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Abstract—As more aircraft are using the Automatic Depen-
dent Surveillance-Broadcast (ADS-B) devices for navigation and
surveillance, the risks of injection attacks are highly increasing.
The exchanged ADS-B messages are neither encrypted nor
authenticated while containing valuable operational information,
which imposes high risk on the safety of the airspace. For
this reason, we propose in this paper an SVM-based ADS-B
message injection attack detection technique for UAV onboard
implementation. First, we simulated several message injection
attacks on real raw ADS-B data. Then, three Support Vector
Machine (SVM) models were examined in terms of two types of
assessment criteria, detection efficiency and model performance.
The results show that the C-SVM model is the best fit for our
application, with an accuracy of 95.32%.

Index Terms—ADS-B, UAV, injection attacks, machine learn-
ing, SVM, detection techniques, wireless networks.

I. INTRODUCTION

Automatic Dependent Surveillance-Broadcast (ADS-B) is
a communication and surveillance technology designed to
improve the reliability and efficiency of air navigation as
an extension and, eventually, a substitute to RADARs. The
U.S. Federal Aviation Administrations (FAA) [1] and the
European Aviation Safety Agency (EASA) [2] have mandated
that aircraft operating in their controlled airspace, including
Unmanned Aerial Vehicles (UAVs), must be equipped with
ADS-B devices beginning in January 2020 and June 2020,
respectively.

ADS-B devices enable aircraft to send their coordinates,
velocity, and other information to nearby aircraft and ground
receivers every second. These continuous broadcasts greatly
improve navigation safety and efficiency while reducing the
risk of mid-air collisions. Two main operations characterize
the ADS-B devices: ADS-B IN and ADS-B OUT. ADS-B IN
devices receive ADS-B messages, whilst ADS-B OUT devices
broadcast aircraft information. The ADS-B OUT is the one
required by the two mandates previously mentioned [3].

ADS-B devices operate on two main frequency bands: 1090
MHz and 978 MHz. The datalink using the first band, referred
to as 1090ES, carries traffic information, whereas the 978 MHz
link handles Universal Access transceiver (UAT) broadcasts,
which consists of aircraft traffic information along with other
details such as weather. The 1090ES datalink is the most used
ADS-B link and the one we are considering for this study [3].

Although ADS-B has brought many benefits to air traffic
control, security was not a key issue in its design. As a

matter of fact, ADS-B packets sent through the open 1090ES
datalink are neither encrypted nor authenticated, making this
technology vulnerable to a variety of cybersecurity attacks,
such as message injection, eavesdropping, and jamming [4]
[5]. Such malicious attacks can have serious consequences,
such as increasing the risk of aircraft collisions. Therefore,
efficient solutions must be developed to mitigate and reduce
ADS-B vulnerabilities. In this work, we focus on ADS-B
message injection attack detection on UAV networks since it
imposes high-risk on-air navigation. Furthermore, the number
and complexity of UAVs are increasing at a faster rate than
ever before. According to FAA [6], they now account for
the greatest number of aircraft, with over 800,000 registered
drones.

In the literature, several strategies for detecting ADS-B
injection attacks have been presented. These methods can be
classified into five categories, namely, traffic modeling, group
validation, physical layer fingerprint, data fusing, and machine
learning.

In the first category, traffic modeling, a traffic pattern is
predicted based on historical data and then compared to in-
coming data to detect irregularities [7]. This method, however,
necessitates prior information, as any change in the target or
environment would result in a significant drop in performance.
It is also vulnerable to the frog-boiling attacks, which consist
of the gradual injection of false data with no abrupt changes.

On the other hand, the group verification category requires
multiple devices, aircraft, or ground stations, to compare the
broadcasted location [8]. Those devices can also calculate the
location using Time Difference of Arrival (TDoA), Frequency
Difference of Arrival (FDoA), or Angle of Arrival (AoA)
and compare it with the demodulated location [9]. However,
this category suffers from certain limits since it is affected
by the airspace density and signal delays, in addition to the
problem of multipath signal propagation that causes errors in
the computed TDoA. Also, the high loss of ADS-B packets
and a large number of required receivers limit the feasibility
of implementing this method.

Physical layer information leverages the unique physical
characteristics of the channel in order to detect attacks [10]
[11]. However, attackers can mimic these features and deceive
the detection system with sufficient knowledge. In the data fus-
ing technique, the primary surveillance radar (PSR), secondary
surveillance radar (SSR), and wide-area multilateration (WAM)

405

978-1-6654-8009-3/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 E

le
ct

ro
 In

fo
rm

at
io

n 
Te

ch
no

lo
gy

 (e
IT

) |
 9

78
-1

-6
65

4-
80

09
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

eI
T5

38
91

.2
02

2.
98

13
81

9

Authorized licensed use limited to: UNIVERSITY OF NORTH DAKOTA LIBRARIES. Downloaded on September 05,2022 at 20:56:46 UTC from IEEE Xplore.  Restrictions apply. 



are utilized to confirm the authenticity of the received ADS-
B data. The discrepancy in precision and sampling frequency
between both systems is still a challenge for this approach.
Finally, machine learning algorithms have also been proposed
to detect cyberattacks.

In addition to the constraints mentioned above, UAVs are
subject to the size, weight, and power (SWaP) limitations,
which restrict processing capacity and thus the computational
complexity of the employed detection techniques.

In this paper, we compare the performance of three machine
learning algorithms, linear Support Vector Machine (SVM), c-
SVM, and nu-SVM. This performance was performed using
the following evaluation metrics: probabilities of detection,
midsection, false alarm, and accuracy in addition to the time
of training, time of detection, memory consumption of training
and of detection.

The main contributions of this paper are:

• Generation of three different ADS-B message injection
attacks based on real data.

• Identification of the most significant features for detecting
ADS-B message injection attacks.

• Performance comparison of SVM models using specific
metrics.

In the following sections, we explain the methodologies used
in this work. Then, we present the research results and conduct
a comprehensive discussion. At last, we end with a general
conclusion.

II. METHODOLOGY

In this section, we discuss the acquisition of raw ADS-B
data and the simulation of injection attacks. Then, we briefly
describe all key steps in developing a machine learning model,
namely data preprocessing techniques, feature extraction and
selection, machine learning models, hyperparameters tuning,
and evaluation metrics. The pipeline of the injection detection
process is illustrated in Fig.1.

A. OpenSky Raw Data

ADS-B messages are acquired from the OpenSky network
[12] which makes air traffic data available to the general
public, notably ADS-B communications. Then, we reduced the
volume of messages to a one-hour period. In order to minimize
the traveled distance while still gathering the most samples,
we selected a radius of 50 km around John F. Kennedy
International Airport in New York City due to the large amount
of air traffic data within that range.

ADS-B signals are broadcast by the airplane transponder
and received by all nearby receivers within the transmission
range. Since the radius in our dataset is relatively narrow, every
aircraft within it will be able to receive ADS-B messages. In
our study, we selected one aircraft as the receiver and potential
target for the conducted injection attacks. Fig. 2 shows the
aircraft location in the received ADS-B messages at an instant
of time, while Table I describes the data fields of the dataset.

Fig. 1. Process of building machine learning models

Fig. 2. Example of aircraft positions in the received ADS-B messages

B. ADS-B Data Injection Attacks

Due to the restrictions of broadcasting fraudulent ADS-B
messages, our injected ADS-B messages were simulated based
on the original messages. There are three forms of ADS-B
message injection attacks that were simulated: path modifica-
tion, ghost aircraft injection, and velocity drift. In the path
modification attack, some segments of the traveled itinerary
are modified by shifting the heading of the aircraft while
taking into consideration the physical constraints (consistency
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TABLE I. Data Fields

Parameters Type/Values Description
time Integer/ No

null values
Time in Unix timestamp (seconds) since the
last position report.

icao24 string/ No
null values

The International Civil Aviation Organi-
zation (ICAO)24 unique address of the
transponder in hex string representation (24-
bit).

lat Float/ Can
be null

Latitude in decimal degrees (WGS84 coor-
dinates).

lon Float/ Can
be null

Longitude in decimal degrees (WGS84 co-
ordinates).

velocity Float/ Can
be null

Velocity over ground in m/s.

callsign String/ Can
be null

Callsign of the vehicle.

onground Boolean/
No null
values

Its value is true if the aircraft is on ground
otherwise it is false.

spi Boolean/
No null
values

Special Purpose Indicator (SPI) pulse is
used by air traffic controllers to confirm the
identity of certain aircraft.

squawk Integer/
Can be
null

Transponder code used for identification and
emergencies.

baroaltitude Integer/
Can be
null

Barometric altitude in meters.

geoaltitude Integer/
Can be
null

Geometric altitude in meters.

RSS Float/ Can
be null

Strength of the signal at the ADS-B re-
ceiver’s antenna in dB. (calculated after the
attack simulation)

Doppler
Shift

Float/ Can
be null

Change in frequency effect due to the trans-
mitter and receiver movement in Hertz. (cal-
culated after the attack simulation)

Label Float/ Can
be null

Indicates if the message is legitimate or
injected.

of the traveled distance with the reported velocity). In the ghost
injection attack, numerous fake aircraft are inserted in a small
radius from the target. To construct the ADS-B messages sent
from fake aircraft, data from previous routes are used. Finally,
the velocity drift attacks consist of a gradual drift applied to
the velocity of legitimate aircraft.

Our dataset consists of 22,315 instances with equally dis-
tributed two classes: 11,158 authentic messages and 11,157
attack messages.

TABLE II. Class Distribution

Class Legitimate messages Injected messages
Number of instances 11,158 11,157
Percentage 50.00% 50.00%

C. Data Preprocessing

Before feeding data to the machine learning model, it has to
be presented in a proper format to obtain accurate results. If the
data is not well preprocessed before using the machine learning
model, the results might be misleading even with high accuracy

levels. In the following sections, we will describe the applied
data cleaning, encoding, and standardization techniques.

D. Data Cleaning

ADS-B communications have a high loss rate due to mes-
sage collisions and the distance between aircraft, resulting in a
large number of null values in the dataset, which affects model
learning. In addition, as a result of the multipath effect [13],
the number of duplicate messages may arise. Therefore, we
removed all null cells and duplicated rows from the dataset.
While inspecting our dataset, we notice a large number of
null values in some features more than others. Moreover, some
features (i.e., squawk, spi, and callsign) do not contribute to
the detection of injections attacks; therefore, they are removed
from the dataset.

E. Data Encoding

The majority of ML models process the dataset features
numerically. Since some ADS-B attributes are non-numerical,
we must convert them appropriately so that the models can
extract the necessary information. ADS-B features that need
data encoding are icao24 and onground. icao24 is the identi-
fier of the aircraft represented in hexadecimal which can be
converted to base-10. The onground feature is Boolean, which
has two values, True and False, that can be encoded as 1 and
0, respectively.

F. Data Standardization

Feature standardization should be the first step before SVM
machine learning models. These models limit the magnitude
of the coefficients associated with each feature, which depends
on the value of the feature. In our case, the features’ values
have varying ranges. Therefore, we standardize the data using
Equation 1 in order for the model to handle the features
equally.

X ′ =
X − µ

σ
(1)

Where X ′ is the standardized feature value, X is the initial
feature , µ is the mean, and σ is the standard deviation.

G. Feature Extraction and Selection

1) Feature Extraction: To improve the dataset, two new
physical parameters, Received Signal Strength (RSS) and
Doppler shift, were included as characteristics. To calculate
the RSS [14] and Doppler shift, the distance from the receiver
in the normal and attack cases was calculated using the aircraft
and attacker’s locations, respectively, by applying the following
formulas:

RSS =
PTGTGRλ

2

(4πd)2
(2)

Where PT is the transmission power, GT is the transmitter
antenna gain, GR is the receiver antenna gain, λ is the
wavelength, and d is the distance between the transmitter and
receiver.
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Fig. 3. Features after standardization

Doppler = fR − f0 (3)

And

fR = (
c+ vR
c+ vT

)× f0 (4)

Where fR is the frequency of the received signal, c is the
speed of light, f0 is the frequency of the transmitted signal,
vR is the receiver velocity, and vT is the transmitter velocity.

2) Feature Selection: Feature selection is a critical step for
machine learning models. This step assists us in identifying
irrelevant features in the dataset and reducing computational
complexity. In our work, we employed Kendall’s Tau correla-
tion to remove the correlated features.

a) Kendall’s Tau Correlation: For a dataset with n ob-
servations, a pair of observations (xi, yi) and (xj , yj) is said
to be concordant (nc) if xi − xj and yi − yj have the
same sign and discordant (nd) if they have opposite signs.
Kendall’s Tau correlation is a powerful non-parametric analysis
that determines the strength and direction of the relationship
between two variables using the following formula [15]:

τ =
nc − nd

nc + nd
=

nc − nd

n(n− 1)/2
(5)

Where τ achieves the maximum values of 1 when all pairs
n(n − 1)/2 are concordant and the minimum value -1 when
all pairs are discordant.

H. Machine Learning Models

This paper compares the performance of three SVM models
in detecting ADS-B injection attacks. SVM models are the
most prevalent and popular machine learning models for clas-
sification and regression problems. These models can achieve
high accuracy while preventing overfitting.

SVM [16] is an instance-based supervised ML model that
can classify non-linear and linear data. This model is based

on a complex algorithm that, unlike the other instance-based
methods, uses a subset of training points, called support
vectors, in the decision function, which highly optimizes the
memory.

This model maps each data instance into an n-dimensional
feature space and seeks the optimum hyperplane that divides
the data into two classes with maximum marginal distance
from both classes and minimum classification error.

The group of training instances used for the prediction
process is selected using a kernel function. Linear SVM is
a faster SVM implementation that employs a linear kernel by
default. The basic optimization function of SVM is represented
by the formula (6) [16].

min
1

2
||w||2 + C

m∑
i=0

ξi (6)

yi(f(xi)) ≥ 1− ξi (7)

f(x) = (wTφ(x) + b) (8)

Where f(x) is the decision function, w and b are its
coefficients, φ is a non-linear function mapping the input
features, C(> 0) is the tradeoff between the distance of the
separating margin and the training error, and ξi is the training
error.

C-SVM [17] is a variant of SVM that aims to find the
optimal margin for the support vectors to produce a better
outcome. A parameter C was introduced to adjust this margin
in order to balance the misclassification between the two
datasets. Nu-SVM [18], like C-SVM, introduces a new hyper-
parameter, nu, to control the number of support vectors in the
SVM basic algorithm. The fundamental difference between nu
and C hyperparameters is that nu has a limited and smaller
range of values.

I. Hyperparameter Tuning

Hyperparameters are configuration arguments that guide
the learning process for a machine learning model for a
specific dataset. Hyperparameter tuning or hyperparameter
optimization is a technique used to select an optimal set of
hyperparameters that achieve the best performance for an ML
model and a given dataset. The optimization procedure begins
with the definition of a search space containing various model
configurations with different hyperparameter values.

The goal of the optimization is to find the best combination
of hyperparameter values for the model’s performance. A
number of optimization methods have been proposed, includ-
ing Random Search (RS) used in this work. Random Search
is a simple and widely used hyperparameter tuning method
that finds the optimal parameters configuration by randomly
sampling ML configuration models in a bounded search space.

This method was specifically chosen due to its high-
performance results with SVM models [19]. In this paper, the
authors investigated the use of the Random Search method
for adjusting SVM hyperparameters. They performed various
experiments with different datasets and compared the results
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to other optimization meta-heuristics like genetic algorithms.
The experiments show that the simple Random Search method
leads to SVM models with predictive accuracy similar to the
meta-heuristics results.

J. Evaluation Metrics

We selected eight evaluation metrics to assess the machine
learning models for an onboard implementation on UAVs.
They can be categorized into two types: detection efficiency
and model performance, which can vary depending on the data
size and the used model.

1) Detection Efficiency:
a) Probability of Detection (PoD): It denotes the prob-

ability of accurately classifying injected messages divided by
the total number of injected messages.

b) Probability of Misdetection (PoM): It shows the pro-
portion of injected messages that were categorized as genuine
messages over the total number of injected messages.

c) Probability of False Alarm (PoFA): It gives the per-
centage of genuine messages that were incorrectly classified
over the total number of legitimate messages.

d) Accuracy (Acc): It is defined as the percentage of cor-
rectly classified messages over the total number of messages.

2) Model Performance:
a) Time of Training (Tt): The machine learning model’s

execution time throughout the training phase.
b) Time of Detection (Td): The elapsed time to detect the

attacks.
c) Memory Usage in Training (Memt): The machine

learning model’s memory usage during the training period.
d) Memory Usage in Detection (Memd): The memory

consumption during the detection phase.

III. RESULTS AND DISCUSSION

In this study, 70% of the data was trained and the remaining
30% tested using a 10-fold cross-validation. After conducting
the feature extraction and selection, the baroaltitude and the
geoaltitude are found to be highly correlated, which is fairly
expected. We selected the baroaltitude since it had fewer
missing values and is considered to be more precise. Therefore,
nine features that mainly reflect the status of the aircraft
are used: latitude, longitude, baroaltitude, velocity, heading,
vertical rate, onground, RSS, and Doppler shift.

TABLE III. BEST HYPER-PARAMETERS OF MODELS

ML Model Hyperparameters
Linear SVM Penalty = ’l2’, loss = ’hinge’, C = 10.
C-SVM Kernel = ’rbf’, gamma = ’auto’, C = 100.
nu-SVM Nu = 0.2, kernel = ’poly’, gamma = ’auto’,

degree = 8.

The best hyper-parameters after applying the random search
technique are given in Table III. Table IV shows the obtained
results of the SVM models, while Figs. 4 and 5 illustrate the
probability of detection and accuracy, and the probabilities of
misdetection and false alarm, respectively.

TABLE IV. EVALUATION METRICS RESULTS

Model PoD
%

PoM
%

PoFA
%

Acc
%

Tt

(s)
Td

(s)
Memt

(MiB)
Memd

(MiB)
Linear
SVM

82.45 17.55 7.51 87.05 0.4532 0.0045 1.3320 0.0391

C-
SVM

92.92 7.07 1.86 95.32 3.2914 0.6242 0.9844 0.6211

nu-
SVM

91.37 8.63 5.31 92.87 19.4205 6.2886 1.8164 0.6602

From Fig.4, we can observe that both C-SVM and nu-SVM
show high results but C-SVM gives better results. These two
models, C-SVM and nu-SVM, have an accuracy of 95.32%
and 92.87%, respectively. On the other hand, linear-SVM
has considerably low accuracy and probability of detection
compared to the two other models. Fig.5 shows that C-SVM
significantly outperforms the other models in terms of both
probabilities of misdetection (7.07%) and false alarm (1.86%).

Fig. 4. Probability of detection and accuracy

As shown in Table IV, overall, all models have low memory
consumption during the training and detection. However, nu-
SVM is slow compared to the two other models; it takes this
model 19.42s for the training phase and 6.29s for detection of
attacks. Linear-SVM on the other hand is noticeably faster and
lighter in both training (0.45s) and detection (0.0045s) phases.
Meanwhile, C-SVM shows some reasonably good results in
terms of the required training and detection times.

While choosing the best model, it is crucial to examine the
costs of different metrics in the context of the situation at
hand. In our case, a high probability of misdetection enables
fraudulent messages to pass as genuine messages, but a high
probability of false alarm may result in wrongly notifying the
user of a possible attack only. In this case, the probability of
misdetection is more important than the probability of false
alarm.

Despite the expense of the detection time and memory, we
would prefer to have higher accuracy and a lower misdetection
probability than having a faster but less accurate detection
model. This trade-off may be preferred since a relatively slower
response is better than no or false response.
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Fig. 5. Probabilities of misdetection and false alarm

Therefore, we can say that C-SVM is the best model for
detecting ADS-B message injection attacks on UAVs. It has
the highest accuracy and detection probability and the lowest
misdetection and false alarm rate, while it maintains relatively
good results in the time and memory metrics.

IV. CONCLUSION AND FUTURE WORK

The U.S. Federal Aviation Administrations (FAA) and the
European Aviation Safety Agency (EASA) mandates require
all aircraft to be equipped with ADS-B systems; nevertheless,
this technology lacks the fundamental security aspects. The
aim of this work is to develop robust techniques to detect
ADS-B message injection attacks. This paper compares the
performance of three SVM models in detecting such attacks.
A dataset was built using real ADS-B messages from the
OpenSky network and messages resulting from three types of
ADS-B message injection attacks that were simulated. The
performance of the three SVM models was performed in
terms of two types of evaluation metrics that are essential
for UAVs, detection efficiency and model performance. The
obtained findings indicate that C-SVM is the most suitable
model for our application due to its high accuracy (95.32%)
and fast attacks detection (0.62s).
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