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Steadily moving transition (switching) fronts, associated with local transformation, symmetry breaking or
collapse, are among the most important dynamic coherent structures. The nonlinear mechanical waves of this
type play a major role in many modern applications involving the transmission of mechanical information in sys-
tems ranging from crystal lattices and metamaterials to macroscopic civil engineering structures. While many
different classes of such dynamic fronts are known, the interrelation between them remains obscure. Here we
consider a minimal prototypical mechanical system, the Fermi-Pasta-Ulam (FPU) chain with piecewise linear
nonlinearity, and show that there are exactly three distinct classes of switching fronts, which differ fundamen-
tally in how (and whether) they produce and transport oscillations. The fact that all three types of fronts could
be obtained as explicit Wiener-Hopf solutions of the same discrete FPU problem, allows one to identify the ex-
act mathematical origin of the particular features of each class. To make the underlying Hamiltonian dynamics
analytically transparent, we construct a minimal quasicontinuum approximation of the FPU model that captures
all three classes of the fronts and reveals interrelation between them. This approximation is of higher order
than conventional ones (KdV, Boussinesq) and involves mixed space-time derivatives. The proposed frame-
work unifies previous attempts to classify the mechanical transition fronts as radiative, dispersive, topological

or compressive and categorizes them instead as irreducible types of dynamic lattice defects.

I. INTRODUCTION

Transition fronts in discrete systems continue to attract a
lot of attention because they represent examples of far-from
equilibrium collective phenomena that emerge from the un-
derlying many-body interactions. Interpreted as highly non-
linear coherent dynamic structures, such fronts play an im-
portant role in the energy transmission from macro to mi-
croscales. They are observed in both integrable and non-
integrable Hamiltonian systems [1, 2], can be topological or
non-topological [3-5], spreading or compact [6], compres-
sive or undercompressive (non-Lax) [7], stable or unstable
[8]. Together with solitons and breathers, they play a crucial
role as building blocks in complex nonlinear wave patterns
that emerge generically in mechanical systems ranging from
crystals [9—11] to nanomechanical structures [12—15].

The concept of transition fronts is equally relevant for the
description of pattern formation [16] and transport proper-
ties in nonmechanical dynamical systems, including coupled
waveguide arrays [17, 18], quantum systems [19, 20], Bose-
Einstein condensates [21-24], electronic liquids [25], ultra-
cold quantum gases [26, 27], rarefied plasma [28], intense
electron beams [29], liquid helium [30], and exciton polari-
tons [31]. In this paper we focus on mechanical switching
fronts due to the importance of their dynamics for the de-
sign of modern metamaterials [13, 32-34]. The term “me-
chanical metamaterials” is used here to describe high-contrast
(soft-hard) composite structures with complex architecture at
mesoscale. Characteristically, the macroscopic properties of
such structures are controlled more by the structural stability
of the sub-elements than by their material properties [33, 35—
41]. The use of additive manufacturing techniques opened
a way to exploit various elastic instabilities embedded in the
metamaterial response and to creatively guide them using ap-
plied deformation [13, 42, 43]. Dynamic effects targeted by
various metamaterial architectures include mitigation of im-
pact loadings, non-destructive detection of inhomogeneities,

suppression or amplification of internal instabilitics, trans-
mission, guiding and encryption of mechanical information
including the enabling of logic operations, dynamic unfold-
ing of deployable structures, energy harvesting and even ac-
tivating soft robotics [34, 44-54].

One of the most interesting nonlinear dynamic effects that
qualifies metamaterials as mesoscopic analogs of ordered
solid-state materials, such as ferroelectrics, ferromagnets and
ferroelastics, is their ability to support moving transition
fronts (analogs of domain boundaries), which enable the sys-
tem to perform dynamic switching between different equi-
librium states [32, 55-61]. There is already a rich body of
theoretical and experimental literature devoted to the study of
such dynamic snapping/switching waves in mesoscopic me-
chanical systems [15, 57, 62-64]. The ability to propagate
transition fronts in metamaterials opens new ways towards
potential applications in shape morphing, reconfigurable de-
vices, mechanical logic, and controlled energy absorption
[43, 65-69]. Analysis of low-dimensional model systems can
serve as a guide for the structural design and optimization of
the actual three-dimensional (3D) mechanical systems.

Despite the ubiquity of transition fronts in metamaterials,
the relation between different classes of such mobile nonlin-
ear dynamic structures remains obscure. In this paper we con-
sider a well known prototypical system, namely the Fermi-
Pasta-Ulam (FPU) model [70-73], and present a unified de-
scription of the three main types of steady transition fronts
in this one-dimensional lattice, which we identify as sub-
kinks, shocks and superkinks. Various realizations of these
archetypes have been previously encountered in applications
and treated as unrelated: subkinks as subsonic phase bound-
aries [74-76], shocks as classical supersonic shock waves
[77, 78] and superkinks as supersonic activity waves [54, 79].
They were first treated as disconnected solutions of the FPU
model in [62, 80]. Some conceptual links between sub-
kinks and shocks have been previously established in [77, 78],
while superkinks remain a disconnected class of transition



fronts [79, 81-83].

A unified description of all these transition fronts can be
obtained if we use the simplest choice of nonlinearity and as-
sume that the FPU interactions are piecewise linear. In fact,
such interactions were already considered in the original pa-
per [70] and have since been employed for the description of
various dynamic nonlinear phenomena, e.g. [80, 84—88].

More specifically, we consider the Hamiltonian dynamics
of a mass-spring chain with mass displacements u,,(t) satis-
fying the infinite system of equations
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Here £ is the equilibrium distance between the masses m =
ph, where p is the mass density. In terms of the strain vari-
ables
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The assumed piecewise linear macroscopic stress-strain rela-
tion can be written as
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where ¢, is the critical (switching) strain, and E;, E5 are
the elastic moduli in the two linear regimes. We assume
that E5 > Ej, so that the two characteristic speeds c; o =
E12/p satisfy ca > c¢y. The corresponding piecewise
quadratic elastic energy density ¢(e) = [ o(¢)de is continu-
ous:
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Examples of stress and energy density functions are shown in
Fig. 1.
Note that as the stress jump at the critical strain
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varies from positive to negative values, we obtain two funda-
mentally different types of constitutive behavior. Thus, the
elastic energy density ¢(z) is nonconvex when Ao > 0 and
convex for Ac < 0. When Ao > 0, the different branches of
the stress-strain curve can be considered as different “phases”
of the material, with the spinodal region (where ¢(<) is con-
cave in a smoother setting) represented by the single point
€ = €.. When Ao < 0, the stress jump at € = &, is just
a representation of the hardening-type nonlinearity, which is
again concentrated at a single point.

The advantage of the piecewise linear choice for the stress-
strain relation is the possibility to construct the corresponding
traveling wave solutions of the FPU problem explicitly using

the Wiener-Hopf transform technique [80]. While smoothen-
ing the constitutive response around the singular point e,
could make the model more realistic, sometimes even without
sacrificing much of analytical transparency [89-91], stronger
nonlinearity is needed to capture such important physical
effects as thermalization of the radiated phonons [92-94].
However, such generalization of the model, which will make
its analytical treatment almost impossible without contribut-
ing much to the classification of the transition fronts, is out-
side the scope of this paper.

To make the structure of the underlying Hamiltonian dy-
namics clearly visible, we pose the problem of construct-
ing the minimal quasicontinuum (QC) approximation of the
FPU model capturing all three classes of the fronts. The
term “quasicontinuum” is used here in the sense that it is a
continuum approximation of the discrete system, which is,
however, not scale-free and carries a memory about the lat-
tice discreteness [95]. Our analysis shows that the desired
approximation must be necessarily of higher order than the
conventional ones (KdV, classical “good” or “bad” Boussi-
nesq) and should involve mixed space-time derivatives. The
obtained minimal QC model with desired properties can be
viewed as a higher order mixed derivatives (temporal) analog
of the “good” Boussinesq approximation [96]. In contrast to
the more conventional approach of adding spatially nonlocal
terms to the elastic energy [97, 98], it introduces the higher
order derivatives into the inertial part of the model (into the
kinetic energy), as advocated earlier in [99].

The proposed QC framework not only provides a transpar-
ent interpretation of the three types of transition fronts as het-
eroclinic trajectories of different kinds in the phase space, but
also helps to explain in physical terms why some kinks are
radiative (dissipative), while others are not, why some shocks
are dispersive, while others are not, and why kinks are topo-
logical, while shocks are not. The comparison with the exact
solutions of the discrete problem shows that, on both qual-
itative and quantitative levels, the relation between different
classes of transition fronts is captured adequately by the pro-
posed minimal QC approximation.

It is important to mention that while the non-stationary
(spreading) dispersive shock waves (DSW) [100-102] are not
the focus of our study, which aims to classify steadily moving
transition fronts, we show numerically that the DSWs replace
the steady transition fronts in a subdomain of the parameter
space. The adequacy of the QC approximation is corrobo-
rated by the fact that the DSW stability subdomains in dis-
crete and QC models nearly overlap.

On a theoretical side, our approach unifies for the first time
the previous attempts to classify the mechanical transition
fronts as radiative, dispersive, topological or compressive and
categorizes them instead in a unified framework as fundamen-
tally distinct types of dynamic lattice defects. The obtained
analytical solutions can also be used in applications as a guid-
ance in the design of new metamaterials exploiting structural
nonlinearity at the scale of the periodicity cell. For instance,
our analysis points to a particular type of nonlinearity which
should be used if the goal is the suppression of shock load-
ing by channeling the largest amount of energy from macro to
micro scales. It also makes clear that a different type of non-
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Figure 1. Piecewise linear stress-strain relation o (¢) defined in Eq. (3) and the corresponding energy density ¢(¢) for different values of Ao.
Here 1 =1, F3 = 4,e. = 1, 09 = 1 (solid), o9 = 3 (dotted) and o9 = 5 (dashed).

linearity must be engineered if the task is to transmit mechan-
ical information with minimal losses. There is of course still
a long way from our prototypical 1D designs to the construc-
tion of the corresponding 3D mesoscopic composite struc-
tures.

The rest of the paper is organized as follows. In Sec. II
we formulate the classical continuum approximation of the
discrete problem and identify irreducible classes of transition
fronts. Then in Sec. III we introduce a non-classical quasi-
continuum approximation of the same discrete problem and
construct explicit solutions of the corresponding dispersive
traveling wave problem describing all three distinct types of
transition fronts. In particular, we discuss the issues of solu-
tion admissibility in the piecewise linear model and the effec-
tive energy dissipation in this Hamiltonian framework. We
then present the results of direct numerical simulations that
suggest stability of the obtained traveling waves. In Sec. IV
we construct an explicit traveling wave solution of the orig-
inal discrete problem providing a unified description of all
three types of fronts. We then present numerical simulations
illustrating stability of the different types of transition fronts
in various domains of the parameter space. In Sec. V we
briefly mention potential applications of our results for the
design of metamaterials. A summary of the results and con-
cluding remarks can be found in Sec. VI. Some asymptotic
results are presented in Appendix A.

II. CONTINUUM MODEL

In our search of a unified description for the different types
of transition fronts, it is natural to start with the classical con-
tinuum approximation of the original discrete model (1). It
can be obtained by taking a formal limit ~ — 0 and replacing
finite differences by the lowest order derivatives. Following
[103], we obtain the standard nonlinear wave equation, which
can be represented as the first-order system
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Here e(x,t) = u, and v(z,t) = u; are the strain and parti-
cle velocity, respectively. The system (4) has discontinuous
solutions, which must satisfy the classical Rankine-Hugoniot

(RH) conditions

[v] + VIl =0, pVv] +[o(e)] =0, Q)
where V' is the velocity of the jump discontinuity. The no-
tation [f] = fy+ — f— will be used throughout the paper to
describe the jump between the limiting values to the right and
to the left of a discontinuity.

By changing the parameter Ao and varying independently
the velocity of the jump discontinuity, we can obtain three
fundamentally different types of steadily moving transition
fronts shown schematically in Fig. 2. Each transition front
connects a state € = £ in front with a state € = £_ behind.
Both of these states £ belong to the stress-strain curve which
is piecewise linear, and to be nontrivial the transition front
must connect the states on two sides of the singular point € =
ec. The RH conditions state that the slope of the Rayleigh
line connecting (¢4,0(4)) and (¢_,0(e_)) is proportional
to the square of the velocity V' of the front:

oley) —o(e_) = pV3(ey —e_). (6)
The three different types of transition fronts are defined by
the relation between their velocity V' and the characteristic
velocities ¢; and ¢y, which can be determined by comparing
the slopes of the Rayleigh line and the corresponding linear
regimes of the stress-strain curve. In what follows, we will
refer to them as subkinks (subsonic kinks, V' < ¢; < ¢g,
panel (a) of Fig. 2), shocks (intersonic fronts, ¢; < V < co,
panel (b)) and superkinks (supersonic kinks, ¢; < ¢ < V,
panel (c)).

A. Well posedness

Note that there are five variables to be determined for each
discontinuity: vy, e+ and V. Two relations between these
five unknowns are furnished by the RH conditions (5). Fig. 2
shows qualitatively the fundamentally different relations of
this type. Additional information can be obtained by solving
the problem (4) using the method of characteristics. Due to
the piecewise linear nature of the problem, two families of
characteristics with velocities ¢y 2 can be defined on both
sides of the moving front.
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Figure 2. Rayleigh lines connecting (¢, c(e+)) and (e, o(e—)) with the slope pV? satisfying Eq. (6) for three distinct types of traveling
wave solutions: (a) subsonic kinks, V' < ¢1 < c2, (b) shocks, c1 < V' < c2, (c) supersonic kinks, ¢1 < c2 < V. The driving force is
G = S> — 51, where S1 (blue) and S> (pink) are the areas cut by the Rayleigh line from the stress-strain curve.

Fig. 3 shows the arrangement of such characteristics in
space-time for all three types of transition fronts. When
V' < ¢ (subkinks) or V' > c¢o (superkinks), there are two
incoming characteristics at the front, which reduces the num-
ber of unknowns to one, and therefore an additional condi-
tion is needed to find the remaining parameter, for instance,
V. If ¢y < V < ¢o (shocks), there are three incoming char-
acteristics, which means that all five parameters can be deter-
mined without any additional conditions. In this sense kinks
are undercompressive (non-Lax), while shocks are compres-
sive [104]. The necessity of an additional “kinetic relation”
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Figure 3. Characteristics 17 + (c¢1,2 == V')t = const of the continuum
problem in the moving frame with 7 = « — V¢ in phase 1 (blue) and
phase 2 (red): (a) subkinks, V' < ¢1; (b) shocks, c1 < V' < ¢2; (¢)
superkinks, V' > co. Here n =z — V't.

on discontinuous transition fronts was first pointed out in
[74, 78, 105]; see also [106]. The difference between sub-
kinks and superkinks, which both require an additional con-
dition closing the problem, is not apparent in this purely con-
tinuum setting.

B. Dissipation rate

While the system of continuum equations (4) is conserva-
tive, it known that the corresponding discontinuous solutions
may be dissipative. One way to supply the missing closure
relations for subkinks and superkinks is to specify the dissi-
pation rate at the moving transformation front.

For all three classes of fronts the energy dissipation on the
discontinuity can be written as the product [105]

R=GV >0, @)

where V' is the velocity of the front and G is the conjugate
generalized (or driving) force, which is also known as the en-
ergy release rate. After appropriate symmetrization [74], it
takes the form

G = [¢(e)] —{o(e)} el ®)

where we introduced a notation for the averaging over the
jump {f} = (f++ f-)/2. The quasistatic notion of a driving
force on a moving discontinuity dates back to Eshelby [107—
109]. A recent application of this notion in inertial dynamics
can be found, e.g., in [75].

In our piecewise linear continuum model the driving force
G can be computed explicitly. We obtain
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In terms of the diagrams in Fig. 2, one can show that G can be
represented as the difference between the two colored areas
between the Raleigh line and the stress-strain curve: G =
So — S1. Given that V' > 0, the area S; (blue) corresponds
to the energy rate received on the jump while the area S,
(red) describes the rate of energy loss. To ensure the overall
dissipative nature of the jump encapsulated by the inequality
(7), it is necessary that Sy > 5.

Note that according to Fig. 2, in the case of subkinks the
energy is received at the frontal part and released at the back
part of the transition front. Inside shocks the energy can
only be released. For superkinks the energy is released in
the frontal part and received in the back part.

C. Inner structure of the fronts

As we have seen, in the continuum model the transition
region is infinitely localized in space (jump discontinuity).
However, the different arrangements shown in Fig. 2 suggest



that it may be of interest to reconstruct the energetic structure
of cach of the archetypal front in the configurational space
of strains varying from €, to e_. The idea is that the en-
ergy transfers implied by the relative size of the areas S; and
S shown in Fig. 2 are accomplished by some microscopic
dispersive mechanisms that are overlooked by the continuum
approximation.

For instance, in the case of subkinks, the continuously
emerging energy in the frontal part of the transition region
must be somehow transported from the back of the front
where it is released. Such transport can be accomplished by
the emitted sub-continuum (lattice) waves whose group ve-
locity is larger than their phase velocity (which is equal to V).
In the case of superkinks, the energy released in the frontal
part is at least partially re-acquired in the back part, and for
this the system can use lattice waves whose group velocity is
smaller than the phase velocity. To support all three types of
the fronts, the dispersion must be sufficiently complex, which
is of course the case for the original discrete model.

To support this intuitive picture, it is instructive to intro-
duce the notion of the local energy variation inside the strain
interval connecting the limiting states £, and e_. Since the
actual trajectory in the stress-strain space is not yet known,
we can consider energy variation along the Rayleigh line
which ensures the conservation of the macroscopic mass and
momentum. The corresponding auxiliary function was intro-
duced in [110] and in our notation it takes the form

S(e,e4) = d(e) — dlet) — (e —e4)%(e),

where
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is the average of o(ey) and the stress taken along the
Rayleigh line at €. One can show that the limiting states ¢
and _ correspond to the extrema of the potential § with re-
spect to . Note also that the reference energy is chosen in
such a way that

S(e4,e4) =0,

which means that the energy level assigned to the state ahead
of the jump € = £ is zero. On the other hand, the overall
dissipative (or non-dissipative) nature of each type of front is
reflected by the fact that at the final state ¢ = e_ we have

G(et,e)=-G<0.

In this way the implied energy landscape describes the en-
ergy variation inside the moving front independently of its
type. However, it is important to remember that the function
G does not describe the actual variation of the energy inside
the moving front, as we still do not refer to any particular
dispersive mechanisms operating inside the transition zone.
The behavior of G as a function of ¢ for all three types
of transition fronts is shown schematically in Fig. 4. As ex-
pected, the ensuing energy landscapes for different universal-
ity classes are qualitatively different. Thus, for subkinks, in
addition to dissipation, which is expressed by the fact that the

minimum at €_ is lower than the minimum at €, there is
also an energy barrier in between that needs to be overcome.
Crossing this barrier requires energy to be continuously trans-
mitted by dispersion from the downstream, where it is contin-
uously released. For shocks, there is no barrier, and the con-
tinuously released energy must be fully removed, with none
of it being reabsorbed. Finally, for superkinks, there is no
dissipation (as will be confirmed later). However, in this case
there is an anti-barrier, and energy transmission by disper-
sion is still necessary, but now from upstream to downstream.
Note also that since the barriers exist in the case of kinks and
not shocks, the former can be considered as topological “lat-
tice defects”, while the latter remain non-topological.

III. QUASICONTINUUM MODEL

The scale-free approximation we used to obtain the contin-
uum model does not reveal the fate of the energy dissipated on
the localized transition front and does not explain which addi-
tional macroscopic jump condition must be chosen in the case
of subkinks and superkinks. To answer these questions we
must solve the discrete problem. The qualitative information
can also be obtained from a quasicontinuum (QC) approxi-
mation with sufficiently rich dispersion to adequately mimic
the subcontinuum energy transport [95, 96].

In this section we show that the minimal QC approxima-
tion of the FPU model capturing all of the dynamic regimes
of interest can be constructed following the general approach
proposed in [99]. The idea is to focus on temporal dis-
persion and introduce internal scales into the expression of
kinetic energy, while keeping the elastic energy as in the
scale-free theory. The focus on kinetic energy dates back to
the theory of rotational inertia of beams by Rayleigh [111],
with subsequent generalizations for other dispersive problems
[112, 113]. While in the context of discrete lattices, the QC
theories of this type have been considered before [114-118],
we show below that even the minimal QC approach, describ-
ing all three universality classes, includes new elements.

A. Main equations

To construct the QC approximation, we set © = nh, and in-
troduce the variables £(z, t) = €, (t) and o (z,t) = o(e,(t)),
viewed as functions of continuous space and time. We can
then rewrite the infinite system (2) as a single advance-delay
partial differential equation, which after the spatial Fourier
transform takes the form

52¢ h
ph2§ — 4sin? (%) 5, (10)

where f(k,t) = ffooo f(z,t) exp (ikx) dx is the Fourier
transform of f(x,t). To simplify the problem and develop
the corresponding long-wave asymptotic expansion, we as-
sume that kh < 1.

To adequately describe the temporal dispersion [99], we
use the (2,4) Padé approximation of sin?(kh/2) in kh which
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Figure 4. Different behavior of the dissipation function G(e, 4 ): (a) subkinks, V' < c1, (b) shocks, ¢1 < V' < ¢2, (c) superkinks, V' > cz.

affects the kinetic energy, while preserving the classical con-
tinuum form of the elastic energy. This yields

(kh)?
1+ a1 (kh)? + ag(kh)*’

4sin’(kh/2) ~ (11)

where a; = 1/12 and as = 1/240. The need to retain two
subcontinuum terms in this approximation is dictated by the
requirement that the resulting QC model is both comprehen-
sive and minimal, as will be explained below. We remark that
in addition to yielding bounded dispersion relations for the
two linear regimes, the expansion in Eq. (11) is accurate up
to O(k®) near k = 0, and thus provides a long-wave approx-
imation of the discrete Laplacian operator. Other choices of
Padé approximations are discussed in [96, 119-121].
Substituting the expansion in Eq. (11) into Eq. (10) and
mapping it back into physical space we obtain, after integra-

tion,
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where u(z, t) is the displacement field defined by the relation
u; = €; here we also used the scaling £ = x/h but dropped
the tildes to simplify the expressions. The single partial dif-
ferential equation (12) represents the desired QC approxima-
tion of the infinite FPU system (1) of ordinary differential
equations.

To reveal the structure of the augmented kinetic energy
term, we now derive the equation (12) from the Hamiltonian
action principle. We start with the sufficiently general action
functional of the form

A= / L(uiy uj, uije)dgdg®, (13)
Q

where £ is a Lagrangian density, ¢* = z is the spatial co-
ordinate, q2 = t denotes time, and the subscripts after the
comma indicate partial derivatives with respect to ¢* and ¢>.
The integration in Eq. (13) is over the two-dimensional space-
time domain €2 representing the evolving body between the
time instants ¢ = ty and t = ¢;. The deformation history is
described by the function u(g®), a = 1,2. Given the struc-
ture of the action functional we can write the Euler-Lagrange

equations in the form [122]
(azz JOu; — (0L /0uy) ; + (D0 /au,ijk)J,C) =0. (14)

Here and in what follows the summation over repeated in-
dices is implied. To obtain Eq. (12) from Eq. (14), we need
to specify the Lagrangian. It is not difficult to sce that the de-
sired equation will be obtained if we consider the Lagrangian
in the form

L= (p/2)(ui + ayui, +agu?,,) — o(ug).  (15)

Here the density of the elastic energy ¢(u,) is the same as
in the classical continuum theory, while two sub-continuum
terms with mixed derivatives appear in the expression of the
kinetic energy. While the “micro-kinetic” term a;u?, is now
standard (see, e.g., [116, 123]), to our knowledge, the next
term in the expansion, asu?,,, has not been used construc-
tively before.

The advantage of using the variational principle is that it
allows one to derive not only the governing equation but also
the corresponding jump conditions. This is relevant because
despite regularization provided by the high derivative terms
in the energy, our piecewise linear QC theory is still non-
smooth at the transition point v, = £.. The corresponding
generalization of the RH jump conditions, compatible with
our higher order QC theory, emerges as a natural consequence
of extremality of the action functional. Indeed, if the space-
time domain 2 contains a surface I" of discontinuity, the stan-
dard Euler-Lagrange equations must be supplemented by the
additional necessary conditions of extremality on I'. In our
case the surface I' is characterized by the continuity condi-
tion u, = €., so we must also require that Ju] = 0. While
the particle trajectories are differentiable on I, some higher-
order derivatives of the displacement field may be discontin-
uous. We interpret the constraints on such singular surfaces
imposed by the action principle as the dispersive Rankine-
Hugoniot (DRH) jump conditions.

Using the standard manipulations detailed, for example, in
[122], we obtain

[[8L/8u71- — (6L/8u,ij) + (8L/8u,ijk)7jk]]ni =0, (16)

»J

[[BL/&UZ] — (BL/au,ijk),k]]nmj =0. (17)



[[3L/8u7ijkﬂnmjnk =0. (18)

Here n, is the unit vector normal to I" facing the + direc-
tion; the spatial (nq) and the temporal (ns) components of
such normal are related through ny = —n;V, where V' is the
velocity of the discontinuity.

The necessary conditions (16), (17) and (18) of extremality
must be supplemented by the kinematic compatibility condi-
tions

[[u7iﬂ = pni,

where p is a scalar. Eliminating p, we obtain an auxiliary
jump relation

[u] + V]uz] =0, (19)

which represents the balance of mass across the discontinuity.
In our special case the three DRH conditions (16), (17) and
(18) reduce to

PV[[Ut — Q1 Utz + a2utmxzmﬂ + [[U(ur)]] = Ov (20)
[[alutm - a2utmzr]] =0 (21)

lastiza] = 0. (22)

To satisfy all these conditions, we assume that [u;] = 0 and
[wez] = 0. Then Ju,] = 0, while the two conditions (21) and
(22) reduce to Jtszez] = 0 and Juy,,] = 0, respectively. The
condition (20) reduces to

The derived jump conditions guarantee that the physical phe-
nomena in the bulk and on the discontinuity surface are ex-
actly the same.

B. Dimensionless formulation

In what follows, we use dimensionless variables

~ 14 o 0o
V = — s o — — s ol = — s

c1 7 E, 70 E,
with tildes dropped to simplify notation. The system is con-
trolled by the dimensionless parameters ¢, and

[ E2
=4/—=—>1
v £

For the analysis presented below, it is convenient to work with
the following equation obtained by differentiating the dimen-
sionless version of Eq. (12) with respect to x:

02 a9\ 0% %
(1—“1@”2@)@:@ @Y

C. Traveling waves

To find steadily moving transition fronts, we seek solutions
of Eq. (24) in the form of traveling waves:
ez, t) =¢e(n), n=x—Vt (25)
We place the front separating two linear regimes at n = 0
and thus require that the following consistency condition is
satisfied:

£(0) = e.. (26)

Moreover, we consider the solutions admissible only if they
satisfy the inequalities

g(n) >e. forn <0, e(n)<e. forn>0. (27)

Since our solutions can be expected to contain phonon radi-
ation at oo, we formulate the boundary conditions in the
form

(e(n)) = ex asn— +oo, (28)

with constant limits €1 constrained by the standard RH con-
dition (6) with stress-strain law given by Eq. (3), which in the
dimensionless formulation becomes

- (V2 - 1)€+ — 0p

=g (29)

The angular brackets in Eq. (28) denote the average over
the largest period of the short-wave oscillations representing
phonon radiation; more generally,

n+r
) = Jim = [ (0.

T—00 T

The admissibility conditions in Eq. (27) require that e < e,
and s_ > ¢.. Physically, this means that at ¢ = €, the moving
transition front performs the switching from one branch of the
piecewise linear stress-strain curve to another.

Substituting Eq. (25) into Eq. (24), integrating twice and
taking into account the boundary conditions (28), we obtain
the ordinary differential equation

d> d*

V21 —a g
a1d7]2+a2dn4

e(n) = o(n)+(V*=1)ey, (30)

where
o(n) =e(mHMm) + (v*=(n) — co)H(-n), (3D

and H(n) is the Heaviside function. We also need to apply
the following jump conditions at n = 0:

[e] = [de/dn] = O, (32)

[d*/dn®] =0, [d*c/dn*] = 0. (33)

It is straightforward to check that the condition (23), which
takes the form [o(n)] — axV? [d*e/dn*] = 0, is satisfied
automatically.
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Figure 5. The characteristic roots in the quasicontinuum model when (a) V' < 1, (b) 1 < V < «, (c) V' > ~. Due to symmetry, only the
roots with Imk > 0 and Rek > 0 are shown. Insets show the dispersion relations and real roots as intersections with the line V k.

D. Mechanical radiation

Since Eq. (30) is piecewise linear, it can be solved explic-
itly. The analytical solution in each of the two linear regimes
can be written as a combination of linear waves whose fre-
quencies and wave numbers satisfy the characteristic equa-
tions

wi(k) - V2?2 =0, (34)

where w (k) and w_ (k) are the dispersion relations defined
by

(35)

and shown in the insets of Fig. 5. The double root of (34)
at k = 0 is responsible for a linear term in the solution, and
in view of the assumption of boundedness of the solution, it
contributes only constants in each domain of linearity. Due to
the even symmetry of the functions w (k), the four nonzero
roots of (34), which we denote by kzj.t, 7 = 1,2,3,4, must
satisfy ki = —ki* and kf = —kF. Therefore it suffices
to seek nonzero roots with Imk > 0 and Rek > 0, where
Rek and Imk are real and imaginary parts of k, respectively.
The structure of the roots for three different types of fronts is
shown in Fig. 5.

Of principal importance for the description of phonon radi-
ation produced by the moving front are the nonzero real roots
of (34). The corresponding points of intersection of w (k)
and V'K are marked in the insets of Fig. 5. When V' < 1 (sub-
kinks), a symmetric pair of such roots +k* exists for each
domain of linearity: when 1 < V' < « (shocks), only the
roots =k~ remain, while in the case of superkinks V' > ~,
there are no nonzero real roots at all. Since each nonzero real
root describes energy radiation to and from the moving front,
the superkinks can potentially receive but cannot dissipate en-
ergy in the form of radiated waves.

To exclude the energy flux from infinity (anti-dissipation,
which can sometimes be interpreted as an AC driving [124]),
we must impose the radiation conditions disqualifying some
of the waves associated with the real roots. In our case these
conditions, comparing the velocity of the energy propagation

(group velocity) with the velocity of the front, take the form
[80, 87]

wh(k) >V, W (k) <V (36)
Since the functions wy (k) are known, these conditions are

explicit. They leave only one real root related component of
the solution in the case of subkinks and shocks.

E. General solution

We observe that the whole configuration of the roots of the
characteristic equations (real and complex) changes depend-
ing on the values of V. The nonzero roots are given by :l:k:fQ,
where

5(12 — 7V?2

(37

V5(1272 —7V?2
k;2=\/§\/—5¢ ( WV ).

More specifically, for the state ahead of the moving front we
have the following three regimes:

kf=ip, ki=s V<1,
kfy=ipa, 1<V <V, (38)
kf_g::Fid-i-f, V >V,.

For the state behind the front we have the same three regimes
but in different V' ranges:

ki =iq, ky =7, V<7,
k£2 = iqLQ, v < V < V;*, (39)
kio=Figtw, V>V

Explicit expressions for the real and positive functions p(V),

s(V), pr2(V), d(V), f(V), q(V), 7(V), q1.2(V), g(V) and
w(V') can be extracted from (37). The critical values

V. = V12/7, Vi =/12/T >V,



are the artifacts of the QC approximation, and, as we show
below, do not have any fundamental meaning.

Applying the radiation conditions (36) and the boundary
conditions (28), we can write the general solutions corre-
sponding to all three types of transition fronts. In particular,
in the case of subkinks (V' < 1), the solution takes the form

e(n) =

£_ + B1e? + By cos(rn) + Bssin(rn),
et + Are P

1 <0 (40)
n > 0.

One can see that for subkinks there is one unknown coeffi-
cient on the + side and three on the — side. All of them can
be found from the consistency, continuity, RH and DRH con-
ditions. Indeed, the consistency condition (26) and the first
of the continuity conditions in Eq. (32) yield in this case the
relations

E++A1 :SCZE_+B1+BQ. (41)

This allows us to eliminate €. Using the RH condition (29),
the second continuity condition in Eq. (32) and the DRH con-
ditions (33), we then obtain the system of linear equations for
the coefficients in Eq. (40):

—CoA1+B1+By=1b
pAi +¢By +rB3 =0,
p’A1 — ¢*By + 1By =0,
p’A1+¢*By —r®B; =0,
where

Vv2-1 o
CO:‘/Q——’)/Q7 b:(I*CQ)EC-FW—_Ony.
The system yields explicit expressions for the four unknown
coefficients A, B1, By and Bs as functions of V' that are not
provided here to simplify the exposition. The expressions for
£+ (V) are then found from Eq. (41).

For shocks and superkinks (V' > 1) the structure of the
roots in Eq. (38) and Eq. (39) changes depending on the value
of V relative to the thresholds V, and V... To account for this,
it is convenient to introduce the shortcuts

—P1,2: 1<V <V,
A2 = .
—dxif, V>V,
and
q1,2, 7 < V< V**
H12 = .
gtiw, V >V,..

Then for shocks (1 < V' < «) we have

e(n) =
€_ + B1e + By cos(rn) + Bssin(rn), n<0 (42)
e4 + AreMn 4 Ageran, n >0,

with two unknown coefficients on the + side and three on
the — side (for V' > V, the two nonconstant terms at > 0
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are complex conjugate since Ay = A; and Ay = A;). The
conditions (26), (29), (32) and (33) yield e + A1 + Ay =
€. = €_ + By + By and the following linear system for the
coefficients in Eq. (42):
—Co(A1 + Ag) + Bl + Bg =b
MAL + XAy —qBy —1rB3 =0,
MNA; +M5Ay — ¢*By +12By = 0,
)\?Al + )\%Ag — q331 + T’BBg =0.

(43)

This system of four equations does not allow one to find all
five unknown coefficients A1, As, By, By and B3 as func-
tions of V. In other words, the structure of shocks is not fully
determined internally, which in turn means that £, cannot be
determined as functions of V. All parameters are fully de-
fined in this case only if we provide one additional external
condition, for example, ¢, = 0, which implies A; + A5 = &..
In the range V' > ~ (superkinks) the solution reads

n<0

_ BieHt1n BoeH2m
g( )_ {a + bie + boef2l, (44)
n >0,

ey + A16>\177 + A26>‘2n,

with )\2 = le AQ = Al for V > V* and Ho = ﬂl, Bg = Bl
for V' > V... In this case there are two unknown coefficients
on each side of the front, so the solution is again fully spec-
ified by conditions (26), (29), (32) and (33), which yield the
linear system

—Co(A1+Ay)+B1+ By =0,
AMAL+ XAy — 1By — pe By = 0,
)\%Al + )\%AQ — ,U,%Bl — MgBQ =0,
AAL + AjA; — uiBy — p5 By = 0.

for the four unknown coefficients A1, Ay, By, B> that can
be found as explicit functions of V', as well as the relations
ey + A1 + Ay = €. = e_ + By + Bs, which allows one to
find the two remaining functions ey (V).

To summarize, after using the conditions (36), (28), (26)
and the first condition in Eq. (32), we are left in the range
V' < 1 (subkinks) with one unknown coefficient on the +
side and three on the — side (a single exponential boundary
layer and a radiated wave). All of them can be found from
the four conditions: the second condition in Eq. (32), Eq. (29)
and Eq. (33). When 1 < V' < ~y (shocks) we are left with two
coefficients on + side and three on — side (a radiated wave
and a single exponential boundary layer) and only four con-
ditions. This leaves one of the constants in the corresponding
linear system (43) undetermined. Finally, in the range V' >
(superkinks) there are two coefficients on each side, so the
solution is again fully specified by the four conditions.

Once the strain field is determined in each regime, particle
velocity is found from v(n) = —Ve(n).

F. Discussion

Now that the mathematical structure of traveling wave so-
lutions is well understood, we provide a physical interpreta-
tion of the results that furnishes a somewhat more intuitive



explanation of the fundamental differences between the three
types of transition fronts.

Observe first that in all three cases, the traveling wave so-
lutions describing the transition fronts can be written in the
same general form

e(n) =ex +AsL(n) +2L(n), n=0. (45)

Here the functions A (7)) depend on the real roots of the char-
acteristic equation and describe the radiative part of the solu-
tion. The functions ® (7)) depend on the non-real complex
roots and describe the exponentially localized boundary lay-
ers on both sides of the moving fronts. The constant terms
in (45) are due to the double root at the origin; the strains
correspond to the averaged states at  — £oo and satisfy the
classical RH condition (29).

We now consider in more detail the radiative component of
the solution Ay (7). We have seen that to exclude the energy
flux from infinity (radiation condition), we need to set (in all
three cases) that radiation is absent ahead of the front, so that

Ay(n)=0.

Moreover, while all three solutions obtained above in equa-
tions (40), (42) and (44), have the form (45), the nontrivial
radiation component (behind the moving front) exists only
for subkinks and shocks and can be written as

A_(n) =2a~ cos (rn+ 87), (46)

with a~, B~ expressed in terms of By and Bs in Eq. (40)
and Eq. (42). Thus, both subkinks and shocks radiate (dissi-
pate) energy. In contrast, the superkinks are completely free
from radiation (dissipation), since in this case we also have
A_(n)=0.

We now turn to the boundary layer terms ®4 (7). For
subkinks they involve a single decaying exponential term on
each side of the front (4 (n) = A1e P, &_(n) = Bie?");
see Eq. (40). For shocks, there is a single exponential de-
cay behind the front (®_(n) = B1e97), while ahead of
it the decay is double exponential (P, (n) = Aje P 4
Ase 2Ty when 1 < V < V, and oscillatory (P4 (n) =
2¢~MR(Ay) cos(fn) — I(Ay)sin(fn)]) when V, < V < v
(see Eq. (42)). For superkinks, there is a similar transition
from double exponential to oscillatory decay ahead of the
front at V. = V, if v < V, and behind it at V' = V,, (see
Eq. (44)). As the analysis of the discrete problem presented
below shows, both double exponential and oscillatory decays
are artifacts of the chosen QC approximation.

As we have seen, for both types of kinks all parameters
of the traveling wave, and in particular, the limiting states
€+, are fully determined by the front velocity V. This means
that the kinetic relations G = G(V'), whose absence in the
classical continuum description produced the fundamental ill-
posedness of the problem, are now fixed through the recovery
of the internal structure of the kinks. In other words, such
fronts are autonomous in the sense that their kinetics is fully
controlled by the microscopic dispersion. For instance, if the
state in front of the moving kink 4 is known, then both the
state behind, £_, and the velocity of the front V' are deter-
mined.
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In contrast, in the case of shocks, the knowledge of V is
not sufficient to determine both £, and one of the limiting
strains remains as a free parameter. As a result, no particular
kinetic relation in the form G = G(V') emerges from the
reconstruction of the internal structure of the transition front.
In other words, in the case of shocks, the knowledge of the
state ahead is not sufficient for complete specification of the
remaining parameters and for fixing the internal structure of
the transition. This means, for instance, that in addition to the
state ahead of the front ., another piece of information has
to be prescribed by the external (non-traveling-wave) solution
in order to make the front velocity V' known.

G. Characteristics

The obtained QC picture is in full agreement with what
we have learned by studying the classical continuum approx-
imation in Sec. II. There we found that kinks are dissimilar
from shocks primarily due to the difference in the number of
incoming characteristics shown in Fig. 3.

In particular, Fig. 3 shows that for both types of kinks two
characteristics are bringing information to the front. Since in
our analysis of the internal structure of the transition fronts
we eliminated particle velocities v(n), we may always as-
sume that this information concerns the limiting values v.
Therefore, we can conclude that in the case of kinks, no infor-
mation about one of the limiting strains € is arriving from
outside. Thus, to fix the unknown limiting strain and to ul-
timately specify the front velocity V', the system must rely
exclusively on the internal dispersive machinery. The anal-
ysis of the QC approximation shows that such machinery is
indeed in place delivering all of the unknown quantities.

In contrast, in the case of shocks, the classical continuum
model tells us that the three characteristics are coming from
outside. Therefore, the system can use one additional piece
of external information to fix the limiting strains . and to
specify the front velocity V. In this case, the internal dis-
persive structure of the front does not have an autonomy and
simply adjusts to the conditions imposed from the outside.
Consistently, this is exactly what our study of the dispersive
QC model has shown: for shocks the internal traveling wave
solution is (one-parameter) underdetermined, and to make the
global problem well posed a single additional piece of infor-
mation is needed. Such information is then naturally provided
by the additional incoming characteristic that does exist in the
case of shocks.

H. Dynamical system

Since all three types of transition fronts represent traveling
wave solutions of the fourth order ordinary differential equa-
tion (30), it is of interest to examine them from the point of
view of the theory of dynamical systems. In this perspec-
tive they emerge as fundamentally different types of hete-
roclinic trajectories connecting various types of attractors in
the four-dimensional phase space. The nature of such attrac-
tors depends on the structure of the roots of the characteristic



equations, which control the asymptotic behavior of the het-
eroclinic trajectories as 7 — Foo. The knowledge of these
asymptotics is sufficient to distinguish between the different
universality classes of the transition fronts.

For example, in the case V' < 1 (subkinks) the tran-
sition fronts correspond to heteroclinic trajectories of the
type center-saddle to center-saddle. Such transitions are
non-generic and are possible due to the sufficiently high di-
mensionality of our dynamical system. More specifically,
they are captured by our QC approximation because the lat-
ter includes the minimal number of the higher order dis-
persive corrections to the classical continuum model which
makes the corresponding phase space four-dimensional. At
n = —oo the heteroclinic trajectory describing subkinks un-
winds as the center-related separatrix. The corresponding
two-dimensional center effectively describes the radiation be-
hind the moving subkink, while the saddle-related component
of the asymptotics describes the exponential boundary layer.
At n = 400 this trajectory ends as a saddle-related separa-
trix, which describes the exponential boundary layer ahead of
the moving front.

Similar considerations can be applied to shock and su-
perkink trajectories. For simplicity, we assume in what fol-
lows that v < 4/12/7 and V' < 4/12/7. This eliminates
the oscillatory decay for shocks and superkinks, which, as we
have discussed, is an artifact of the QC approximation. In the
range 1 < V < v (shocks) the corresponding heteroclinic
orbits are of the type center-saddle to saddle-saddle. Such
transitions are generic. At 17 = —oo the heteroclinic trajec-
tory unwinds as a center-related separatrix describing radia-
tion behind the front. The center-related part of the asymp-
totics describes the exponential boundary layer. At 7 = 400
the trajectory ends as a saddle-related separatrix describing
the exponential decay ahead of the front. Finally, for V' >
(superkinks) the corresponding orbit is of saddle-saddle to
saddle-saddle type. Such transitions are non-generic. In this
case the heteroclinic trajectory starts as a saddle-related sep-
aratrix describing the exponential decay behind the front and
ends as a saddle-related separatrix describing the boundary
layer ahead of the front.

‘We have thus confirmed that the physical nature of all three
types of the transition fronts described by the general Eq. (12)
is fully consistent with the asymptotic behavior of the het-
eroclinic trajectories at n — =4oo. The fact that the latter
is controlled by the structure of the roots of the characteris-
tic equations characterizing the corresponding attractors goes
beyond the adopted piecewise linear approximation of the
stress-strain relation. Thus, even without such an assumption
the subkinks can be expected to correspond to non-generic
transition fronts that are described by center-saddle to center-
saddle trajectories and generate their own kinetic relations.
Such transitions, however, would be possible only if suffi-
ciently higher order dispersion is included into the model.
Similarly, even in a smoother model shocks correspond (un-
der our assumptions) to the heteroclinic orbits that are generic
saddle-saddle to center-saddle trajectories, and therefore do
not generate any specific kinetic relations. Finally, under
the same assumptions superkinks are non-generic transitions
described by the saddle-saddle to saddle-saddle heteroclinic
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orbits. The fact that all possible types of sufficiently low-
dimensional non-dissipative attractors are accounted for sug-
gests that the proposed classification of the transition fronts
is exhaustive.

I. Dissipation rate

In the dispersively regularized setting the jump discontinu-
ities of strain and velocity that are present in the classical con-
tinuum theory are replaced by the extended transition zones.
In addition, the energy released on such jumps in the contin-
uum theory no longer disappears locally. Instead it is chan-
neled by nonlinearity from long to short waves and radiated
away from the moving front in the form of lattice waves. In
the piecewise linear theory it is transported by such waves to
infinity. In other words, despite the absence of explicit damp-
ing, the effective dissipation takes place due to the energy
escape through phonon radiation.

The developed QC model allows one to trace all these pro-
cesses in full detail. In particular, one can compute explic-
itly the thermodynamic driving force G for all three types of
transition fronts and determine the corresponding rate of en-
ergy dissipation R = GV > 0. Based on the analysis of
the corresponding modes of radiation, one can see that R is
strictly positive for subkinks and shocks but equals zero for
superkinks.

More specifically, depending on the structure of the real
roots of the characteristic equations, the transition front may
or may not emit elastic waves. In general, we have R = Ry +
R_, where

Ry = > (€ (k)W (k) = V) =G4V,
ke 4+

Ro= 3 (e RV —wl(]) =GV,

ke _

(47)

and G4 and G_ are the cumulative energy fluxes associated
with emitted elastic waves ahead and behind the front, re-
spectively. Here Ny = {k : Imk = 0, Rek > 0, wy(k) =
Vk, w! (k) =2 V} is the set of positive real roots of the char-
acteristic equation for the corresponding linear regime that
satisfy the radiation conditions (36), and £ (k) are the en-
ergy densities associated with the corresponding modes, av-
eraged over the corresponding time period T = 27 /w4 (k),

with (f) = T! _fOT fdt. The energy is transported away
from the front with relative velocities w’ (k) — V [125].

From the structure of the exact solutions of the QC model
one can see that the set N is empty for all transition fronts.
Thus, independently of the front type there is no radiation of
phonons ahead of the front, and G+ = 0. In the superkink
regime, N_ is also empty, and therefore G_ = 0 as well,
yielding R = 0. In the case of subkinks and shocks there is
a single emitted lattice wave mode with wave number r > 0
propagating in the region n < 0, so that N_ = {r}. The
associated energy with the density

V2

E_(r) 5

2
(A% +a1(A)? +as(A”)?) + %AQ_.



averaged over the period 27 /w_ (), is transported backwards
relative to the moving front with the relative velocity w’ (r)—
V' [125]. This yields the driving force G = G_ + G given
by

!

G=G_ =27*(a )22 (r) (1 - W_T(T)) >0,
where we recall that a™~ is half of the amplitude of the radia-
tion contribution to the solution defined in Eq. (46) and can be
obtained from Eq. (40) and Eq. (42) for subkinks and shocks,
respectively. The difference is that for subkinks the function
G(V) is fixed, while for shocks we obtain a one-parametric
family of such functions.

J.  Admissibility
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Figure 6. Admissibility sets of solutions of the QC problem. In the
blue region we have () < e. for some intervals of n < ., and
its dotted lower boundary marks the threshold e = .. The insets
show examples of the strains £(n), with horizontal lines marking
& = €.. Here 72 =1.5,e.=1,and wesete; = 0.

We recall that the explicit expressions for the general solu-
tion of the piecewise linear problem are invalid if the admissi-
bility conditions (27) are violated. Therefore the inequalities
e(n) > e. fornp < 0 and £(n) < e, for n > 0 must be
checked a posteriori, which means that some of the formally
constructed solutions may have to be discarded [84, 126].

The analysis of the global behavior of the obtained strain
fields shows that all subkinks with V' < 1 and all superkinks
with V' > v are automatically admissible. In both of these
cases the transition fronts can be represented in the space
of parameters £, and Ao by one-dimensional manifolds be-
cause the velocity of the front is determined uniquely by the
corresponding kinetic relation. In the case of shocks, which
can be either admissible or inadmissible, the velocity V is
not determined internally. Therefore, shocks occupy a two-
dimensional (2D) domain in the (¢4, Ac) plane. This do-
main is further divided into two subdomains: at sufficiently
large values of Ao shocks are admissible, while those located
below a certain threshold are inadmissible. The inadmissible
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shocks show the repeated crossing of the ¢, threshold by the
oscillatory tail behind the moving front.

The admissibility diagram in the (V, Ac) plane is shown in
Fig. 6, where we fixed e = 0. The insets illustrate the ana-
lytical solutions describing different types of transition fronts.
The 2D domain of shocks on this diagram is bounded on two
sides by the condition 1 < V < 7 and from below by the
dotted line below which e_ < e.. One can see that only the
shock solutions in the pink (upper) region above the threshold
values Ac* (V') marked by a solid black curve are admissible,
while the ones in the blue (lower) region are inadmissible.
This is illustrated in the corresponding inset by the multiple
crossings of €. (the dash-dotted horizontal line) by the strain
profile £(7).

To understand which solutions replace shocks in the “for-
bidden” region, we need to resort to simulations. Using direct
numerical simulations of Eq. (12) for a sufficiently broad set
of initial data we can also numerically test the stability of the
admissible transition fronts.
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Figure 7. Different regimes of front propagation in the QC model
with the parameters 72 = 1.5 and ¢, = 1 at t = 50: (a) subkink
(e; = 6, Ao = 2.5); (b) conventional shock (g; = 10, Ao = 2.5);
(c) dispersive shock (¢; = 10, Ao = 0); (d) superkink (g; = 6,
Ao = —1.5).

K. Numerical simulations

We solve Eq. (24) in the finite domain = € (0,200) with
the Riemann-type initial data

e <100, Oe
e, 0) = {0, 2 > 100, 7t

x,0) =0.

using the implicit fourth-order conservative finite-difference
method developed in [127]. The first and second spatial
derivatives of strain are set to zero at the boundaries. The
emergence of particular transition fronts, as an outcome of
the breakdown of the initial state, will then depend on the
choice of the parameters Ao and ¢;.



The results are summarized in Fig. 7, which shows time
snapshots near the end of four different simulations. In each
simulation we have chosen a particular set of parameters
g; and Ao to reach one of the four structurally dissimilar
regimes shown in Fig. 6.

While in all presented snapshots we observe complex
breakdown patterns, most of their elements correspond to lin-
ear dispersive pulses with their characteristic overshoots. To
identify genuinely nonlinear substructures one needs to look
for the patterns magnified in the insets in Fig. 6. Thus, the
inset in Fig. 7(a) shows an admissible subkink moving to the
right. The comparison of the internal structure of such nu-
merically generated wave profile with the corresponding ana-
lytical solution shows perfect agreement, which confirms that
the transformation fronts of this type can indeed serve as dy-
namical attractors. Similarly, the inset in Fig. 7(d) shows an
admissible superkink moving to the right, which also matches
the analytical waveform and points towards stability of the
corresponding traveling wave solution. An admissible shock
is shown in the inset of Fig. 7(b), and we again see that the
analytical profile is reproduced faithfully and conclude that
such transition fronts can be stable. The remaining panel (c)
of Fig. 7 corresponds to parameter values that target inadmis-
sible shocks. Not surprisingly, we do not observe a traveling
wave profile in this case. Instead, the nonlinear structure that
we see is reminiscent of a non-steady dispersive shock wave
(DSW).

Our broader numerical experiments strongly suggest that,
in the whole domain of non-admissibility, shock traveling
waves are replaced by DSWs. This result, obtained so far
only in the QC setting, will be confirmed below by a sim-
ilar analysis of the original discrete problem. We recall
that DSWs have been extensively studied using various other
QC approximations of the FPU system (see, for example,
[100, 102, 128-130]). We conclude that in our regime di-
agram shown in Fig. 6 the domain of inadmissible shocks
should be interpreted as a domain of stability of DSW type
non-steady (spreading) transition fronts. The absence of
steadily moving shock fronts in the FPU model with convex
energy density (Ao < 0 in our problem) is well known. It
has been previously linked to the low dimensionality (lack
of transversal radiation) and the absence of irreversibility
(purely elastic constitutive modeling), which is a ubiquitous
feature of the real crystals [131-133]. Here by allowing
regimes with Ao > 0 we acquire a limited parametric do-
main where stable stationary shocks exist. One can argue that
the nonconvexity, which allows the one-dimensional system
to accommodate large-amplitude lattice waves transmitting
radiated energy away from the moving front, is the way to
bring multivaluedness into the constitutive response, which
ultimately imitates the inherent multistability of the plastic
response.

To summarize, the analysis of the dispersively regularized
QC model allowed us to clarify the ambiguities left by the
classical continuum description. In such essentially micro-
scopic model all three classes of transition fronts acquired
their natural raison d’étre, with the numerical simulations
providing confirmation of the exhaustiveness for the proposed
classification. It is rather remarkable that such a task could be
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accomplished using a relatively simple QC approximation of
the original discrete problem. Note, however, that the chosen
approximation was not of the lowest order, and to capture the
complete picture we had to introduce two internal time scales
and modify the kinetic rather than elastic energy. As we show
in the next section, the obtained description is fully adequate
when compared to the discrete model.

IV. DISCRETE MODEL

We now analyze the dimensionless version of the original
FPU problem (2), which takes the form

d?e,(t)
dt?

= U(5n+1) - QU(En) + U(5n71)7 (48)

with bilinear interactions o(¢) = € ate < £, and o(¢) =
725 — 0 at € > ¢.. The dispersion relations in each linear
regime are defined by

w? (k) = w? (k)/v* = 4sin® (k/2) (49)

and are much more intricate than in the QC model due to the
presence of lattice resonances and the richness of the spec-
trum of available lattice-scale waves. Therefore the analysis
of the discrete problem can potentially challenge the descrip-
tion of the energy radiation provided by the QC model.

To find the corresponding traveling waves solutions
en(t) = e(n), n = n — Vi, of the discrete problem (48),
we need to solve the advance-delay equation

2
M =+ D kol = 1) =20, (50)
where the function o (1) = o(e(n)) is given by Eq. (31). We
will use the Fourier transform technique to solve Eq. (50) sub-
ject to the consistency condition (26), the boundary condi-
tions (28) and the radiation conditions (36).
It is convenient to represent the transformed function in the
form

CN| ) dy = 2 (k) + 2 (k),
where
- [ " () H ()™ dn

are analytic in Imk 2 0. The Fourier transform of (50) then
yields

M_—M
Myét+ M == —_—*¢ (51)
ik
where we introduced the parameter
)

and the characteristic functions

My (k) = wi (k) + (0 + ikV)2. (53)



Here 0 +ikV = lim,_,o4 (s £ikV'), and we use the causality
principle [80] to handle the zero at the origin. A comparison
of the characteristic functions (53) with their QC analogs in
the whole complex plane shows that while the discrete disper-
sion relations (49) are more complex than their QC counter-
parts (35), the QC approximation captures the long-wave be-
havior adequately. More precisely, as shown in Fig. 8, the QC
model gives an excellent approximation of the real and purely
imaginary roots of Eq. (53) that have sufficiently small mag-
nitude. In general, it captures the four nonzero roots of each
characteristic function that are closest to £ = 0 qualitatively
well but may represent purely imaginary roots by complex
quadruples and vice versa.

(a) (b)

4 superkinks W superkinks V=V
20 V=y 2.5 T AT = Vs

) 2.0 V=
L5 shocks U5l shocks” _7
1.0 o Subkinks V=1 | = V_{/*

N o Sul . =

0.5 ‘_f_‘_g — 05¢ subkinks . T

02 4 6 s 0l 0 2 4 6 38 Vq

Figure 8. The magnitudes of (a) the real roots & = =r and (b)
the imaginary roots £ = =iq in the discrete (solid curves) and
QC (dashed curves) for wi (k) — k*V? = 0 (blue curves) and
w2 (k) — k*V? = 0 (red curves). Black solid lines mark the sonic
limits separating the velocity domains of different transition fronts.
Complex roots with nonzero real and imaginary parts bifurcate at the
velocities Vi and V.. marked by dash-dotted lines in the QC model
and from the non-sonic maxima of the real root curve in (a) in the
discrete model. Here v = 2.

A. Characteristic roots

Similar to the QC model, the solution of the discrete prob-
lem can be written in terms of elementary waveforms asso-
ciated with the roots of the characteristic functions (53). In
what follows, we consider the generic case when V' is non-
resonant (V' # ' (k) and V' # w’ (k) for any real k). We
can then define the sets 2 = 2,7 U Z, U ZF U Z, and
P = Pf UP; UPFUP, containing nonzero roots of the
characteristic equations M4 (k) = 0. Here

2EF ={2: My(2) =0, 2 # 0, Imz = 0, W, (2)
Pr={p: M_(p)=0,p#0, Imp=0, w (p)
25 ={2: M;(2) =0, Imz < 0},
Pz ={p: M_(p) =0, Imp S 0}

v},
Vi,

AYAAVY)

(54)

The structure of the roots of Eq. (53) is illustrated in Fig. 9,
which can be compared to the corresponding root structure
for the QC model shown in Fig. 5 (see also Fig. 8, which com-
pares the structure of real and purely imaginary roots). As in
that case, the even symmetry of each characteristic function
implies that the roots are symmetric about the origin, and it
suffices to consider the region Rek > 0 and Imk > 0.

Of particular importance are the sets of nonzero real roots
Z;7UZ, (roots of My (k)) and P;F UP; (roots of M_ (k)). As
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we will see, some of these roots correspond to radiated lattice
waves. When these sets are nonempty for given non-resonant
V, they contain an odd number of positive real roots, equal to
2l 4+ 1 and 2m + 1, respectively. We arrange these roots in
ascending order: z; < 211,75 = 1,...,2l, and p; < pji1,
j=1,...,2m.

We observe that in the case of superkinks (V' > ) both
functions My (k) have no nonzero real roots, as shown in
Fig. 8(a) and Fig. 9(c), and hence there are no radiated waves
in this case (no dissipation). For shocks (1 < V' < ) only
M_ (k) has such roots (see Fig. 8(a) and Fig. 9(b)). More
specifically, we have m = 0 (i.e., one positive real root) for
the values of velocity V' above the first resonance velocity Vi,
which equals w’ (k) for some real k and satisfies the condi-
tion V; > 1 for large enough v > 1. We then have m = 1
(three positive real roots) for the values of V' between the first
and second resonance velocities, where the second resonance
velocity is defined accordingly, and so on. Finally, for sub-
kinks (V' < 1) each of the characteristic equations has at least
one positive real root (see Fig. 8(a) and Fig. 9(a)), with [ and
m each increasing by one when the corresponding resonance
velocity is crossed.

In addition to real roots, there are infinite sets of com-
plex roots 2} U Z_ (roots of M (k)) and P U P_ (roots
of M_(k)) with nonzero imaginary part that can be seen in
Fig. 9. These roots bifurcate from the maxima of the real-
root curves shown in Fig. 8(a). This includes purely imagi-
nary roots that bifurcate from the sonic maxima at ¥ = 0 and
are shown in Fig. 8(b). The non-real roots define the structure
of the boundary layers on both sides of the moving front.

B. Characteristics revisited

To make a connection with the classical continuum theory,
we recall that the configuration of the real roots z; and p;
around the origin £ = 0 is intimately related to the structure
of the characteristics in the continuum approximation. There-
fore by studying these roots one can expect to reconstruct the
main subdivision of the transformation fronts into the three
universality classes.

More precisely, we can exploit the fact that in the long-
wavelength limit the discrete problem can be replaced by a
single nonlinear wave equation. Indeed, in the limit £k — 0,
s — 0+ we can approximate the linear operators in Eq. (53)
by

+(k) = wi (k) + (s +ikV)? = g1 (k, )
(L +V)(=ik) =) (1 = V)(—ik) + 5),
(

(

55
_(k) = w2 (k) + (s +ikV)? = g_(k, s) )

(v + V)(=ik) =) (v = V)(=ik) + 5),

[T~

Observe also that using the convective coordinate n = = —
V't we can rewrite the system (4) as a pair of linear wave
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Figure 9. Distribution of the roots of M4 (k) in Eq. (53) for the discrete model when (a) V < 1, (b) 1 < V < ~, (¢) V > ~. Due to
symmetry, only the roots with Rek > 0 and Imk > 0 are shown. Insets show the dispersion relations and real roots as intersections with the

line Vk.

equations for £(7), t) in each of the two domains of linearity:

Os  0Oe Os  Oe

e Oe de  Oe
0G| (0G| =0 n<o
(56)

Applying Fourier transform in 1 and Laplace transform in ¢
turns Eq. (56) into the equations g+ (k,s) = 0, where the
functions g4 (k, s) are defined in Eq. (55).

Since the characteristics of Eq. (56) are defined by the
equations =+ (1+ V)t = constatn > Oand n+ (v V)t =
const at n < 0, the location of the roots of the functions
g+ (k,0) is directly linked to the configuration of the char-
acteristics relative to the line = const. The configuration

(b) ©)

llmk { Imk 1Imk

¥ Rek l Rek ‘ Rek

(a)

Figure 10. Schematic presentation of the roots g (k, 0) (blue trian-
gles) and g—(k,0) (red circles): (2) V < 1, (b)) 1 < V < v, (¢)
V > .

of the roots of the equations g4 (k,0) = 0 is shown schemat-
ically in Fig. 10 separately for each class of the transition
fronts. One can see that in the range V' < 1 (subkinks) the
purely imaginary roots are located in two different complex
half-planes for both g (k,0) = 0 and g_(k,0) = 0. This is
equivalent to the fact that there is one incoming and one out-
going characteristic on both sides of the line x — V't = const.
Both roots of the equation g (k,0) = 0 end up in the upper
complex half-plane in the range 1 < V < « (shocks), pro-
ducing two incoming characteristics on the right side of the
line z — V't = const, while there is still one incoming and one
outgoing characteristic on the left side. Finally, in the range
V' > ~ (superkinks), the remaining roots of g_(k, 0) = 0 also
shift into the upper complex half-plane, which produces two
outgoing characteristics behind the moving front. One can

see that the location of the roots in Fig. 10 is in full agree-
ment with the propagation direction of the macroscopic per-
turbations with respect to the moving front for each of our
universality classes, as shown in Fig. 3.

C. Solution of the discrete problem

We observe that £ (k) can be written as

= S:l: A:l:
0Fik

£ (k) +X

(k), (57)

where the first term accounts for the boundary conditions
(28), and the second term satisfies limg_, 40 Y= (k) = 0, so
that limn_&oo <5(n)> = limg_, 440 g+ (k) =&4.

To find Y* (k), we use the Wiener-Hopf technique [62, 77,
86, 88]. To this end, we factorize the main linear operator

_ My(k)
M_(k)

Wi (k) + (0+ikV)?

Lk) w2 (k) + (0 + ikV)?

(58)

of the problem, which means representing it in the form

L(k) = L¥ (k)L™ (), (59)
where the superscripts + identify functions that are regular
(have no zeroes or singularities) in Imk 2 0, respectively.
Such factorization allows us to rewrite (51) as

€+
0—ik
1

This representation ensures that the right hand side is regular
in the lower half-plane, while the left hand-side is regular in
the upper half-plane, so that both can be analytically contin-
ued to the whole plane after we move the zeroes and singu-
larities on the real axis into the corresponding half-planes.

Using the infinite product theorem [134] we can represent
L* (k) as follows [135]:

L*(k) [‘a* — ik (Wk) " (60)

e_
0+ ik

LE(k) = 17 (k)Lo™ (k). (61)



Here the terms /*(k) depend on nonzero real roots of the
characteristic equations, while the terms Lo~ (k) are defined
by the remaining non-real (complex) roots.

More specifically, we have

_k
Ly (k) = \ 712__‘(/22 z%i Ei B ;3 (62)

;DE(J’:t p

where the products are over the sets 2 and PF of non-real
roots defined in Eq. (54). Note that the zeroes and poles of
L (k) (the set ZF U PF) are all located in Imk < 0, and
the zeroes and poles of L, (k) (the set Z_ U P_) are all in
Imk > 0.

Similarly, the functions /% (k) can be expressed in terms
of the nonzero real roots of the corresponding characteristic
equations belonging to the sets 2+ and P; in Eq. (54). These
roots are placed into the “4” sets (which contribute to the
solution at > 0) if the associated group velocities w’ (k)
exceed the phase velocity V' and into the “—” sets (contribut-
ing to the solution at n < 0) if w'(k) < V. This ensures
that the solution satisfies the radiation condition (36), and the
radiated waves carry energy away from the front. Recalling
the structure of the real roots discussed in Sec. IV A, we ob-
serve that for subkinks (V' < 1) this implies that the roots
+205, 5 = 1,...,1, of My (k) in Z; and the roots +poj,
j=1,...,m,of M_(k)in P} contribute to It (k), while the
remaining roots +z;_1, j = 1,...,0+ 1, of My (k) in Z,7
and £poj_1,j =1,...,m+ 1, of M_(k) in P contribute
to I~ (k). We thus obtain

(63)

for subkinks. When | = 0 or m = 0, the corresponding
products equal unity. Here we combined symmetric pairs £
of real roots using

. 12
1— k, 1- k. :1+—(Oilk),
r 410 —r +10 r2

where the notation r £ 70 underscores the fact that the real
roots are effectively shifted into the half-planes Imk 2 0. In
particular, the zeroes and poles of [T (k) (the set Z7 U P)
are moved into Imk < 0, while the zeroes and poles of I~ (k)
(the set 2, U P,7) are shifted into Imk > 0. In the case of
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shocks (1 < V' < =) the sets ZF are empty, and we have
1

m 0—ik)2\’

[mi1t+-——=

J p%j

1

(e

D3j—1

I+ (k) =

(64)

Finally, in the superkink regime, both characteristic functions
have no nonzero real roots, and thus we have

1% (k) = 1. (65)

We now consider the asymptotic behavior of the functions
L* (k). Note first that equations (61)-(65) imply that

where we take the principal branch of the square root, which
becomes purely imaginary when 1 < V' < 7. As shown in
Appendix A, the asymptotic behavior at infinity is given by

Li(k?) ~ R:Fl7 k — +ico, V<lorV >, 67)
LE(k) ~ RFUEE, k— +ico, 1<V <y
where R is given by
l m+1
— 1:[1 Z2;j l:[l D2j-1
= pr _ = = . V<1 (68)
I H+ +1 m
z '4
[T 22j-1 1 p2j
j=1 j=1
for subkinks,
m-+1
- 1:[ P2j-1
an_i—%; , 1<V <y (69)
P [ p2j
j=1

for shocks, while for superkinks the absence of radiation im-
plies
R=1 V >~.

Following the standard Wiener-Hopf procedure [134], we
perform the analytic continuation of both sides of Eq. (60)
to the entire complex plane and apply the Liouville theorem.
Noting that the asymptotic estimates in Eq. (67) imply that
both sides of Eq. (60) can be continued to a function that is at
most linear in k£, we obtain

L* (k) [—5* — ik <>%+<’f) *0 Efik)]

= %@ [—5* +ik <>g-(k) + oim)] 70

=1y + Y1 k.




Here the constants ¢ and v); depend on the velocity regime
due to the different asymptotic behavior in Eq. (67) for kinks
and shocks. Taking the limit ¥ — 440 in Eq. (70) and using
the asymptotics Eq. (66), we obtain

1-v?
ToyalEr )=

These relations hold for all velocities. Recalling Eq. (52), one
can see that the first equality in Eq. (71) implies that the RH
condition (29) automatically holds for ..

Observe now that by Eq. (67), both sides of the first equal-
ity in Eq. (70) are constant at infinity when either V' < 1 or
V' > ~. Therefore, we must set 1) = 0 in these velocity
ranges. For subkinks (V' < 1) and superkinks (V' > ), tak-
ing the limits of the two sides of the first equality in Eq. (70)
as k — ioo and k — —ioo, respectively, equating them to 1)
and applying the consistency condition (26), which implies
limg o (5% (£is)) = £(0+) = &, then yields

72_1/2

W((f_ — E*) = wg. (71)

Ec — €4

Yo = T (72)
where we recall Eq. (57). Here R is defined in Eq. (68) for
subkinks and R = 1 for superkinks. Equations (71) and (72)
then imply that in these regimes the limiting states €, are
fully determined by the velocity V" via

co—cy [(1-V2N\T?
R (72‘/2) . (73)

Shocks (1 < V' < «) correspond to the generic case when
both constants g and 17 in Eq. (70) are nonzero. In this case
the zero-limit equation (71), which still holds, and the limits
k — £ioo yield

2=V Ec — Ex
Yo ZZ\/WVQ—_l(E— —e), Yr=—p— (79

where R is defined in Eq. (69). Note, however, that although,
as noted above, the RH condition (29) is automatically satis-
fied for all three types of fronts, in the case of shocks the lim-
iting states £4 are not uniquely determined by V, i.e., there
is no condition that is equivalent to Eq. (73) we have for sub-
kinks and superkinks. Therefore, in the case of shocks one
of the limiting strains remains a free parameter, which agrees
with the conclusions we reached while considering the prob-
lem in both continuum and QC frameworks.

The solutions of the two equations in Eq. (70) thus take the
form

Ex —E4

o+ ik o4 T
0k [LE (k)] (75)

Aik:
X (k) 0Fik

Here g is given by Eq. (72) and ¢; = 0 in the case of both
kinks and subkinks. Instead, in the case of shocks g and 1
are given by Eq. (74). This yields the strains in the physical
space given by

1 [ -
c) =t 5e [ KB 920, (76)
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where the integrals are computed by closing the contour of
integration in Imk < 0 for n 2 0 and applying the residue
theorem. Here we recall that all real zeroes and singularities
have been effectively shifted off the real axis into the corre-
sponding half-planes. As in the QC case, the solution can
be then expressed in the general form (45). Recall that this
form includes localized (@ (7)) and radiative (AL (7)) com-
ponents.

The localized components ®_(7) are given by exponen-
tially decaying functions arranged in the infinite sums

w2 (z) — 2 ,
Py (n) = Z 222_‘/((,1;(,2)2‘/)‘/) L™ (2)(¢o + ¢pr2)e” ",

zeZi

B wi(p) = (pV)* (Yo +1h1p) 4
o ()= 2p;‘—/(w’_(p)*v) (}ﬁ(p) o

pEPC
(77

The summation is over the sets of complex roots P_ (the
poles of L~ (k) in Imk > 0) and Z/} (the poles of 1/L* (k)
in Imk < 0) defined in (54). To compute the residues we
used Eq. (58) and the identities 1/L* (k) = L~ (k)/L(k) and
L~ (k) = L(k)/L* (k) that follow from Eq. (59).

The radiative components A (n) in Eq. (45) describe the
lattice waves taking the energy from the moving front to in-
finity. For subkinks (V' < 1), we have

m—+1
A () =2 a; cos(py1n+5;),

‘771 (78)
Ap(n) =2 af cos(zm+ B7),

j=1

where the second sum is zero when [ = 0. For shocks (1 <
V' < ), there is no radiation ahead of the front, so A, (n) =
0, while A_ has the same form as above. The real coefficients
aji and ﬁji can be obtained from the polar representation

+ B _ L™ (z95) [Wz(f@j) - (Z2jV)2] ‘
a; € - 2z%jv [wg_(;&j) — V] (1/)0 + 101223),
R (w3 (p2j—1) — (p2j—1V)?]

! 2p%j—1v [V —wl (ij—l)} L+(p2j—1)

x (Yo + Y1p2j—1)

with the corresponding values of vy and ;. Only the sec-
ond equation is relevant for shocks since A, = 0 in that case.
Here we used Eq. (A4) and Eq. (A5) obtained in Appendix A.
Finally, for superkinks (V' > -y) there is no radiation either
ahead or behind the propagating front, and so in this case
A_(n) =Ay(n) =0.

In addition to strains we can also explicitly compute the
particle velocities v(n). To this end we need to solve the
equation v(n+1) —v(n) = —Ve'(n), where £(n) is given by
Eq. (45), Eq. (77) and Eq. (78). Using Fourier transform, we
obtain

v(n) =vL +O04(n) +Tx(n), n=1/2



where v; —v_ = —V(e1 —e_) coincides with the first RH
condition in Eq. (5) for the continuum problem, and since
one of vy is arbitrary by Galilean invariance, we may set
vy = —Vey. Here we can explicitly identify the exponen-
tially decaying terms

B w_(z)— (V)2
T =- Z+ 4zsin§[wg_(z) — V]L )

X (o + rz)e 20712,
T - w(p) — (pV) (Yo + ¥1p) e p(n—1/2)
perP; dpsin §lw’ (p) = V] LT(p)

and the oscillatory terms ©.(n) describing radiation. For
subkinks (V' < 1), we have

l + vV
04(n) = =35 T cos (25;(n — 1/2) + ),

S

j=1 2
m+1 —
o p2j—1V B
0_(n)=-— Z sjin”#cos (p2j—1(n —1/2) + 8; ),
j=1 2
(79
where the second sum is zero when [ = 0. For shocks

(1 < V < 7), the function ©_(n) has the same form, while
©.4(n) = 0. For superkinks, ©_(n) = ©4(n) = 0.

D. Dissipation rate

The knowledge of the exact solution of the discrete prob-
lem gives us access to the energy (phonon) radiation from
the moving fronts to infinity. As we have already mentioned,
since the radiated energy is lost by the front, the associated
rate of the energy transport to infinity by lattice waves can be
interpreted as the rate of dissipation.

Following the procedure we used for the QC model, we
again consider the cumulative energy fluxes G4 and G_
emitted ahead and behind the front. Recalling Eq. (47), we
find that dissipation rates Ry = GV on both sides are zero
for superkinks, which involve no phonon radiation, and thus

G, = G_ = 0 in this case. For subkinks (V' < 1) we obtain
l
Ry = Z<5+(Z2j)>(w;(z2j) -V,
j=1
m—+1
Ro=> (€ (p2j—1))(V —w!(p2j-1)),
=1

where Ry = 0 when [ = 0, and &, (2;) = v7/2 + £7/2
and €_(pzj—1) = v3/2 + 7?5 /2 are energy densities car-
ried by individual lattice waves with (real and positive) wave
numbers zp; € Z" and p2j—1 € P, respectively, and the
averaging is over the corresponding time periods. Using the
expressions for strains ¢, in Eq. (78) and particle velocities v
in Eq. (79) of the emitted waves with the corresponding wave
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numbers, we obtain

l /
Wi(224
+—2Z % (225) ( +§/2J)—1>,
m—+1 ’
w’ (p2j—1)
=27 Z 2 (p2j—1) (1 - TJ) ;

(80)
where G4 = 0 when [ = 0. For shocks (1 < V < ),
G_ has the same form, and G = 0. This yields explicit
expressions for the driving force G = G4 + G_ in different
velocity regimes. Alternatively, we can compute the driving
force from the macroscopic area-difference formula (9) (with
E, = 1and E; = ~? in the dimensionless formulation).
Using Eq. (73) for the kink regimes, Eq. (29) for shocks and
recalling Eq. (52), we obtain

(1 ) (e Vel
2

G = 32;1[(50—5*)24-%(54- =)’ Ve,
0, V>n.

For subkinks and superkinks this yields the kinetic relations
G = G(V) (recall that R depends on V' via Eq. (68) in the
subkink regime), which complement the classical RH con-
ditions, while for shocks the driving force remains dependent
on the choice of €, which, as we recall, is a free parameter in
this case. We have verified that these “macroscopic” expres-
sions for GG are equivalent to the ones obtained by computing
the energy fluxes directly.

E. Admissibility

admissible
6+ \/\shock

. T

N
admissible

¢

superkink

5 subkink
< /
0H ]
) L
24 \,._ inadmiss.
shock
41 v
]
6L
0 Ly
V

Figure 11. Admissibility sets of solutions of the discrete problem. In
the blue region we observe £(n) < . when 7 < &, and the dashed
lower boundary of the region marks the threshold e . = e.. The
insets show examples of the strains £(n). Here 42 = 1.5, ¢, = 1,
and we set 4 = 0.

As in the case of the QC approximation, one still needs
to check which of the obtained solutions are admissible, i.e.,



satisfy Eq. (27). In Fig. 11 we show the admissibility dia-
gram for the discrete problem, which is a direct analog of the
similar diagram for the QC model presented in Fig. 6. As
in that case, admissible subkink and shock solutions in the
discrete problem feature a single radiation mode propagating
behind the front, where the wave number 7 is a positive root
of the characteristic equation w_(r) = Vr, while Ay = 0.
In the superkink case, A = 0. In the case of shocks one
of the limiting states remains a free parameter, which agrees
with both continuum and QC approximations. One can see
that for V' < 1 sufficiently fast subkinks are admissible. For
V' > 7, all superkinks satisfy the assumed inequalities. In
the interval 1 < V' < « the TW solutions describing shock
waves are admissible inside the pink domain. In the blue do-
main such TW solutions are not admissible and are replaced
by the DSWs, as we will discuss in the next subsection.

We conclude that the main features of the QC regime di-
agram Fig. 6 are preserved in the full discrete model. Thus,
both types of kinks, represented in Fig. 11 by one dimen-
sional manifolds, are admissible (for sufficiently large V in
the case of subkinks). Shocks are again not defined uniquely
for a given Ao and are admissible for sufficiently large val-
ues of Ao. The two diagrams differ significantly only at small
V' < 1, where the QC model, as expected, does not capture
the complex resonant behavior of the (typically inadmissible)
slow discrete subkinks.

Our comparison suggests that outside the regimes of par-
ticularly slow subkinks, all three types of transition fronts are
adequately described by only a few roots of the characteristic
equation capturing long (but not infinitely long) lattice waves.
This implies that carefully designed QC theories with only
a few parameters (describing the crucial mesoscopic scales)
can be successful in capturing such a fundamental nonlin-
ear dynamic effect as radiative friction. It also points to the
paramount importance of the QC reproduction of the relevant
mesoscopic time scales, in addition to the more conventional
task of modeling the internal length scales. In other words,
the task of the adequate dispersive approximation of the ki-
netic energy may be at least as crucial as the task of the satis-
factory representation of the nonlocal elastic energy.

F. Numerical simulations

To test the stability of the obtained analytical solutions, we
conducted a series of numerical simulations, in which, start-
ing with Riemann initial data, we traced the emergence of
the nonlinear transition fronts propagating at constant veloc-
ity. More specifically, we solved numerically the system (2)
(rescaled so that p = 1 and h = 1) with N = 1000 springs
and discontinuous initial conditions of the form

g1, m < 500, den,
W(0) =450 gy =0
en(0) {0, n > 500, a )

and free boundary conditions. We used the Dormand-Prince
algorithm (ode45 in Matlab), and the duration of simulations
was such that the boundaries did not affect the front dynam-
ics. In each simulation we varied €; and Ao, while keeping all
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other parameters fixed. As in the case of QC model, we iden-
tified four generic types of traveling fronts which all emerged
and stabilized by the numerical time ¢ = 500.
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Figure 12. Different regimes of front propagation in FPU chain un-
der Riemann-type initial conditions with different left strain £; and
Ao: (a) subkink (¢, = 5, Ao = 2.5); (b) conventional shock
(e1 = 25, Ao = 2.5); (c) dispersive shock (¢; = 25, Ao = 0);
(d) superkink (g; = 5, Ao = —1.5). Here v2 = 1.5, &, = 1 and
t = 300.

The results of the simulations are summarized in Fig. 12.
They confirm the possibility of stable propagation of all three
types of transition waves. Similar to the QC model, the tran-
sition fronts are accompanied by linear dispersive waves. In
particular, in all cases such a wave appears behind the front
and moves away from it with velocity —v. In the case of a
subkink shown in Fig. 12(a), there is also a linear dispersive
wave propagating ahead of the transition front with velocity
1. In the superkink case (Fig. 12(d)), there are two linear dis-
persive waves moving behind the front with velocities v and
—.

Our results suggest stability of all three regimes — sub-
kinks, shocks and superkinks — inside the corresponding ad-
missible domains of the (V, Ac) plane. Recall that subkinks
are admissible when V' < 1 is sufficiently large. An exam-
ple of a subkink propagation is shown in Fig. 12(a). We
found that superkinks can only appear when V' > 1 and
Ao < —e.(y? — 1) < 0. An example is shown in Fig. 12(d).
Recall also that shocks are only admissible when 1 < V < v
and Ao is above a certain threshold, as shown in Fig. 11.
An example of an admissible shock propagation is shown in
Fig. 12(b). Inside the domain of inadmissible shocks we ex-
pectedly do not find steady transition fronts but find instead
the spreading transition profiles of DSW type (Fig. 12(c)),
similar to the corresponding prediction of the QC model. We
reiterate that the DSWs are mentioned here only for com-
pleteness. A detailed study of such non-steady regimes is
outside the scope of this paper, in part because these solu-
tions are well documented in the literature. They appear here
naturally as stable replacements for the inadmissible traveling
waves.



V. APPLICATIONS IN METAMATERIAL DESIGN

The importance of metamaterials is due to their ability
to exploit post-instability structural responses. Effectively,
metamaterials utilize internal changes in the sub-elements,
which imitate molecular phase transitions at supermolecular
scales. The success of the metamaterial paradigm is due to
the fact that artificial “meta-molecules” with desired proper-
ties can be manufactured at the relevant scales.

The localized transition fronts studied in this paper can
be viewed as elementary bites of mechanical information
that can be generated, delivered and erased in periodic lat-
tice metamaterials. Due to the presence of stress-sensitive
repeating structural units, such metamaterials can manipu-
late mechanical information using advantageously the disper-
sion of elastic waves. By carefully tailoring relationships be-
tween characteristic dimensions, one can design metamate-
rials combining the effects of strong dispersion with various
forms of energy nonconvexity. One of the main challenges
in the design of metamaterial structures is to ensure that the
switching takes place at a predefined levels of stress and that
the particular switching waves are generated when the task is,
for instance, to enhance actuation or perform energy harvest-
ing.

In view of these and other potential applications, the proto-
typical FPU model studied in this work can serve as a proof of
concept showing the broad variety of the functionally distinct
switching regimes which can be controlled by the deliberate
parameter tuning. Even though the actual 3D metamaterials
with the desired properties would still have to be designed, the
results obtained in this paper already now provide a specific
guidance regarding, for instance, which metamaterial should
be chosen to ensure a supersonic, dissipation-free, commu-
nication of mechanical information, as opposed to a design
favoring subsonic switching which ensures a heavily dissipa-
tive response.

VI. CONCLUSIONS

The goal of this paper was to reveal the interrelations
between structurally different steadily moving transition
(switching) fronts in the classical FPU model. Our main re-
sult is the demonstration that this non-integrable Hamiltonian
model supports three types of such fronts that can be clas-
sified as subsonic (subkinks), intersonic (shocks) and super-
sonic (superkinks).

To obtain analytical results we limited our analysis to
piecewise linear elastic responses. In this case exact solu-
tions of the discrete model for each class of fronts can be pre-
sented in the form of infinite series. Within this setting, we
have shown that the proposed classification is exhaustive. The
common framework considered in this work allows us to de-
scribe all three types of switching waves in a unified way and
associate them with particular classes of elastic responses.

While the constructed explicit solutions of the discrete
problem are sufficient to corroborate these qualitative claims,
the origin of the difference between the three types of fronts
remains relatively opaque in the FPU setting dealing with an
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infinite system of nonlinear ordinary differential equations.
To achieve conceptual transparency, we constructed a QC ap-
proximation of the FPU problem. An excellent agreement
with the behavior of the discrete model was obtained using a
long-wave (infra-red) approximation utilizing only two inter-
nal scales. We stress that the successful coarse-grained the-
ory relies on the approximation of kinetic energy, in contrast
to more conventional asymptotic approaches such as the KdV
model and its higher order analogs.

A detailed comparison of the exact solutions for the QC
theory and the discrete problem showed that the chosen ap-
proximation adequately describes the complex interrelation
between all three types of the transition fronts. This means
that the whole complexity of the dispersive structure of the
FPU model was not really necessary for the description of
the main features of these special solutions. In other words,
the dispersive properties of all three different classes of fronts
can be satisfactorily captured using a simple QC model.

Our analysis also reveals that the obtained macroscopically
dissipative subkink and shock front profiles cannot be ade-
quately described by the continuum nonlinear wave equation,
as may be suggested by a naive homogenization. Instead, they
should be interpreted as microscopic descriptions of Whitham
shocks connecting oscillatory and constant states [136, 137].
Such generalized (dispersive) shocks usually correspond to
heteroclinic traveling waves of a dispersive model connecting
standard critical points with periodic orbits. To capture such
connections in a PDE format we had to use a higher order QC
model.

To fully understand the different structure of the three types
of transition fronts, we have drawn upon a broad variety of
physical and mathematical considerations, including char-
acteristics, barriers, topological transitions, undercompres-
sive nature, critical manifolds and kinetic relations, which all
point to the existence of exactly three universality classes of
transition fronts. In this sense the obtained perspective can
be viewed as unifying not only for the description of switch-
ing waves but also for different analytical approaches to the
analysis of nonlinear dispersive systems.

Several important issues have been naturally left for future
studies. The traveling wave description of the switching
waves is clearly incomplete when it comes to transient effects
such as interaction with obstacles and multiple collisions.
The approach to such problems proposed for special cases in
[138] can also be generalized and applied in our more gen-
eral framework. The present work does not address thermal
effects, which may become relevant for metamaterial with
a submicron scale mimicking cytoskeleton or extracellular
environment. For these purposes the approach proposed
in [139] can be generalized here as well. Another issue
that we have not addressed in this work concerns different
modes of manipulation and control of transition fronts from
a distance using DC and AC-type dynamic loading, which
is of particular interest for metamaterial applications. The
successful use of such control was recently demonstrated for
semilinear discrete systems in [124].
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Appendix A: Some asymptotic results

To obtain the asymptotic behavior at infinity, we follow
Ref. [135] and observe that for subkinks (V' < 1) we have

HEk)=v1-v2 ] (1-%):

zEZi
VI 1 [ (H.OT.(E) d¢
R — + 1
TE(k) eXp[ omi / n( VIR )Ee—kTi0
~ VI, (0 T ik) 2L, k — =ioo,
(A1)
where
TH(k)= (0 Fik)**, T.=TrT,, H.=HIH,
and
l +1
Hj = H 22j7 Hz_ = HZQj_l, Hz = Hj]._.[z_,
j=1 j=1
and

HE(k)=+v72-v2 [] (1-%):

pEiPi

VI, 1T (OO d
ngtp(k)p exp[i%/ln< pV2H:% )5_]@:':7;0}

~ VI, (0 7 ik)=>™ "1, k — =ioo,
(A2)
where
TE(k) = (0Fik)>™ ', T,=T3T,, H,=HIH
and
m+1

Iy =[]pe, 1, =[] pzr, 1, =150
Jj=1 j=1

Here the expressions under the logarithms in the Cauchy-type
factorization integrals are set up in such a way that they tend
to 1 as k — +ioo, while the logarithms remain real along the

21

entire integration path [135]. These asymptotic expressions
imply that in the subkink regime

+ +17—
Ly (k)= H';(k) ~ Hjni (07 k)2 ™m0k — +ioo,
HP (k) HP HP
while
H:I: 2
£ (k) ~ EH;; (0 Fik)2=™) |k — +ioo,
so that

LE(k) ~ RTY,  k — +ico, V <1,

where R is given by Eq. (68). For shocks (1 < V < v)
Eq. (A2) still holds but due to the absence of nonzero real
roots of M (k) in this regime, Eq. (A1) is replaced by [135]

HE(k)=ivVV2 -1 [] (1—%) =

zez®
Wexp[i 2% / 1H<H‘z/(2§)) - _qu: iO] (A3)
“oo
~iV, k— +ioo,
so that
T () ~ [ OF )7, ko i
which together with
T (k) ~ (IL)?(0 — ik) ™™,k — ico
17 (k) ~ (I)2(0 + ik) 72" Tk — —joo,
implies that
LT ~ RTUEEL ks +ico, 1<V <7,

where R is given by Eq. (69). Finally, for superkinks (V' >
7), both characteristic functions have no nonzero real roots,
and thus HF ~ iV as in Eq. (A3) and HE ~ iV in the
limit & — 4-ico. Together with (65) this implies L ~ 1 as
k — Zioo in this velocity regime. Combining these results,
we obtain Eq. (67).

Recalling Eq. (58) and Eq. (59), one can also show that
near the real singularities

1 - w% (2’2]‘) — (Zng)Z

L+ (k) 232jVi|w£&-(z2j) -V (A4)
L™ (225)
——= K i
0k —22) o
and
2 (i 1) — (po;_1V)2
L (k) ~ wi (p2; .1)/ (p2j-1V)
2p2;—1Vi|w! (p2j—1) — V| (A5)

1 1
X 3 )
LF(p2j—1) 0+ i(k —paj_1)

with similar expressions for the negative real singular points.

k — poj_1,
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