perspective at time r.
With this notation, we define the directed KL-divergence as

D(Xn → Y n) =∆ max
xn

n∑
r=1

DKL

(
Q̄r(·|X∗

r , Y
r−1)

∥∥
Q̄r(·|xr, Y

r−1)
∣∣ Y r−1

)
.

Intuitively, D(Xn → Y n) measures the sum of the expected
“distance” between the channel’s probability distribution con-
ditioned on the MAP symbol versus the worst symbol across
different times r ∈ [1 : n].

Theorem 2. The error exponent of a channel with stochastic
states is bounded as

E(R) ≤ sup
N∈N

sup
PN∈PN

sup
T :T≤N

sup
T1:T1≤T

D(PN )
(
1− R

I(PN )

)
,

where T, T1 are stopping times, and

I(PN ) =
1

E[T1]
I(XT1 → Y T1),

D(PN ) =
1

E[T − T1]
D(XT

T1+1 → Y T
T1+1).

In the next section, we present our proof techniques.

IV. PROOF OF THEOREM 2

The proof follows by a careful study of the drift of the
entropy of the message W conditioned on the channel’s output
at each time t. Define the following random process:

Ht = H(W |Ft), t > 0, (5)

where Ft is the σ-algebra of Y t. We show that Ht drifts
in three phases: (i) linear drift (data phase) until reaching a
small value (ϵ); (ii) fluctuation phase with values around ϵ;
and (iii) logarithmic drift (hypothesis testing phase) till the
end. We derive bounds on the expected slop of the drifts and

Fig. 1. Entropy drifts over t. The first part till τϵ, as in (6), is the linear drift
with the expected slop I(P ) (dashed line). From τϵ to τϵ, as in (7), are the
fluctuations around ϵ (shaded region). Then, from τϵ to T is the logarithmic
drift (logHt) with the expected slop of D(P ) (the second dashed line).

prove that the length of the fluctuation phase is asymptotically
negligible as compared to the communication length ( Fig. 1).

More precisely, we have the following argument by defining
a pruned time random process {tn}n>0. First, for any ϵ ≥ 0
and N ∈ N define the following random variables

τϵ =
∆ inf {t > 0 : Ht ≤ ϵ} ∧N (6)

τ ϵ =∆ sup {t > 0 : Ht−1 ≥ ϵ} ∧N (7)

Then, the pruned time process is defined as

tn =∆


n if n < τϵ

n ∨ τ ϵ if τϵ ≤ n ≤ N

N if n > N

(8)

Note that τϵ is a stopping time with respect to {Ht}t>0, but
this is not the case for τ ϵ.

Lemma 1. Suppose a non-negative random process {Hr}r>0

has the following properties w.r.t a filtration Fr, r > 0,

E[Hr+1 −Hr|Fr] ≥ −k1,r+1, if Hr ≥ ϵ, (9a)
E[logHr+1 − logHr|Fr] ≥ −k2,r+1 if Hr < ϵ (9b)

|logHr+1 − logHr| ≤ k3 (9c)
|Hr+1 −Hr| ≤ k4 (9d)

where k1,r, k2,r, k3, k4 are non-negative numbers and k1,r ≤
k2,r for all r > 0. Given ϵ ∈ (0, 1), and I ≥ D > 0, let

Zt =
∆ Ht − ϵ

I
1{Ht ≥ ϵ}+

( log Ht

ϵ

D
+ f(log

Ht

ϵ
)
)
1{Ht < ϵ},

where f(y) = 1−eλy

λD with λ > 0. Further define {St}t>0 as

St =
∆

t∧τϵ∑
r=1

k1,r
I

+

t∧τϵ∑
r=t∧τϵ+1

k4
I
1{Hr−1 ≥

√
ϵ}

+

t∑
r=t∧τϵ+1

k2,r
D

+
√
ϵ
N

I
1{t ≥ τ ϵ}.

Let {tn}n>0 be as in (8) but w.r.t {Hr}r>0. Lastly define the
random process {Ln}n>0 as Ln =∆ Ztn+Stn . Then, for small
enough λ > 0 the process {Ln}n>0 is a sub-martingale with
respect to the time pruned filtration Ftn , n > 0.
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Proof: We consider three cases depending on n.
Case (a). n < τϵ−1: Because of (8), tn = n and tn+1 = n+1.
As n did not reach τϵ, then Hn > ϵ and Hn+1 > ϵ. Therefore,

Ln = Ztn + Stn = Zn + Sn =
Hn − ϵ

I
+

n∑
r=1

k1,r
I

Ln+1 = Zn+1 + Sn+1 =
Hn+1 − ϵ

I
+

n+1∑
r=1

k1,r
I

. (10)

As a result, the difference between Ln and Ln+1 equals to

E[(Ln+1 − Ln)1{n < τϵ − 1}|ytn ]
= E[Ln+1 − Ln|yn]1{n < τϵ − 1},

where the equality holds as tn = n, and τϵ is a stopping time
implying that 1{n < τϵ − 1} is a function of yn. Next, from
(10), the difference term above is bounded as

E[Ln+1 − Ln|yn] = E[
Hn+1 −Hn

I
+

k1,n+1

I
|yn]

=
E[Hn+1 −Hn|yn]

I
+

k1,n+1

I
≥ 0,

where the last inequality follows from (9a). As a result, we
proved that E[(Ln+1 − Ln)1{n < τϵ − 1}|ytn ] ≥ 0.
Case (b). n = τϵ − 1: In this case, tn = n implying that
Hn > ϵ and tn+1 = (n+1)∨τ ϵ. Furthermore, since, n+1 =
τϵ ≤ τ ϵ, then tn+1 = τ ϵ. Consequently, we obtain that

Ln = Zn + Sn =
Hn − ϵ

I
+

n∑
r=1

k1,r
I

Ln+1 = Zτϵ + Sτϵ = (
Hτϵ − ϵ

I
)1{Hτϵ ≥ ϵ}

+
( logHτϵ − log ϵ

D
+ f(log

Hτϵ

ϵ
)
)
1{Hτϵ < ϵ}

+

τϵ∑
r=1

k1,r
I

+

τϵ∑
r=τϵ+1

k4
I
1{Hr−1 ≥

√
ϵ}+

√
ϵ
N

I
.

Note that Zτϵ does not necessarily equal to the logarithmic
part. The reason is that τ ϵ is pruned by N as in (7). Thus,
Hτϵ can be greater than ϵ when τ ϵ = N . We proceed by
bounding Zτϵ . Note that, for small enough λ

ϵ

I
(ey − 1)− y

D
< f(y), −k3 < y < 0. (11)

Applying inequality (11) with y = log Hτϵ

ϵ , we can write that

Zτϵ > (
Hτϵ − ϵ

I
)1{Hτϵ ≥ ϵ}+

(Hτϵ − ϵ

I

)
1{Hτϵ < ϵ}

=
Hτϵ − ϵ

I
(12)

Consequently, the difference Ln+1−Ln satisfies the following

E[(Ln+1 − Ln)1{n = τϵ − 1}|ytn ]
= E[Ln+1 − Ln|yn]1{n = τϵ − 1}

≥ E
[Hτϵ −Hn

I
+

k1,τϵ
I

+

τϵ∑
r=τϵ+1

k4
I
1{Hr−1 ≥

√
ϵ}

+
√
ϵ
N

I

∣∣∣yn]1{n = τϵ − 1} (13)

Next, we bound the first term above as

Hτϵ −Hn = Hn+1 −Hn +

τϵ∑
r=n+2

(Hr −Hr−1),

where in the first equality, we add and subtract the interme-
diate terms Hr, n + 1 ≤ r ≤ τ ϵ − 1. Next, we substitute the
above terms in the RHS of (13). As n+ 2 = τϵ + 1, then

(13) = E
[Hn+1 −Hn

I
+

k1,τϵ
I

+

τϵ∑
r=τϵ+1

(Hr −Hr−1

I
+

k4
I
1{Hr−1 ≥

√
ϵ}
)
+
√
ϵ
N

I

∣∣yn]1{n = τϵ − 1}

≥ E
[ τϵ∑
r=τϵ+1

(Hr −Hr−1

I
+

k4
I
1{Hr−1 ≥

√
ϵ}
)
+

√
ϵ
N

I

∣∣yn]1{n = τϵ − 1}, (14)

where the inequality holds from (9a) and the fact that n+1 =
τϵ. Next, by factoring I and the indicator function inside the
expectation, we have the following chain of inequalities

(14) =
1

I
E
[ τϵ∑
r=τϵ+1

(
(Hr −Hr−1) + k4

)
1{Hr−1 ≥

√
ϵ}+

(
(Hr −Hr−1)1{Hr−1 <

√
ϵ}
)
+

√
ϵN

∣∣yn]1{n = τϵ − 1}

(a)

≥ 1

I
E
[ τϵ∑
r=τϵ+1

(
(Hr −Hr−1)1{Hr−1 <

√
ϵ}
)
+

√
ϵN

∣∣yn]1{n = τϵ − 1}

(b)

≥ 1

I
E
[( τϵ∑

r=τϵ+1

−Hr−11{Hr−1 <
√
ϵ}
)
+

√
ϵN

∣∣∣yn]1{n = τϵ − 1} (15)

where (a) is due to (9d), and (b) holds as Hr ≥ 0.
Next, from Hr−11{Hr−1 < ϵ} < ϵ, we have that

(15) >
1

I
E
[( τϵ∑

r=τϵ+1

−
√
ϵ
)
+

√
ϵN

∣∣yn]1{n = τϵ − 1}

(c)

≥ 1

I
E
[( N∑

r=1

−
√
ϵ
)
+

√
ϵN

∣∣yn]1{n = τϵ − 1} ≥ 0,

where (c) holds as τ ϵ ≤ N . To sum up, we proved that

E[(Ln+1 − Ln)1{n = τϵ − 1}|ytn ] ≥ 0.

Case (c). n ≥ τϵ: This case follows from a similar argument
that is given in the full version of the paper.

Now, we show that {Ht}t>0 as in (5) has the conditions in
Lemma 1. First (9a) holds because of the following lemma.

Lemma 2. Given any (M,N)-VLC, the following inequality
holds almost surely for 1 ≤ r ≤ N

E[Hr −Hr−1|Fr−1] = −Jr, (16)
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where Jr =∆ I(Xr;Yr|Fr−1) with the induced PXN ,Y N ∈
PN .

Condition (9b) holds as a result of the following lemma.

Lemma 3. For any (M,N)-VLC and ϵ ∈ [0, 1
2 ], if Hr < ϵ,

then the following inequality holds almost surely

E[logHr − logHr−1|Fr−1] ≥ −Dr +O(h−1
b (ϵ)), (17)

where and Dr is a function of yr−1 and is defined as

Dr =∆ max
x∈X

DKL

(
Q̄r(·|x∗

r , y
r−1) ∥ Q̄r(·|x, yr−1)

)
, (18)

where Q̄r = PYr|Xr,Y r−1 is the average channel from the
transmitter’s perspective, and x∗

r is the MAP input symbol
given by x∗

r = argmaxx P
{
X = x|Y r−1 = yr−1

}
.

Condition (9c) is a direct consequence of Lemma 4 in [2]:

Remark 1. If Q(·|·, ·) are positive everywhere then |logHr−
logHr−1| ≤ η, where

η =∆ max
x1,x2∈X

max
s1,s2∈S

max
y∈Y

log
Q(y|x1, s1)

Q(y|x2, s2)
.

Lastly, (9d) holds as Hr ≤ logM which implies that

|Hr −Hr−1| ≤ max{Hr, Hr−1} ≤ logM.

Thus, we apply Lemma 1 on {Ht}t>0 with

k1,r = Jr, k2,r = Dr, k3 = η, k4 = logM,

and constants I,D to be specified later. Therefore, {Ln}n>0

as in the lemma is a sub-martingale w.r.t Ftn , n > 0.
Connection to the error exponent: Since {Ln}n>0 is a sub-
martingale, then L0 ≤ E[LT∨τϵ ], where T is the stopping time
used in the VLC and τ ϵ is as in (7). Note that L0 = logM

I .
In what follows, we analyze E[LT∨τϵ ].

By definition Ln = Ztn + Stn . Since, T ≤ N , then from
(8) we have that tT∨τϵ = (T ∨ τ ϵ)∨ τ ϵ = T ∨ τ ϵ. Therefore,

E[LT∨τϵ ] = E
[HT∨τϵ − ϵ

I
1{HT∨τϵ ≥ ϵ}+

( log(HT∨τϵ/ϵ)

D

+ f(log
HT∨τϵ

ϵ
)
)
1{HT∨τϵ < ϵ}+ ST∨τϵ

]
(a)

≤ E
[HT∨τϵ + ϵ

I
+

log(HT∨τϵ/ϵ)

D
+ f(log

HT∨τϵ

ϵ
)
]

+ E
[
ST∨τϵ

]
(b)

≤
E
[
HT∨τϵ

]
+ ϵ

I
+

log(E[HT∨τϵ ]/ϵ)

D
+

1

λD
+ E

[
ST∨τϵ

]
where (a) follows by changing −ϵ to +ϵ for the linear part
and from the following inequality for the logarithmic part

(log x− log ϵ)1{x < ϵ} ≤ log x− log ϵ.

Inequality (b) follows from Jensen’s inequality, concavity
of log(x) and the inequality f(y) ≤ 1

λD . Next, we bound
E
[
HT∨τϵ

]
. As conditioning reduces the entropy, then

HT∨τϵ = H(W |Y T∨τϵ

) ≤ H(W |Y T ) = HT ,

where the inequality holds as Y T is a function of Y T∨τϵ

.
Next, Fano’s inequality implies that

E
[
HT∨τϵ

]
≤ E

[
HT

]
= E[H(W |Y T )] ≤ α(Pe), (19)

where α(Pe) = hb(Pe)+Pe log(M) is the Fano’s expression.
Therefore, from (19), we obtain that

logM

I
≤ α(Pe) + ϵ

I
+

logα(Pe)− log ϵ

D
+

1

λD
+ E

[
ST∨τϵ

]
.

Therefore, rearranging the terms and multiplying by D and
dividing by E[T ] give the following

− logα(Pe)

E[T ]
≤ D

(E[ST∨τϵ

]
E[T ]

− R

I

)
+ U(Pe,M, ϵ), (20)

where we used the fact that logM
E[T ] ≥ R, and that

U(Pe,M, ϵ) = R
(α(Pe) + ϵ

I logM
+

− log ϵ+ 1/λ

D logM

)
. (21)

Next, it is not difficult to show that − logα(Pe) ≥
(− logPe)(1−∆), where

∆ =
log

(
− logPe + 2 + logM

)
− logPe

. (22)

Therefore, we get the following bound on the error exponent

− logPe

E[T ]
≤ D

1−∆

(E[ST∨τϵ

]
E[T ]

− R

I
+ U(Pe,M, ϵ)

)
. (23)

Next, we find appropriate I and D so that E
[
ST∨τϵ

]
≈

E[T ]. Further, we show that ∆ and U(Pe,M, ϵ) converge to
zero for any sequence of VLCs satisfying Definition 3.

Lemma 4. Given ϵ > α(Pe) and with

I =
1

E[τϵ]
E
[ τϵ∑
r=1

Jr

]
, D =

1

E[T − τϵ]
E
[ T∑
r=τϵ+1

Dr

]
,

the inequality E
[
ST∨τϵ

]
≤ E[T ](1 + V (ϵ,N)) holds, where

V (ϵ,N) = Ri

I

(√
ϵN

)
+
√
ϵ N
E[T ]I .

Therefore, with (23), we get the desired upper bound by
appropriately setting I and D as in the lemma. Hence, we get

− logPe

E[T ]
≤ D

1−∆

(
1− R

I
+ U(Pe,M, ϵ) + V (ϵ,N)

)
.

One can show that for any (M (n), N (n))-VLCs as in Defini-
tion 3 the residual terms U, V,∆ converge to zero as n → ∞.

CONCLUSION

This paper presents an upper bound on the feedback error
exponent and feedback capacity of channels with stochastic
states, where the states evolve according to a general stochas-
tic process. The results are based on the analysis of the drift
of the entropy of the message as a random process.
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