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Abstract—Advances made in Unmanned Aircraft Vehicles
(UAVs) have increased rapidly in the last decade resulting in new
applications in both civil and military spheres. However, with
the growth in the usage of these systems, various cybersecurity
challenges arose unveiling the vulnerabilities of UAV wireless net-
works. Among the attacks that threaten the network’s availability
and reduce their performance are jamming attacks. Several
approaches have been proposed to address this problem; however,
most of them are not suitable for UAVs due to their reduced
size, weight, and power constraints. In this paper, we propose
a lightweight machine learning technique, LightGBM, to detect
deceptive jamming attacks on UAV networks. The performance
of this model is compared to that of three boosting and bagging-
based machine learning models namely, XGBoost, Gradient
Boost, and Random Forest. The results show that, although
the LightGBM model has slightly lower accuracy (98.4%) than
Gradient Boost (99%) and Random Forest (98.87 %), it is 21 times
faster and occupies two times less memory during the prediction
than Gradient Boost and Random Forest.

Index Terms—UAY, jamming attacks, detection techniques, ma-
chine learning, LightGBM, deceptive jamming, wireless networks.

I. INTRODUCTION

Over the last decade, the use of Unmanned Aerial Vehicles
(UAV) in various domains has been remarkably increasing,
making them a potential target to a myriad of attacks. In
addition, some of the applications may be in sensitive sectors in
which a breach in security can lead to disastrous consequences.
Furthermore, wireless communication is established between a
UAV and a Ground Control Station (GCS) for command and
control, which can open the venue to a variety of threats, in-
cluding malicious users who can easily access vital information
or disturb the communication systems [1].

The data communications between the UAV network nodes
can be categorized into four distinct types: data link between
a UAV and another UAV, UAV and a GCS, UAV and the
Global Positioning System (GPS), and UAV and the Automatic
Dependent Surveillance-Broadcast (ADS-B) ground stations.
Each component and data link is susceptible to a range of risks
that can degrade the performance of the UAV and damage the
network.

Jamming attacks are one of the most serious threats to UAV
networks. A jamming attack is a Denial of Service (DoS)
threat that compromises network availability. In this attack, the
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jammer transmits radio signals to flood the channel and disrupt
ongoing communications [2]. For this purpose, several papers
have been published, proposing techniques to detect jamming
attacks on UAVs. For example, in [3], the authors presented
an anomaly-based Intrusion Detection System (IDS) to detect
GPS spoofing and jamming attacks on UAV networks. This
IDS is composed of a Self-Taught Learning algorithm and
a multiclass Support Vector Machine (SVM) algorithm. The
results show that this approach has an accuracy of 90%. In
[4], the authors proposed an intrusion detection and response
that monitor the behaviors of a UAV. The intrusion detection
technique checks if the number of sent packets and the jitter
exceeds a certain threshold to detect the constant and deceptive
jamming attacks. This model provides a detection rate of more
than 93%. In [5], a framework is proposed to detect jamming
attacks in UAV networks using two Machine Learning (ML)
models, multi-layer perceptron, and decision trees that reach an
accuracy of 96%. In [6], the authors presented a localization-
based approach to estimate the jammer’s location range and
transmission power. Another method is discussed in [2] that
uses federated learning and a Dempster-Shafer-based client
selection approach to detect jamming attacks in flying ad hoc
networks. A semantic analysis-based approach was suggested
in [7], where the state of the UAV is monitored to detect
changes using fuzzy logic.

Although these approaches achieve satisfactory results in
terms of accuracy, either they simulated only simple jam-
ming attacks making them ineffective in detecting deceptive
jamming attacks, or require additional hardware making them
costly to deploy. Furthermore, most studies focused on generic
wireless communication jamming attacks [8]-[13]. The tech-
niques used in those studies are impractical solutions for UAVs
due to their limited power, low computational resources, and
high mobility. Therefore, motivated by the limitations of the
existing studies, we propose a fast, accurate, and lightweight
ML model to detect deceptive jamming attacks that target UAV
networks.

The main contributions of this paper can be summarized as
follows:

« Investigation and selection of the most important features
in detecting deceptive jamming attacks.

o« A fast, lightweight, and high-performance machine-
learning model that can be implemented in a UAV to
locally identify jamming attacks.
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e A comparative analysis of a fast and lightweight ML
model, LightGBM, with other traditional ML models.
This paper’s remainder is organized as follows: Section II
discusses the methodology, including the jamming scenario,
data pre-processing, feature selection, and machine learning
models used to conduct this research. In Section III, we present
the simulation results and discuss them. Finally, Section IV
provides a conclusion and recommendations for future works.

II. METHODOLOGY

This section discusses the jamming scenario as well as the
features of the dataset used in this study. In addition, as shown
in Fig.1, we briefly highlight the main techniques utilized
for data pre-processing, feature selection, ML classification
models, and hyperparameter tuning techniques.

[}
o @
Data collection and
dataset building

Evaluation - ML classification

Fig. 1. Jamming attack detection ML model workflow diagram

# Data preprocessing # Feature selection

Hyperparameter
tuning

A. Jamming Scenario

The drone and the GCS communicate using wireless com-
munications over a 2.4 GHz or 5 GHz channel, such as Blue-
tooth or Wi-Fi 802.11 [14]. In this study, we used a Simulink
model of Wi-Fi 802.11 to simulate the communication between
the UAVs and the GCS. We considered two scenarios, a normal
and a jamming attack case. For the normal case, we use three
nodes, two UAVs and the GCS. The jamming attack case
consists of a UAV, a jammer, and a GCS.

We used another UAV in the first scenario to ensure a fair
comparison between the two scenarios for detecting jamming
attacks, as having another UAV may result in packet collision,
which might be interpreted as jamming in traditional jamming
detection techniques. According to the Federal Aviation Ad-
ministration (FAA), UAVs fly at the same altitude throughout
most of their flight [8], therefore only two dimensions were
considered in this work. The UAVs’ movements were simu-
lated as a distance ranging between 30 and 70 meters. The
details of the used channel are shown in Table I.

In this study, we implemented a deceptive jammer since it
is one of the most stealthy jammers compared to other types,
such as constant and random jammers [15]. It uses a low
level of power within the range of legitimate nodes’ powers
and broadcasts a continuous stream of data to deceive these
nodes into believing it is transmitting authentic data [16]. As

TABLE I. Channel Parameters

Parameter Value
Bandwidth 5 GHz
Data Rate 12 Mbps
Modulation QPSK

Channel impairments | Free-space path loss,
range propagation loss,

and Rayleigh fading

a result, traditional methods of jamming attacks detection are
ineffective in detecting this type of jammers. For example,
the Received Signal Strength (RSS) does not change since the
jammer uses low power, which is similar to the power coming
from legitimate nodes.

Table II shows the parameters used for simulating the normal
and the jammer nodes. The deceptive jamming was performed
by reducing the inter-packet interval to 3-6 milliseconds to
have a continuous data transmission. This process occupies
the channel for an extended period of time, preventing other
nodes from transmitting data.

TABLE II. Simulation Parameters

Parameter Normal node | Jammer node
Transmitting power | 5-10 dBm 5-10 dBm
Antenna gain 1 dB 1 dB
Inter packet interval | 10-15 ms 3-6 ms
Packet size 1000 Bytes 1000 Bytes

B. Data Pre-Processing

The extracted dataset for this study contains 10,000 samples
with 25 features from several communication layers; 5000
samples were extracted from jamming signals and 5000 sam-
ples were extracted from regular traffic. Following the acqui-
sition of raw data, we applied data pre-processing techniques
to get clean data ready to be fed to our machine-learning
model and provide better results. We encoded the data into
0 as legitimate and 1 as malicious. After the encoding, we
employed the feature scaling technique, min-max scaling, to
normalize the corresponding data. The features are rescaled to
a range between 0 and 1 in this approach.

X — Xmin
Xmar - Xmin
Where X’ denotes the normalized feature value, X,,,;,, and

Xinae are the minimum and maximum values of the selected
feature, respectively, and X is the feature value.

X' = (D

C. Feature Selection

Feature selection techniques are one of the most important
aspects of building good ML models. These strategies identify
the most important features and show the correlated features
in the dataset. As some of the features might be ineffective
in the models’ training thus they increase the model time and
complexity, and reduce the accuracy. Therefore, it is important
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to identify the most important features to guarantee optimal
results. In this study, we used two feature selection techniques,
Spearman Correlation and Extra Tree classifier. We will go
through these techniques in further depth in the sections that
follow.

1) Spearman Correlation: In this work, we applied the
Spearman correlation method to find then remove correlated
features. This technique was chosen due to its ability to mea-
sure the monotonic relation between two variables in addition
to its higher robustness to outliers than other feature selection
techniques [17]. This method demonstrates how strong the
relationship is between two variables through the Spearman
rank correlation coefficient defined as follows:

_ Cov(X,,Y;)
"7 Std(X,)Std(Yy)

Where X, and Y, are the ranked values of the random
variables X and Y respectively; Cov() is the covariance and
Std() is the standard deviation. In this paper, we consider that
two variables are correlated if r provides results higher than
0.9 or lower than -0.9.

2) Extra Tree Classifier: To reduce the computational com-
plexity and processing time, we used the Extra Tree classifier to
select the most important features. The Extra Tree, also known
as Extremely Randomized Tree [18], is a tree-based ensemble
ML method similar to the Random Forest method with a
simpler algorithm. The predictions are calculated by averaging
the results from the decision trees. The use of the averaging
combined with the randomization in the trees’ construction
helps improve the predictive accuracy, reduce variance, and
control over-fitting [18] to evaluate feature importance, which
can be exploited for feature selection.

2

D. Machine Learning Models

The purpose of this research is to build a fast, efficient, and
lightweight model that detects jamming in UAV networks. This
can be considered as a binary classification problem, where the
machine-learning model categorizes the data into jammed (1)
or not jammed (0).

In the last few years, ensemble learning algorithms have
shown impressive abilities to solve classification problems
compared to conventional learning algorithms [19]. The aim of
these techniques is to combine the predictions of multiple weak
learners. In addition, these algorithms have a higher general-
ization power than that of their member learners, which leads
to much more accurate results. Ensemble learning methods
can be divided into three main classes: bagging, boosting, and
stacking.

In this work, we used the LightGBM algorithm, which is a
tree-based gradient boosting model [20]. While the Gradient
Boost algorithm is known for its efficiency and accuracy,
LightGBM has a faster training speed and lower memory usage
and can handle large-scale datasets. Unlike Gradient Boost or
XGBoost, which processes all the data samples to compute
the information gain of all possible data splits, the Light GBM
uses two methods to reduce its complexity: Gradient-based

One-Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB).

GOSS considers data instances with large gradients and
applies random sampling on the data samples with small
gradients. On the other hand, EFB is used to reduce the num-
ber of features effectively. This technique bundles exclusive
features into a single feature called exclusive feature bundle.
This speeds up the process and reduces the data size without
affecting the accuracy [20].

1) Hyperparameter Tuning: In the LightGBM model, as
in any machine-learning model, hyperparameter tuning consti-
tutes a key step in optimizing the results of the ML model.
Several hyperparameter optimization methods exist in the
literature, from grid search to random search to more advanced
approaches like Bayesian optimization, genetic algorithms,
and artificial neural networks. In our study, we used grid
search to find the optimal combination of hyperparameters.
This technique is one of the most basic ones and is used
generally with new models and datasets as the hyperparam-
eters’ importance and impact are yet to be determined and
analyzed. Since LightGBM is relatively still a new model,
the grid search method is considered the best one to find the
optimal hyperparameters

III. RESULTS AND DISCUSSION

In this work, 5-fold cross-validation was used to train 70%
of the data and test 30% of the remaining dataset. We initially
identified 25 features: medium access control (MAC) transmis-
sion fails (MAC Tx Fails), MAC frame retries (MAC Retries),
dropped received physical signals (Phy Rx Drop), dropped
received MAC frames (MAC Rx Drop), transmitted MAC
frames in bytes (MAC Tx Bytes), successfully transmitted
MAC frames (MAC Tx Success), idle state time, contend
state time, sending data state time, wait for Rx state time,
extended inter-frame spacing (EIFS) state time, Rx state time,
throughput, MAC average time per frame, MAC max queue
length, MAC back off, Rx triggers while previous Rx is in
progress, Rx triggers while Tx in progress, signal power,
signal to noise ratio (SNR), root mean square of error vector
magnitude (RMS EVM), packet delivery ratio (PDR), bad
packet ratio (BPR), eye height, and eye width.

As shown in Fig. 2, there are 11 pairs of correlated features;
therefore, 11 features were removed leaving14 features in the
list. To balance between the used computational power and the
detection efficiency only the features with importance higher
than 0.05 were selected using the Extra Tree classifier, namely
Rx Time, Idle Time, and BPR. SNR, and Signal Power, which
have an importance of approximately 0.6, 0.18, 0.07, 0.05, and
0.05, respectively, as illustrated in Fig. 3. The selected features
are defined as:

Signal to Noise Ratio (SNR): SNR is defined as the received
signal power over the noise power.

SNR — Signal Power 3)

Noise Power
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Fig. 2. Heatmap of Spearman’s feature correlation

Bad Packet Ratio (BPR): BPR is the number of corrupted
received packets that failed the Cyclic Redundancy Check
(CRC) over the total number of received packets.

Number of Corrupted Received Packets
Total Number of Received Packets

Signal Power: Signal power is the power of the received
signal that surrounds the reception antenna, and it is measured
in dBm.

Rx Time: 1t is the total time that a node spends in receiving
the data after the Clear Channel Assessment (CCA) has been
sent. Frames are received and processed in this period, and it
is expressed in microseconds.

Idle Time: It is the total time between two consecutive
successful packets, and it is expressed in microseconds.

BPR = “

EyeWidth
MACRxDrop
EIFSStateTime
RxTriggersWhilePrevRxIsInProgress
EyeHeight
MACTxSuccess
MACRetries
MACAverageTimePerFrame
MACBackoff
SNR
SignalPower
BPR
IdleStateTime
RxStateTime
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Fig. 3. Extra Tree classifier features importance

Next, we compared the performance of the LightGBM

model with those of Random Forest, Gradient Boost, and XG-
Boost in terms of probability of detection (TPR), probability of
misdetection (FNR), probability of false alarm (FPR), accuracy
(ACC), processing time, complexity, and memory size. These
metrics are defined as follows:

The probability of detection refers to the probability of
correctly classifying malicious signals as jamming attacks over
the total number of jamming signals.

The probability of misdetection gives the percentage of the
number of jamming signals that were classified as legitimate
signals over the total number of jamming signals.

The probability of false alarm is the percentage of legiti-
mate signals that were classified as jamming signals over the
total number of non-jamming signals.

Accuracy is the total number of correctly classified jamming
and legitimate signals over the total number of received signals.

Processing time is the execution time of the ML algorithm
during the training period.

Complexity is the computational complexity that is driven
by the ML model algorithm. It describes the amount of time
to run the program.

Memory size is the memory usage of the ML model during
the training and the prediction period.

Where T'P stands for the number of true positives, F'P for
false positives, T'N for true negatives, and F'N for false neg-
atives. All the selected classification models’ hyperparameters
were chosen based on the grid search method to obtain a fair
comparison between the models.

Table IIT shows the optimum values of ML model hyper-
parameters in terms of evaluation metrics derived using the
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grid search tuning approach. The accuracy and probabilities
of detection, misdetection, and false alarm of the selected ML
models are illustrated in Fig. 4 and Fig. 5.

TABLE III. Hyperparameters of ML Models

ML Model
Random Forest

Hyperparameters
max depth= 7, learning rate= 0.2, colsample
by tree= 0.6, subsample= 0.9, lambda= 5.
max depth= 3, n estimators= 150, min sam-
ple leaf= 6, max features= 5.

Gradient Boost

XGBoost max depth= 7, learning rate= 0.2, colsample
by tree= 0.6, subsample= 0.9, lambda= 5,
gamma= 0.25.

LightGBM max depth= 7 ,learning rate= 0.1, num

leaves= 100, max bin= 100.

It can be observed that all models exhibit relatively high
performance in terms of probability of detection, accuracy,
misdetection, and false alarm. However, it is clear that the
Gradient Boost shows the best results with a detection prob-
ability and an accuracy of 99% while the misdetection and
false alarm probabilities are both below 1%. This algorithm
is followed by Random Forest, which is only 0.13% less than
Gradient Boost in the detection probability and accuracy and
is higher in the probabilities of misdetection and false alarm
by less than 0.3%.

100.0%

99.5%

99.0%

98.5%

98.0%

97.5% I

97.0%

Random  Gradient XGBoost LightGBM
Forest Boost
® Accuracy Probability of Detection

Fig. 4. Accuracy and probability of detection of the selected ML models

Nonetheless, LightGBM sustains satisfactory results in
terms of the four selected metrics, where it attains a probability
of detection and accuracy of more than 98% and misdetection
and false alarm probabilities of less than 1.8%. While XGBoost
has overall an average performance compared to other models,
the probability of misdetection is high (2.4%). This will have a
significant impact on the detection system since many attacks
would go undetected.

Furthermore, LightGBM is considered as a lighter version of
XGBoost, which might generally lead to a degradation in per-
formance. However, we can observe that LightGBM achieves
better results in terms of accuracy and misdetection probability.
Although XGBoost has a slightly lower probability of false

3.0%
2.5%
2.0%
1.5%
1.0%
0.5%
0.0%

Gradient XGBoost LightGBM
Boost

Random
Forest

B Probability of False Alarm ' Probability of Misdetection

Fig. 5. Probabilities of false alarm and misdetection of the selected ML models

alarm than LightGBM, this will not have a major impact on
jamming attacks detection since only some legitimate signals
will be identified as attacks, hence it is not regarded as a crucial
metric.

Since the aim of this study is to propose a fast, lightweight,
and accurate technique to be implemented on the UAV, we
also compared the previous ML classifiers according to the
processing time, the algorithm’s computational complexity, and
the occupied memory for both the training and prediction. The
results are shown in Table IV, where n is the number of data
samples, p is the number of features, ¢ is the number of trees,
n' is the number of data samples after the GOSS algorithm,
and b is the number of bundles, i.e., selected features through
EFB method, where n’ < n and b < p.

From Table IV, we can perceive that LightGBM significantly
outperforms the other classifiers in terms of processing time,
computational complexity, and used memory in the prediction.
LightGBM is 21 times faster and occupies two times less mem-
ory during the prediction than the Gradient Boost. Compared
to Random Forest, LightGBM is more than 34 times faster and
requires 1.4 times less memory. Moreover, its computational
complexity is substantially lower than the other algorithms. In
contrast, Random Forest has the worst processing time and
complexity.

TABLE IV. ML Models Evaluation Results

RF GBM XGB LGBM
Processing 1.422 0.876 0.053 0.041
Time (s)
Complexity O(nlog(n)pt) | O(npt) | O(np) | O(n'b)
[21] [22] [20] [20]
Memory Train 0.992 1.438 2.188 1.867
Size (MiB) | Detect | 0.023 0.035 0.016 0.016

These results clearly indicate that compared to the three
models (XGBoost, Gradient Boost, and Random Forest),
LightGMB is a more suitable model for jamming attack
detection in UAVs, due to not only its high accuracy and
low misdetection rate but also to its low processing time and
memory usage, both of which are critical requirements in
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UAVs.

IV. CONCLUSION AND FUTURE WORK

Deceptive jamming attacks are among the most damaging
threats since they are simple to carry out and difficult to detect.
Existing techniques are impractical for UAV networks, as they
require high computational cost, power, memory usage, or
additional hardware. In this paper, we proposed a lightweight
ML model, LightGBM, to detect deceptive jamming attacks
on a UAV network and compared its performance with those
of Random Forest, Gradient Boost and, XGBoost. We first
simulated deceptive jamming attacks in a UAV network and
collected the signals. Then, we used Spearman correlation and
Extra Tree classifier to discard correlated features and choose
the most important ones in the corresponding dataset. We also
applied grid search to ensure that the ML models’ hyper-
parameters were optimally tuned. The models’ performance
was evaluated in terms of detection, misdetection, accuracy,
false alarm, processing time, computational complexity, and
memory usage. The results show that our proposed model
outperforms the other models in terms of processing time,
computational complexity, and prediction memory usage. Fu-
ture work will include investigating the impacts of jamming
attacks on UAV networks.
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