IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 23, 2021, accepted December 30, 2021, date of publication December 31, 2021,
date of current version June 1, 2022.

Digital Object Identifier 10.1109/ACCESS.2021.3140036

What Refactoring Topics Do Developers Discuss?
A Large Scale Empirical Study Using
Stack Overflow

CHAIMA ABID', KHOULOUD GAALOUL"“', MAROUANE KESSENTINI“2,
AND VAHID ALIZADEH 3, (Graduate Student Member, IEEE)

! Computer and Information Science Department, University of Michigan—Dearborn, Dearborn, MI 48128, USA
2School of Engineering and Computer Science, Oakland University, Rochester, MI 48309, USA
3College of Computing and Digital Media, DePaul University, Chicago, IL 60614, USA

Corresponding author: Marouane Kessentini (marouane @umich.edu)

ABSTRACT Due to the growing complexity of software systems, there has been a dramatic increase in
research and industry demand on refactoring. Refactoring research nowadays addresses challenges beyond
code transformation to include, but not limited to, scheduling the opportune time to carry refactoring,
recommending specific refactoring activities, detecting refactoring opportunities and testing the correctness
of applied refactorings. Very few studies focused on the challenges that practitioners face when refactoring
software systems and what should be the current refactoring research focus from the developers’ perspective.
Without such knowledge, tool builders invest in the wrong direction, and researchers miss many opportunities
for improving the practice of refactoring. In this paper, we collected data from the popular online Q&A
site, Stack Overflow, and analyzed posts to identify what do developers ask about refactoring. We clustered
these questions to find the different refactoring related topics using one of the most popular topic modeling
algorithms, Latent Dirichlet Allocation (LDA). We found that developers are asking about design patterns,
design and user interface refactoring, web services, parallel programming, and mobile apps. We also
identified what popular refactoring challenges are the most difficult and the current important topics and
questions related to refactoring. Moreover, we discovered gaps between existing research on refactoring and
the challenges developers face. To the best of our knowledge, this paper represents the first Stack Overflow
study to identify the refactoring topics discussed by developers. Our study can help researchers to focus on
practical refactoring problems, practitioners know more about current challenges and build better refactoring
tools, and educators revise curriculum to target current needs on refactoring.

INDEX TERMS Empirical study, stack overflow, refactoring.

I. INTRODUCTION A recent study by the US Air Force Software Technology

Refactoring [28], [31], [65] is a technique that improves
the design structure while preserving the overall function-
ality and behavior. It is a key practice in agile develop-
ment processes and well supported by tools integrated with
major IDEs. Refactoring is an extremely important solution
to address the challenge of managing software complex-
ity [16], [27], [92], and has experienced tremendous adoption
in Object-Oriented systems [14], [17], [23], [29], [30], [36],
[38], [45], [48], [62], [68], [87].

The associate editor coordinating the review of this manuscript and

approving it for publication was Mahmoud Elish

56362

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Support Centre (STSC) shows that the code restructuring
of several software systems reduced developers’ time by
over 60% when introducing new features into a restructured
architecture [5]. Due to the growing complexity of software
systems, the last ten years have seen a dramatic increase
and industry demand for tools and techniques on software
refactoring.

Drawing from the emerging need for refactoring in new
domains (e.g., mobile apps, cloud computing, service archi-
tecture, model-driven engineering, etc.), a large number of
tools have been proposed covering the refactoring life cycle
including the detection of refactoring opportunities [26],
[33], [34], [59], [86], when to apply refactorings [49], [53],

VOLUME 10, 2022

https://orcid.org/0000-0002-4156-9768
https://orcid.org/0000-0002-0053-3443
https://orcid.org/0000-0002-5030-9036
https://orcid.org/0000-0002-2767-0501

C. Abid et al.: What Refactoring Topics Do Developers Discuss? Large Scale Empirical Study Using Stack Overflow

IEEE Access

recommendation of refactorings [8], [9], [13], [84] and
regression testing for refactoring [74], [81]. Several surveys
summarize the research progress in the field [3]-[5], [60],
[80]. However, identifying the challenges that practitioners
face when refactoring received little attention. The few stud-
ies on how developers refactor code are limited to surveys
with developers at organizations such as Microsoft [46], [47].

Given the current growth of refactoring research with more
than 3000 peer-reviewed papers published in the last decade,
the gap is growing larger between research and practice. Is the
research community paying attention to the needs of develop-
ers? What informs the design of new refactoring technology?
We believe it is crucially important to understand the current
trends in the field, the challenges that developers face when
refactoring in the wild, and the most discussed refactoring
topics on developer forums. Without such understanding, tool
builders invest in the wrong direction, and researchers miss
many opportunities for improving the practice of refactor-
ing. We need to understand the new drivers for refactor-
ing innovation from the practitioners’ vantage point. In this
paper, we performed the first large scale refactoring study on
the most popular online Q&A forum for developers, Stack
Overflow. We identify the refactoring topics that have been
extensively discussed over Stack Overflow and we also draw
conclusions and discussions around the most popular top-
ics. Stack Overflow is the most renowned sites dedicated to
answering coding questions online. Developers use the forum
to seek help and advice from their peers about the technical
challenges they face in different development topics. Stack
Overflow moderates millions of posts from developers, with
different backgrounds, asking questions about a wide range
of topics including refactoring. It has a nice and intuitive
interface which provides the user with the ability to vote
questions up and down. The analysis of the discussed topics
in this repository could provide various key insights about
the topics of interest to the developers related to refactor-
ing such as the most addressed quality issues, the domains
where refactoring is extensively discussed, the preferred level
abstractions, the widely addressed anti-patterns, and patterns.
Recent studies analyzed Stack Overflow posts in several areas
including software security [94], mobile apps [15], [52], [77],
and more general programming topics [11], [71] and came up
with useful recommendations. We believe applying a similar
approach for studying refactoring needs could be equally
useful.

The analysis of Stack Overflow refactoring posts is bene-
ficial to developers, researchers, and educators in different
ways. Developers can educate themselves about the com-
mon issues that others have faced so they can learn about
the peer-best-practices. Researchers can use this analysis
to understand the real problems faced by programmers in
refactoring. Finally, educators may use the result of these
analyses to update their courses and focus on the main
weaknesses in the background of programmers that may
need to be addressed. The mapping between Stack Over-
flow discussions and existing research topics helps us and

VOLUME 10, 2022

others identify the gap between the practitioners and research
communities.

Stack Overflow contains more than 42 million posts and
associated attributes such as questions, answers, tags that are
most representative of the post etc [1], [2]. We first selected
the posts related to refactoring by choosing a list of tags
such as “‘refactoring,” ““anti-patterns,” etc. Then, we used an
advanced topic model based on, Latent Drichlet Allocation
(LDA), to identify the topics. Using this data, we answer the
following five research questions:

« RQ1. What questions and issues related to refactoring
are developers discussing? We found that developers
are interested in six main topics related to refactoring
which are Creational pattern, Parallel programming,
Models Refactor, mobile/UI, SOA, and Design pattern
(Section I'V-A).

+ RQ2. What are the most popular topics among the
questions related to refactoring? Our results show that
Creational Pattern topic has the largest popularity while
parallel programming, and mobile/user-interface topics
have the lowest (Section IV-B).

+ RQ3. Which refactoring-related topics are the most
difficult to answer? Design patterns topic has the low-
est rate of questions with unsatisfactory answers. It also
has the lowest average number of views without a rele-
vant answer. The model refactoring is the topic that was
the least answered by developers(Section IV-C)

+ RQ4. How do the interests of developers on refactor-
ing topics change over time? SOA and Design patterns
are the refactoring topics that have the highest evolu-
tion in the number of questions throughout the years
(Section IV-D)

+« RQS. What are the implications of our empirical
study on practitioners, educators, and researchers?
Our study helps researchers focus on practical refac-
toring problems, practitioners know more about cur-
rent challenges and build better refactoring tools, and
educators revise curriculum to target current needs on
refactoring (Section V).

The remainder of this paper is organized as follows.
Section 2, dedicated to the current state of refactoring
research, sets the context to understand the motivation of our
work in Section 3 better. The data collection step and our
experimental approach are described in Section 4. Our experi-
mental results are presented and discussed in Sections 5 and 6
respectively. Section 7 concludes the paper.

Il. STACK OVERFLOW DATA DESCRIPTION

Stack Overflow is a question and answer website used
by beginners as well as professionals belonging to stack-
exchange network. It has the largest community compared
to the other Q&A websites in the Network. Stack Overflow
was launched on September 15, 2008 and it kept growing in
popularity. Nowadays more than 17 million questions were

56363

IEEE Access

C. Abid et al.: What Refactoring Topics Do Developers Discuss? Large Scale Empirical Study Using Stack Overflow

posted in Stack Overflow, and an average of 5956 questions
was asked per day in the last four years.

There are currently 54637 tags in Stack Overflow. Among
them, the tag “Javascript” holds the biggest number of
related questions which exceed 1700000 whereas the ““refac-
toring™ tag helps to identify 6445 questions. Figure 1 shows
one example of a refactoring question on Stack Overflow
with the title “Is there a working C++4 refactoring tool?.”
Two tags are used for this post: “refactoring” and “C++.”
Furthermore, several metadata are related to a post such as
the edit date, the number of views, etc.

To easily access Stack Overflow data, one of the best ways
is based on Stack-exchange data-dumps. They represent col-
lections of data archived by the Stack-exchange community.
The data is collected yearly and uploaded on the archive.org
website. The data-set is divided into several XML files
which are Posts.xml, Users.xml, Votes.xml, Comments.xml,
PostHistory.xml, and PostLinks.xml. In this study, we have
used Posts.xml which contains around 42 million posts. There
are five types of posts: Question, Answer, Orphaned Tag
Wiki, Tag Wiki Excerpt, and Tag Wiki.

Each type of post can be filtered using the PostTypelD
attribute. Besides the PostTypelD, each post has 21 defined
attributes which could have value or not depending on the
type of the post. Table 1 shows the different attributes defined
in the posts.xml file. Of course, one of the main attributes is
the tag used to classify the question. We will give details in the
next section how we identified the tags related to refactorings
to filter the Stack Overflow posts.

Ill. RESEARCH METHOD

The main goal of this study is to identify the main
refactoring-related topics discussed by developers, highlight-
ing the most popular ones and the most difficult ones and
understanding developers’ interest trends.

We will describe, in this section, the details of the steps
adopted to achieve the main goals of this study. In the remain-
der of the paper, we will use ‘“document” to refer to a
question and ““corpus’ to refer to the set of questions.

Figure 2 summarizes the different main steps of our Stack
Overflow analysis. The first step consists of identifying the
list of tags related to refactoring. The second step filters the
list of questions using the selected tags. The third main step
runs LDA to identify the list of topics related to refactor-
ing by mining the selected questions and answers. Finally,
we answered several questions about these topics including
trends, difficulty, and evolution over time.

To select the refactoring related documents, we extracted
refactoring related tags and filtered the documents dataset
using these tags. Then, we pre-processed each document for
the LDA topic modeling approach by cleaning it and translat-
ing it into a vector of features using the Bag of Words (BOW)
representation [54]. We used LDA topic modeling approach
because it was widely used in similar problems [11], [77],
[94] and it was proven to be able to generate topics that are
highly interpretable and provide deep insights to the data.

56364

To filter the questions, we used multiple steps. First,
we manually defined an initial list of tags including 10 words:
refactoring, design patterns, architecture, anti-patterns, code-
cleanup, software-design, software-quality, code-metrics,
automated-refactoring. The manual definition of tags is lim-
ited and may not cover all the relevant refactoring questions.
For instance, some posts are related to refactoring but are not
tagged with the refactoring tag in several cases. In order to
extract more tags using the initial set of tags, we extracted
all the tags defined in Stack Overflow, and for each extracted
tag, we assessed to what extent it is relevant and related to
the initial tag list. Therefore, we used two heuristics taking
inspiration from a similar study [94]. These heuristics are
based on a(t): the number of questions that contain both tag t
and a refactoring related tag (one of the above 10 words),
b(t): number of questions that contains the tag t, and c(z):
the number of questions that contain a refactoring related tag
(one of the above 10 words).

o The first heuristic H1 is defined by the ratio of the
number of questions that contain both the tag and a
refactoring related tag to the number of questions that
contain the tag t. H1(¢) = a(t)/b(t)

o The second heuristic H2 is the ratio of the number of
questions that contain both the tag and a refactoring
related tag to the questions identified by the initial set
of 10 tags. H2(t) = a(t)/c(t).

We defined thresholds empirically for both heuristics to
select relevant tags by trial and error: 0.08 for the first heuris-
tic and 0.0004 for the second heuristic. We thus extracted
94 tags shown in the Table 2.

After inspecting these 94 extracted tags, we manually
removed 5 tags from the 94 initial list of tags extracted from
Stack Overflow which are: OOP, domain-driven design, dao,
mvp and Isp. For instance, OOP(object-oriented program-
ming) was one of the tags that we removed as it had the
largest number of questions which is 46618, most of them
not being related to refactoring. We finally considered 89 tags
which we used to extract 105,463 questions for this empirical
study. We checked the relevance of these tags being chosen
via validating random samples from the included documents
to make sure they are all relevant. The full list of considered
tags are described in Table 2.

In order to identify discussed refactoring related topics,
we have used a topic modeling technique: Latent Dirichlet
Allocation (LDA) [6]. Topic modeling is an approach aiming
at finding patterns of words in document collections using
hierarchical probabilistic models. Topic modeling may be
used to classify the documents of the corpus by discovered
latent topics. It specifies a procedure by which documents
can be generated by choosing a distribution over topics. Each
topic is a distribution that defines how likely each word may
appear in a given topic. For more details about LDA, the
reader can refer to [6].

As the LDA model is expecting a frequency-weighted
document-term matrix, we performed the following steps:

VOLUME 10, 2022

C. Abid et al.: What Refactoring Topics Do Developers Discuss? Large Scale Empirical Study Using Stack Overflow

IEEE Access

Is there a working C++ refactoring tool?

Does anybody know a fully featured refactoring tool for C++ that works reliably with large code bases

(some 100.000 lines)?

155

| tried whatever i can find again and again over the last years: SlickEdit, Eclipse CDT. They all were
not at all usable.

SUMMARY: | took time and evaluated "Visual Assist X" as well as "Refactor for C++". Both have
some impressing features, but both as well are far from perfect. Extracting a large block of code
usually is not done satisfying without manual modifications - and therefore does not pay off.

"Visual Assist X" has nice features such as much more complete autocompletition etc. But it leads to
so much flickering and slows down much at certain points.

By my opinion therefore the answer is: "No, there is no production ready refactoring tool for C++"

FIGURE 1. Refactoring post found on Stack Overflow.

TABLE 1. Attributes describing a Stack Overflow post.

Attribute Description
Id represent a unique id for posts
PostTypeld Digit that define the type of the post
AcceptedAnswerld If the post is a question and there is accepted Answer to this question this field will contain the accepted
Answer id
ParentId If the post is an answer this field contains the question id of that answer
CreationDate This field contains the date time creation of the post eg.:"2008-09-06T08:07:10.730"
DeletionDate it is defined if the post was deleted and it has the same form as the creation date
Score this is an integer that represents the upvotes giving to the post. It represents how helpful was the post
ViewCount This is defined for questions, and it represents how many people viewed the post
Body Text of the posts
OwnerUserld The id of the post owner
OwnerDisplayName the name of the post owner
LastEditorUserld 1d of the last user that modified the post
LastEditorDisplayName | the name of the user that modified the post
LastEditDate The date of the last post update
LastActivityDate The date of last Activity related to this post
Title The title of the post is not an answer
Tags comma separated strings that list all the tags for the post (defined only for a question)
AnswerCount defined for a question represent the number of answers related to this question
CommentCount represent the number of comments for the post it is defined for the question and answer
FavoriteCount defined only for question post, and it represents the number of users that liked the post
ClosedDate Defined if moderators of the website closed the post
CommunityOwnedDate | the date when the post was converted to community wiki
Extract Stack Overflow Filter questions using Data cleaning and
tags that are related to the tags related to formatting (BOW)
refactoring refactoring

]

Topics modeling using Calculating the
LDA))
popularity metrics
Refactoring topics Calculating the
Identification difficulty metrics

Calculating the number
of questions overfime.

FIGURE 2. An overview of our Stack Overflow analysis.

VOLUME 10, 2022

56365

IEEE Access

C. Abid et al.: What Refactoring Topics Do Developers Discuss? Large Scale Empirical Study Using Stack Overflow

TABLE 2. List of candidate tags.

design-patterns design architecture
decorator repository- factory
pattern
observer-pattern builder cqrs
software-design factory-pattern unit-of-work
solid-principles idioms modularity
code-duplication separation-of- object-oriented-
concerns analysis
methodology visitor anti-patterns
3-tier SIp bridge
conceptual automated- command-pattern
refactoring
design-principles visitor-pattern code-metrics
cyclomatic- module-pattern application-
complexity design
loose-coupling factory-method cocoa-design-
patterns
revealing- clean- system-design
module-pattern architecture
open-closed- chain-of- template-method-
principle responsibility pattern
n-layer flyweight-pattern ~ memento

singleton
scalability

composition
class-design
n-tier

n-tier-
architecture
ddd-repositories
domain-model
mediator

project-planning
onion-
architecture
coupling
code-design

multi-tier

prototype-pattern

refactoring
soa

data-access-layer
abstraction
business-logic
code-cleanup
service-layer
facade

maintainability

ooad
abstract-factory

software-quality
law-of-demeter
proxy-pattern

gang-of-four

microservices
dry

dto

composite
strategy-pattern
legacy-code

service-locator
decoupling
code-readability

code-smell
business-logic-
layer
builder-pattern

data-transfer-
objects
architectural-
patterns

First, we aggregated the values from the title, the body
and the tag attributes and we removed all the useless
meta-data.

Second, we removed the code snippets and all the HTML
tags.

Third, we tokenized and removed any useless special
characters like punctuation and characters that do not
belong to English alphabet except for °_" and ‘-’ which
are used to join two relevant words together.

Fourth, we removed stop-words: very common words
used in the English language which are not relevant for
the clustering of the documents; for example (‘do,” ‘like,
‘what,” ‘I, ‘they,” ...). Thus, we used the stop-word list
provided by NLTK [55] and we added other stop-words
that are not relevant for the clustering of refactoring
related questions. We also removed words containing
less than two characters.

The fifth step was mainly for normalization based on
lemmatization of words which reduces the noise in the
data by removing inflectional endings and to return the
base or dictionary form of a word, which is known as
the lemma [10].

Finally, we used an automated approach to determine the
vocabulary words that we will use as features for BOW
(Bag-of-words) representation. The technique consists
of calculating the portion of documents that contain a
specific word. Then, based on two thresholds we elim-
inated the very rare keyword that appears in less than
1% of the documents and the very frequent ones that
appear in more than 80% of the documents as used
in another similar study [94]. We translated the corpus
into a TF-IDF matrix. The dimension of the matrix is
M * N where M is the number of documents (105463),
and N is the number of words in the vocabulary (4872).

56366

The values in the matrix are calculated as TF * IDF:

,d
Matrix(d,w) = frequency(w. d)

IDF 1
number_of _words(d) *) (D
where: w is the corresponding word
d is the corresponding document
frequency(w, d) frequency of w in d
number_of words(d) number of words in d

d !
IDF(w) = log(_of _documents

1 + #_of _documents_that_contains_w

This TE-IDF matrix was used in the LDA model to cluster
the questions into topics.

IV. RESULTS
In this section, we summarize the results of the five research
questions.

A. RQI1. WHAT QUESTIONS AND ISSUES RELATED TO
REFACTORING ARE DISCUSSED BY DEVELOPERS ?

The LDA model identified six main topics discussed by
developers. A set of keywords identified each of these topics.
To better characterize each topic, we labeled it to match
the set of keywords identified by LDA. Table 3 shows the
six topics and keywords associated with them sorted by the
relevance score of the LDA model.

Most of the words identified by LDA for the first
topic are related to object creation: ‘“singleton,” “‘factory,”
“instance,” ‘“‘constructor’’ and ‘‘create.” For the second
topic, most of the words refer to parallel programming. This
topic includes words like message, request, server, thread and
observer. The third topic was related to model refactoring
with many keywords about UML diagrams, requirements,
and design issues. The fourth topic includes android and other

VOLUME 10, 2022

C. Abid et al.: What Refactoring Topics Do Developers Discuss? Large Scale Empirical Study Using Stack Overflow

IEEE Access

words related to user interface. In fact, it is normal that most
of the questions around Android apps are around refactoring
the Ul since it is the most crucial part in mobile applications.
The fifth topic, service-oriented architecture, includes words
like service, user layer, database, and architecture. The high
reusability of services in SOA architecture makes refactoring
very important to simplify the code and makes it easy to
understand. It also helps to achieve modularization at the
application level. Finally, the design pattern topic was the
last topic with mainly common words like design, pattern,
code, singleton, etc. The questions that fall in this topic deal
with code standard refactoring, specifically the application of
general design pattern to achieve high code quality.

We may highlight that the creational pattern is a specific
type of design pattern similar to well-known design pat-
terns like observer and decorator patterns. These patterns
were extensively discussed in the refactoring posts on Stack
Overflow.

Figure 3 shows the number of questions per dominating
topic: it includes questions with a higher probability than
0.5 to belong to a topic based on the LDA output. We notice
that the largest number of questions about refactoring is
dedicated to SOA architecture. The creational patterns also
have a high number of questions even if it is only a sub-type of
the design patterns. Although the number of questions about
parallel programming was initially small, there is a massive
growth in the number of questions asked during the last few
years about refactoring for parallel programming.

Figure 4 shows the distribution of the number of questions
per dominant topic. According to this figure, 79% of the
questions have a dominant topic, and more than 25% of them
have 0.8 probability of belonging to their dominating topic.
When we have a dominant topic for a question, it does not
mean that the question cannot belong to another topic with
small probability. Some questions without dominating topic
are more likely to belong to more than one topic.

B. RQ2. WHAT ARE THE MOST POPULAR TOPICS AMONG
THE QUESTIONS RELATED TO REFACTORING?

In order to assess popularity, we used four metrics. After
collecting all the questions related to that topic, we computed:

« the average number of views by exploring the ““View-
Count” attribute.

« the average number of comments using the Comment-
Count attribute.

« the average number of favorites using the FavoriteCount
attribute.

o the “Score” attribute which reflects the relevance of
a question to Stack Overflow users, to compute the
average score of this set of questions.

It is clear from Figure 5 that the creational pattern topic
has the largest average number of views which exceed SOA
refactoring despite a large number of questions around refac-
toring web services. This observation may lead to the con-
clusion that several of the SOA refactoring related questions

VOLUME 10, 2022

did not have a considerable number of views meaning not
all questions were relevant or important for refactoring of
SOA architecture. However, we still observed more than
1500 views for several of these questions. We have also
observed in Figure 5 that most the topics received the same
average of number comments and favorites which confirms
that all of them are important from practitioners’ perspective.

Although the number of questions related to models refac-
toring is not high, but we clearly see that these few questions
are very relevant to practitioners. For instance, the average
number of views of a question related to models refactoring
exceeds 2000 views which is high compared to the total
number of views on the large number of SOA refactoring
questions. However, this observation can be balanced based
on the number of questions asked per topic since the average
number of views may decrease when the number of questions
per topic are high (e.g. higher probability for redundancy).
Besides, it is clear that refactoring related to parallel pro-
gramming, and mobile/user-interface topics have the lower
popularity since they have the smallest average number of
views and the smallest average score compared to the others
topics.

C. RQ3. WHICH REFACTORING-RELATED TOPICS ARE THE
MOST DIFFICULT TO ANSWER?

We included the answers that are related to the selected
refactoring questions. These answers can be tagged as an
accepted answer or not. Stack Overflow gives the user who
asked a question the ability to accept only one of the answers.
To estimate the difficulty, we counted the number of users
that found an answer useful (based on the score attribute
of the answer) similar to other studies on mining Stack
Overflow [15], [19], [94].

We have defined three metrics to estimate difficulty. The
first metric is the rate of questions that do not have a relevant
answer. For the second metric, we computed the average
number of views for unanswered questions in the topic. For
the third metric, we calculated the average number of days
that are needed to get a relevant answer.

All the results are presented in Figure 6. The number of
unanswered question is highly correlated with the number
of questions. Thus we presented the ratio of unanswered
questions by the total number of questions to ensure a fair
comparison between the different topics. First, we can see
that most of the questions in a topic have a good percentage
of relevant answers. The largest percentage of questions that
do not have many relevant answers belong to the refactoring
of parallel programming. It may be explained by the chal-
lenges associated with making programs running on multi-
ple processors, which is not an easy task. This percentage
does not exceed 31% of the questions. We can check from
the results that design patterns have the smallest ratio of
questions without a relevant answer with a ratio of around
18%. The integration of design patterns into existing archi-
tectures using refactorings is not an easy task and requires
significant design changes.Thus, it could be challenging and

56367

IEEE Access

C. Abid et al.: What Refactoring Topics Do Developers Discuss? Large Scale Empirical Study Using Stack Overflow

TABLE 3. The 6 refactoring related topics with the 10 most important words in each topic.

Topic Words

Creational pattern

singleton, instance, method, factory, java, constructor, create, pattern, call, code

Parallel programming

message, server, observer, microservice, request, time, thread, java, client, connection,

architecture

performance
Models Refactor decorator, visitor, decorate, factory, co-evolution, re-design, objects, extract, UML
mobile/UI Android, view, button, image, presenter, design, page, HTML, text, color
SOA service, availability, model, coupling, micro-service, layer, repository, interface, database,

Design pattern

design, pattern, principles, hierarchy, reusability, extend

Models Refactor

Paralelel prog

Topic_category

design pattern

mobile/Ul

Creational pattern

FIGURE 3. Distribution of the number of questions per refactoring topic.

time-consuming for practitioners to understand and answer
these questions.

The same figure shows the average number of views for
questions that did not get a relevant answer. This metrics
can give us an insight about the difficulty as well. The ques-
tions that have no relevant answer got on average more than
200 views for all topics. Thus, it may mean that they are
important questions. The ones related to mobile/UI have on
average more than 300 views, but no user was able to give a
relevant answer which others find it useful. We can conclude
that even when a large number of developers accessed to
these questions, they find it challenging to answer refactoring
questions related to mobile and user interface or it may be an
indication that most of the developers viewing these questions
are not expert and community of Stack Overflow needs to pay
more attention to this kind of topics.

Another important aspect is the average number of days
to get a relevant answer to a question. We found that models
refactoring have the smallest duration compared to the other
topics with only 6 days based on Figure 6. The other values
are very similar as we can see that the topic that take the
longer time to answer is refactoring of SOA with an average
of 10 days to get arelevant answer to the question. In addition,
it took between 6 to 10 days to get a relevant answer for
the other topics. This means that in average developer does
not need to wait very long before getting an answer to their
questions. However, 10 days could be a long duration to get
an accepted answer for refactoring related questions. Thus,
many developers could have moved on and found another
solution or abandon the refactoring step because of this long
time to get a relevant answer.

56368

23655

20000

15000

Frequency

10000

5000
2588

.l
03 .

14950

3632 13708
7940
04 05

248
2280 0923
6879
0.6 0.8 0.9

07

FIGURE 4. The distribution of the number of questions in relation to the
probability of the dominant topic.

Finally, we presented the ratio of the average number of
answers to the average number of views. This metrics rep-
resents how many answers did the question get compared
to the number of views. When this metric is high, it means
that many developers can provide an answer to that specific
question. It is clear that more than 10% of the people viewing
design pattern topic answer that topic. The same observation
is valid for SOA architecture. However, developers seem
not very interested in answering questions around the model
refactoring topic.

D. RQ4. HOW THE INTERESTS OF DEVELOPERS ON
REFACTORING TOPICS CHANGE OVER TIME?

For this research question, we investigated the evolution of
the number of asked questions throughout the years. We cal-
culated the number of questions of each topic yearly and the
evolution is presented in Figure 7. This evolution is related to
different refactoring topics. It does not reflect the popularity
as a question can be viewed much more times in the future
compared to the year where it was asked.

It is clear that throughout the years from 2008 to 2011,
refactoring of SOA have seen a significant evolution in the
number of questions throughout the years but then there is
a very important decrease in the number of asked questions.
The same observation goes for the design patterns. One of
the reasons that could lead to this evolution is probably
because developers no longer need to ask questions since
they are already found their questions answered on Stack
Overflow. One important observation from this figure is
the evolution of refactoring for parallel programming, and
the number of questions is still increasing. Before 2016,

VOLUME 10, 2022

C. Abid et al.: What Refactoring Topics Do Developers Discuss? Large Scale Empirical Study Using Stack Overflow

IEEE Access

Average number of vi%g?

2000 4

1000

Average number of favorites 20
1.7 1.6

Average score 49
] 3.0

3

Paralelel prog
design pattern
mobile/UI
Creational pattern
Maodels Refactor

FIGURE 5. The four metrics used to estimate refactoring topics popularity.

The rate of questions without a relevant answer

[l
0.2 pis 048

0o -

Average number of views for questions without a relevant answer

e number of days to get a relevant answer
0y

mabilefUl

Paralelel prog
design pattern

[~
=]
=
L=
]
=
]
o
n
Y}
=]
=]
=

Creational pattern

FIGURE 6. The three used metrics to estimate the level of difficulty.

the number of yearly asked question for the refactoring of
parallel programming was less than both Mobile/UI and cre-
ational pattern. However, we can observe that in 2016 the
number of questions asked about refactoring for parallel pro-
gramming exceeded the refactoring of mobile app and user

VOLUME 10, 2022

interface. In 2017, it exceeded the number of questions that
are asked about creational design patterns. Thus, developers
are showing high interest recently to refactoring for parallel
programming.

5000
Topic_category
— (Creational pattern
4000 Maodels Refactor
—— Paralelel prog
— S04 |l
3000 1 —— design pattern
= mobile/Ul .
2000
1000
u e
2008 2010 012 014 016 018

CreationDate

FIGURE 7. The evolution of the number of questions by topic overtime.

V. IMPLICATIONS OF THIS STUDY
We summarize, in this section, the main implications out of
our study for researchers, educators and practitioners.

A. IMPLICATIONS FOR RESEARCHERS

Refactoring now expands beyond code-restructuring and tar-
gets different artefacts (architecture, model, requirements,
etc.) [14], [17], [23], [29], [30], [36], [38], [40], [45], [48],
[62], [68], [87], is pervasive in many domains beyond the
object-oriented paradigm (cloud computing, mobile, web,
etc.) [7], [32], [39], [57], [58], [66], [67], [88]-[90], is widely
adopted in industrial settings [25], [37], and the objectives
expand beyond improving design into other non-functional
requirements (e.g., improve performance, security, etc) [18],
[22], [23], [40], [44], [83], [93].

It is clear that the focus of the refactoring research
community nowadays goes beyond code transformation to
include, but not limited to, scheduling the opportune time
to carry refactoring [24], [S51], [79], [91], recommending
specific refactoring activities [21], [22], [24], [40], [41],
[43], [56], [61], [63], [69], [70], inferring refactorings from
the code [47], [48], [76], and testing the correctness of
applied refactorings [20], [50], [63]. Therefore, the refac-
toring research efforts are fragmented over several research
communities, various domains, and different objectives.

It is clear that there are many intersections between the
researchers and practitioner’s topics especially in emerg-
ing fields such as SOA, Mobile apps, model-driven engi-
neering, and parallel programming. The main surprising
outcome is that there are few discussions on Stack Over-
flow around refactoring for security purposes while it is
a growing research topic in academia. Another interesting
outcome is related to design patterns. While the academic
community is mainly interested in using refactoring to fix
anti-patterns, it is clear that practitioners are interested in

56369

IEEE Access

C. Abid et al.: What Refactoring Topics Do Developers Discuss? Large Scale Empirical Study Using Stack Overflow

integrating patterns using refactoring. The object-oriented
paradigm seems to be still a dominant area for refactoring
from both researchers and practitioners perspective especially
with the increasing interests for model/design refactorings.

This study shows that practitioners are not mainly focusing
on JAVA when asking questions on refactoring. However, the
current research trends on refactoring are focusing mainly
on JAVA. The practitioners are asking more questions on
Python while there is a little of tools support and research to
refactor Python code. Furthermore, most of existing research
studies on refactoring are focusing on the automation of this
process while the majority of questions on Stack Overflow
are not about automated tools for refactoring but around
bugs observed after manually applying refactorings. Thus, the
research community may focus more on providing automated
regression testing approaches to increase developers trust on
applied refactorings.

B. IMPLICATIONS FOR EDUCATORS

Based on the large number of questions asked by practitioners
on Stack overflow about refactoring, it is clear that educators
need to increase students’ awareness and expertise in the
evolution of software systems. When students graduate and
join the software industry they rarely build software systems
from scratch but often spend more time studying and mod-
ifying existing systems. Traditionally, students have had a
preconceived notion that evolution is a secondary concern.
In order to better prepare them for the challenges they will
face, we must invest in these curriculum innovations now.

We believe that this study will help educators shift through
what’s out there and determine the current issues in software
quality. They will be able to understand the importance of
refactoring and integrating it into education. This makes the
students’ education in software quality assurance (SQA) in
general and in refactoring in particular more efficient and up
to date.

While most of SQA courses focus mainly applying refac-
torings, this study show that practitioners are facing chal-
lenges beyond just the execution of refactorings to manage,
detect, prioritize and test the refactorings. Thus, educator
may think about training the current and next generation of
practitioners on the whole refactoring life cycle. Another
interesting observation from our study is the large amount
of questions about refactoring of Service Oriented Archi-
tectures. However, most of existing curricula focuses on
JAVA refactoring and Object Oriented design restructuring
in general. Thus, educators may consider introducing more
background and material related to micro-services migration
via refactoring.

C. IMPLICATIONS FOR PRACTITIONERS

Due to the growing complexity of software systems, the last
ten years have seen a dramatic increase and industry demand
for tools and techniques on software refactoring which is
confirmed in our study by the large number of refactoring
questions asked by practitioners on Stack overflow.

56370

Our study may help developers be more aware of the
importance of writing clean code that follow well defined
design patterns. This way, they will be able to prevent the
issues that other developers are facing. In addition, they’ll
be able to know the hot topics in refactoring and therefore
what to focus on their self-training efforts. We observed in our
study that practitioners are mainly performing refactorings
manually. Thus, it is important for them to try some recent
semi-automated refactoring tools or prototypes offered for
several programming languages rather than spending a lot of
energy on the time-consuming and risky manual refactoring.

Another observation is the important focus of develop-
ers on introducing design patterns which is an area widely
explored in refactoring research. Thus, practitioners may
identify some interesting research prototypes that can auto-
mated the integration of design patterns. The lack of a refac-
toring community infrastructure prevents practitioners from
using the state-of-the-art advances. They are only aware
of refactoring tools that are standard in widely-used IDEs.
There is a clear need for an effective communication plat-
form between practitioners and refactoring researchers to
identify relevant problems faced by the industry. Practition-
ers can upload a description of refactoring challenges and
provide feedback on existing refactoring tools proposed by
researchers.

VI. THREATS TO VALIDITY

Several threats can affect the validity of our results. The
first threat is related to the selection of the tags related to
refactoring. In fact, we may miss some important tags, but
we believe that using the current list of tags we were able to
generate an extensive list of questions from Stack Overflow.

The second threat is that not all questions have the appro-
priate tags since some people could have easily identified a
wrong tag to a specific question. Thus, it is possible that we
collected some irrelevant questions in our study.

In addition, it is possible that our results may not be
generalizable. In this study, we focused on Stack Overflow,
which is one of many Q&A websites such as Quora and
GitHub. Therefore, our results may not generalize to other
Q&A websites. In our future work, we’re planning to explore
other development communities like GitHub. We will also
consider other sources of data in our future work including
interviews with practitioners in industry.

In the experiments, we tried many configurations for the
LDA model by tuning the probability state of the model and
the number of topics. However, these parameters may impact
the quality of our results. As for the data cleaning, we can
probably introduce more stop_words to reduce the noise in
the vocabulary when identifying the refactoring topics.

We believe that the study of the popularity and difficul-
ties of topics is very subjective giving that there is no way
to get this measurement directly from the meta-data of the
questions. Therefore, we tried to use a combination of metrics
to answer these questions, and these metrics could be open to
several possible interpretations.

VOLUME 10, 2022

C. Abid et al.: What Refactoring Topics Do Developers Discuss? Large Scale Empirical Study Using Stack Overflow

IEEE Access

VII. RELATED WORK

A. MINING INFORMATION FROM STACK OVERFLOW
POSTS

Stack Overflow was created to help developers with com-
puter programming, but it is becoming a useful knowledge
repository for researchers. Therefore, several studies have
used Stack Overflow to get an insight into the different
questions discussed in practice [78]. Recent studies have
focused on mining issues addressed by developers and clus-
tering the related questions [11], [77], [94]. They all used the
LDA topic modeling techniques. Yang et al. [94] clustered
security related questions using a combination of LDA and
genetic algorithms. They highlighted the most difficult and
most popular security-related questions. Hassan et al. [11]
adopted LDA to analyze the topics that developers talked
about in software engineering, in general, and highlighted the
main popular trends in the field such as mobile computing.
Rosen et al. [77] addressed mobile specific questions and
they also used LDA to understand the main challenges faced
by mobile developers. Pinto et al. [72] performed and empir-
ical investigation of the top-250 most popular questions about
concurrent programming on Stack Overflow. They analyzed
the text of both questions and answers to extract the dominant
topics of discussion using a qualitative methodology. They
observed that even though some questions are related to
practical problems like fixing bugs etc., most of them are
related to understanding basic concepts. Jin et al. [35] pre-
sented a study of how gamification affects online community
members tendencies in terms of response time. They analyzed
the distribution gamification-influenced tendencies on Stack
Overflow. They defined metrics related to response time to
a question post. Results indicate that most members do not
undertake in such rapid response activities.

In the software design and refactoring domain,
Tian et al. [85] conducted a study on developers’ conception
of Architecture Smells by collecting and analyzing related
posts from Stack Overflow. They used 14 terms to extract
207 relevant posts. They used Grounded Theory method
to analyze the extracted posts and find out developers’
description of Architecture Smells and their causes. They
also collected the approaches and tools for detecting and
refactoring the different types of Architecture Smells, qual-
ity attributes affected by them, and difficulties in detecting
and refactoring Architecture Smells. In another preliminary
study, Choi et al. [19] used Stack Overflow to investigate
practitioner’s needs for clone detection and analysis and find
out whether code clone techniques and tools have met the
requirements of programmers. Tahir ef al. [82] investigated
how developers discuss code smells and anti-patterns in Stack
Overflow in order to understand their perceptions of these
design problems. They applied quantitative and qualitative
techniques to analyse posts containing terms related to code
smells and anti-patterns. They found out that developers use
Stack Overflow to ask for general assessments of code smells
or anti-patterns, rather than asking for refactoring solutions.
They also noticed that developers usually ask people to check

VOLUME 10, 2022

whether their code contain code smells/anti-patterns or not,
and therefore, Stack Overflow is often used as crowd-based
code smell/anti-pattern detector. Finally, Pinto et al. [73]
conducted a qualitative and quantitative study to categorize
questions from Stack Overflow about refactoring tools. They
presented flaws and desirable features in refactoring tools.

Even though all the studies mentioned above tried to
mine posts from Stack Overflow to address different prob-
lems faced by developers, none of them has looked at the
big picture of refactoring to identify the challenges related
to refactoring in general faced by practitioners and what
could be the current refactoring trends from the developers’
perspective.

B. EMPIRICAL STUDIES ON SOFTWARE REFACTORING
Empirical studies on software refactoring investigated
the way how developers are refactoring their code.
Murphy-Hill et al. [64] investigated how developers perform
refactorings. Examples of the exploited datasets are usage
data from 41 developers using the Eclipse environment and
information extracted from versioning systems. Among their
several findings, they show that developers often perform
floss refactoring, namely they interleave refactoring with
other programming activities, confirming that refactoring is
rarely performed in isolation.

Peruma e al. investigated the potential problems of apply-
ing the refactorings in practice and highlight the lack of a
clear guidance and a thorough explanation of the refactor-
ings. As a solution, this work identifies the dependencies
among different refactoring tasks to improve the refactoring
instruments typically used by the tool vendors. Contrary
to our approach, the work applies a different mechanism
to extract the questions using SOTorrent. Furthermore, the
study focuses the analysis on the refactoring-related ques-
tions for the accepted and non-accepted answers. It further
investigates the varying refactoring needs for different pro-
gramming languages and different disciplines/topics raised
within the Stack Overflow discussion which are different
research questions than the ones addressed in this paper.
In another study, Sagar, P.S. et Al. propose an approach to
build a machine learning model that predicts the refactorings
and their types by detecting patterns in metric variations
that helps automatically learn the type of refactoring to be
applied for a given commit which is a different scope than this
paper. Kim et al. [47] present a survey of software refactoring
with 328 Microsoft engineers to investigate when and how
they refactor code and developers’ perception towards the
benefits, risks, and challenges of refactoring. They show that
the major risk factor perceived by developers with regards to
refactoring is the introduction of bugs and one of the main
benefits they expect is to have fewer bugs in the future, thus
indicating the usefulness of refactoring for code components
exhibiting high fault-proneness. On top of that, 46% of the
developers said that they mostly refactor during bug fixes
and new features implementation. Other works on empiri-
cal studies for refactoring analyzed the relationship between

56371

IEEE Access

C. Abid et al.: What Refactoring Topics Do Developers Discuss? Large Scale Empirical Study Using Stack Overflow

refactoring and bugs [12], [42], [75], showing that refactoring
activities can be related to introducing bugs.

VIil. CONCLUSION

We performed, in this paper, the first large scale refac-
toring study on the most popular online Q&A forums for
developers, Stack Overflow. We used 89 tags to extract
105463 questions about refactoring. We used the Latent
Dirichlet Allocation (LDA) technique to generate the dis-
cussed topics in this repository. We found 6 main topics which
are “‘Creational pattern,” ““Parallel programming,” “Models
refactor,” “Mobile/UL,” “SOA,” and “Design pattern.” The
analysis of these topics provided various key insights about
the interests of developers related to refactoring such as the
most addressed quality issues, the domains where refactoring
is extensively discussed, the widely addressed anti-patterns,
and patterns. We have also investigated how the interests of
developers on refactoring topics change over the years.

In the future, we are planning to expand our data-set
to include all the Stack Overflow data available in the
“archive.org” website. We will also work on a survey with
practitioners from multiple programming domains to qualita-
tively evaluate the outcomes of the Stack Overflow analysis
performed in this paper.

REFERENCES

[1]1 Stack Exchange Creative Commons Data Now Hosted by the Internet
Archive. Accessed: Apr. 5, 2019. [Online]. Available: https://stacko
verflow.blog/2014/01/23/stack-exchange-cc-data-now-hosted-by-the-
internet-archive/

[2] Stack Exchange Data Dump. Accessed: Apr. 5, 2019. [Online]. Available:
https://archive.org/details/stackexchange

[3] M. Abebe and C.-J. Yoo, “Trends, opportunities and challenges of software
refactoring: A systematic literature review,” Int. J. Softw. Eng. Appl., vol. 8,
no. 6, pp. 299-318, 2014.

[4] J. AlDallal, “Identifying refactoring opportunities in object-oriented code:
A systematic literature review,” Inf. Softw. Technol., vol. 58, pp. 231-249,
Feb. 2015.

[5] J. Al Dallal and A. Abdin, “Empirical evaluation of the impact of object-
oriented code refactoring on quality attributes: A systematic literature
review,” IEEE Trans. Softw. Eng., vol. 44, no. 1, pp. 44-69, Jan. 2018.

[6] R. Alghamdi and K. Alfalqi, ““A survey of topic modeling in text mining,”
Int. J. Adv. Comput. Sci. Appl., vol. 6, no. 1, pp. 132-158, 2015.

[71 A. Ouni, M. Daagi, M. Kessentini, S. Bouktif, and M. M. Gammoudi,
“A machine learning-based approach to detect web service design
defects,” in Proc. IEEE Int. Conf. Web Services (ICWS), Jun. 2017,
pp. 382-391.

[8] V. Alizadeh and M. Kessentini, “Reducing interactive refactoring effort
via clustering-based multi-objective search,” in Proc. 33rd ACM/IEEE Int.
Conf. Automated Softw. Eng., Sep. 2018, pp. 464-474.

[9] V. Alizadeh, M. Kessentini, W. Mkaouer, M. Ocinneide, A. Ouni, and
Y. Cai, “An interactive and dynamic search-based approach to software
refactoring recommendations,” IEEE Trans. Softw. Eng., vol. 46, no. 1,
pp. 932-961, Sep. 2018.

[10] V. Balakrishnan and E. Lloyd-Yemoh, ““Stemming and lemmatization:
A comparison of retrieval performances,” Chalmers Univ., Goteborg,
Sweden, Tech. Rep. 38795, 2014.

[11] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? An analysis of topics and trends in stack overflow,” Empirical
Softw. Eng., vol. 19, no. 3, pp. 619-654, 2014.

[12] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and
O. Strollo, “When does a refactoring induce bugs? An empirical study,”
in Proc. IEEE 12th Int. Workshop Conf. Source Code Anal. Manipulation,
Sep. 2012, pp. 104-113.

56372

(13]

(14]

[15]

(16]

[17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

G. Bavota, A. D. Lucia, A. Marcus, and R. Oliveto, ‘‘Recommending refac-
toring operations in large software systems,” in Proc. Recommendation
Syst. Softw. Eng. Calgrary, Canada: Springer, 2014, pp. 387-419.

1. D. Baxter, A. Yahin, L. Moura, M. Sant’ Anna, and L. Bier, ““Clone detec-
tion using abstract syntax trees,” in Proc. Int. Conf. Softw. Maintenance,
Nov. 1998, pp. 368-377.

S. Beyer and M. Pinzger, “A manual categorization of Android app
development issues on stack overflow,” in Proc. IEEE Int. Conf. Softw.
Maintenance Evol., Sep. 2014, pp. 531-535.

O. Bjuhr, K. Segeljakt, M. Addibpour, F. Heiser, and R. Lagerstrom,
“Software architecture decoupling at Ericsson,” in Proc. IEEE Int. Conf.
Softw. Archit. Workshops (ICSAW), Apr. 2017, pp. 259-262.

V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komuravelli, J. Overbey,
P. Simmons, H. Sung, and M. Vakilian, “A type and effect system for
deterministic parallel Java,” ACM Sigplan Notices, vol. 44, pp. 97-116,
Jan. 2009.

Y. Cai, R. Kazman, C. Jaspan, and J. Aldrich, “Introducing tool-supported
architecture review into software design education,” in Proc. 26th Int.
Conf. Softw. Eng. Educ. Training (CSEE&T), May 2013, pp. 70-79.

E. Choi, N. Yoshida, R. G. Kula, and K. Inoue, ‘““What do practitioners ask
about code clone? A preliminary investigation of stack overflow,” in Proc.
IWSC, 2015, pp. 49-50.

M. O. Cinnéide, D. Boyle, and I. H. Moghadam, “‘Automated refactoring
for testability,” in Proc. IEEE 4th Int. Conf. Softw. Test., Verification
Validation Workshops, Mar. 2011, pp. 437-443.

M. D’Ambros, A. Bacchelli, and M. Lanza, “On the impact of design
flaws on software defects,” in Proc. 10th Int. Conf. Qual. Softw., Jul. 2010,
pp. 23-31.

D. Dig, “A refactoring approach to parallelism,” IEEE Softw., vol. 28,
no. 1, pp. 17-22, Jan. 2011.

D. Dig, C. Comertoglu, D. Marinov, and R. Johnson, “Automated detection
of refactorings in evolving components,” in Proc. ECOOP, vol. 4067,
2006, pp. 404-428.

B. Du Bois, S. Demeyer, and J. Verelst, “Refactoring—improving coupling
and cohesion of existing code,” in Proc. 11th Workshop Conf. Reverse
Eng., 2004, pp. 144-151.

M. Feathers, Working Effectively With Legacy Code. Upper Saddle River,
N1J, USA: Prentice-Hall, 2004.

M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzigeorgiou, “JDeodorant:
Identification and application of extract class refactorings,” in Proc. 33rd
Int. Conf. Softw. Eng., May 2011, pp. 1037-1039.

F. A. Fontana, R. Roveda, M. Zanoni, C. Raibulet, and R. Capilla, “An
experience report on detecting and repairing software architecture ero-
sion,” in Proc. 13th Workshop IEEE/IFIP Conf. Softw. Archit. (WICSA),
Apr. 2016, pp. 21-30.

M. Fowler, Refactoring: Improving the Design of Existing Code. Reading,
MA, USA: Addison-Wesley, 1999.

M. Fowler, Refactoring: Improving Design Existing Code. Reading, MA,
USA: Addison-Wesley, 1999.

H. Gall, K. Hajek, and M. Jazayeri, “Detection of logical coupling based
on product release history,” in Proc. Int. Conf. Softw. Maintenance, 1998,
pp. 190-197.

G. William Griswold, ‘“Program restructuring as aid to software mainte-
nance,” Ph.D. dissertation, Seattle, WA, USA, 1992.

H. Wang, M. Kessentini, T. Hassouna, and A. Ouni, “On the value of
quality of service attributes for detecting bad design practices,” in Proc.
IEEE Int. Conf. Web Services (ICWS), Jun. 2017, pp. 242-251.

Y. Higo, S. Kusumoto, and K. Inoue, “A metric-based approach to iden-
tifying refactoring opportunities for merging code clones in a Java soft-
ware system,” J. Softw. Maintenance Evol., Res. Pract., vol. 20, no. 6,
pp. 435461, Nov. 2008.

K. Hotta, Y. Higo, and S. Kusumoto, “Identifying, tailoring, and sug-
gesting form template method refactoring opportunities with program
dependence graph,” in Proc. 16th Eur. Conf. Softw. Maintenance Reeng.,
Mar. 2012, pp. 53-62.

Y. Jin, X. Yang, R. G. Kula, E. Choi, K. Inoue, and H. Iida, “Quick
trigger on stack overflow: A study of gamification-influenced member
tendencies,” in Proc. IEEE/ACM 12th Workshop Conf. Mining Softw.
Repositories, May 2015, pp. 434-437.

T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654-670, Jul. 2002.

J. Kerievsky, Refactoring to Patterns. Reading, MA, USA: Addison-
Wesley, 2004.

VOLUME 10, 2022

C. Abid et al.: What Refactoring Topics Do Developers Discuss? Large Scale Empirical Study Using Stack Overflow

IEEE Access

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

M. Kessentini, S. Vaucher, and H. Sahraoui, “Deviance from perfection is
a better criterion than closeness to evil when identifying risky code,” in
Proc. IEEE/ACM Int. Conf. Automated Softw. Eng., 2010, pp. 113-122.
M. Kessentini and H. Wang, ““Detecting refactorings among multiple web
service releases: A heuristic-based approach,” in Proc. IEEE Int. Conf. Web
Services (ICWS), Jun. 2017, pp. 263-272.

W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh, and A. Ouni,
“A cooperative parallel search-based software engineering approach
for code-smells detection,” [EEE Trans. Softw. Eng., vol. 40, no. 9,
pp. 841-861, Sep. 2014.

J. Kim, D. Batory, D. Dig, and M. Azanza, “‘Improving refactoring speed
by 10X,” in Proc. 38th Int. Conf. Softw. Eng., May 2016, pp. 1145-1156.
M. Kim, D. Cai, and S. Kim, “An empirical investigation into the role of
API-level refactorings during software evolution,” in Proc. 33rd Int. Conf.
Softw. Eng., May 2011, pp. 151-160.

M. Kim, M. Gee, A. Loh, and N. Rachatasumrit, “‘Ref-finder: A refactoring
reconstruction tool based on logic query templates,” in Proc. 18th ACM
SIGSOFT Int. Symp. Found. Softw. Eng., 2010, pp. 371-372.

M. Kim and D. Notkin, “Discovering and representing systematic code
changes,” in Proc. IEEE 31st Int. Conf. Softw. Eng., 2009, pp. 309-319.
M. Kim, V. Sazawal, and D. Notkin, “An empirical study of code clone
genealogies,” in Proc. 10th Eur. Softw. Eng. Conf. Held Jointly, 2005,
pp. 187-196.

M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactoring
challenges and benefits,” in Proc. ACM SIGSOFT 20th Int. Symp. Found.
Softw. Eng., 2012, p. 50.

M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of
refactoring challenges and benefits at Microsoft,” IEEE Trans. Softw. Eng.,
vol. 40, no. 7, pp. 633-649, Jan. 2014.

S. Kim and M. D. Ernst, “Prioritizing warning categories by analyzing
software history,” in Proc. 4th Int. Workshop Mining Softw. Repositories
(MSR: ICSE Workshops), May 2007, p. 27.

S. Lee, G. Bae, H. S. Chae, D.-H. Bae, and Y. R. Kwon, ‘“Automated
scheduling for clone-based refactoring using a competent GA,” Softw.,
Pract. Exper., vol. 41, no. 5, pp. 521-550, Apr. 2011.

Y. Lin and D. Dig, “CHECK-THEN-ACT misuse of Java concurrent col-
lections,” in Proc. IEEE 6th Int. Conf. Softw. Test., Verification Validation,
Mar. 2013, pp. 164-173.

Y. Lin and D. Dig, “A study and toolkit of CHECK-THEN-ACT idioms of
Java concurrent collections,” Softw. Test., Verification Rel., vol. 25, no. 4,
pp. 397-425, Jun. 2015.

M. Linares-Vasquez, B. Dit, and D. Poshyvanyk, “An exploratory analysis
of mobile development issues using stack overflow,” in Proc. 10th Work-
shop Conf. Mining Softw. Repositories (MSR), May 2013, pp. 93-96.

H. Liu, G. Li, Z. Ma, and W. Shao, ““Scheduling of conflicting refactorings
to promote quality improvement,” in Proc. IEEE/ACM Int. Conf. Autom.
Softw. Eng., 2007, pp. 489-492.

Y. Liu, Z. Liu, T.-S. Chua, and M. Sun, “Topical word embeddings,” in
Proc. AAAI Conf. Artif. Intell., 2015, pp. 2418-2424.

E. Loper and S. Bird, “NLTK: The natural language toolkit,” 2002,
arXiv:cs/0205028.

R. Marinescu, “Detection strategies: Metrics-based rules for detect-
ing design flaws,” in Proc. 20th IEEE Int. Conf. Softw. Maintenance,
Sep. 2004, pp. 350-359.

M. Kessentini, H. Wang, J. T. Dea, and A. Ouni, “Improving web services
design quality using heuristic search and machine learning,” in Proc. [EEE
Int. Conf. Web Services (ICWS), Jun. 2017, pp. 410—419.

M. Daagi, A. Ouniy, M. Kessentini, M. M. Gammoudi, and S. Bouktif,
“Web service interface decomposition using formal concept analysis,” in
Proc. IEEE Int. Conf. Web Services (ICWS), Jun. 2017, pp. 171-180.

H. Melton and E. Tempero, ‘“‘Identifying refactoring opportunities by
identifying dependency cycles,” in Proc. 29th Australas. Comput. Sci.
Conf., vol. 48, 2006, pp. 35-41.

M. Misbhauddin and M. Alshayeb, ‘““UML model refactoring: A systematic
literature review,” Empirical Softw. Eng., vol. 20, no. 1, pp. 206-251,
Feb. 2015.

M. W. Mkaouer, M. Kessentini, S. Bechikh, K. Deb, and M. O Cinnéide,
“Recommendation system for software refactoring using innovization and
interactive dynamic optimization,” in Proc. 29th ACM/IEEE Int. Conf.
Automated Softw. Eng., Sep. 2014, pp. 331-336.

N. Moha, Y. G. Gueheneuc, L. Duchien, and A. F. L. Meur, “DECOR:
A method for the specification and detection of code and design smells,”
IEEE Trans. Softw. Eng., vol. 36, no. 1, pp. 20-36, Jan. 2010.

VOLUME 10, 2022

[63]
[64]
[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

(73]

[74]

[75]

[76]

(77]

(78]

(791

[80]

(81]

(82]

(83]

(84]

(85]

(86]

E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” in Proc. IEEE 31st Int. Conf. Softw. Eng., 2009, pp. 287-297.
E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and how
we know it,” IEEE Trans. Softw. Eng., vol. 38, no. 1, pp. 5-18, 2012.

F. William Opdyke, ‘““Refactoring object-oriented frameworks,” Ph.D. dis-
sertation, Champaign, IL, USA, 1992.

A. Ouni, R. Gaikovina Kula, M. Kessentini, and K. Inoue, ‘“Web service
antipatterns detection using genetic programming,” in Proc. Annu. Conf.
Genetic Evol. Comput., Jul. 2015, pp. 1351-1358.

A. Ouni, M. Kessentini, K. Inoue, and M. O. Cinnéide, ‘‘Search-based web
service antipatterns detection,” IEEE Trans. Services Comput., vol. 10,
no. 4, pp. 603-617, Jul. 2015.

A. Ouni, M. Kessentini, and H. Sahraoui, ““Search-based refactoring using
recorded code changes,” in Proc. 17th Eur. Conf. Softw. Maintenance
Reengineering, Mar. 2013, pp. 221-230.

A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum, ‘Maintain-
ability defects detection and correction: A multi-objective approach,”
Automated Softw. Eng., vol. 20, no. 1, pp. 47-79, 2012.

A. Ouni, M. Kessentini, H. Sahraoui, K. Inoue, and K. Deb, ‘“Multi-criteria
code refactoring using search-based software engineering: An industrial
case study,” ACM Trans. Softw. Eng. Methodol., vol. 25, no. 3, pp. 1-53,
Jun. 2016.

C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “‘Crowd documen-
tation: Exploring the coverage and the dynamics of API discussions on
stack overflow,” Georgia Inst. Technol., Atlanta, GA, USA, Tech. Rep.
1482-004, 2012.

G. Pinto, W. Torres, and F. Castor, “A study on the most popular questions
about concurrent programming,” in Proc. 6th Workshop Eval. Usability
Program. Lang. Tools, Oct. 2015, pp. 39-46.

G. H. Pinto and F. Kamei, ‘““What programmers say about refactoring tools:
An empirical investigation of stack overflow,” in Proc. ACM Workshop
Workshop Refactoring Tools, 2013, pp. 33-36.

N. Rachatasumrit and M. Kim, “‘An empirical investigation into the impact
of refactoring on regression testing,” in Proc. 28th IEEE Int. Conf. Softw.
Maintenance (ICSM), Sep. 2012, pp. 357-366.

J. Ratzinger, T. Sigmund, and H. C. Gall, “On the relation of refactorings
and software defect prediction,” in Proc. Int. Workshop Mining Softw.
Repositories, 2008, pp. 35-38.

(Jul. 2014). Educational Resource for C# Parallel Programmers. [Online].
Available: http://learnparallelism.net

C. Rosen and E. Shihab, “What are mobile developers asking about?
A large scale study using stack overflow,” Empirical Softw. Eng., vol. 21,
pp. 1192-1223, Jun. 2016.

A. K. Saha, R. K. Saha, and K. A. Schneider, “A discriminative model
approach for suggesting tags automatically for stack overflow ques-
tions,” in Proc. 10th Workshop Conf. Mining Softw. Repositories (MSR),
May 2013, pp. 73-76.

D. Sahin, M. Kessentini, S. Bechikh, and K. Deb, “Code-smell detection
as a bilevel problem,” ACM Trans. Softw. Eng. Methodol., vol. 24, no. 1,
pp. 144, Oct. 2014.

S. Singh and S. Kaur, “A systematic literature review: Refactoring for
disclosing code smells in object oriented software,” Ain Shams Eng.
J., vol. 9, no. 4, pp. 2129-2151, Dec. 2018.

G. Soares, R. Gheyi, and T. Massoni, “Automated behavioral testing of
refactoring engines,” IEEE Trans. Softw. Eng., vol. 39, no. 2, pp. 147-162,
Feb. 2013.

A. Tahir, A. Yamashita, S. Licorish, J. Dietrich, and S. Counsell, “Can you
tell me if it smells: A study on how developers discuss code smells and
anti-patterns in stack overflow,” in Proc. 22nd Int. Conf. Eval. Assessment
Softw. Eng., Jun. 2018, pp. 68-78.

A. Telea and L. Voinea, “Visual software analytics for the build opti-
mization of large-scale software systems,” Comput. Statist., vol. 26, no. 4,
pp. 635-654, Dec. 2011.

R. Terra, M. T. Valente, K. Czarnecki, and R. S. Bigonha, ““Recommending
refactorings to reverse software architecture erosion,” in Proc. 16th Eur.
Conf. Softw. Maintenance Reeng., Mar. 2012, pp. 335-340.

F. Tian, P. Liang, and M. A. Babar, “How developers discuss architecture
smells? An exploratory study on stack overflow,” in Proc. IEEE Int. Conf.
Softw. Archit. (ICSA), Mar. 2019, pp. 91-100.

T. Tourwe and T. Mens, ““Identifying refactoring opportunities using logic
meta programming,” in Proc. 7th Eur. Conf. onSoftware Maintenance
Reeng., 2003, pp. 91-100.

56373

IEEE Access

C. Abid et al.: What Refactoring Topics Do Developers Discuss? Large Scale Empirical Study Using Stack Overflow

[87] N. Tsantalis and A. Chatzigeorgiou, ““Identification of move method refac-
toring opportunities,” IEEE Trans. Softw. Eng., vol. 35, no. 3, pp. 347-367,
May 2009.

[88] H. Wang, M. Kessentini, and A. Ouni, “Bi-level identification of web ser-
vice defects,” in Proc. Int. Conf. Service-Oriented Comput. Paris, France:
Springer, 2016, pp. 352-368.

[89] H. Wang, M. Kessentini, and A. Ouni, “Prediction of web services
evolution,” in Proc. Int. Conf. Service-Oriented Comput. Tokyo, Japan:
Springer, 2016, pp. 282-297.

[90] H. Wang, A. Ouni, M. Kessentini, B. Maxim, and W. 1. Grosky, ‘“Iden-
tification of web service refactoring opportunities as a multi-objective
problem,” in Proc. IEEE Int. Conf. Web Services (ICWS), Jun. 2016,
pp. 586-593.

[91] L. Xiao, Y. Cai, and R. Kazman, “Titan: A toolset that connects software
architecture with quality analysis,” in Proc. 22nd ACM SIGSOFT Int.
Symp. Found. Softw. Eng., Nov. 2014, pp. 763-766.

[92] L. Xiao, “Quantifying architectural debts,” in Proc. 10th Joint Meeting
Found. Softw. Eng., Aug. 2015, pp. 1030-1033.

[93] A. Yamashita and L. Moonen, “Do developers care about code smells? An
exploratory survey,” in Proc. 20th Workshop Conf. Reverse Eng. (WCRE),
Oct. 2013, pp. 242-251.

[94] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security
questions do developers ask? A large-scale study of stack overflow posts,”
J. Comput. Sci. Technol., vol. 31, pp. 910-924, Sep. 2016.

CHAIMA ABID is currently pursuing the Ph.D.
degree with the Intelligent Software Engineering
Group, University of Michigan—Dearborn, under
the supervision of Dr. Marouane Kessentini. Her
Ph.D. project is concerned with the application
of intelligent search and machine learning in
different areas, such as web services, refactor-
ing and security. Her current research interests
are search-based software engineering, web ser-
vices, refactoring, security, data analytics, and
software quality.

KHOULOUD GAALOUL received the Ph.D.
degree from the University of Luxembourg. She
was a Postdoctoral Researcher at the SnT Cen-
tre for Security, Reliability, and Trust, University
of Luxembourg. She is currently a Postdoctoral
Researcher with the ISELaboratory, University
of Michigan—Dearborn under the supervision of
Dr. Marouane Kessentini. Her research interests
include model-based software development and
analysis of cyber-physical systems, search-based
testing, and machine learning. She has been conducting her research in close
collaboration with industry partners in the aerospace sector.

56374

MAROUANE KESSENTINI received the Ph.D.
degree from the University of Montreal, Canada,
in 2012. He is currently a Full Professor at Oakland
University. Prior to joining Oakland University,
in 2022, he is currently a Tenured Associate
Professor. He received several grants from both
industry and federal agencies and published over
110 papers in top journals and conferences. He has
several collaborations with industry on the use

) of computational search, machine learning, and
evolutionary algorithms to address software engineering and services com-
puting problems. He was a recipient of the Prestigious 2018 President of
Tunisia Distinguished Research Award, the University Distinguished Teach-
ing Award, the University Distinguished Digital Education Award, the Col-
lege of Engineering and Computer Science Distinguished Research Award,
four best paper awards, and his Al-based software refactoring invention,
licensed and deployed by industrial partners, is selected as one of the top
eight inventions at the University of Michigan for 2018 (including the three
campuses), among over 500 inventions, by the UM Technology Transfer
Office.

VAHID ALIZADEH (Graduate Student Member,
IEEE) received the Ph.D. degree from the Intel-
ligent Software Engineering Group, University of
Michigan. He is currently a Tenure Track Assistant
Professor at DePaul University, Chicago, IL, USA.
His Ph.D. project is concerned with the applica-
tion of intelligent search and machine learning in
different software engineering areas, such as refac-
toring, testing, and documentation. His current
research interests include search-based software
engineering, refactoring, artificial intelligence, data analytics and software
quality.

VOLUME 10, 2022

