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A B S T R A C T

Supervised deep learning needs a large amount of labeled data to achieve high performance. However, in
medical imaging analysis, each site may only have a limited amount of data and labels, which makes learning
ineffective. Federated learning (FL) can learn a shared model from decentralized data. But traditional FL
requires fully-labeled data for training, which is very expensive to obtain. Self-supervised contrastive learning
(CL) can learn from unlabeled data for pre-training, followed by fine-tuning with limited annotations. However,
when adopting CL in FL, the limited data diversity on each site makes federated contrastive learning (FCL)
ineffective. In this work, we propose two federated self-supervised learning frameworks for volumetric medical
image segmentation with limited annotations. The first one features high accuracy and fits high-performance
servers with high-speed connections. The second one features lower communication costs, suitable for mobile
devices. In the first framework, features are exchanged during FCL to provide diverse contrastive data to
each site for effective local CL while keeping raw data private. Global structural matching aligns local and
remote features for a unified feature space among different sites. In the second framework, to reduce the
communication cost for feature exchanging, we propose an optimized method FCLOpt that does not rely on
negative samples. To reduce the communications of model download, we propose the predictive target network
update (PTNU) that predicts the parameters of the target network. Based on PTNU, we propose the distance
prediction (DP) to remove most of the uploads of the target network. Experiments on a cardiac MRI dataset
show the proposed two frameworks substantially improve the segmentation and generalization performance
compared with state-of-the-art techniques.
1. Introduction

Deep learning (DL) provides state-of-the-art medical image segmen-
tation performance by learning from large-scale labeled datasets (Ron-
neberger et al., 2015; Milletari et al., 2016; Xu et al., 2019; Dong
et al., 2017), without which the performance of DL will significantly
degrade (Kairouz et al., 2019). However, medical data exist in isolated
medical centers and hospitals (Yang et al., 2019), and combining a large
dataset consisting of very sensitive and private medical data in a single
location is impractical and even illegal. It requires multiple medical in-
stitutions to share medical patient data such as medical images, which
is constrained by the Health Insurance Portability and Accountability
Act (HIPAA) (Kairouz et al., 2019) and EU General Data Protection
Regulation (GDPR) (Truong et al., 2020). Federated learning (FL) is
an effective machine learning approach in which distributed clients
(i.e. individual medical institutions) collaboratively learn a shared
model while keeping private raw data local (Rieke et al., 2020; Sheller
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et al., 2018, 2020; Dou et al., 2021). By applying FL to medical image
segmentation, an accurate model can be collaboratively learned and
data is kept local for privacy.

Conventional FL approaches usually use supervised learning on each
client and require that all data are labeled. However, annotating all
the medical images is usually unrealistic due to the high labeling cost
and requirement of expertise. The deficiency of labels makes supervised
FL impractical. Self-supervised learning can address this challenge by
pre-training a neural network encoder with unlabeled data, followed
by fine-tuning for a downstream task with limited labels. Contrastive
learning (CL), a variant of the self-supervised learning approach, can
effectively learn high-quality image representations. By integrating CL
to FL as federated contrastive learning (FCL), clients can learn models
by first collaboratively learning a shared image-level representation.
Then the learned model will be fine-tuned by using limited annotations.
Compared with local CL, FCL can learn a better encoder as the initial-
ization for fine-tuning, and provide higher segmentation performance.
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In this way, a high-quality model can be learned by using limited
annotations while data privacy is preserved.

Based on CL, we propose two frameworks to enable federated self-
supervised learning for medical image segmentation. The first frame-
work exchanges encoded features for a higher accuracy and has higher
communication cost than the second one. It is suitable for distributed
medical institutions with high-performance servers and high-speed con-
nections. The second framework does not exchange encoded features
and has less model synchronization. It has lower communication costs
and is suitable for mobile devices with high communication costs.

Integrating FL with CL to achieve good performance is nontrivial.
Simply applying CL to each client and then aggregating the models
is not the optimal solution for the following two reasons: First, each
client only has a small amount of unlabeled data with limited diversity.
Since existing contrastive learning frameworks (Chen et al., 2020a; He
et al., 2020) rely on datasets with diverse data to learn distinctive
representations, directly applying CL on each client will result in an
inaccurate learned model due to the lack of data diversity. Second, if
each client only focuses on CL on its local data while not considering
others’ data, each client will have its own feature space based on its raw
data and these feature spaces are inconsistent among different clients.
When aggregating local models, the inconsistent feature space among
local models will degrade the performance of the aggregated model.

To address these challenges, in our first FCL framework, we develop
two-stage FCL method to enable effective FCL for volumetric medical

mage segmentation with limited annotations. The first stage is feature
xchange (FE), in which each client exchanges the features (i.e. low-
imensional vectors) of its local data with other clients. It provides
ore diverse data to compare with for better local contrastive learning
hile avoiding raw data sharing. In the learning process, the improved
ata diversity in feature space provides more accurate and complete
ontrastive information in the local learning process on each client and
mproves the learned representations.

The second stage is global structural matching (GSM), in which
e leverage structural similarity of 3D medical images to align sim-

lar features among clients for better FCL. The intuition is that the
ame anatomical region for different subjects has similar content in
olumetric medical images such as MRI. By leveraging the structural
imilarity across volumetric medical images, GSM aligns the features of
ocal images to the shared features of the same anatomical region from
ther clients. In this way, the learned representations of local models
re more unified among clients and they further improve the global
odel after model aggregation.

In the first framework, feature exchange requires additional com-
unication. To reduce the communication cost, we further propose the
econd framework FCLOpt. It is an optimized method that does not rely
n negative samples and reduces the communication costs of feature
haring. Based on FCLOpt, to further reduce the communications of
odel download, we propose the predictive target network update

PTNU) that predicts the target network by fast forward. Based on
TNU, we propose the distance prediction (DP) to remove the upload
f the target network.

Experimental results show that the proposed FCL methods sub-
tantially improve the segmentation performance over state-of-the-art
echniques, and the FCLOpt including the proposed PTNU and DP
ethods effectively reduces the communication cost while preserving

he segmentation performance of FCL.
The conference version of this paper (Wu et al., 2021b) appeared

t the MICCAI 2021 conference proceedings. The extensions to the
riginal conference paper are described in Section 7.

The rest of this paper is organized as follows. The background and
elated work are described in Section 2. The FCL method with fea-
ure sharing is introduced in Section 3. The communication-optimized
ethod FCLOpt is described in Section 4. The experimental settings

nd results are reported in Section 5, and this paper is concluded in
2

ection 6. s
2. Background and related work

Federated Learning. Federated learning (FL) learns a shared model
y aggregating locally updated models on clients while keeping raw
ata accessible on local clients for privacy (McMahan et al., 2017; Li
t al., 2020; Zhao et al., 2018; Li et al., 2018). In FL, the training
ata are distributed among clients. FL is performed round-by-round by
epeating the local model learning and model aggregation process until
onvergence.

The main drawback of these works is that fully labeled data are
eeded to perform FL, which results in high labeling costs. To solve
his problem, an FL approach using limited annotations while achieving
ood performance is needed.

Contrastive Learning. Contrastive learning (CL) is a self-supervised
pproach to learn useful visual representations by using unlabeled
ata (Hadsell et al., 2006; Misra and Maaten, 2020; Tian et al., 2019).
he learned model provides good initialization for fine-tuning on the
ownstream task with few labels (He et al., 2020; Chen et al., 2020a,b;
eng et al., 2021; Chaitanya et al., 2020; Wu et al., 2021a). CL performs
proxy task of instance discrimination (Wu et al., 2018), which maxi-
izes the similarity of representations from similar pairs and minimizes

he similarity of representations from dissimilar pairs (Wang and Isola,
020).

The main drawback of existing CL approaches is that they are
esigned for centralized learning on large-scale datasets with sufficient
ata diversity. However, when applying CL to FL on each client,
he limited data diversity will greatly degrade the performance of
he learned model. Therefore, an approach to increase the local data
iversity while avoiding raw data sharing for privacy is needed. Be-
ides, while Chaitanya et al. (2020) leverages structural information in
edical images for improving centralized CL, it requires accessing raw

mages of similar pairs for learning. Since sharing raw medical images is
rohibitive due to privacy, Chaitanya et al. (2020) cannot be applied to
L. Therefore, an approach to effectively leverage similar images across
lients without sharing raw images is needed.

Federated Self-supervised Pre-training. Some concurrent works
mploy federated pre-training on unlabeled data. Van Berlo et al.
2020) employs auto-encoders in FL for pre-training on time-series
ata, but the more effective contrastive learning for visual tasks is
ot explored in FL. Bercea et al. (2021) uses auto-encoders for fed-
rated self-supervised medical image segmentation. Different from
hese works, we employ self-supervised contrastive learning, which
as demonstrated superior performance to auto-encoders in centralized
raining (Wu et al., 2018). FedCA (Zhang et al., 2020) combines
ontrastive learning with FL. However, it relies on a shared dataset
vailable on each client, which is impractical for medical images due to
rivacy concerns. Different from this, we do not share raw data among
lients to preserve privacy. Dong and Voiculescu (2021) uses CL method
oCo to perform self-supervised learning on each client. Metadata

s shared among clients to improve local CL. Zhuang et al. (2021,
022) updates local models of clients adaptively using the exponential
oving average (EMA) of the global model. The proposed work differs

rom these works in the following ways. First, in our FCL method, we
everage the structural similarity of volumetric images across clients
o improve the quality of representation learning. Second, these works
nly communicate one network between the server and clients even
f they use two networks for local learning. Different from this, in
ur FCLOpt method, we predict the parameters of the second network
o achieve higher performance while keeping the communication cost

imilar to communicating only one network.
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Fig. 1. Federated contrastive learning with structural feature exchange for learning the encoder with unlabeled data. Then the learned encoder initializes the encoder in U-Net
for fine-tuning with limited annotations.
3. Federated Contrastive Learning (FCL)

3.1. Overview of Federated Contrastive Learning

The overview of the proposed FCL process is shown in Fig. 1.
Distributed clients first collaboratively learn a shared encoder by FCL
with unlabeled data. Then the learned encoder initializes the encoder
in U-Net (Ronneberger et al., 2015) for fine-tuning with limited anno-
tations, either independently on each client by supervised learning or
collaboratively by supervised federated learning. Since the supervised
fine-tuning can be trivially achieved by using available annotations, in
the rest of the paper, we focus on FCL to learn a good encoder as the
initialization for fine-tuning.

As shown in Fig. 1, in the FCL stage, given a volumetric 3D image
on one client, multiple 2D slices are sampled from the volume while
keeping structural order along the slicing axis. Then the ordered 2D
images are fed into the 2D encoder to generate feature vectors, one
vector for each 2D image.

To improve the data diversity in local contrastive learning, one
natural way is to share raw images (Zhao et al., 2018). However,
sharing raw medical images is prohibitive due to privacy concerns. To
solve this problem, the proposed FCL framework exchanges the feature
vectors instead of raw images among clients, which can improve the
data diversity while preserving privacy. As shown in Fig. 1, client 1
generates structural local features denoted as blue vectors and shares
them with other clients. Meanwhile, client 1 collects structural features
from other clients, such as remote features shown in green and gray
vectors. After that, the contrastive loss is computed based on both local
and remote features.

3.2. Contrastive learning with feature exchange

With feature exchange, each client has both remote and local fea-
tures and is ready to perform local CL in each round of FCL. The
exchanged features from other clients provide more diverse features to
compare with and improve the learned representations. As shown in
Fig. 2, we use MoCo (He et al., 2020) architecture for local CL since it
has a memory bank for negatives, which can leverage local and remote
features. There are two encoders, including the main encoder and the
momentum encoder. The main encoder will be learned and used as
the initialization for fine-tuning, while the momentum encoder is the
slowly-evolving version of the main encoder and generates features to
contrast with and for sharing. Now the most important steps are to
construct negatives and positives from both local and remote features.

Negatives from local and remote features. Local features are
generated by the momentum encoder from local images and used as
3

local negatives. Each client has a memory bank of local features and a
memory bank of remote features. Let 𝑄𝑙,𝑐 be the size-𝐾 memory bank
of local features on client 𝑐, which are used as local negatives. 𝑄𝑙,𝑐 is
progressively updated by replacing the oldest features with the latest
ones. In each round of FCL, the remote negatives from other clients will
be shared with client 𝑐 to form its aggregated memory bank including
local and remote negatives as:

𝑄 = 𝑄𝑙,𝑐 ∪ {𝑄𝑙,𝑖 | 1 ≤ 𝑖 ≤ |𝐶|, 𝑖 ≠ 𝑐}. (1)

where 𝐶 is the set of all clients and 𝑄𝑙,𝑖 is the local memory bank on
client 𝑖.

Compared with using only local memory bank 𝑄𝑙,𝑐 , the aggregated
memory bank 𝑄 provides more data diversity to improve CL. However,
𝑄 is |𝐶| times the size of the local memory bank 𝑄𝑙,𝑐 . More negatives
make CL more challenging since for one local feature 𝑞, more negatives
need to be simultaneously pushed away from it than when using 𝑄𝑙,𝑐 ,
which can result in ineffective learning. To solve this problem, instead
of using all negatives in 𝑄, for each 𝑞 we sample a size-𝐾 (i.e. the same
size as 𝑄𝑙,𝑐) subset of 𝑄 as negatives, which is defined as:

𝑄′ = {𝑄𝑖| 𝑖 ∼  (|𝑄|, 𝐾)}. (2)

where 𝑖 ∼  (|𝑄|, 𝐾) means 𝑖 is a set of indices sampled uniformly from
[|𝑄|].

Local positives. We leverage the structural similarity in the volu-
metric medical images to define the local positives, in which the same
anatomical region from different subjects has similar content (Chai-
tanya et al., 2020). Each volume is grouped into 𝑆 partitions, and one
image sampled from partition 𝑠 of volume 𝑖 is denoted as 𝑥𝑖𝑠. Local
positives are features of images from the same partition in different
volumes. Given an image 𝑥𝑖𝑠, its feature 𝑞𝑖𝑠 and corresponding posi-
tives 𝑃 (𝑞𝑖𝑠) = {𝑘𝑖𝑠

+, 𝑘𝑗𝑠
+
} are formed as follows. Two transformations

(e.g. cropping) are applied to 𝑥𝑖𝑠 to get 𝑥̃𝑖𝑠 and 𝑥̂𝑖𝑠, which are then
fed into the main encoder and momentum encoder to generate two
representation vectors 𝑞𝑖𝑠 and 𝑘𝑖𝑠

+, respectively. Then another image 𝑥𝑗𝑠
is sampled from partition 𝑠 of volume 𝑗, and its features 𝑞𝑗𝑠 and 𝑘𝑗𝑠

+ are
generated accordingly. In this way, the local positives for both 𝑞𝑖𝑠 and
𝑞𝑗𝑠 are formed as 𝑃 (𝑞𝑖𝑠) = 𝑃 (𝑞𝑗𝑠 ) = {𝑘𝑖𝑠

+, 𝑘𝑗𝑠
+
}.

Loss function for local positives. By using the sampled memory
bank 𝑄′ consisting of both local negatives and remote negatives, one
local feature 𝑞 is compared with its local positives 𝑃 (𝑞) and each
negative in 𝑄′. The contrastive loss is defined as:

𝑙𝑜𝑐𝑎𝑙 = 𝓁𝑞,𝑃 (𝑞),𝑄′

= − 1
|𝑃 (𝑞)|

∑

log
exp(𝑞 ⋅ 𝑘+∕𝜏)

exp(𝑞 ⋅ 𝑘+∕𝜏) +
∑

exp(𝑞 ⋅ 𝑛∕𝜏)
. (3)
𝑘+∈𝑃 (𝑞) 𝑛∈𝑄′
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Fig. 2. Contrastive learning on one client with exchanged features. The exchanged features consist of remote negatives and remote positives, in which remote negatives improve
the local data diversity and remote positives are used for global structural matching to learn a unified feature space among clients.
where 𝜏 is the temperature and the operator ⋅ is the dot product
between two vectors. By minimizing the loss, the distance between 𝑞
and each local positive is minimized, and the distance between 𝑞 and
each negative in 𝑄′ is maximized.

3.3. Global structural matching

Remote positives. We use the remote positives from the shared fea-
tures to further improve the learned representations. Inspired by Chai-
tanya et al. (2020) that aligns the features of images in the same
partition for centralized learning, on each client, we align the features
of one image to the features of images in the same partition from
other clients. In this way, the features of images in the same partition
across clients will be aligned in the feature space and more unified
representations can be learned among clients. To achieve this, for one
local feature 𝑞, in addition to its local positives 𝑃 (𝑞), we define remote
positives 𝛬(𝑞) as features in the sampled memory bank 𝑄′ which are in
the same partition as 𝑞.

𝛬(𝑞) = {𝑝 | 𝑝 ∈ 𝑄′, 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑝) = 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(𝑞)}. (4)

𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛(⋅) is the partition number of one feature and 𝑄′ is defined in
Eq. (2).

Final loss function. By replacing local positives 𝑃 (𝑞) in Eq. (3) with
remote positives 𝛬(𝑞) as 𝑟𝑒𝑚𝑜𝑡𝑒, the final loss function for one feature
𝑞 is defined as:

𝑞 = 𝑟𝑒𝑚𝑜𝑡𝑒 + 𝑙𝑜𝑐𝑎𝑙 = 𝓁𝑞,𝛬(𝑞),𝑄′ + 𝓁𝑞,𝑃 (𝑞),𝑄′ . (5)

With 𝑞 , the loss for one batch of images is defined as 𝐵 = 1
|𝐵|

∑

𝑞∈𝐵 𝑞 ,
where 𝐵 is the set of features generated by the encoder from the batch
of images.

3.4. Privacy of feature exchange

To protect the shared features against attacks, image encryption
methods or representation perturbation methods can be employed. For
the image encryption method, Huang et al. (2020) encrypt images
before learning and keep the utility of encrypted images for learning.
Images are encrypted before being fed into the encoder for gener-
ating representations. As a result, only features of encrypted images
are shared, which effectively mitigates the potential vulnerability by
feature exchange and maintains the utility of exchanged features for
local learning. For the representation perturbation method, Sun et al.
(2021) learns to perturb data representation such that the quality
of the potentially leaked information is severely degraded, while FL
performance is maintained.
4

4. FCLOpt for reducing communications

In the previous Sections, we have introduced the FCL method,
aiming at improving the quality of learned representations and the
segmentation performance of the downstream task. However, sharing
features require additional communication. To solve this problem, we
eliminate the need for feature sharing by proposing an optimized
method FCLOpt that does not rely on shared features as negative
samples. To further reduce the communications of model downloading,
we propose the predictive target network update (PTNU) that predicts
the target network by fast forward. Based on PTNU, we propose the
distance prediction (DP) to remove most of the uploads of the target
network and only use sporadic upload for calibration.

4.1. Revisiting self-supervised learning method BYOL

BYOL (Grill et al., 2020) is a self-supervised learning method with-
out negative pairs. Conventional CL performs learning by attracting the
positive sample pairs and repulsing the negative sample pairs. Different
from this, BYOL directly predicts the output of one sample in a positive
pair from the other one. Since no positive pairs are used in BYOL, it has
the potential to eliminate the need for feature exchange and reduces
communication cost.

BYOL has a Siamese network architecture, consisting of the online
network and the target network. The online network consists of an
encoder and a predictor. The target network has the same architecture
as the encoder in the online network, but different parameters. The
target network provides the learning targets to train the online network,
and it is updated by an exponential moving average (EMA) of the
parameters of the online network. Details of using BYOL for local
learning on clients will be introduced in Section 4.3.

4.2. FCLOpt overview

The overview of the optimized method FCLOpt is shown in Fig. 3.
Compared with the FCL method introduced in Section 3 that solely
seeks for high model accuracy, FCLOpt reduces the communication
cost, simplifies the system complexity, while keeping a comparable or
even better segmentation performance.

In FCLOpt, there is a server that coordinates multiple clients to
upload locally updated online networks and target networks, which
are then aggregated on the server as the global online network and
the global target network. The server also downloads the global online
network and target network to clients. In each training round, syn-
chronizing both the online network and target network needs extra
communication, while synchronizing only one network will greatly
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Fig. 3. FCLOpt for reducing communications. Based on the proposed FCL method, we develop FCLOpt to eliminate the need for feature sharing while keeping a high accuracy of
the learned model. In FCLOpt, we reduce the download and upload of the target encoder. (a) Predictive target network update (PTNU) to eliminate the download of the global
target network. (b) Distance prediction (DP) to remove most of the uploads of the target network.
degrade the learned model. To solve this problem, predictive target
network update (PTNU) and distance prediction (DP) are proposed
to reduce the synchronization of the target network. In this way, the
communication cost is comparable to that of synchronizing only one
network while the accuracy of the learned network is similar to that of
synchronizing two networks. FedOpt is summarized in Algorithm 1.

4.3. FCLOpt: Local training and aggregation

In FCLOpt, each client has two networks, the online network and
the target network, following the model architectures from BYOL (Grill
et al., 2020). The online network consists of an online encoder 𝑓𝜃 and
a predictor 𝑞𝜃 . The target network is a target encoder 𝑓𝜉 , which has
the same model architecture as the online encoder 𝑓𝜃 but different
parameters.

During local training, two augmentations are applied to a 2D image
𝑥 and generate two transformed images 𝑡 and 𝑡′. 𝑡 and 𝑡′ are then
fed into the online network and the target network, respectively. The
contrastive loss to update parameters 𝜃 of the online network is defined
as:

𝜃,𝜉 = ‖𝑧 − 𝑧′‖22 = 2 − 2 ⋅
⟨𝑧, 𝑧′⟩

‖𝑧‖2 ⋅ ‖𝑧′‖2
. (6)

where 𝑧 = 𝑞𝜃(𝑓𝜃(𝑡)) is the output of the online network, and 𝑧′ = 𝑓𝜉 (𝑡′)
is the output of the target network. No negatives samples are used in
this contrastive loss and therefore no shared features are needed. The
online network with parameters 𝜃 is updated by gradient descent to
minimize 𝜃,𝜉 , and the target network with parameters 𝜉 is updated by
exponential moving average (EMA) of the parameters 𝜃 of the online
encoder 𝑓𝜃 :

𝜉 = 𝑚𝜉 + (1 − 𝑚)𝜃. (7)

where 𝑚 ∈ (0, 1] is the momentum parameter controlling the update
speed of the target network. For conciseness, in the rest of this paper,
we use 𝑓𝜃 to denote the whole online network consisting of the online
encoder and the online predictor.

On each client, the training is performed for 𝐸 epochs before
uploading the updated local networks to the server for aggregation
and downloading the aggregated models from the server to initiate the
networks for training in the next round.
5

The aggregation is performed on the server as follows. In round 𝑟,
denoting the online network and target network after local training on
client 𝑐 as 𝑓 𝑟

𝜃𝑐
and 𝑓 𝑟

𝜉𝑐
, the global online network 𝐹 𝑟+1

𝜃 and the global
target network 𝐹 𝑟+1

𝜉 are aggregated as:

𝐹 𝑟+1
𝜃 =

∑

𝑐∈𝐶

𝑛𝑐
𝑛
𝑓 𝑟
𝜃𝑐
. (8)

𝐹 𝑟+1
𝜉 =

∑

𝑐∈𝐶

𝑛𝑐
𝑛
𝑓 𝑟
𝜉𝑐
. (9)

where 𝑛𝑐 is the number of samples on client 𝑐, and 𝑛 is the total number
of samples on all clients. After network aggregation, 𝐹 𝑟+1

𝜃 and 𝐹 𝑟+1
𝜉 are

downloaded to clients to start the training of round 𝑟 + 1.

4.4. Predictive target network update

Since there are two networks to synchronize between the server
and clients, to reduce the communication cost of the target network,
we propose a predictive target network update (PTNU) method to
eliminate the need for target network download.

We first introduce how to eliminate the download of the global
target network by predicting the parameters 𝜉 of global target network
𝐹 𝑟+1
𝜉 on clients.

At the beginning of round 𝑟+1, the server computes the average 𝓁1
distance between the parameters of the aggregated 𝐹 𝑟+1

𝜃 and 𝐹 𝑟+1
𝜉 :

𝑑(𝐹 𝑟+1
𝜃 , 𝐹 𝑟+1

𝜉 ) = ‖𝐹 𝑟+1
𝜃 − 𝐹 𝑟+1

𝜉 ‖

1
= 1

𝑁
∑

𝑎∈𝜃, 𝑏∈𝜉
|𝑎 − 𝑏|. (10)

where 𝑁 = ‖𝜉‖0 is the number of parameters in the global target
network.

On client 𝑐, ideally, both 𝐹 𝑟+1
𝜃 and 𝐹 𝑟+1

𝜉 are downloaded from the
server to initiate its local 𝑓 𝑟+1

𝜃𝑐
and 𝑓 𝑟+1

𝜉𝑐
. To reduce the communication

cost, we only download 𝐹 𝑟+1
𝜃 and the scalar value 𝑑(𝐹 𝑟+1

𝜃 , 𝐹 𝑟+1
𝜉 ), and

predict 𝐹 𝑟+1
𝜉 on the client instead of downloading it. Following Algo-

rithm 2, given the latest global online network 𝐹 𝑟+1
𝜃 , the local target

network 𝑓 𝑟
𝜉𝑐

, and the distance 𝑑(𝐹 𝑟+1
𝜃 , 𝐹 𝑟+1

𝜉 ), we predict the parameters
of 𝐹 𝑟+1

𝜉 by an iterative update on client 𝑐:

𝜉 = 𝑚 𝜉 + (1 − 𝑚 )𝜃𝑟+1 (11)
𝑐 𝑑 𝑐 𝑑
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Algorithm 1: Communication-optimized Federated Contrastive
Learning (FCLOpt) with Predictive Target Network Update
(PTNU) and Distance Prediction (DP)

Input: number of training rounds 𝑅, number of local epochs 𝐸,
learning rate 𝜂, local batch size 𝐵, distance calibrator 𝛼

Output: 𝐹𝜃
1 Server ():
2 Initialize the global online network 𝐹 0

𝜃 and global target
network 𝐹 0

𝜉 ;
3 for each round r from 1 to R do
4 𝐶𝑟 ← (random set of 𝐾 clients);
5 // DP: Predict distance between global online and

target networks by Eq. (13) and Eq. (14);
6 for client 𝑐 ∈ 𝐶𝑟 in parallel do
7 𝑑𝑝𝑐 = ClientDistance(𝐹 𝑟

𝜃 , 𝑟);
8 end
9 𝑑 = 𝛼 ⋅

∑

𝑐∈𝐶𝑟
1

|𝐶𝑟|
𝑑𝑝𝑐 ;

10 for client 𝑐 ∈ 𝐶𝑟 in parallel do
11 //DP eliminates the upload of 𝑓 𝑐

𝜉 ;
12 𝑓 𝑐

𝜃 , 𝑓
𝑐
𝜉 ← ClientTrain(𝐹 𝑟

𝜃 , 𝑑, 𝑟);
13 end
14 // Model aggregation of online networks;
15 𝐹 𝑟+1

𝜃 ←
∑

𝑐∈𝐶𝑟

𝑛𝑐
𝑛 𝑓

𝑟
𝜃𝑐

;
16 // Model aggregation of target networks. DP eliminates

the following two lines;
17 𝐹 𝑟+1

𝜉 ←
∑

𝑐∈𝐶𝑟

𝑛𝑐
𝑛 𝑓

𝑟
𝜉𝑐

;
18 𝑑 = 𝑑(𝐹 𝑟+1

𝜃 , 𝐹 𝑟+1
𝜉 );

19 end
20 return 𝑓𝑅

𝜙 ;
21 ClientDistance (𝐹 𝑟

𝜃 , 𝑟):
22 𝑑𝑖𝑠𝑡 ← ‖𝐹 𝑟

𝜃 − 𝑓 𝑟−1
𝜉𝑐

‖

1
;

23 return 𝑑𝑖𝑠𝑡;
24 ClientTrain (𝐹 𝑟

𝜃 , 𝑑, 𝑟):
25 𝑓𝜃 ← 𝐹 𝑟

𝜃 // Model download;
26 // PTNU: Predict global target network by Algo. 2;
27 𝐹 𝑟

𝜉 ← PTNU(𝐹 𝑟
𝜃 , 𝑓 𝑟−1

𝜉 , 𝑑);
28  ← (form batches of size 𝐵);
29 // Local training with Eq. (6) and Eq. (7);
30 for each local epoch i from 1 to E do
31 for batch 𝑏 ∈  do
32 𝜃 ← 𝜃 − 𝜂▿𝜃𝜃,𝜉 (𝜃; 𝑏);
33 𝜉 ← 𝜏𝜉 + (1 − 𝜏)𝜃;
34 end
35 end
36 return 𝑓𝜃 , 𝑓𝜉 // Model upload;

which is performed iteratively until 𝑑(𝐹 𝑟+1
𝜃 , 𝑓 𝑟

𝜉𝑐
) ≤ 𝑑(𝐹 𝑟+1

𝜃 , 𝐹 𝑟+1
𝜉 ) is

satisfied. After this update, the parameters of 𝑓 𝑟
𝜉𝑐

are used to initialize
𝐹 𝑟+1
𝜉 on client 𝑐 to start the training of round 𝑟 + 1.

The intuition of PTNU is that we can approximate 𝐹 𝑟+1
𝜉 by gradually

approaching 𝐹 𝑟+1
𝜃 from a certain direction until a certain frontier is

reached. Ideally, 𝐹 𝑟+1
𝜉 is the weighted average of all 𝑓 𝑟

𝜉𝑐
, 𝑐 ∈ 𝐶 as

defined in Eq. (8), and 𝐹 𝑟+1
𝜃 is the weighted average of all 𝑓 𝑟

𝜃𝑐
, 𝑐 ∈ 𝐶

as defined in Eq. (9). For each 𝑐 ∈ 𝐶, since 𝑓 𝑟
𝜉𝑐

is updated by EMA in
Eq. (7) to approach 𝑓 𝑟

𝜃𝑐
from the direction of 𝑓 𝑟

𝜉𝑐
, 𝐹 𝑟+1

𝜉 can be treated
as approaching 𝐹 𝑟+1

𝜃 from the direction of each 𝑓 𝑟
𝜉𝑐

simultaneously.
On client 𝑐, since we only know 𝑓 𝑟

𝜉𝑐
and do not have access to

𝑓 𝑟
𝜉𝑖
, 𝑖 ≠ 𝑐, we gradually approach 𝐹 𝑟+1

𝜃 from the direction of 𝑓 𝑟
𝜉𝑐

, instead
𝑟 𝑟
6

of from the direction of each 𝑓𝜉𝑐 . By updating 𝑓𝜉𝑐 with Eq. (11), we
Algorithm 2: Predictive target network update (PTNU).
Input: Global online network 𝐹𝜃 , local target network 𝑓𝜉𝑐 , and

their distance 𝑑(𝐹𝜃 , 𝐹𝜉 )
Output: Predicted target model parameters 𝑓𝜉

1 PTNU (𝐹𝜃 , 𝑓𝜉 , 𝑑):
2 // Compute the initial model distance by Eq. (10);
3 𝑑𝑖𝑠𝑡 ← 𝑑(𝐹𝜃 , 𝑓𝜉 );
4 while dist > 𝑑 do
5 // Update model by exponential moving average (EMA)

using Eq. (11);
6 𝜉 = 𝑚𝑑𝜉 + (1 − 𝑚𝑑 )𝜃;
7 // Compute updated model distance by Eq. (10);
8 𝑑𝑖𝑠𝑡 ← 𝑑(𝐹𝜃 , 𝑓𝜉 );
9 end
10 return 𝑓𝜉 ;

draw 𝑓 𝑟
𝜉𝑐

near to 𝐹 𝑟+1
𝜃 until their distance is comparable to the distance

between 𝐹 𝑟+1
𝜃 and 𝐹 𝑟+1

𝜉 . In this way, the updated 𝑓 𝑟
𝜉𝑐

can approximate
𝑟+1
𝜉 .

The PTNU eliminates the need for downloading the aggregated
lobal target network 𝐹 𝑟+1

𝜉 to clients. Considering the communications
f four components, including upload of the local online network 𝑓 𝑟

𝜃𝑐
nd the local target network 𝑓 𝑟

𝜉𝑐
, and the download of the global online

etwork 𝐹 𝑟+1
𝜃 and the global target network 𝐹 𝑟+1

𝜉 , PTNU reduces about
5% of the communication.

.5. Distance prediction for predictive target network update

To further reduce the communication cost, we propose a distance
rediction (DP) method that eliminates most of the uploads of the local
arget network 𝑓 𝑟

𝜉𝑐
and only uses sporadic upload for calibration. In

his way, by combining DP with PTNU, most of the communications
egarding the target networks are removed, which can reduce about
0% of the communications.

To perform PTNU by Eq. (11), the exact distance 𝑑(𝐹 𝑟+1
𝜃 , 𝐹 𝑟+1

𝜉 )
between the aggregated online network 𝐹 𝑟+1

𝜃 and the target network
𝐹 𝑟+1
𝜉 is required, which is computed on the server by Eq. (10). Since

𝐹 𝑟+1
𝜉 is aggregated by the uploaded local target models 𝑓 𝑟

𝜉𝑐
, 𝑐 ∈ 𝐶 with

Eq. (9), to reduce the upload of 𝑓 𝑟
𝜉𝑐

, instead of computing the exact
𝑑(𝐹 𝑟+1

𝜃 , 𝐹 𝑟+1
𝜉 ) on the server, we approximate it by a proxy distance

𝑑(𝐹 𝑟+1
𝜃 , 𝐹 𝑟+1

𝜉 ) computed on the clients.
At the beginning of round 𝑟 + 1, each client 𝑐 ∈ 𝐶 downloads 𝐹 𝑟+1

𝜃
from the server, and computes 𝑑𝑝𝑐 as:

𝑑𝑝𝑐 = 𝑑(𝐹 𝑟+1
𝜃 , 𝑓 𝑟

𝜉𝑐
) = ‖𝐹 𝑟+1

𝜃 − 𝑓 𝑟
𝜉𝑐
‖

1
(12)

which is then uploaded to the server to predict the distance 𝑑(𝐹 𝑟+1
𝜃 , 𝐹 𝑟+1

𝜉 )
as:

𝐷𝑃 = 1
|𝐶|

∑

𝑐∈𝐶
𝑑𝑝𝑐 . (13)

̃(𝐹 𝑟+1
𝜃 , 𝐹 𝑟+1

𝜉 ) = 𝛼𝐷𝑃 . (14)

ompared with the exact distance 𝑑(𝐹 𝑟+1
𝜃 , 𝐹 𝑟+1

𝜉 ) = 𝑑(𝐹 𝑟+1
𝜃 ,

∑

𝑐∈𝐶
𝑛𝑐
𝑛 𝑓

𝑟
𝜉𝑐
),

which computes the weighted average of local target networks 𝑓 𝑟
𝜉𝑐

on
the server before computing the 𝓁1 distance, the distance prediction
first computes the distance between the global online network 𝐹 𝑟+1

𝜃
and the target network 𝑓 𝑟

𝜉𝑐
on the client, after which the distance

averaging is taken on the server. Since the value of 𝐷𝑃 and the ground
truth distance 𝑑(𝐹 𝑟+1

𝜃 , 𝐹 𝑟+1
𝜉 ) are slightly different, we use a calibration

parameter 𝛼, which is slightly smaller than 1, to accommodate for the
difference between 𝐷𝑃 and 𝑑(𝐹 𝑟+1

𝜃 , 𝐹 𝑟+1
𝜉 ). In this way, 𝑑(𝐹 𝑟+1

𝜃 , 𝐹 𝑟+1
𝜉 ) as

𝑟+1 𝑟+1
the adjusted 𝐷𝑃 can accurately approximate the 𝑑(𝐹𝜃 , 𝐹𝜉 ).
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𝑑𝑝𝑐 is computed on each client directly from local target networks
𝑓 𝑟
𝜉𝑐

without the need for uploading 𝑓 𝑟
𝜉𝑐

. After computing 𝑑(𝐹 𝑟+1
𝜃 , 𝑓 𝑟

𝜉𝑐
) on

each client 𝑐, this distance is uploaded to the server for the averaging
in Eq. (13) and scaling in Eq. (14). Then the value of 𝑑(𝐹 𝑟+1

𝜃 , 𝐹 𝑟+1
𝜉 )

is downloaded to clients and used as the target distance defined in
Eq. (10) for performing PTNU.

In the training process, the scaling factor between 𝑑(𝐹 𝑟+1
𝜃 , 𝐹 𝑟+1

𝜉 ) and
𝑃 can gradually shift and the calibration parameter 𝛼 needs to be

djusted to make the prediction 𝑑(𝐹 𝑟+1
𝜃 , 𝐹 𝑟+1

𝜉 ) closely follow the real
istance 𝑑(𝐹 𝑟+1

𝜃 , 𝐹 𝑟+1
𝜉 ). To achieve this, in every 𝑅 rounds, we peri-

odically upload the local target networks to the server for computing
the ground-truth distance 𝑑(𝐹 𝑟+1

𝜃 , 𝐹 𝑟+1
𝜉 ) by Eq. (10), and adjust the

alibration parameter as:

=
𝑑(𝐹 𝑟+1

𝜃 , 𝐹 𝑟+1
𝜉 )

𝐷𝑃
. (15)

here 𝐷𝑃 is the distance prediction by Eq. (13). By using the calibrated
, we can perform accurate distance prediction by Eq. (14) for the
ollowing training rounds, which further helps the PTNU process.

. Experiments

Dataset and preprocessing. We evaluate the proposed approaches
n the ACDC MICCAI 2017 challenge dataset (Bernard et al., 2018).
t consists of 100 patients with 3D cardiac MRI images. Each patient
as about 15 volumes covering a full cardiac cycle, and only volumes
or the end-diastolic and end-systolic phases are annotated by experts
or three structures, including the left ventricle, myocardium, and right
entricle. The HVSMR MICCAI 2016 challenge dataset (Pace et al.,
015) contains 10 3D cardiac MRI images captured in an axial view
sing a 1.5T scanner with expert annotations of the blood pool and
entricular myocardium. In the pre-processing, for both datasets, fol-
owing Chaitanya et al. (2020) we first normalize the intensity of each
D volume 𝑥 using min–max normalization to [𝑥1, 𝑥99], where 𝑥𝑝 is

the 𝑝th intensity percentile in 𝑥. Then we resample the 2D images and
orresponding annotations to a fixed pixel size 𝑟𝑓 = 1.25×1.25𝑚𝑚2 and
𝑓 = 0.7 × 0.7𝑚𝑚2 for ACDC and HVSMR, respectively.

ederated and training setting. Following Zhao et al. (2018), we
se 10 clients. We randomly split 100 patients in ACDC dataset into
0 partitions, each with 10 patients. Then each client is assigned
ne partition with 10 patients. We use the proposed FCL approaches
o pre-train the U-Net encoder on the assigned dataset partition on
ach client without labels. Then the pre-trained encoder (i.e. the final
lobal encoder after pre-training) is used as the initialization for fine-
uning the U-Net segmentation model by using a small number of
abeled samples. The U-Net model follows the standard 2D U-Net
rchitecture (Ronneberger et al., 2015) with the initial number of
hannels set to 48. We evaluate with three settings for fine-tuning: local
ine-tuning, federated fine-tuning, and centralized fine-tuning. In local fine-
uning, each client fine-tunes the model on its local annotated data.
n federated fine-tuning, all clients collaboratively fine-tune the model
y supervised FL with a small number of annotations. In centralized
ine-tuning, all data are combined for sampling the annotated data,
ollowing a standard evaluation protocol (Caron et al., 2020; Chen
t al., 2020a).

valuation. During fine-tuning, we use 5-fold cross-validation to eval-
ate the segmentation performance. In each fold, 10 patients on one
lient are split into a training set of 8 patients and a validation set
f 2 patients. For each fold, we fine-tune with annotations from 𝑁 ∈
1, 2, 4, 8} patients in the training set, and validate on the validation
et of the same fold on all clients (i.e. 20 patients). Dice similarity
oefficient (DSC) is used as the metric for evaluation.

raining details. The FCL is performed for 200 rounds. The percentage
f active clients per round is 1.0 and the number of local epochs per
7

ommunication round is 1. The size of the memory bank is 4096. The l
emperature 𝜏 for contrastive loss is 0.1 and the momentum is 0.99.
he SGD optimizer is used with momentum 0.9 and weight decay
.0001. The batch size is 32 and the learning rate is 0.05 with a cosine
ecay schedule. For FCLOpt, FCLOpt-PTNU, and FCLOpt-PTNU-DP, the
earning rate is 0.5 with a cosine decay schedule. The momentum
arameter 𝑚 for the target network update is 0.99. 𝑚𝑑 for PTNU is

0.995. The calibration parameter 𝛼 is adjusted every 10 training rounds.
As in Chaitanya et al. (2020), we group each volume into 4 partitions.
In the fine-tuning stage, the model is trained for 200 epochs in local
fine-tuning or 200 rounds in federated fine-tuning. Adam optimizer is
used with a batch size of 10, a learning rate of 0.0005, and a cosine
schedule. The training is performed on one Nvidia V100 GPU.

Baselines. We compare the proposed approaches with multiple base-
lines. Random init fine-tunes the model from random initialization.
Local CL performs contrastive learning on each client by the SOTA
approach (Chaitanya et al., 2020) with unlabeled data for pre-training
the encoder before fine-tuning. Rotation (Gidaris et al., 2018) is a self-
supervised pre-training approach by predicting the image rotations.
SimCLR (Chen et al., 2020a), SwAV (Caron et al., 2020), MoCo (He
et al., 2020), and BYOL (Grill et al., 2020) are the SOTA self-supervised
earning approaches for pre-training. We combine these three self-
upervised approaches with FedAvg (McMahan et al., 2017) as their
ederated variants FedRotation, FedSimCLR, FedSwAV, FedMoCo, and
edBYOL for pre-training the encoder. FedGL is the combination of the
OTA self-supervised learning approach for volumetric medical image
egmentation (Chaitanya et al., 2020) with FedAvg. FedCA (Zhang et al.,
020) and FedU (Zhuang et al., 2021) are two federated self-supervised
earning methods for pre-training. In the experimental results, we de-
ote the method introduced in Section 3 as FCL, the method described
n Section 4 without PTNU or DP as FCLOpt, and denote the methods
ith PTNU and DP enabled as FCLOpt-PTNU and FCLOpt-PTNU-DP,

espectively.

.1. Results of local fine-tuning

We evaluate the performance of the proposed approaches by fine-
uning locally on each client with limited annotations. As shown in
able 1, the proposed approaches substantially outperform the base-

ines. First, with 1, 2, 4, or 8 annotated patients, our FCL method
utperforms the best-performing baseline by 0.065, 0.045, 0.042, and
.029 dice score, respectively. Our communication-optimized methods
CLOpt, FCL-PTNU, and FCL-PTNU-DP achieve a similar or higher
ice score than our method FCL. Second, the proposed approaches
ignificantly improve the annotation efficiency. For example, with 2
r 4 annotated patients, our FCLOpt method performs on par with
he best-performing baseline with 2× annotations (0.655 vs. 0.703 and
.745 vs. 0.795), respectively.

.2. Results of federated fine-tuning

We evaluate the performance of the proposed approaches by col-
aborative federated fine-tuning with limited annotations. Similar to
ocal fine-tuning, the proposed approaches significantly outperform the
OTA techniques as shown in Table 2. First, with 1, 2, 4, or 8 annotated
atients per client (i.e. 10, 20, 40, or 80 annotated patients in total), our
CLOpt method outperforms the best-performing baselines by 0.148,
.063, 0.027, and 0.018 dice score, respectively. Second, the proposed
pproaches effectively reduce the annotations needed for fine-tuning.
or example, with 2 or 4 annotated patients per client, our FCLOpt
ethod achieves better performance than the best-performing baseline
ith 2× annotated patients per client (0.853 vs. 0.850 and 0.877 vs.
.879, respectively), which achieve more than 2× labeling-efficiency.
hird, compared with local fine-tuning in Table 1, all the approaches
chieve a higher dice score. This is because federated fine-tuning with
nnotations on distributed clients leverages more annotations than

ocal fine-tuning with only local annotations.
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Table 1
Comparison of the proposed approaches and baselines on local fine-tuning with limited annotations on the
ACDC dataset. 𝑁 is the number of annotated patients for fine-tuning on each client. The average dice score
and standard deviation across 10 clients are reported, in which on each client the dice score is averaged
on 5-fold cross-validation. The proposed approaches substantially outperform all the baselines with different
numbers of annotations.

Methods 𝑁=1 𝑁=2 𝑁=4 𝑁=8

Random init 0.280 ± 0.037 0.414 ± 0.070 0.618 ± 0.026 0.766 ± 0.027
Local CL (Chaitanya et al., 2020) 0.320 ± 0.106 0.456 ± 0.095 0.637 ± 0.043 0.770 ± 0.029
FedRotation (Gidaris et al., 2018) 0.357 ± 0.058 0.508 ± 0.054 0.660 ± 0.021 0.783 ± 0.029
FedSimCLR (Chen et al., 2020a) 0.288 ± 0.049 0.435 ± 0.046 0.619 ± 0.032 0.765 ± 0.033
FedSwAV (Caron et al., 2020) 0.323 ± 0.066 0.480 ± 0.067 0.659 ± 0.019 0.782 ± 0.030
FedCA (Zhang et al., 2020) 0.280 ± 0.047 0.417 ± 0.042 0.610 ± 0.030 0.766 ± 0.029
FedMoCo (He et al., 2020) 0.287 ± 0.056 0.442 ± 0.066 0.626 ± 0.034 0.767 ± 0.030
FedBYOL (Grill et al., 2020) 0.431 ± 0.057 0.554 ± 0.052 0.685 ± 0.021 0.781 ± 0.027
FedU (Zhuang et al., 2021) 0.441 ± 0.047 0.586 ± 0.043 0.703 ± 0.018 0.795 ± 0.022
FedGL (Chaitanya et al., 2020) 0.260 ± 0.036 0.404 ± 0.063 0.633 ± 0.028 0.765 ± 0.040
FCL (ours) 0.506 ± 0.056 0.631 ± 0.051 0.745 ± 0.017 0.824 ± 0.025
FCLOpt (ours) 0.524 ± 0.052 0.655 ± 0.039 0.745 ± 0.020 0.821 ± 0.020
FCL-PTNU (ours) 0.517 ± 0.061 0.622 ± 0.045 0.730 ± 0.019 0.810 ± 0.022
FCL-PTNU-DP (ours) 0.512 ± 0.053 0.621 ± 0.050 0.729 ± 0.016 0.810 ± 0.027
Table 2
Comparison of the proposed approaches and baselines on federated fine-tuning with limited annotations on the
ACDC dataset. 𝑁 is the number of annotated patients for fine-tuning on each client. 𝐿 is the total number of annotated
patients from all clients. The proposed approaches significantly outperform all the baselines with different numbers
of annotations.

Annotated patients per client 𝑁=1 𝑁=2 𝑁=4 𝑁=8
Annotated patients of all clients L=1 × 10 L=2 × 10 L=4 × 10 L=8 × 10

Random init 0.445 ± 0.012 0.572 ± 0.061 0.764 ± 0.017 0.834 ± 0.011
Local CL (Chaitanya et al., 2020) 0.473 ± 0.013 0.717 ± 0.024 0.784 ± 0.015 0.847 ± 0.009
FedRotation (Gidaris et al., 2018) 0.516 ± 0.015 0.627 ± 0.074 0.821 ± 0.015 0.867 ± 0.010
FedSimCLR (Chen et al., 2020a) 0.395 ± 0.023 0.576 ± 0.046 0.788 ± 0.014 0.859 ± 0.011
FedSwAV (Caron et al., 2020) 0.500 ± 0.015 0.594 ± 0.058 0.815 ± 0.015 0.862 ± 0.010
FedCA (Zhang et al., 2020) 0.397 ± 0.020 0.561 ± 0.047 0.784 ± 0.015 0.858 ± 0.011
FedMoCo (He et al., 2020) 0.467 ± 0.016 0.675 ± 0.053 0.782 ± 0.018 0.846 ± 0.011
FedBYOL (Grill et al., 2020) 0.621 ± 0.065 0.790 ± 0.011 0.840 ± 0.006 0.871 ± 0.006
FedU (Zhuang et al., 2021) 0.576 ± 0.082 0.717 ± 0.105 0.850 ± 0.010 0.879 ± 0.007
FedGL (Chaitanya et al., 2020) 0.468 ± 0.019 0.687 ± 0.051 0.813 ± 0.015 0.865 ± 0.009
FCL (ours) 0.646 ± 0.052 0.824 ± 0.004 0.871 ± 0.007 0.894 ± 0.006
FCLOpt (ours) 0.769 ± 0.025 0.853 ± 0.006 0.877 ± 0.006 0.897 ± 0.004
FCL-PTNU (ours) 0.680 ± 0.086 0.840 ± 0.007 0.868 ± 0.009 0.889 ± 0.006
FCL-PTNU-DP (ours) 0.778 ± 0.016 0.840 ± 0.002 0.873 ± 0.006 0.894 ± 0.004
Table 3
Comparison of the proposed approaches and baselines on centralized fine-tuning with limited annotations
on the ACDC dataset. 𝑁 is the number of annotated patients for fine-tuning. The proposed approaches
significantly outperform all the baselines with different numbers of annotations.

Methods 𝑁=1 𝑁=2 𝑁=4 𝑁=8

Random init 0.296 ± 0.091 0.528 ± 0.064 0.677 ± 0.056 0.797 ± 0.028
Local CL (Chaitanya et al., 2020) 0.314 ± 0.058 0.544 ± 0.065 0.691 ± 0.040 0.805 ± 0.014
FedRotation (Gidaris et al., 2018) 0.374 ± 0.072 0.583 ± 0.061 0.686 ± 0.056 0.815 ± 0.021
FedSimCLR (Chen et al., 2020a) 0.287 ± 0.030 0.524 ± 0.065 0.658 ± 0.037 0.802 ± 0.022
FedSwAV (Caron et al., 2020) 0.334 ± 0.096 0.575 ± 0.063 0.726 ± 0.044 0.805 ± 0.020
FedCA (Zhang et al., 2020) 0.320 ± 0.067 0.527 ± 0.067 0.653 ± 0.049 0.793 ± 0.024
FedMoCo (He et al., 2020) 0.310 ± 0.068 0.520 ± 0.055 0.695 ± 0.045 0.802 ± 0.017
FedBYOL (Grill et al., 2020) 0.472 ± 0.073 0.633 ± 0.042 0.729 ± 0.039 0.805 ± 0.021
FedU (Zhuang et al., 2021) 0.485 ± 0.133 0.633 ± 0.057 0.747 ± 0.047 0.820 ± 0.031
FedGL (Chaitanya et al., 2020) 0.331 ± 0.057 0.520 ± 0.066 0.686 ± 0.045 0.795 ± 0.020
FCL (ours) 0.575 ± 0.113 0.702 ± 0.041 0.790 ± 0.026 0.844 ± 0.024
FCLOpt (ours) 0.587 ± 0.109 0.708 ± 0.055 0.785 ± 0.038 0.837 ± 0.031
FCL-PTNU (ours) 0.547 ± 0.130 0.691 ± 0.052 0.771 ± 0.041 0.837 ± 0.020
FCL-PTNU-DP (ours) 0.556 ± 0.132 0.674 ± 0.069 0.763 ± 0.055 0.831 ± 0.031
5.3. Results of centralized fine-tuning

We evaluate the performance of the proposed approaches by cen-
tralized fine-tuning with limited annotations, which is a standard evalu-
ation protocol for generic self-supervised learning. As shown in Table 3,
the proposed approaches FCL and FCLOpt achieve significantly higher
performance than the baselines. First, with 1, 2, 4, or 8 annotated
patients, our FCL method outperforms the best-performing baseline
by 0.090, 0.069, 0.043, and 0.024 dice score, respectively, while our
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communication-optimized FCLOpt, FCL-PTNU, and FCL-PTNU-DP per-
form on par with FCL. Second, all our methods significantly improve
the annotation efficiency. For example, with 2 or 4 annotated patients,
FCL performs on par with the best-performing baseline with 2× annota-
tions (0.702 vs. 0.747 and 0.790 vs. 0.820), respectively, which roughly
improves labeling-efficiency by 2×.

In addition to the default learning rate of 0.0005, we further explore
more learning rates for the random init baseline in the centralized fine-
tuning setting. As shown in Table 4, increasing the learning rate only
results in marginal improvement and even degrades the performance of
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Table 4
Impact of learning rate on the random init baseline in the centralized fine-tuning setting. 𝑁 is the
number of annotated patients for fine-tuning.

LR 𝑁=1 𝑁=2 𝑁=4 𝑁=8

0.0005 (default) 0.296 ± 0.091 0.528 ± 0.064 0.677 ± 0.056 0.797 ± 0.028
0.0010 0.311 ± 0.035 0.546 ± 0.062 0.686 ± 0.037 0.813 ± 0.028
0.0020 0.294 ± 0.035 0.519 ± 0.080 0.680 ± 0.044 0.798 ± 0.027
0.0050 0.280 ± 0.033 0.485 ± 0.055 0.666 ± 0.069 0.795 ± 0.029
0.0100 0.290 ± 0.069 0.480 ± 0.043 0.668 ± 0.055 0.806 ± 0.017
Table 5
Comparison of the proposed methods and baselines on transfer learning from ACDC to HVSMR dataset.
𝑀 is the number of annotated patients for fine-tuning. The average dice score and standard deviation on
5-fold cross-validation are reported. The proposed approaches outperform all the baselines, which shows the
proposed approaches can learn useful and transferable representations to be used on the downstream task.

Methods 𝑀=1 𝑀=2 𝑀=4 𝑀=8

Random init 0.792 ± 0.051 0.814 ± 0.049 0.827 ± 0.049 0.859 ± 0.039
Local CL (Chaitanya et al., 2020) 0.798 ± 0.053 0.811 ± 0.045 0.825 ± 0.052 0.855 ± 0.044
FedRotation (Gidaris et al., 2018) 0.800 ± 0.054 0.816 ± 0.055 0.834 ± 0.052 0.864 ± 0.037
FedSimCLR (Chen et al., 2020a) 0.797 ± 0.048 0.799 ± 0.048 0.815 ± 0.053 0.854 ± 0.040
FedSwAV (Caron et al., 2020) 0.802 ± 0.044 0.814 ± 0.054 0.842 ± 0.039 0.862 ± 0.040
FedCA (Zhang et al., 2020) 0.790 ± 0.043 0.802 ± 0.050 0.817 ± 0.056 0.861 ± 0.037
FedMoCo (He et al., 2020) 0.794 ± 0.049 0.815 ± 0.043 0.828 ± 0.045 0.857 ± 0.039
FedBYOL (Grill et al., 2020) 0.797 ± 0.047 0.802 ± 0.042 0.834 ± 0.045 0.865 ± 0.031
FedU (Zhuang et al., 2021) 0.806 ± 0.039 0.819 ± 0.042 0.843 ± 0.040 0.862 ± 0.047
FedGL (Chaitanya et al., 2020) 0.791 ± 0.054 0.813 ± 0.049 0.827 ± 0.054 0.860 ± 0.032
FCL (ours) 0.814 ± 0.046 0.823 ± 0.048 0.849 ± 0.038 0.872 ± 0.033
FCLOpt (ours) 0.814 ± 0.045 0.828 ± 0.039 0.844 ± 0.042 0.872 ± 0.028
FCL-PTNU (ours) 0.812 ± 0.040 0.829 ± 0.039 0.843 ± 0.044 0.868 ± 0.032
FCL-PTNU-DP (ours) 0.813 ± 0.040 0.832 ± 0.048 0.847 ± 0.040 0.868 ± 0.032
Table 6
Ablation study of FCL on the ACDC dataset. The average dice score and standard deviation across
10 clients by local fine-tuning are reported. 𝑁 is the number of annotated patients for fine-tuning
on each client.

Methods 𝑁=1 𝑁=2 𝑁=4 𝑁=8

Without FE 0.287 ± 0.056 0.442 ± 0.066 0.626 ± 0.034 0.767 ± 0.030
FE 0.296 ± 0.048 0.445 ± 0.069 0.634 ± 0.035 0.768 ± 0.028
FE+NS 0.373 ± 0.057 0.524 ± 0.064 0.678 ± 0.021 0.787 ± 0.027
FCL (FE+NS+GSM) 0.506 ± 0.056 0.631 ± 0.051 0.745 ± 0.017 0.824 ± 0.025
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the random init baseline when the learning rate is too large. Therefore,
the default learning rate we used is a good one. Besides, we use the
same learning rate for all the baselines for fine-tuning, which is a fair
comparison.

5.4. Results of transfer learning

We evaluate the generalization performance of the learned en-
coder by transferring to a new downstream task. We pre-train the
encoder on ACDC by different methods and use the pre-trained en-
coder as the initialization for fine-tuning on the HVSMR dataset with
limited annotations. The results are shown in Table 5. Under differ-
ent numbers of annotations for fine-tuning, the proposed approaches
consistently outperform the baselines. While the acquisition view and
resolutions are different on the source ACDC dataset and target HVSMR
dataset, the proposed approaches can still learn useful and transferable
representations to be used on the downstream task.

5.5. Ablation studies of FCL

We perform ablation studies to evaluate the effectiveness of each
component in the FCL with feature sharing introduced in Section 3.
The influences of feature exchange (FE) by Eq. (1), negative sampling
(NS) by Eq. (2), and global structural matching (GSM) by Eq. (5) on
federated contrastive learning are evaluated. By progressively adding
the proposed FE, NS, and GSM, the average dice score increases,
which shows the effectiveness of each of the proposed approaches. As
shown in Table 6, by using a given number of annotations for fine-
9

tuning, enabling the proposed components FE, NS, and GSM one by
one effectively improves the dice score after fine-tuning. For example,
with 4 annotated patients, adding FE+NS improves the dice score from
0.626 to 0.678, and adding GSM further improves the dice score to
0.745. These results show the effectiveness of each component of FCL.

5.6. Results of reduced communication cost

We evaluate the effectiveness of FCLOpt, PTNU, and DP for re-
ucing the communication cost while keeping a high segmentation
erformance, which are introduced in Section 4. The results are shown
n Table 7, where the results of fine-tuning locally on each client
re reported. We report the amount of data communication in each
ound of the federated pre-training, and the segmentation performance
fter fine-tuning. The communication cost is normalized such that
he method FCL has a cost of 1.0 and standards for 124.2 MB com-
unication per round. First, all of our four methods FCL (without

ommunication optimization), FCLOpt, FCL-PTNU, and FCL-PTNU-DP
chieve a high segmentation performance compared with the baselines
edMoCo and FedBYOL. We compare with the baselines FedMoCo and
edBYOL because our FCL employs the same base CL method MoCo (He
t al., 2020) as FedMoCo, and FCLOpt, FCL-PTNU, FCL-PTNU-DP use
he same base CL method BYOL (Grill et al., 2020) as FedBYOL.
econd, compared with FCL, our communication-optimized FCLOpt
ffectively reduces the communication cost from 1.000× to 0.645×.

Adding 𝑃𝑇𝑁𝑈 to FCLOpt as FCL-PTNU further reduces the commu-
nication cost to 0.509× and adding 𝐷𝑃 reduces the communication
cost to 0.386×. Compared with FedBYOL which only synchronizes the

online network, our FCL-PTNU-DP has a comparable communication
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Table 7
Comparison of the proposed approaches and baselines on local fine-tuning with limited annotations on the ACDC
dataset. Communication is the amount of data communications in the FCL pretraining process. 𝑁 is the number of
annotated patients for fine-tuning on each client.

Methods Comm. 𝑁=1 𝑁=2 𝑁=4 𝑁=8

Baselines
FedMoCo 0.544 × 0.287 ± 0.056 0.442 ± 0.066 0.626 ± 0.034 0.767 ± 0.030
FedBYOL 0.373 × 0.431 ± 0.057 0.554 ± 0.052 0.685 ± 0.021 0.781 ± 0.027

Our methods: high accuracy with feature sharing
FCL (ours) 1.000 × 0.506 ± 0.056 0.631 ± 0.051 0.745 ± 0.017 0.824 ± 0.025

Our methods: optimizing communication
FCLOpt (ours) 0.645 × 0.524 ± 0.052 0.655 ± 0.039 0.745 ± 0.020 0.821 ± 0.020
FCL-PTNU (ours) 0.509 × 0.517 ± 0.061 0.622 ± 0.045 0.730 ± 0.019 0.810 ± 0.022
FCL-PTNU-DP (ours) 0.386 × 0.512 ± 0.053 0.621 ± 0.050 0.729 ± 0.016 0.810 ± 0.027
Table 8
Communicated model components in different methods.

Methods Online Online Target Encoded
network predictor network representations

MoCo-based methods
FedMoCo ✓ ✓

FCL (ours) ✓ ✓ ✓

BYOL-based methods
FedBYOL ✓ ✓

FCLOpt (ours) ✓ ✓ ✓

FCLOpt-PTNU (ours) ✓ ✓ Upload only
FCLOpt-PTNU-DP (ours) ✓ ✓ ∼ 0

cost but significantly better segmentation performance. These results
show all of our methods achieve a high segmentation performance, and
enabling the communication optimizations can effectively reduce the
communication cost.

5.7. Comparison of communicated model components

To better understand different methods, we show the communicated
model components in Table 8, in which the top half compares MoCo-
based methods, while the bottom half compares BYOL-based methods.
First, both MoCo-based baseline FedMoCo and our FCL communicate
the online network and the target network (the online predictor does
not exist in MoCo). The difference is that our FCL also communicates
the encoded features. As shown in Table 7, our FCL greatly outperforms
FedMoCo in terms of model performance at the cost of increased
communication cost. This is desirable when model performance is the
main goal while communication has a marginal cost for medical insti-
tutions with high-speed connections. Second, for BYOL-based methods,
the goal of our FCLOpt with PTNU and DP is to achieve a similar
communication cost as FedBYOL while having substantially higher
model performance. More specifically, in FedBYOL, only the online
network and the online predictor are communicated, while the target
network is not. Based on FedBYOL, we propose FCLOpt which further
communicates the target network for higher model performance. Then,
we propose PTNU which eliminates the upload of the target network.
After that. we propose DP to eliminate most of the downloads of the
target network. As shown in Table 7, our FCLOpt-PTNU-DP achieves
much higher model performance than FedBYOL and has almost the
same communication cost as FedBYOL.

5.8. Visualization

We visualize the segmentation results of the ACDC dataset in Fig. 4.
The input image and the ground truth annotations are shown in the first
two images, followed by segmentation results of the baseline methods,
and the results of our methods are shown in the third row. Our methods
generate better visual segmentation results than the baselines and are
more similar to the ground-truth annotations, which are consistent with
the quantitative results.
10
6. Conclusion

This work aims to enable federated contrastive learning (FCL)
for volumetric medical image segmentation with limited annotations.
Clients first learn a shared encoder on distributed unlabeled data
and then a model is fine-tuned on annotated data. Feature exchange
is proposed to improve data diversity for contrastive learning while
avoiding sharing raw data. Global structural matching is developed
to learn an encoder with unified representations among clients. To
reduce the communication cost of FCL, an optimized method FCLOpt
that does not rely on negative samples is proposed. Based on FCLOpt,
predictive target network update (PTNU) is developed by predicting the
target network by fast forward to further reduce the communications
of model downloading. Distance prediction (DP) is proposed to remove
the uploading of the target network. The experimental results show sig-
nificantly improved segmentation performance and labeling-efficiency
compared with state-of-the-art techniques.

7. Description of the extensions

The original version of this paper was published on MICCAI 2021
proceedings (Wu et al., 2021b). Compared with the original version,
we made the following extensions in this manuscript.

1. We added Section 4 to describe the communication-optimized
method FCLOpt. The FCL method introduced in the original MIC-
CAI paper (described in Section 3 in this manuscript) requires
additional communication for feature sharing, aiming at im-
proving the segmentation performance. We extend the original
method by proposing an optimized method FCLOpt (Sections 4.2
and 4.3) that does not rely on negative samples to eliminate the
communication costs of feature sharing.

2. Based on FCLOpt, to further reduce the communications of
model download, we propose the predictive target network up-
date (PTNU) that predicts the target network by fast forward
(Section 4.4).

3. Based on PTNU, we propose the distance prediction (DP) to
remove the uploading of the target network (Section 4.5).

4. We added experiments for the extended methods. More specif-
ically, we added experiments for the FCLOpt, FCL-PTNU, and
FCL-PTNU-DP in Section 5. The results of segmentation perfor-
mance by local fine-tuning, federated fine-tuning, centralized
fine-tuning, and transfer learning are added to Section 5.1,
Section 5.2, Section 5.3, and Section 5.4, respectively. The re-
sults of communication cost are added to Section 5.6 to show
the reduced communication by the added methods compared
with the FCL method in the original paper. The visualization
of segmentation results is added to Section 5.8. These results
show the extended FCLOpt including the PTNU and DP methods
effectively reduces the communication cost while preserving the
segmentation performance of the FCL method in the original
paper.
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Fig. 4. Visualization of segmentation results on ACDC dataset. The results are generated from the fine-tuned model when 2 annotated patients are used for fine-tuning (𝑁 = 2).
The proposed approaches achieve significantly better segmentation performance than the baselines.
5. In addition to the extended methods and corresponding ex-
periments, in the experimental results of Section 5, we added
two baseline methods FedMoCo and FedBYOL to the experi-
mental results for comparison. We also added the evaluation
protocol centralized fine-tuning with limited annotations, which
is a standard evaluation protocol for generic self-supervised
learning.
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