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Abstract—In this study, a machine learning based method is
proposed for creating synthetic eventful phasor measurement
unit (PMU) data under time-varying load conditions. The pro-
posed method leverages generative adversarial networks to cre-
ate quasi-steady states for the power system under slowly-vary-
ing load conditions and incorporates a framework of neural or-
dinary differential equations (ODEs) to capture the transient be-
haviors of the system during voltage oscillation events. A numer-
ical example of a large power grid suggests that this method
can create realistic synthetic eventful PMU voltage measure-
ments based on the associated real PMU data without any
knowledge of the underlying nonlinear dynamic equations. The
results demonstrate that the synthetic voltage measurements
have the key characteristics of real system behavior on distinct
time scales.

Index Terms—Synthetic phasor measurement unit Data, Gen-
erative adversarial networks, Neural ordinary differential equa-
tions.

I. INTRODUCTION

VER the past decade, thousands of phasor measure-

ment units (PMUs) have been deployed in backbone
transmission systems in North America and abroad. This en-
ables improved monitoring and control of the power system
dynamics at considerably higher resolutions than previously
possible. Transient dynamic data recorded by PMUs are of
particular value to the research community for distinct re-
search interests such as real-time monitoring, control, and
protection. Although machine learning (ML) based methods
have been proposed for a wide range of tasks such as those
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in [1]-[4], the practical development of ML-based methods
for real cases using real eventful PMU data is obstructed by
limited data availability, which is mainly attributed to two
reasons: (D the real operational data of power grids are typi-
cally confidential and mostly prevented from being publicly
available because of strict policies regarding critical energy/
electric infrastructure information; 2 given the reliability
and stability of power grids, high-impact events such as sys-
tem-wide voltage oscillation are rarely observed in real
PMU data, and even if such events are observed, they are
not often labeled.

Therefore, it is critical for public researchers to create a
massive amount of realistic eventful PMU data to train, test,
and calibrate data-driven methods that can be applied to real
cases. Although researchers have recently contributed to the
creation of datasets based on large-scale realistic synthetic
grid models [5] for analysis, such as macroscopic energy
portfolio transitions [6], [7] and major event reproduction
[8], the value of real eventful PMU data cannot be exploited
by existing methods that generate data by simulation. Other
recent studies have contributed to the development of ML-
based methods for generating power system data, such as
load profile generation [9], [10], renewable scenario genera-
tion [11], and eventful PMU generation [12], [13], and have
proposed potential uses for synthetic PMU data, such as dis-
turbance classification with improved accuracy [13], load
forecasting, and optimal power flow [10]. However, several
gaps remain in existing work regarding the creation of a
massive amount of realistic large-scale eventful PMU data at
multiple time scales and with arbitrary lengths. First, the pri-
or success of PMU data generation methods in small-scale
Institute of Electrical and Electronics Engineers (IEEE) stan-
dard systems may not meet the demand for synthetic data
based on real PMU datasets. Second, the short horizon of
synthetic data limits the generalization of their applications.
Finally, the lack of incorporation of time-varying load condi-
tions may undermine the fidelity of long-length synthetic
PMU data. Moreover, researchers [14] recently demonstrated
that the general state-of-the-art methods for generating time
series [15]-[18] developed in the ML community are not ca-
pable of creating synthetic PMU time series with good diver-
sity and fidelity. This is because of the high dimensionality
of the data and the need to model physical-based constraints.
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To address these challenges, we propose a method for gen-
erating eventful PMU data based on limited real data that le-
verages generative adversarial networks (GANSs) to create
quasi-steady states for the power system under time-varying
load conditions and utilizes neural ordinary differential equa-
tions (ODEs) to capture the transient behaviors of the sys-
tem during voltage oscillation events. This method is poten-
tially generalizable to other real power systems. We separate-
ly validate the fidelity of the synthetic load and voltage oscil-
lation data from various perspectives.

The contributions of this paper are summarized as follows.

1) Generation of data-driven eventful PMU measurements.
The proposed method for generating eventful PMU voltage
measurements can create realistic-looking PMU streams that
capture the patterns of load changes and system oscillations
over distinct time scales, of which the fidelity and scalability
are demonstrated for a large-scale real dataset.

2) Efficient data generation algorithm. The proposed meth-
od achieves an efficient learning process by decoupling dis-
tinct time scales separately and leveraging the low-rank prop-
erty of high-dimensional datasets.

The remainder of this paper is organized as follows. Sec-
tion II introduces the problem formulation for the task of cre-
ating synthetic PMU data using ML. Section III briefly re-
views the basic concepts of the GAN and neural ODE mod-
el adopted in this study. Section IV proposes a method for
creating eventful PMU data under time-varying load condi-
tions. Section V presents a case study using a real dataset. Fi-
nally, Section VI draws conclusions and plans for future work.

II. PROBLEM FORMULATION

In this section, we present mathematical formulations for
the task of generating eventful PMU data. Here, we only
have access to the power flow model of a large-scale real
system and no knowledge of the dynamic model. We assume
that the created multi-time-scale PMU measurements are a
linear combination of the steady-state voltage and voltage os-
cillation, which are determined by the pattern of changes in
the load and the nature of the system dynamics, respectively.
Therefore, the task is separated into two subtasks: (D the
generation of steady-state voltage measurements and (2) the
generation of voltage oscillation measurements. We further
discuss the challenges and propose the corresponding instruc-
tions for the method design.

A. Generation of Steady-state Voltage Measurements

Consider a set of historical PMU measurements including
voltage and current measurements. We denote the voltage
measurement matrix V5 as:

v v e T
pu| V7 "
VIV e VR

where V5 is the voltage at PMU j at time /AT, and AT is
the sampling period; N is the number of PMUs; andM is the
number of time steps.

We assume that the voltage measurements are collected

when the system is in a quasi-steady state. The task for gen-
erating steady-state voltage measurements aims to develop a
data creation algorithm using the real samples V%% such that
the synthetic multichannel time-series data V,@S,X y» containing
N measurement channels over M’ arbitrary time steps, exhib-
it similar properties as those of the historical data, such as
the slowly-varying pattern attributed to changes in the load.

B. Generation of Voltage Oscillation Measurements

We denote the voltage oscillation measurement matrix as
Vo with the same definition, which is collected under event-
ful system conditions. We assume that V% can be expressed

by a linear combination of the equilibrium voltage v and

voltage oscillation F°5.
yos—posy p* 2
The task for generating voltage oscillation measurements
aims to learn the pattern of the voltage oscillation ¥°° using
real samples V' such that the created synthetic time-series
data I},S,SX v containing N measurement channels over M’ ar-
bitrary time steps, exhibit realistic properties such as the de-
caying periodic oscillation determined by the dynamic char-
acteristics of the system and the low rank due to the high co-
herency throughout the system.

C. Challenges

Although we separate the task for generating PMU mea-
surement data into two subtasks, two key challenges still
need to be resolved for ML-based synthetic PMU data gener-
ation approaches: () enabling an ML-based data generation
method to efficiently learn from a high-dimensional dataset
and @ guaranteeing that the created PMU data are meaning-
ful in terms of complying with physical laws. The remainder
of this subsection discusses our method for addressing these
challenges and describes the resulting algorithm design.

1) Efficient Creation of High-dimensional Data

The dimensions of the time-series data M and N are non-
trivial in the context of PMU data generation. A high dimen-
sionality may render the training process intractable and de-
grade the performance of the generative algorithms. There-
fore, the proposed method should address these challenges
from both temporal and spatial perspectives. First, the pro-
posed method can decompose a long time series into multi-
ple time resolutions and separately learn the temporal corre-
lations of distinct time scales. Second, the proposed method
can reduce the order of high-dimensional measurements by
utilizing existing low-rank characteristics, which are attribut-
ed to a strong spatial correlation.

2) Data Fidelity

As real PMU measurements comply with physical laws,
data fidelity, one of the main criteria for synthetic data quali-
ty, is another challenge. It requires Kirchhoff's laws to be sat-
isfied by the synthetic data at each snapshot and that the
evolving synthetic time series follow the characteristics of
the dynamics of the power system. For the first requirement,
the proposed method can create synthetic load profiles and
calculate synthetic voltage measurements via power flow
simulation to automatically guarantee Kirchhoff's laws. For
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the second requirement, the method can learn fast oscillation
patterns using an ML model that embeds the ODE format.

III. BASIC CONCEPTS OF GAN AND NEURAL ODE MODEL

A. Review of GAN

GAN:S, first proposed in [19], have now arguably become
one of the most popular and successful deep generative mod-
els in multiple fields and disciplines [20]-[22].

The two key models of a GAN, the generative model
(generator) G and discriminate model (discriminator) D, are
implemented by neural networks, which are iteratively updat-
ed by optimizing the objective function J as:

min max J= B (In(D(0)+ B (n(-DGE))  (3)

where x and z are the real data samples and random noise
sampled from a predefined distribution, respectively; and E( -
) is an expectation function.

Additionally, another variant of a GAN [23] implements
conditional data generation by modifying the objective func-
tion to.

min max 7= E (n(D(x. )+ E (n(=DGEM) (4
where y is a label representing the category of interests.

B. Review of Neural ODEs

The neural ODE model [24] is widely used for time-series
modeling and regression for irregular time series. It compris-
es two key components: a neural network and an ODE solv-
er. Instead of specifying a discrete sequence of hidden lay-

ers, this model parameterizes the derivative of a state using
a neural network f,. It can be trained by supervised learning

to minimize a scalar-valued loss function £(s) as follows:

2

>

=t

min £(s)= )

(i (sO)Mdr+s(t,)=s0) |

L=t
where | jnfe/(s(r))dr+s(t0) is the estimated state at time #; s(¢)

is the result of measurements at time #; and f, is the function

representing a neural network parameterized by 6, which in-
dicates how the measurements evolve along the timeline.

IV. PROPOSED METHOD FOR CREATING EVENTFUL PMU
DATA UNDER TIME-VARYING LOAD CONDITIONS

We assume that the multi-time-scale eventful PMU mea-
surements are a linear combination of steady-state voltage
measurements and voltage oscillation measurements, which
are determined by the pattern of changes in the slowly-vary-
ing load and the nature of the fast-varying system dynamics,
respectively. With this assumption, we separate the eventful
PMU data generation task into two subtasks. The first aims
to create realistic time-varying load profiles and then esti-
mate the steady-state voltage measurements via a power
flow simulation based on the obtained system model. The
second subtask aims to synthesize realistic voltage oscilla-
tion profiles that follow the periodic patterns of the real tran-
sient dynamics of the system. With such an instructive prin-
ciple, a novel algorithm that generates two-stage PMU data
using a GAN [19] and neural ODEs [24] is proposed, as

shown in Fig. 1.
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Fig. 1. Proposed method incorporating GAN and neural ODE models. (a) Training process of the GAN model for synthetic load data that is the input of

simulation for steady-state voltage measurements. (b) Training process of the Neural ODE model for synthetic voltage oscillation measurements. (c) Genera-
tion of entire synthetic voltage measurements by the trained GAN and Neural ODE models.

In Fig. 1(a), the synthetic steady-state voltage measure-
ments are simulated using synthetic load data generated by
the trained multiresolution GAN model. In Fig. 1(b), the syn-
thetic voltage oscillation measurements are generated by the

neural ODE model that learns the system dynamics in the
ODE format. Here, fis a neural network function. In Fig. 1
(c), the trained models G and f can be assembled to generate
synthetic eventful PMU data. In the training process, the
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GAN model is trained to create synthetic time-varying load
profiles to estimate the simulation-based steady-state voltage
measurements, whereas the neural ODE model is trained to
generate a voltage oscillation with the limited real eventful
voltage measurements as the training data. In the data cre-

ation process, we combine the well-trained models G and f

to generate eventful PMU data with an arbitrary length un-
der the given synthetic time-varying load conditions. The
proposed method is feasible as long as the number of syn-
thetic variables is less than the number of independent vari-
ables in the algebraic equations that are mainly derived from
Kirchhoff's laws. In other words, this generation framework
is compatible with the synthesis of voltage or current mea-
surements. In this paper, we only show the case of voltage
measurement generation to avoid verbosity.

The remainder of this section introduces the detailed algo-
rithms for (D) the generation of steady-state voltage measure-
ments that consists of GAN-based load profile generation
and simulation-based estimation of the steady-state voltage
measurements and (@) the generation of voltage oscillation
measurements that leverages neural-ODE-based time-series
learning.

A. Generation of Steady-state Voltage Measurements

The task for generating steady-state voltage measurements
consists of two steps: (D the generation of a GAN-based
multiresolution load profile [9]; and (2) simulation-based esti-
mation of the steady-state voltage under synthetic time-vary-
ing load conditions.

1) GAN-based Load Profile Generation

We use the algorithm for generating a multiresolution bus-
level load profile proposed in [9]. This algorithm aims to de-
velop a scheme to generate realistic time-series load data
varying in length from a few minutes to a year and at vary-
ing resolutions from one sample per week to one sample per
minute. We train independent generative models to capture
the characteristics of these load profiles via a data down-
sampling and aggregation process at different levels, which
is summarized in the following steps.

1) Compute the power consumption of different load bus-
es using PMU voltage and current measurements.

2) Down-sample the load data into multiple time scales
and resolutions, including hour-long profiles at two samples
per minute, week-long profiles at one sample per hour, and
year-long profiles at one sample per week.

3) Train a generative model for the load profiles at each
time scale and resolution, which is implemented by the con-
ditional GAN in Algorithm 1, where V, and V, calculate

the gradients with respect to parameters 6, and 6, respec-
tively, and RMSProp represents a root mean squared propa-
gation function.
2) Simulation-based Estimation of Steady-state Voltage Mea-
Surements

Using the power flow simulation model accompanied by
the dataset, we estimate the steady-state voltage measure-
ments under certain load conditions by performing a power
flow simulation at every time step. Given one synthetic load
profile, the power flow simulation is repeatedly performed at

Algorithm 1: algorithm for generating GAN-based bus-level load profile

Require: historical load data at a certain time scale X, associated labels Y,
random noise data Z, learning rate a, batch size m, initial parameter 6,,
for the model D, and initial parameter 0 for the model G

while 6, and 6 not converged

m
i=

Sample batch {(xi,yi)} . from X and Y
Sample batch {(z,,y,)}" | from Z and ¥

#Update the model D using gradient descent

m

1 m
80, Vo, | = 2 D03+ 2D(GE,)
i=1 i=1

Op <« 0p—a-RMSProp(0,.g,,)
#Update the model G using gradient descent
| o
&0, Vo, = 5y 2D(GE51)
i=1
0« 05—a-RMSProp(0;.g,,)

end while

each time step such that all system loads and the generation
are scaled by the per-unit value of the load profile at the
snapshot. Here, we admit that generation dispatch under dif-
ferent load conditions is simple without incorporating factors
such as power markets and planned outages, which require
further investigation but are outside the scope of this paper.

In summary, we generate steady-state voltage measure-
ments in two steps. By leveraging a model that generates
well-trained load profiles, we first generate a massive num-
ber of realistic load profiles during a certain time period that
have a similar pattern but exhibit diversity. By assigning syn-
thetic load profiles to the load buses in the simulation model
and proportionally scaling the generation dispatch, we obtain
a massive number of steady-state voltage measurements at
different time scales and resolutions via power flow simula-
tion.

B. Generation of Voltage Oscillation Measurements

Inspired by the data-driven system identification method
SINDy [25], the method for learning the nonlinear dynamics
consists of modular steps including decomposition, feature
extraction, and time-series learning and leverages neural net-
works to learn the oscillation pattern of the extracted low-di-
mensional feature time series, as shown in Fig. 2.

Moving

Real

Average PCA Voltage Training
Eventful EVo_:?sg_e Oscillation Neural ODE
Voltage quitforium Features
Voltage PCA Voltage

Oscillation

Oscillation Features

Synthetic Voltage
Oscillation Feature

Diagram of training the Neural ODE model for generating voltage

High-dimensional Low-dimensional

Fig. 2.
oscillation measurements.

The details are summarized in the following steps and for-
mally presented in Algorithm 2, where 2 calculates the gra-
dient with respect to parameters 0, f\,, is @ moving average
function that returns the average value and residual of time

series in a moving window, and F returns the intergal of a
function over using an ODE solver.
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Algorithm 2: algorithm for generating voltage oscillation measurements

Require: eventful voltage measurements ¥, reduced principle component
analysis (PCA) approximation rank r, batch size m, learning rate a, loss
function £, and initial parameter ¢, for model f

# Decomposition

(7. D fua )

# Dimension reduction

Z <« PCAV,r)

Z < PCA(V,r)

# Train time-series learning model
while 0, not converged

Sample batch {(Z,Z)}Zl that are segments from Z and Z
Generate synthetic data

2}« Fos(fy 20 Z:)i=1,2, .om
- >e2,.2)

0«0~ o RMSProp(0,, g”/)

g0, V,,

end while

1) Decomposition

To decompose the original voltage measurements into the
equilibrium voltage 7 and voltage oscillation V, the moving
average method is first used to process the original voltage
measurements, where the average voltage calculated in the
moving window is defined as the equilibrium voltage and
the residual is defined as the voltage oscillation.

2) Feature Extraction

To implement feature extraction, principal component anal-
ysis (PCA) method is used to process the voltage oscillation
¥ and equilibrium voltage ¥ to obtain the reduced-order fea-
tures Z and Z. Here, the underlying assumption is that the
characteristics of Z and Z have a one-to-one correspondence
with the original measurements ¥ and V. The PCA method
uses the parameter r to determine the number of principal
components to be retained, which also indicates the reduced
rank of the approximated data after reconstruction. We select
the 7 principal components with the highest variances as the
feature time series such that these components can explain at
least 95% of the variability in the original measurements.

3) Oscillation Time Series Modeling

We assume that the equilibrium voltage is uniquely deter-
mined by the load conditions. The task of generating voltage
oscillations under time-varying load conditions is thus equiv-
alent to generating voltage oscillations when the equilibrium
voltage varies. Therefore, we train a neural ODE model f to
learn the oscillation pattern of the low-dimensional features
Z at the corresponding equilibrium Z.

In summary, given the voltage oscillation measurements
calculated by the moving average method, we first perform
order reduction to improve the computational efficiency and
reduce the model complexity and then leverage the neural
ODE model to learn the underlying dynamic behavior of the
extracted feature time series. As the synthetic steady-state
voltage measurements are within the varying equilibrium,
we can create a massive number of voltage oscillations us-
ing the well-trained model f, of which the data creation pro-

cess also requires the PCA mapping matrix for transforma-
tion.

V. CASE STUDY

In this section, we demonstrate the proposed method us-
ing a large-scale real PMU dataset. We first show that the
generated load profiles and steady-state voltage measure-
ments are visually indistinguishable from the real samples
and exhibit the same statistical properties. We also show the
fidelity of the generated voltage oscillation measurements us-
ing a modal analysis.

A. Data Description and System Model

In this study, we use a large-scale real PMU dataset ob-
tained from a major United States electricity utility compa-
ny. This dataset was collected at a rate of 30 samples per
second for three consecutive years from approximately 400
PMUs throughout the utility's territory and mainly contains
voltage and current measurements. Furthermore, we have ac-
cess to a large-scale power simulation model of the relevant
network that contains more than 30000 buses and covers the
utility's territory. The dataset provides the unique identifiers
of the PMU buses that are consistent with the simulation
model, thereby enabling the localization of the PMUs in the
simulation model.

On the basis of the system topology and placement of the
PMUs, we identify 12 fully monitored load buses, of which
the load demand can be directly calculated by the positive-
sequence complex current and voltage measurements. The
load profiles reflect the periodic patterns of load changes at
different time scales. The dataset also contains seven system-
wide voltage oscillation events in the records, where only
one weakly damped event lasted for approximately 2 hours
and the others quickly vanished. The weakly damped event
shows the shifting dominant modes of the system oscillation.

In the remainder of this section, we demonstrate the pro-
posed method by generating voltage equilibrium profiles
based on real load profiles and creating voltage oscillation
profiles based on quickly and weakly damped events.

B. Data Processing and Model Training

The details of the data processing and model training for
the two subtasks are introduced below. The configuration of
the neural network model and the computational environ-
ment are presented in Appendix A.

1) Generation of Steady-state Voltage Measurements

Following Algorithm 1, we train the GAN model using
the real load profiles of the 12 identified load buses, for
which we set the batch size m as 32, the learning rate a as
107*, and the maximum number of training epochs to 50000.
The configurations of models G and D are shown in Appen-
dix A Table Al In sequence, we create 1000 1-hour-long
minute-level (per-unit) load profiles that represent various
load changes over different time periods such as day or
night, weekdays or weekends, and seasons. Given one per-
unit load profile created as an input, we first scale all loads
and generation in the simulation model to guarantee bal-
anced supply and demand and then solve for the power flow
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every time step to obtain the voltage measurements. This
process is implemented using Python codes that use the ESA
package [26] to interact with the PowerWorld simulator us-
ing its SimuAuto function.
2) Generation of Voltage Oscillation Measurements

To separate the equilibrium voltage and voltage oscillation
profiles, the moving average method is used to process the
voltage measurements of each voltage oscillation event in
the dataset, where the size of the moving window is set to
be 10 s. The order of the processed high-dimensional volt-
age measurements is reduced to 4 by PCA, as these 4 domi-
nant components can explain more than 95% of the variabili-
ty. We train model f on low-rank features, as instructed in Al-
gorithm 2 (configuration of modelfis shown in Appendix A
Table Al), where we set the batch size m as 32, the learning
rate o as 107, and the maximum number of training epochs
as 50000.

C. Synthetic Steady-state Voltage Measurements

The GAN model for generating synthetic load profiles is
trained with the power measurements at the fully monitored
load buses in the real dataset as the training data, with the
aim of having a realistic and diverse pattern. The fidelity is
validated by comparing its statistical characteristics with
those of real profiles.

The generative models for the time-series load data are
validated with statistical comparisons. The following two
metrics are used to verify that the synthetic data capture the
characteristics of the real data.

1) Wasserstein distance. The goal of model G is to learn a
function that maps the known noise distribution to the distri-
bution of real data. Training is successful when the distribu-
tion of the generated data matches that of real data. The
Wasserstein distance is a measure of the distance between
two distributions, and it can be used to quantitatively assess
the closeness of the distributions of the generated and real
data.

2) Power spectral density (PSD). An important characteris-
tic of time-series load data is periodicity. Because loads are
tied to the routines and behaviors of people, they have differ-
ent recurring patterns. One approach to identify these period-
icities is to examine the PSD of time-series data. Figure 3
shows the comparison of the PSDs of real and synthetic load
profiles, where three peaks of PSD correspond to three typi-
cal periods of loads, namely, 12 hours, 24 hours, and 1
week. As observed, the two profiles match very closely, con-
firming that the generated data capture the periodic behavior
of real data.

In sequence, we create 1000 1-hour-long minute-level (per-
unit) load profiles that represent diverse load changes over
different time periods such as daytime or nighttime, week-
day or weekend, and seasons. Given one per-unit load pro-
file as an input, we scale all loads and generation in the sim-
ulation model and solve for the power flow at every time
step. Finally, we obtain the steady-state voltage measure-
ments of 1000 different load conditions by repeating the sim-
ulation. To validate the synthetic voltage measurements, we
compare the distributions of the real and synthetic 1-hour-

m— Real

0.08 4 1/24 ! = Synthetic

0.064 1/168h

PSD

0-021 11207

0.00 4

0.0 0.1 02 03 04 05
Frequency (h")

Fig. 3. Comparison of PSDs of real and synthetic load profiles.

long steady-state voltage angle measurements under different
load conditions for a PMU, as shown in Fig. 4. This demon-
strates that the synthetic voltage measurements are in good
agreement with the real measurements, which is attributed to
the fidelity and diversity of the synthetic load profiles. Note
that the differences between the real and synthetic distribu-
tions might be caused by different settings for the magnitude
of the voltage and the overly simple generation dispatch,
which we will address in future work.

0.225
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5 0125 o
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0.000 . . . . . . .
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Fig. 4. Comparison of distributions of real and synthetic 1-hour-long

steady-state voltage angle measurements under different load conditions for
a PMU.

D. Synthetic Voltage Oscillation Measurements

The neural ODE model f for the voltage oscillation mea-
surements is trained according to the details introduced in
Section V-B. To demonstrate the learning capacity, the re-
sults for synthetic voltage oscillation data for two events of
distinct duration are presented: a 10-second quickly damped
oscillation event and a 2-hour weakly damped oscillation
event.

We first train the neural ODE model with the voltage mea-
surements in a 10-second-long event as the training dataset.
The visual comparison in Fig. 5 demonstrates the fidelity
and the flexibility of the length of the synthetic time series.
More specifically, the first 10 s data of the synthetic time se-
ries (blue solid) validate the fidelity, whereas the following 5
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s data show the flexibility of the length of the time series
generated by the model. Realistic extrapolation profiles (blue
dotted lines) demonstrate the generalizability of the proposed

neural-ODE-based model, which could otherwise rapidly di-
verge because of overfitting.
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Fig. 5. Visual comparison between real and synthetic voltage angle measurements at the same selected buses for a quickly damped event that lasts for on-

ly 10 s. (a) Bus A. (b) Bus B. (c¢) Bus C. (d) Bus D.

We further train and test the proposed method with a 2-
hour voltage oscillation event with the same settings as in
Section V-B. In contrast to the quickly damped event, this
weakly damped event shows more complex system dynam-
ics, in which the voltage measurements have several chang-
ing dominant modes over time. Therefore, modal analysis is
promising to validate the fidelity of the synthetic voltage os-
cillation measurements. To this end, the Prony method [27]
is used to process both the real and synthetic voltage oscilla-
tion measurements in a moving window to analyze the domi-
nant modes of the weakly damped oscillation over time.
Here, the dominant modes refer to the modes that have rela-
tively high energies, as specified in (6).

Ey=a > abs(e!" " )2 (6)
i=1
where E,, is the energy of mode; a is the amplitude; m is
the window size; w is the mode frequency; and 7 is the time
constant of the mode.

Considering the large total number of modes, we select
the dominant modes such that the sum of their energies ac-
count for 95% of the total energy. A synthetic time series for
a certain PMU is realistic if and only if its synthetic domi-
nant mode {z°, ®*} is close to a real one {7',w"}.

We repeatedly perform random generation N times, as
shown in Fig. 1. The fidelity rate », of PMU i is calculated
as:

N
ri= >IN 7
j=1

where /; is an indicator that shows whether the j™ sample is
realistic according to the criteria in (8).

o'}
r_ s
s.t. ! rr <%
T (3
T_ S
- o
a)l'

The statistics of the modal analysis of the synthetic volt-
age oscillation measurements for a weakly damped event
that lasts for 2 hours are shown in Fig. 6, which shows the
cumulative density function (CDF) of the fidelity rate of all
PMUs. The fidelity rate represents the probability that the
randomly created synthetic data at one certain PMU have re-
alistic modes. Figure 6 demonstrates that the synthetic volt-
age oscillation data for most PMUs are realistic from the per-
spective of a modal analysis. We notice that the synthetic da-
ta for a small proportion of PMUs fail the modal analysis
with a higher probability. This is because the corresponding
PMUs are almost unaffected by the oscillation event; thus,
the dominant modes correspond to random noise.
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Fig. 6. Statistics of modal analysis of synthetic voltage oscillation measure-
ments for a weakly damped event that lasts for 2 hours.
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In summary, we demonstrate that the synthetic load pro-
files and steady-state PMU voltage measurements have real-
istic statistical properties and confirm that the generated volt-
age oscillation data have realistic oscillation modes. By com-
bining algorithmsl and 2, we can synthetically create a mas-
sive amount of realistic eventful PMU data under generated
time-varying load conditions, potentially fostering the devel-
opment of data-driven methods applied to real cases.

VI. CONCLUSION

In this study, we propose an ML-based method to create
synthetic eventful PMU data under load conditions that vary
over time. Our method uses a GAN to generate load data
and incorporates neural ODEs to capture the transient behav-
ior of oscillation events that occur in a system. We utilize
this method to synthetically create a massive amount of
eventful PMU data under the generated time-varying load
conditions and confirm that the synthetic data exhibit realis-
tic characteristics across multiple time scales from statistical
and modal analysis perspectives. The generated realistic syn-
thetic data have the potential to alleviate the lack of real
eventful PMU data and can be potentially used for the train-
ing, testing, and calibration of subsequent data-driven methods.

In general, the proposed method is feasible as long as the
number of synthetic variables is less than the number of in-
dependent variables in the algebraic equations that are main-
ly derived from Kirchhoff's laws. Future research will extend
this study to synthesize arbitrary numbers of variables with
conserved algebraic relationships.

APPENDIX A

Table Al presents the model structure of the neural net-
works, where models G and D account for the generation of
synthetic load profiles based on a GAN (the neural network
models are implemented by TensorFlow-Keras), whereas
model 1 is used to learn the voltage oscillation pattern (the
neural network model is implemented by TensorFlow). MLP
denotes a multiplayer perceptron followed by the number of
neurons, and Conv denotes a convolutional layer followed
by the number of filters. The computational environment
consists of an Intel Core i7-9700 central processing unit
(CPU), 32 GB of memory, and an NVIDIA RTX 2060 graph-
ics processing unit (GPU).

TABLE Al
MODEL STRUCTURE OF NEURAL NETWORKS

Layer G model D model fmodel
Input 25 900 8
Layer 1 MLP, 64 Conv MLP, 100
Layer 2 MLP, 256 MLP, 128 MLP, 100
Layer 3 MLP, 900 MLP, 32 MLP, 4
Layer 4 Conv, 4 MLP, 1
Layer 5 Conv, 1
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